1
|
Hussein L, Moaness M, Mabrouk M, Farahat MG, Beherei HH. Advancements in mesoporous bioactive glasses for effective bone cancer therapy: Recent developments and future perspectives. BIOMATERIALS AND BIOSYSTEMS 2025; 17:100108. [PMID: 40083816 PMCID: PMC11904600 DOI: 10.1016/j.bbiosy.2025.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
This review focuses on recent advancements in the effective use of mesoporous bioactive glasses (MBG) in the treatment of bone cancer, focusing on Osteosarcoma (OS). Bone cancers are rare but are associated with significant morbidity and mortality; often, aggressive treatment is required. Conventional treatments such as surgery, radiation, and chemotherapy are often not enough. This is because surgery cannot completely remove the tumor, without creating a critical size which are defects larger than 2 cm that cannot be repaired by physiological mechanisms. As a result, patients often face the additional burden of radiation and chemotherapy. Scientists have been exploring new treatments, including hyperthermia-targeted therapy, polymeric nanoparticles, and stem cell therapy. This could potentially negatively impact healthy tissues and organs. MBG offers a promising alternative to chemotherapeutic agents and ions for disease treatment as it acts as a multifunctional drug delivery system (DDS). In addition, MBG can also be engineered into scaffolds to facilitate local delivery of growth factors and drugs, thus promoting the efficiency of bone healing and restoration. Therefore, the current review highlights various MBG types reported in the past decade and explores potential future paths to enhance their use in bone cancer treatment while also giving insight on the already commercially available BGs that are used in different bone-related disease.
Collapse
Affiliation(s)
- Laila Hussein
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mona Moaness
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mohamed G. Farahat
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Biotechnology Department, Faculty of Postgraduate Studies for Nanotechnology, Sheikh Zayed Branch Campus, Cairo University, Sheikh Zayed City 12588, Egypt
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
2
|
Zhang XH, Wang H, Cao Y, Liu L, Zhang ZQ, Liu JN, Mu SH, Yuan Y, Cai XY, Sui BD, Zheng CX, Xu HK, Jin F, Lei X. Optimizing natural human-derived decellularized tissue materials for periodontal bone defect repair. Biochem Biophys Res Commun 2025; 748:151297. [PMID: 39818190 DOI: 10.1016/j.bbrc.2025.151297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Periodontal disease is a major contributor to tooth loss worldwide in adults. Particularly, periodontal bone defect is a common clinical condition, yet current therapeutic strategies exhibit limited effectiveness. Recently, natural bone graft materials have attracted considerable interest for enhancing bone defect repair due to their superior biocompatibility and osteogenic capabilities. Nevertheless, clinically applicable human-derived biomaterials to boost bone regeneration are currently not accessible. Here, enlightened by the decellularization technique, we successfully prepared the human decellularized alveolar bone and tooth dentin tissues from healthy individuals and obtained micro-sized bioactive decellularized extracellular matrix (dECM) particles for treatment of periodontal bone defects. After characterizing the two representative dECM tissues and particles by multiple physiochemical approaches, we revealed that both human decellularized alveolar bone matrix particles (hDABMPs) and human decellularized tooth dentin matrix particles (hDTDMPs) possessed excellent biocompatibility. Furthermore, both biomaterials significantly enhanced the proliferation and osteogenic differentiation of human dental follicle stem cells, potentially contributing to periodontal bone formation. Indeed, in a rat model, both types of dECM microparticles were found to facilitate tissue regeneration at periodontal bone defect sites, demonstrating comparable efficacy for promoting bone defect repair. Collectively, this study provides an important basis for clinical exploration of natural human-derived micro-sized biomaterials for periodontal bone defect repair and opens a new path for periodontal disease treatment strategies.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuan Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zi-Qi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jia-Ning Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shi-Han Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuan Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xin-Yue Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao-Kun Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Xiao Lei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
3
|
Liu L, Chen H, Zhao X, Han Q, Xu Y, Liu Y, Zhang A, Li Y, Zhang W, Chen B, Wang J. Advances in the application and research of biomaterials in promoting bone repair and regeneration through immune modulation. Mater Today Bio 2025; 30:101410. [PMID: 39811613 PMCID: PMC11731593 DOI: 10.1016/j.mtbio.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
With the ongoing development of osteoimmunology, increasing evidence indicates that the local immune microenvironment plays a critical role in various stages of bone formation. Consequently, modulating the immune inflammatory response triggered by biomaterials to foster a more favorable immune microenvironment for bone regeneration has emerged as a novel strategy in bone tissue engineering. This review first examines the roles of various immune cells in bone tissue injury and repair. Then, the contributions of different biomaterials, including metals, bioceramics, and polymers, in promoting osteogenesis through immune regulation, as well as their future development directions, are discussed. Finally, various design strategies, such as modifying the physicochemical properties of biomaterials and integrating bioactive substances, to optimize material design and create an immune environment conducive to bone formation, are explored. In summary, this review comprehensively covers strategies and approaches for promoting bone tissue regeneration through immune modulation. It offers a thorough understanding of current research trends in biomaterial-based immune regulation, serving as a theoretical reference for the further development and clinical application of biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Li Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Xue Zhao
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Qing Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yongjun Xu
- Department of Orthopedics Surgery, Wangqing County People's Hospital, Yanbian, 133000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yongyue Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Weilong Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Bingpeng Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| |
Collapse
|
4
|
Mostafa AEA, Emadi R, Shirali D, Khodaei M, Emadi H, Saboori A. Printed polylactic acid/akermanite composite scaffolds for bone tissue engineering; development and surface modification. Int J Biol Macromol 2025; 284:138097. [PMID: 39608544 DOI: 10.1016/j.ijbiomac.2024.138097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The susceptibility of bone tissues to various factors such as ageing, accidents, and diseases has led to extensive tissue engineering research focusing on bone tissues. Hence, this research also aims to determine the optimal amount of Akermanite (AK) addition to the polylactic acid scaffold for bone tissue engineering applications, as well as the effects of surface modification on its properties. The Akermanite was synthesized using the sol-gel method. Then, composite scaffolds of polylactic acid, including 0, 10, 20, and 30 wt% AK, were printed via the fused deposition modelling (FDM) process. These scaffolds were labelled as PLA, 10 wt% AK, 20 wt% AK, and 30 wt% AK, respectively. The X-ray diffraction analysis confirmed the production of the AK high-purity phase. Cell viability tests on composite scaffolds confirmed non-toxicity, and cell adhesion improved with AK addition. Mechanical testing showed that the compressive strength of composite scaffolds increased by increasing the AK content of the composite. This study recommended the 20 wt% AK scaffold as the optimal composition for bone tissue engineering. The surface-modification of polylactic acid/AK composite scaffolds using sodium hydroxide showed that it can be suitable for advanced tissue structures and medical applications, contributing to advancements in tissue engineering and medical technology for improved bone treatments.
Collapse
Affiliation(s)
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Danial Shirali
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| | - Hosein Emadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 14176-14411, Iran
| | - Abdollah Saboori
- Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Integrated Additive Manufacturing Center (IAM@PoliTo), Politecnico di Torino, Corso Castelfidardo 51, 10129 Torino, Italy.
| |
Collapse
|
5
|
Liang W, Long H, Zhang H, Bai J, Jiang B, Wang J, Fu L, Ming W, Zhao J, Zeng B. Bone scaffolds-based localized drugs delivery for osteosarcoma: current status and future perspective. Drug Deliv 2024; 31:2391001. [PMID: 39239763 PMCID: PMC11382735 DOI: 10.1080/10717544.2024.2391001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
A common malignant bone neoplasm in teenagers is Osteosarcoma. Chemotherapy, surgical therapy, and radiation therapy together comprise the usual clinical course of treatment for Osteosarcoma. While Osteosarcoma and other bone tumors are typically treated surgically, however, surgical resection frequently fails to completely eradicate tumors, and in turn becomes the primary reason for postoperative recurrence and metastasis, ultimately leading to a high rate of mortality. Patients still require radiation and/or chemotherapy after surgery to stop the spread of the tumor and its metastases, and both treatments have an adverse influence on the body's organ systems. In the postoperative management of osteosarcoma, bone scaffolds can load cargos (growth factors or drugs) and function as drug delivery systems (DDSs). This review describes the different kinds of bone scaffolds that are currently available and highlights key studies that use scaffolds as DDSs for the treatment of osteosarcomas. The discussion also includes difficulties and perspectives regarding the use of scaffold-based DDSs. The study may serve as a source for outlining efficient and secure postoperative osteosarcoma treatment plans.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiangwei Wang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bin Zeng
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
6
|
Brochu BM, Sturm SR, Kawase De Queiroz Goncalves JA, Mirsky NA, Sandino AI, Panthaki KZ, Panthaki KZ, Nayak VV, Daunert S, Witek L, Coelho PG. Advances in Bioceramics for Bone Regeneration: A Narrative Review. Biomimetics (Basel) 2024; 9:690. [PMID: 39590262 PMCID: PMC11592113 DOI: 10.3390/biomimetics9110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Large osseous defects resulting from trauma, tumor resection, or fracture render the inherent ability of the body to repair inadequate and necessitate the use of bone grafts to facilitate the recovery of both form and function of the bony defect sites. In the United States alone, a large number of bone graft procedures are performed yearly, making it an essential area of investigation and research. Synthetic grafts represent a potential alterative to autografts due to their patient-specific customizability, but currently lack widespread acceptance in the clinical space. Early in their development, non-autologous bone grafts composed of metals such as stainless steel and titanium alloys were favorable due to their biocompatibility, resistance to corrosion, mechanical strength, and durability. However, since their inception, bioceramics have also evolved as viable alternatives. This review aims to present an overview of the fundamental prerequisites for tissue engineering devices using bioceramics as well as to provide a comprehensive account of their historical usage and significant advancements over time. This review includes a summary of commonly used manufacturing techniques and an evaluation of their use as drug carriers and bioactive coatings-for therapeutic ion/drug release, and potential avenues to further enhance hard tissue regeneration.
Collapse
Affiliation(s)
- Baylee M. Brochu
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Savanah R. Sturm
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | - Kayaan Zubin Panthaki
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karl Zubin Panthaki
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, 345 E. 24th St., Room 806, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Li N, Wang J, Feng G, Liu Y, Shi Y, Wang Y, Chen L. Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies. Regen Biomater 2024; 11:rbae078. [PMID: 39055303 PMCID: PMC11272181 DOI: 10.1093/rb/rbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The intricate nature of oral-maxillofacial structure and function, coupled with the dynamic oral bacterial environment, presents formidable obstacles in addressing the repair and regeneration of oral-maxillofacial bone defects. Numerous characteristics should be noticed in oral-maxillofacial bone repair, such as irregular morphology of bone defects, homeostasis between hosts and microorganisms in the oral cavity and complex periodontal structures that facilitate epithelial ingrowth. Therefore, oral-maxillofacial bone repair necessitates restoration materials that adhere to stringent and specific demands. This review starts with exploring these particular requirements by introducing the particular characteristics of oral-maxillofacial bones and then summarizes the classifications of current bone repair materials in respect of composition and structure. Additionally, we discuss the modifications in current bone repair materials including improving mechanical properties, optimizing surface topography and pore structure and adding bioactive components such as elements, compounds, cells and their derivatives. Ultimately, we organize a range of potential optimization strategies and future perspectives for enhancing oral-maxillofacial bone repair materials, including physical environment manipulation, oral microbial homeostasis modulation, osteo-immune regulation, smart stimuli-responsive strategies and multifaceted approach for poly-pathic treatment, in the hope of providing some insights for researchers in this field. In summary, this review analyzes the complex demands of oral-maxillofacial bone repair, especially for periodontal and alveolar bone, concludes multifaceted strategies for corresponding biomaterials and aims to inspire future research in the pursuit of more effective treatment outcomes.
Collapse
Affiliation(s)
- Nayun Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqing Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
8
|
Scheurle A, Kunisch E, Boccaccini AR, Walker T, Renkawitz T, Westhauser F. Boric acid and Molybdenum trioxide synergistically stimulate osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. J Trace Elem Med Biol 2024; 83:127405. [PMID: 38325181 DOI: 10.1016/j.jtemb.2024.127405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Metals and their metal ions have been shown to exhibit certain biological functions that make them attractive for use in biomaterials, for example in bone tissue engineering (BTE) applications. Recent data shows that Molybdenum (Mo) is a potent inducer of osteogenic differentiation in human bone marrow-derived mesenchymal stromal cells (BMSCs). On the other hand, while boron (B) has been shown to enhance vascularization in BTE applications, its impact on osteogenic differentiation is volatile: while improved osteogenic differentiation has been described, other data show that B might slow down osteogenic differentiation or reduce the calcification of the extracellular matrix (ECM) when applied in higher doses. Still, the combination of pro-osteogenic Mo and pro-angiogenic B is certainly attractive in the context of biomaterials intended for the use in BTE. METHODS Therefore, the combined effect of molybdenum trioxide and boric acid at different ratios was investigated in this study to evaluate the effects on the viability, proliferation, osteogenic differentiation, ECM production and maturation of BMSCs. RESULTS Mo ions proved to be stronger osteoinductive compared to B, in fact, while some osteogenic differentiation markers were downregulated in the presence of B, the presence of Mo provided compensation. The combined application of B and Mo indicated a combination of individual effects, partially even enhancing the expected combined performance of the single stimulations. CONCLUSIONS The combination of B and Mo might be beneficial for BTE applications since the limited osteogenic properties of B can be compensated by Mo. Furthermore, since B is known to be pro-angiogenic, the combination of both substances may synergistically lead to improved vascularization and bone regeneration. Future studies should assess the angiogenic performance of this combination in greater detail.
Collapse
Affiliation(s)
- A Scheurle
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | - E Kunisch
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | - A R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - T Walker
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | - T Renkawitz
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | - F Westhauser
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
9
|
Viegas S, Marinheiro D, Bastos V, Daniel-da-Silva AL, Vieira R, Oliveira H, Almeida JC, Ferreira BJML. Resveratrol-Loaded Polydimethylsiloxane-Silica Hybrid Materials: Synthesis, Characterization, and Antitumoral Activity. Polymers (Basel) 2024; 16:879. [PMID: 38611137 PMCID: PMC11013690 DOI: 10.3390/polym16070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
In this work, hybrid materials within the polydimethylsiloxane-silica (PDMS-SiO2) system, synthesized via the sol-gel method, were developed and characterized for their potential to incorporate and release the bioactive compound resveratrol (RES). RES was incorporated into the materials with a high loading efficiency (>75%) using the rotary evaporator technique. This incorporation induced the amorphization of RES, resulting in enhanced solubility and in vitro release when compared to the free polyphenolic compound. The release profiles displayed pH dependence, exhibiting notably faster release at pH 5.2 compared to pH 7.4. The gradual release of RES over time demonstrated an initial time lag of approximately 4 h, being well described by the Weibull model. In vitro cytotoxicity studies were conducted on human osteosarcoma cells (MG-63), revealing a concentration-dependent decrease in cell viability for RES-loaded samples (for concentrations >50 µg mL-1).
Collapse
Affiliation(s)
- Sofia Viegas
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo Marinheiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Verónica Bastos
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal (H.O.)
| | - Ana L. Daniel-da-Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Vieira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal (H.O.)
| | - José Carlos Almeida
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara J. M. L. Ferreira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Xu T, Gao S, Yang N, Zhao Q, Zhang Y, Li T, Liu Z, Han B. A personalized biomimetic dual-drug delivery system via controlled release of PTH 1-34 and simvastatin for in situ osteoporotic bone regeneration. Front Bioeng Biotechnol 2024; 12:1355019. [PMID: 38357710 PMCID: PMC10865375 DOI: 10.3389/fbioe.2024.1355019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Patients with osteoporosis often encounter clinical challenges of poor healing after bone transplantation due to their diminished bone formation capacity. The use of bone substitutes containing bioactive factors that increase the number and differentiation of osteoblasts is a strategy to improve poor bone healing. In this study, we developed an in situ dual-drug delivery system containing the bone growth factors PTH1-34 and simvastatin to increase the number and differentiation of osteoblasts for osteoporotic bone regeneration. Our system exhibited ideal physical properties similar to those of natural bone and allowed for customizations in shape through a 3D-printed scaffold and GelMA. The composite system regulated the sustained release of PTH1-34 and simvastatin, and exhibited good biocompatibility. Cell studies revealed that the composite system reduced osteoblast death, and promoted expression of osteoblast differentiation markers. Additionally, by radiographic analysis and histological observation, the dual-drug composite system demonstrated promising bone regeneration outcomes in an osteoporotic skull defect model. In summary, this composite delivery system, comprising dual-drug administration, holds considerable potential for bone repair and may serve as a safe and efficacious therapeutic approach for addressing bone defects in patients with osteoporosis.
Collapse
Affiliation(s)
- Tongtong Xu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, Jilin, China
| | - Shang Gao
- Department of Stomatology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Nan Yang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qi Zhao
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, Jilin, China
| | - Yutong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Tieshu Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Bing Han
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Li H, Hao J, Liu X. Research progress and perspective of metallic implant biomaterials for craniomaxillofacial surgeries. Biomater Sci 2024; 12:252-269. [PMID: 38170634 DOI: 10.1039/d2bm01414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Craniomaxillofacial bone serves a variety of functions. However, the increasing number of cases of craniomaxillofacial bone injury and the use of selective rare implants make the treatment difficult, and the cure rate is low. If such a bone injury is not properly treated, it can lead to a slew of complications that can seriously disrupt a patient's daily life. For example, premature closure of cranial sutures or skull fractures can lead to increased intracranial pressure, which can lead to headaches, vomiting, and even brain hernia. At present, implant placement is one of the most common approaches to repair craniomaxillofacial bone injury or abnormal closure, especially with biomedical metallic implants. This review analyzes the research progress in the design and development of degradable and non-degradable metallic implants in craniomaxillofacial surgery. The mechanical properties, corrosion behaviours, as well as in vitro and in vivo performances of these materials are summarized. The challenges and future research directions of metallic biomaterials used in craniomaxillofacial surgery are also identified.
Collapse
Affiliation(s)
- Huafang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jiaqi Hao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xiwei Liu
- Lepu Medical Technology Co., Ltd, Beijing 102200, China
| |
Collapse
|
12
|
Kushram P, Majumdar U, Bose S. Hydroxyapatite coated titanium with curcumin and epigallocatechin gallate for orthopedic and dental applications. BIOMATERIALS ADVANCES 2023; 155:213667. [PMID: 37979438 PMCID: PMC11132588 DOI: 10.1016/j.bioadv.2023.213667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
Titanium and its alloy are clinically used as an implant material for load-bearing applications to treat bone defects. However, the lack of biological interaction between bone tissue and implant and the risk of infection are still critical challenges in clinical orthopedics. In the current work, we have developed a novel approach by first 1) modifying the implant surface using hydroxyapatite (HA) coating to enhance bioactivity and 2) integrating curcumin and epigallocatechin gallate (EGCG) in the coating that would induce chemopreventive and osteogenic potential and impart antibacterial properties to the implant. The study shows that curcumin and EGCG exhibit controlled and sustained release profiles in acidic and physiological environments. Curcumin and EGCG also show in vitro cytotoxicity toward osteosarcoma cells after 11 days, and the dual system shows a ~94 % reduction in bacterial growth, indicating their in vitro chemopreventive potential and antibacterial efficacy. The release of both curcumin and EGCG was found to be compatible with osteoblast cells and further promotes their growth. It shows a 3-fold enhancement in cellular viability in the dual drug-loaded implant compared to the untreated samples. These findings suggest that multifunctional HA-coated Ti6Al4V implants integrated with curcumin and EGCG could be a promising strategy for osteosarcoma inhibition and osteoblast cell growth while preventing infection.
Collapse
Affiliation(s)
- Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Ujjayan Majumdar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States.
| |
Collapse
|
13
|
Hesaraki S, Barounian MH, Borhan S, Shahrezayee M, Nezafati N. Controlled release of a non-steroidal anti-inflammatory drug from a photocurable polymeric calcium phosphate cement. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1858-1875. [PMID: 37029899 DOI: 10.1080/09205063.2023.2193495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023]
Abstract
In this research, a photocurable composite based on tetracalcuim phosphate ceramic and, hydroxyethyl methacrylate-modified poly(acrylic-maleic acid) was developed and studied as a potential drug delivery system for bone defects. Different concentrations (5, 10 and 20 wt. %) of a non-steroidal anti-inflammatory drug, Indomethacin, were loaded on to the composite and its release behavior was investigated in phosphate buffered solution during 504 h. The obtained release data were fitted by both power law (Peppas) and Weibull equations. The composites were also characterized after different soaking periods using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and Fourier transforming infrared spectroscopy. The results of XRD and SEM analyses revealed the formation of nanosized needle/flake-like apatite crystals on the composites surfaces; however, better apatite formation was observed for the composites loaded with higher amounts of Indomethacin. The morphological observations and quantitative estimations revealed that the loaded composites were gradually degraded in the phosphate-buffered saline. Moreover, a controlled release of Indomethacin was found from the composites in which a higher drug concentration led to a more drug level as well as sustained release profile. In drug release modeling, better regression coefficient was obtained from the Weibull equation, compared to the power law, meaning that the Weibull equation suggests a better description of the indomethacin release from the composites during the whole period of the test. In conclusion, the photocurable composite with apatite formation ability can be successfully used for the controlled release of indomethacin as an anti-inflammatory drug in bone defects.
Collapse
Affiliation(s)
- S Hesaraki
- Materials and Energy Research Center, Nanotechnology and Advanced Materials Department, Alborz, Iran
| | - M H Barounian
- Materials and Energy Research Center, Nanotechnology and Advanced Materials Department, Alborz, Iran
| | - S Borhan
- Department of Materials, Chemical and Polymer Engineering, Buein Zahra Technical University, Qazvin, Iran
| | - M Shahrezayee
- Department of Orthopedic Surgery, School of Medicine, AJA University of Medical Science, Tehran, Iran
| | - N Nezafati
- Materials and Energy Research Center, Nanotechnology and Advanced Materials Department, Alborz, Iran
| |
Collapse
|
14
|
Skubis-Sikora A, Sikora B, Małysiak W, Wieczorek P, Czekaj P. Regulation of Adipose-Derived Stem Cell Activity by Melatonin Receptors in Terms of Viability and Osteogenic Differentiation. Pharmaceuticals (Basel) 2023; 16:1236. [PMID: 37765045 PMCID: PMC10535461 DOI: 10.3390/ph16091236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Melatonin is a hormone secreted mainly by the pineal gland and acts through the Mel1A and Mel1B receptors. Among other actions, melatonin significantly increases osteogenesis during bone regeneration. Human adipose-derived mesenchymal stem cells (ADSCs) are also known to have the potential to differentiate into osteoblast-like cells; however, inefficient culturing due to the loss of properties over time or low cell survival rates on scaffolds is a limitation. Improving the process of ADSC expansion in vitro is crucial for its further successful use in bone regeneration. This study aimed to assess the effect of melatonin on ADSC characteristics, including osteogenicity. We assessed ADSC viability at different melatonin concentrations as well as the effect on its receptor inhibitors (luzindole or 4-P-PDOT). Moreover, we analyzed the ADSC phenotype, apoptosis, cell cycle, and expression of MTNR1A and MTNR1B receptors, and its potential for osteogenic differentiation. We found that ADSCs treated with melatonin at a concentration of 100 µM had a higher viability compared to those treated at higher melatonin concentrations. Melatonin did not change the phenotype of ADSCs or induce apoptosis and it promoted the activity of some osteogenesis-related genes. We concluded that melatonin is safe, non-toxic to normal ADSCs in vitro, and can be used in regenerative medicine at low doses (100 μM) to improve cell viability without negatively affecting the osteogenic potential of these cells.
Collapse
Affiliation(s)
- Aleksandra Skubis-Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | | | | | | | | |
Collapse
|
15
|
Sanhueza C, Hermosilla J, Klein C, Chaparro A, Valdivia-Gandur I, Beltrán V, Acevedo F. Osteoinductive Electrospun Scaffold Based on PCL-Col as a Regenerative Therapy for Peri-Implantitis. Pharmaceutics 2023; 15:1939. [PMID: 37514125 PMCID: PMC10386026 DOI: 10.3390/pharmaceutics15071939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Peri-implantitis is a serious condition affecting dental implants that can lead to implant failure and loss of osteointegration if is not diagnosed and treated promptly. Therefore, the development of new materials and approaches to treat this condition is of great interest. In this study, we aimed to develop an electrospun scaffold composed of polycaprolactone (PCL) microfibers loaded with cholecalciferol (Col), which has been shown to promote bone tissue regeneration. The physical and chemical properties of the scaffold were characterized, and its ability to support the attachment and proliferation of MG-63 osteoblast-like cells was evaluated. Our results showed that the electrospun PCL-Col scaffold had a highly porous structure and good mechanical properties. The resulting scaffolds had an average fiber diameter of 2-9 μm and high elongation at break (near six-fold under dry conditions) and elasticity (Young modulus between 0.9 and 9 MPa under dry conditions). Furthermore, the Col-loaded scaffold was found to decrease cell proliferation when the Col content in the scaffolds increased. However, cytotoxicity analysis proved that the PCL scaffold on its own releases more lactate dehydrogenase into the medium than the scaffold containing Col at lower concentrations (PCL-Col A, PCL-Col B, and PCL-Col C). Additionally, the Col-loaded scaffold was shown to effectively promote the expression of alkaline phosphatase and additionally increase the calcium fixation in MG-63 cells. Our findings suggest that the electrospun membrane loaded with Col can potentially treat peri-implantitis by promoting bone formation. However, further studies are needed to assess the efficacy and safety of this membrane in vivo.
Collapse
Affiliation(s)
- Claudia Sanhueza
- Center of Excellence in Translational Medicine-Scientific and Technology Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Jeyson Hermosilla
- Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Casilla 54-F, Temuco 4780000, Chile
| | - Catherine Klein
- Department of Periodontology, Center for Biomedical Research, Faculty of Dentistry, Universidad de Los Andes, Av. Plaza 2501, Las Condes, Santiago 7620157, Chile
| | - Alejandra Chaparro
- Department of Periodontology, Center for Biomedical Research, Faculty of Dentistry, Universidad de Los Andes, Av. Plaza 2501, Las Condes, Santiago 7620157, Chile
| | - Iván Valdivia-Gandur
- Biomedical Department, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta 1270300, Chile
| | - Víctor Beltrán
- Clinical Investigation and Dental Innovation Center (CIDIC), Dental School, Universidad de La Frontera, Temuco 4780000, Chile
| | - Francisca Acevedo
- Center of Excellence in Translational Medicine-Scientific and Technology Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| |
Collapse
|
16
|
Stogov MV, Dyuryagina OV, Silant'eva TA, Shipitsyna IV, Kireeva EA, Stepanov MA. Evaluation of Biocompatibility of New Osteoplastic Xenomaterials Containing Zoledronic Acid and Strontium Ranelate. TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2023; 29:57-73. [DOI: 10.17816/2311-2905-2035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Background. The problem of improving the functional characteristics of implanted devices and materials used in traumatology and orthopedics is a topical issue.
Aim of the study to study biocompatibility of bovine bone matrix xenomaterials modified by zoledronic acid and strontium ranelate when implanted into the bone defect cavity.
Methods. The study was performed on 24 male rabbits of the Soviet Chinchilla breed. Test blocks of bone matrix were implanted into the cavity of bone defects of the femur. Group 1 animals (n = 8, control group) were implanted with bone xenogenic material (Bio-Ost osteoplastic matrix). Group 2 animals (n = 8) were implanted with bone xenogenic material impregnated with zoledronic acid. Group 3 animals (n = 8) were implanted with bone xenogeneic material impregnated with strontium ranelate. Supercritical fluid extraction technology was used to purify the material and impregnate it with zoledronic acid and strontium ranelate. Radiological, pathomorphological, histological and laboratory (hematology and blood biochemistry) diagnostic methods were used to assess biocompatibility. Follow-up period was 182 days after implantation.
Results. It was found out that on the 182nd day after implantation the median area of the newly-formed bone tissue in the defect modeling area in Group 1 was 79%, in Group 2 0%, in Group 3 67%. In Group 2 the maximum area by this period was filled with connective tissue 77%. Median relative area of implanted material fragments in Group 1 was 4%, in Group 2 23%, in Group 3 15%. No infection or material rejection was observed in animals of all groups. There were no signs of intoxication or prolonged systemic inflammatory reaction. Laboratory parameters did not change significantly over time. One animal in each group experienced one-time increase in C-reactive protein level against the background of leukocytosis. Two animals in Group 1 had a slight migration of implanted material under the skin, one animal developed arthritis of the knee joint.
Conclusion. Osteoplastic materials based on bovine bone xenomatrix and filled with zoledronic acid and strontium ranelate have acceptable values of biocompatibility including their safety profile.
Collapse
|
17
|
Chen ZY, Zhou RB, Wang RD, Su SL, Zhou F. Dual-crosslinked network of polyacrylamide-carboxymethylcellulose hydrogel promotes osteogenic differentiation in vitro. Int J Biol Macromol 2023; 234:123788. [PMID: 36822291 DOI: 10.1016/j.ijbiomac.2023.123788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
In our previous study, we successfully designed a dual-crosslinked network hydrogel by introducing the monomers acrylamide (AM), carboxymethylcellulose (CMC), zeolitic imidazolate framework-8 (ZIF-8), and alendronate (Aln). With the simultaneous presentation of physical and chemical crosslinks, the fabricated hydrogel with 10 % concentration of Aln@ZIF-8 (PAM-CMC-10%Aln@ZIF-8) exhibited excellent mechanical characteristics, high Aln loading efficiency (63.83 %), and a slow release period (6 d). These results demonstrate that PAM-CMC-10%Aln@ZIF-8 is a potential carrier for delaying Aln. In this study, we mainly focused on the biocompatibility and osteogenic ability of PAM-CMC-10%Aln@ZIF-8 in vitro, which is a continuation of our previous work. First, this study investigated the biocompatibility of dual-crosslinked hydrogels using calcein-AM/Propidium Iodide and cell counting kit-8. The morphology of rat bone mesenchymal stem cells was assessed using FITC-phalloidin/DAPI and vinculin immunostaining. Finally, osteogenic induction ability in vitro was assessed via alkaline phosphatase expression and alizarin red S staining, which was also confirmed using real-time PCR at the gene level and immunofluorescence at the protein level. The results indicated that the introduction of Aln enabled a dual-crosslinked hydrogel with superior biocompatibility and outstanding osteogenic differentiation ability in vitro, providing a solid foundation for subsequent animal experiments in vivo.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Peking University Third Hospital, Department of Orthopaedics, China; Peking University Third Hospital, Engineering Research Center of Bone and Joint Precision Medicine, China
| | - Ru-Bing Zhou
- Peking University Third Hospital, Department of Orthopaedics, China; Peking University Third Hospital, Engineering Research Center of Bone and Joint Precision Medicine, China
| | - Rui-Deng Wang
- Peking University Third Hospital, Department of Orthopaedics, China; Peking University Third Hospital, Engineering Research Center of Bone and Joint Precision Medicine, China
| | - Shi-Long Su
- Peking University Third Hospital, Department of Orthopaedics, China; Peking University Third Hospital, Engineering Research Center of Bone and Joint Precision Medicine, China
| | - Fang Zhou
- Peking University Third Hospital, Department of Orthopaedics, China.
| |
Collapse
|
18
|
Li Y, Xu C, Lei C. The Delivery and Activation of Growth Factors Using Nanomaterials for Bone Repair. Pharmaceutics 2023; 15:pharmaceutics15031017. [PMID: 36986877 PMCID: PMC10052849 DOI: 10.3390/pharmaceutics15031017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Bone regeneration is a comprehensive process that involves different stages, and various growth factors (GFs) play crucial roles in the entire process. GFs are currently widely used in clinical settings to promote bone repair; however, the direct application of GFs is often limited by their fast degradation and short local residual time. Additionally, GFs are expensive, and their use may carry risks of ectopic osteogenesis and potential tumor formation. Nanomaterials have recently shown great promise in delivering GFs for bone regeneration, as they can protect fragile GFs and control their release. Moreover, functional nanomaterials can directly activate endogenous GFs, modulating the regeneration process. This review provides a summary of the latest advances in using nanomaterials to deliver exogenous GFs and activate endogenous GFs to promote bone regeneration. We also discuss the potential for synergistic applications of nanomaterials and GFs in bone regeneration, along with the challenges and future directions that need to be addressed.
Collapse
Affiliation(s)
- Yiwei Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
19
|
Wang X, Chen J, Dong X, Guan Y, Kang Y. Design and mechanical properties analysis of heterogeneous porous scaffolds based on bone slice images. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3673. [PMID: 36537649 DOI: 10.1002/cnm.3673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Bone tissue engineering plays an extremely important role in the clinical treatment of bone defects. Porous scaffold is one of the three essential factors of bone tissue engineering, and its structural design has attracted more and more attention . At present, most of the design methods of porous scaffolds focus on uniform porous scaffolds with periodic and regular pore structures. However, periodic and regular pore structure cannot comprehensively and accurately simulate the microstructures and mechanical properties of natural bone. To address this problem, based on bone slice images and VT (Voronoi-Tessellation) method, this article proposed a design method of HPS (Heterogeneous Porous Scaffolds) with bionic pore structure and controllable porosity. The FDM (fused deposition modeling) printing technology was applied to fabricate HPS with different porosities, and the mechanical properties of the HPS were analyzed by experiments. The research results illustrate that the HPS constructed by the design method proposed in this article have good controllability, and their internal pore structures are highly similar to those of natural bone, which have biomimetic characteristics. The mechanical property analysis illustrate that the stiffness and compressive strength of HPS decrease with the increase of porosity, in addition, the heterogeneous pore distribution makes HPS have the characteristics of non-concentrated and discontinuous damage distribution. This study provides a new idea for the design of porous scaffolds and a theoretical basis for the bionic design of HPS.
Collapse
Affiliation(s)
- Xiaokang Wang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, China
| | - Jigang Chen
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, China
- Aviation Key Laboratory of Science and Technology on Generic Technology of Aviation Self-Lubricating Spherical Plain Bearing, Yanshan University, Qinhuangdao, China
| | - Xuegang Dong
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, China
| | - Yabin Guan
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, China
| | - Yongxing Kang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
20
|
Yang M, Zhang Y, Alexander R, Liu J, Wu W, Wang G. Synergistic Photocatalytic and Photothermal Antibacterial Activity of (In, Nb) and (Al, Nb) Co‐Doped TiO
2
Ceramics. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Minggang Yang
- Research Center for Human Tissues and Organs Degeneration Shenzhen Institute of Advanced Technology Chinese Academy of Science Shenzhen Guangdong 518055 China
| | - Yuan Zhang
- Research Center for Human Tissues and Organs Degeneration Shenzhen Institute of Advanced Technology Chinese Academy of Science Shenzhen Guangdong 518055 China
| | - Revathi Alexander
- Research Center for Human Tissues and Organs Degeneration Shenzhen Institute of Advanced Technology Chinese Academy of Science Shenzhen Guangdong 518055 China
| | - Jinqiu Liu
- School of Physics and Information Technology Shaanxi Normal University Xian Shaanxi 710119 China
| | - Wenwen Wu
- School of Physics and Information Technology Shaanxi Normal University Xian Shaanxi 710119 China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration Shenzhen Institute of Advanced Technology Chinese Academy of Science Shenzhen Guangdong 518055 China
| |
Collapse
|
21
|
Krishnamoorthy E, Sugumaran V, Gosala R, Purushothaman B, Subramanian B. Influence of varying thermal treatment on bioactive material with equal Ca/P ratio: A local drug delivery system for bone regeneration. J Biomed Mater Res B Appl Biomater 2023; 111:402-415. [PMID: 36063500 DOI: 10.1002/jbm.b.35159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Designing a biomaterial with excellent bioactivity, biocompatibility, mechanical strength, porosity, and osteogenic properties is essential to incorporate therapeutic agents in order to promote efficient bone regeneration. The work intended to prepare bioactive glass with tailor-made equal Ca/P (CP) ratio to obtain clinophosinaite (Cpt) as dominant phase. Clinophosinaite (Na3 CaPSiO7 ) is one of the rarest phases of bioactive glass (BG), which is supposed to play key role in bioactivity. The novelty of this work is to track the required sintering temperature to attain equimolar calcium phosphate-containing clinophosinaite phase and its behavior. Further, its consequent physicochemical and biological properties were analyzed. Phase transition from Rhenanite to Cpt, and later the Cpt emerged as dominant phase with increase of calcination temperature from 700 to 1000°C was studied. The quantifying evolution of Cpt with Rhenanite over increasing annealing temperature also results with the major morphological modifications. BET analysis confirmed the surface area and porosity (Type-IV mesoporous) were gradually elevated upto 900°C, which had contrary effect on mechanical strength. Formation of hydroxyl carbonate apatite (HCA) layer confirmed the bioactivity of the prepared samples at varying time intervals. The CP samples demonstrated better hemocompatibility in post-immersion (i.e., less than 1% of lysis) when compared with pre-immersion. Enhanced protein adsorption and cumulative release (85%) of Simvastatin (SIM) drug was attained at 900°C treatment.
Collapse
Affiliation(s)
| | - Vijayakumari Sugumaran
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, India
| | - Radha Gosala
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, India
| | | | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, India
| |
Collapse
|
22
|
Zhang Y, Liu X, Geng C, Shen H, Zhang Q, Miao Y, Wu J, Ouyang R, Zhou S. Two Hawks with One Arrow: A Review on Bifunctional Scaffolds for Photothermal Therapy and Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030551. [PMID: 36770512 PMCID: PMC9920372 DOI: 10.3390/nano13030551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 05/21/2023]
Abstract
Despite the significant improvement in the survival rate of cancer patients, the total cure of bone cancer is still a knotty clinical challenge. Traditional surgical resectionof bone tumors is less than satisfactory, which inevitably results in bone defects and the inevitable residual tumor cells. For the purpose of realizing minimal invasiveness and local curative effects, photothermal therapy (PTT) under the irradiation of near-infrared light has made extensive progress in ablating tumors, and various photothermal therapeutic agents (PTAs) for the treatment of bone tumors have thus been reported in the past few years, has and have tended to focus on osteogenic bio-scaffolds modified with PTAs in order to break through the limitation that PTT lacks, osteogenic capacity. These so-called bifunctional scaffolds simultaneously ablate bone tumors and generate new tissues at the bone defects. This review summarizes the recent application progress of various bifunctional scaffolds and puts forward some practical constraints and future perspectives on bifunctional scaffolds for tumor therapy and bone regeneration: two hawks with one arrow.
Collapse
Affiliation(s)
- Yulong Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Liu
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chongrui Geng
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongyu Shen
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiupeng Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Y.M.); (J.W.); (R.O.)
| | - Jingxiang Wu
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (Y.M.); (J.W.); (R.O.)
| | - Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Y.M.); (J.W.); (R.O.)
| | - Shuang Zhou
- Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
23
|
Ke Y, Ye Y, Wu J, Ma Y, Fang Y, Jiang F, Yu J. Phosphoserine-loaded chitosan membranes promote bone regeneration by activating endogenous stem cells. Front Bioeng Biotechnol 2023; 11:1096532. [PMID: 37034248 PMCID: PMC10076862 DOI: 10.3389/fbioe.2023.1096532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Bone defects that result from trauma, infection, surgery, or congenital malformation can severely affect the quality of life. To address this clinical problem, a phosphoserine-loaded chitosan membrane that consists of chitosan membranes serving as the scaffold support to accommodate endogenous stem cells and phosphoserine is synthesized. The introduction of phosphoserine greatly improves the osteogenic effect of the chitosan membranes via mutual crosslinking using a crosslinker (EDC, 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide). The morphology of PS-CS membranes was shown by scanning electron microscopy (SEM) to have an interconnected porous structure. The incorporation of phosphoserine into chitosan membranes was confirmed by energy dispersive spectrum (EDS), Fourier Transforms Infrared (FTIR), and X-ray diffraction (XRD) spectrum. The CCK8 assay and Live/Dead staining, Hemolysis analysis, and cell adhesion assay demonstrated that PS-CS membranes had good biocompatibility. The osteogenesis-related gene expression of BMSCs was higher in PS-CS membranes than in CS membranes, which was verified by alkaline phosphatase (ALP) activity, immunofluorescence staining, and real-time quantitative PCR (RT-qPCR). Furthermore, micro-CT and histological analysis of rat cranial bone defect demonstrated that PS-CS membranes dramatically stimulated bone regeneration in vivo. Moreover, H&E staining of the main organs (heart, liver, spleen, lung, or kidney) showed no obvious histological abnormalities, revealing that PS-CS membranes were no additional systemic toxicity in vivo. Collectively, PS-CS membranes may be a promising candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Yue Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yanxia Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Department of General Dentistry, Nanjing Medical University, Nanjing, China
- *Correspondence: Fei Jiang, ; Jinhua Yu,
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- *Correspondence: Fei Jiang, ; Jinhua Yu,
| |
Collapse
|
24
|
Management of bone diseases: looking at scaffold-based strategies for drug delivery. Drug Deliv Transl Res 2023; 13:79-104. [PMID: 35816230 DOI: 10.1007/s13346-022-01191-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
Abstract
The bone tissue can regenerate itself completely and continuously; however, large-scale bone defects may overpower this self-regenerative process. Furthermore, the aging population, the increment in obesity incidence, and the sedentary lifestyles are serious risk factors for bone diseases' development which are associated with the self-regenerative process's failure, high morbidity, and mortality rates. Thus, there is an ever-growing need for strategic approaches targeting bone replacement, its remodelling, and its regeneration. Bone scaffolds have successfully been used as synthetic bone grafts for many years, yet recent bone tissue engineering strategies attempt to explore their multifunctionality by investigating them as drug delivery systems. Bone diseases' treatments can be substantially difficult due to the avascular nature of the surrounding cartilage; thus, targeted drug delivery to the bone can be advantageous: it provides local high drug concentrations and minimizes adverse effects while securing a space for new, healthy tissue growth. Despite the promising scientific progress, studies underlining bone scaffolds' use as local drug delivery systems are not abundant. Hence, this work reviews bone scaffolds' therapeutic interest for local drug delivery in five distinct bone disorders-osteomyelitis, osteoporosis, osteoarthritis, osteosarcoma, and cancer bone metastasis. Additionally, it presents the challenges of this possible therapeutic approach and its future perspectives. Albeit bone scaffolds present therapeutic benefits by acting as drug delivery systems, further pre-clinical and clinical assessments are needed to strengthen their understanding and enable research evidence translation into clinical practice. The mismatch between scientific evolution and regulatory frameworks remains one of the major future challenges.
Collapse
|
25
|
Sacco R, Sartoretto SC, de Brito Resende RF, de Albuquerque Calasans-Maia J, Rossi AM, de Souza Lima VH, de Almeida Barros Mourão CF, Granjeiro JM, Yates J, Calasans-Maia MD. The Use of Hydroxyapatite Loaded with Doxycycline (HADOX) in Dentoalveolar Surgery as a Risk-Reduction Therapeutic Protocol in Subjects Treated with Different Bisphosphonate Dosages. Medicina (B Aires) 2022; 59:medicina59010046. [PMID: 36676670 PMCID: PMC9861076 DOI: 10.3390/medicina59010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is considered as a severe adverse side effect of specific drugs such as anti-resorptive and anti-angiogenic medications. Evidence suggests that MRONJ is linked to invasive dental procedures, mainly dentoalveolar surgery. Several preventive strategies to minimize the risk of developing MRONJ have been investigated. However, no investigation has been attempted to evaluate the therapeutic effect of local drug-delivery technology as a preventive strategy protocol. The aim of this study is to evaluate the efficacy of hydroxyapatite-containing doxycycline (HADOX) in rats with high-risk MRONJ development. All the rats used in this study were divided into seven groups. Six groups of rats out of seven were exposed to two different doses of antiresorptive drug therapy for four weeks before undergoing an upper incisor extraction. After 28 days, all the animals were euthanized, and the bone blocks were processed for histological and histomorphometrical evaluation. The histomorphometric analysis confirmed that newly formed bone (NFB) was present in all groups, with significant differences. NFB in the HADOX group treated with zoledronic acid at 4% showed (28.38; C.I. 22.29-34.48), which represents a significant increase compared to HA (15.69; C.I. 4.89-26.48) (p = 0.02). A similar pattern was observed in the HADOX group treated with zoledronic acid 8% ZA treatment (p = 0.001). Conclusions: HADOX did not inhibit any bone repair and reduced early inflammatory response. Hence, HADOX could promote bone healing in patients undergoing antiresorptive drug therapy.
Collapse
Affiliation(s)
- Roberto Sacco
- Oral Surgery Department, School of Medical Sciences, Division of Dentistry, The University of Manchester, Coupland 3 Building, Oxford Rd, Manchester M13 9PL, UK
- Oral Surgery Department, Dental School, Fluminense Federal University, Rio de Janeiro 24020-140, Brazil
- Correspondence: ; Tel.:+44-020-3299-32496
| | | | | | | | - Alexandre Malta Rossi
- Brazilian Center for Research in Physics, Applied Physics and Nanoscience, Department of Condensed Matter, Rio de Janeiro 22290-180, Brazil
| | - Victor Hugo de Souza Lima
- Graduate Program, Faculty of Sciences and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| | | | - Jose Mauro Granjeiro
- National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, Rio de Janeiro 25250-020, Brazil
| | - Julian Yates
- Oral Surgery Department, School of Medical Sciences, Division of Dentistry, The University of Manchester, Coupland 3 Building, Oxford Rd, Manchester M13 9PL, UK
| | | |
Collapse
|
26
|
Serrano-Aroca Á, Cano-Vicent A, Sabater i Serra R, El-Tanani M, Aljabali A, Tambuwala MM, Mishra YK. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater Today Bio 2022; 16:100412. [PMID: 36097597 PMCID: PMC9463390 DOI: 10.1016/j.mtbio.2022.100412] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Due to microbial infections dramatically affect cell survival and increase the risk of implant failure, scaffolds produced with antimicrobial materials are now much more likely to be successful. Multidrug-resistant infections without suitable prevention strategies are increasing at an alarming rate. The ability of cells to organize, develop, differentiate, produce a functioning extracellular matrix (ECM) and create new functional tissue can all be controlled by careful control of the extracellular microenvironment. This review covers the present state of advanced strategies to develop scaffolds with antimicrobial properties for bone, oral tissue, skin, muscle, nerve, trachea, cardiac and other tissue engineering applications. The review focuses on the development of antimicrobial scaffolds against bacteria and fungi using a wide range of materials, including polymers, biopolymers, glass, ceramics and antimicrobials agents such as antibiotics, antiseptics, antimicrobial polymers, peptides, metals, carbon nanomaterials, combinatorial strategies, and includes discussions on the antimicrobial mechanisms involved in these antimicrobial approaches. The toxicological aspects of these advanced scaffolds are also analyzed to ensure future technological transfer to clinics. The main antimicrobial methods of characterizing scaffolds' antimicrobial and antibiofilm properties are described. The production methods of these porous supports, such as electrospinning, phase separation, gas foaming, the porogen method, polymerization in solution, fiber mesh coating, self-assembly, membrane lamination, freeze drying, 3D printing and bioprinting, among others, are also included in this article. These important advances in antimicrobial materials-based scaffolds for regenerative medicine offer many new promising avenues to the material design and tissue-engineering communities.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Alba Cano-Vicent
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022, València, Spain
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - AlaaAA. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, BT52 1SA, UK
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| |
Collapse
|
27
|
Guastaldi FPS, Matheus HR, Faloni APDS, de Almeida-Filho E, Cominotte MA, Moretti LAC, Verzola MHA, Marcantonio E, de Almeida JM, Guastaldi AC, Cirelli JA. A new multiphase calcium phosphate graft material improves bone healing-An in vitro and in vivo analysis. J Biomed Mater Res B Appl Biomater 2022; 110:2686-2704. [PMID: 35779277 DOI: 10.1002/jbm.b.35121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022]
Abstract
This study aims to evaluate the potential of a novel biomaterial synthesized from amorphous calcium phosphate (ACP), octacalcium phosphate (OCP), and hydroxyapatite (HA) to repair critical-sized defects (CSD) in rabbit calvaria. In vitro analyses of cell viability, cell proliferation, formation of mineral nodules, and cell differentiation using qPCR were performed for comparing experimental calcium phosphate (ECP), deproteinized bovine bone (DBB), and beta-tricalcium phosphate (β-TCP). Bilateral CSDs were created in 45 rabbit calvaria. Six groups were evaluated: ECP, ECP + fibrin sealant (ECP + S), coagulum, autogenous bone, DBB, and β-TCP. Euthanasia was performed at 2, 4, and 8 weeks, followed by micro-computed tomography and histological and immunohistochemical analyses. Results from in vitro analyses revealed similar biocompatibility for all tested materials and a tendency for higher gene expression of some bone markers in the ECP group than in β-TCP and DBB groups at 7 days. In contrast to that in DBB and β-TCP groups, ECP displayed growing bone volume over total volume percentage (BV/TV%) with time in vivo. Histological analysis revealed a greater number of giant cells and reduced size of grafted particles in ECP during all periods of analysis. RUNX-2 expression was statistically lower in ECP than DBB at 2 and 4 weeks. Despite no statistical significance, ECP presented the highest absolute values for ALP-expression at 2, 4, and 8 weeks compared with other groups. Together, our findings indicate that a combination of the ACP, OCP, and HA phases into ECP is beneficial and promising for bone regeneration.
Collapse
Affiliation(s)
- Fernando Pozzi Semeghini Guastaldi
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil.,Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Henrique Rinaldi Matheus
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Ana Paula de Souza Faloni
- Department of Health Sciences, University Center of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Edson de Almeida-Filho
- Department of Physical Chemistry, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Mariana Aline Cominotte
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil
| | - Livia Alves Correa Moretti
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil
| | | | - Elcio Marcantonio
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Antonio Carlos Guastaldi
- Department of Physical Chemistry, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil
| |
Collapse
|
28
|
Sousa AC, Biscaia S, Alvites R, Branquinho M, Lopes B, Sousa P, Valente J, Franco M, Santos JD, Mendonça C, Atayde L, Alves N, Maurício AC. Assessment of 3D-Printed Polycaprolactone, Hydroxyapatite Nanoparticles and Diacrylate Poly(ethylene glycol) Scaffolds for Bone Regeneration. Pharmaceutics 2022; 14:pharmaceutics14122643. [PMID: 36559137 PMCID: PMC9782524 DOI: 10.3390/pharmaceutics14122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Notwithstanding the advances achieved in the last decades in the field of synthetic bone substitutes, the development of biodegradable 3D-printed scaffolds with ideal mechanical and biological properties remains an unattained challenge. In the present work, a new approach to produce synthetic bone grafts that mimic complex bone structure is explored. For the first time, three scaffolds of various composition, namely polycaprolactone (PCL), PCL/hydroxyapatite nanoparticles (HANp) and PCL/HANp/diacrylate poly(ethylene glycol) (PEGDA), were manufactured by extrusion. Following the production and characterisation of the scaffolds, an in vitro evaluation was carried out using human dental pulp stem/stromal cells (hDPSCs). Through the findings, it was possible to conclude that, in all groups, the scaffolds were successfully produced presenting networks of interconnected channels, adequate porosity for migration and proliferation of osteoblasts (approximately 50%). Furthermore, according to the in vitro analysis, all groups were considered non-cytotoxic in contact with the cells. Nevertheless, the group with PEGDA revealed hydrophilic properties (15.15° ± 4.06) and adequate mechanical performance (10.41 MPa ± 0.934) and demonstrated significantly higher cell viability than the other groups analysed. The scaffolds with PEGDA suggested an increase in cell adhesion and proliferation, thus are more appropriate for bone regeneration. To conclude, findings in this study demonstrated that PCL, HANp and PEGDA scaffolds may have promising effects on bone regeneration and might open new insights for 3D tissue substitutes.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Sara Biscaia
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Rui Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Mariana Branquinho
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Bruna Lopes
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Patrícia Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Joana Valente
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Margarida Franco
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carla Mendonça
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Luís Atayde
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Ana Colette Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- Correspondence: or
| |
Collapse
|
29
|
Du J, Zhang Y, Wang J, Xu M, Qin M, Zhang X, Huang D. Highly resilient porous polyurethane composite scaffolds filled with whitlockite for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:845-859. [PMID: 36346014 DOI: 10.1080/09205063.2022.2145871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present work is intended to provide a base for further investigation of the composite scaffolds for bone tissue engineering, and whitlockite/polyurethane (WH/PU) scaffolds, in particular. WH Ca18Mg2(HPO4)2(PO4)12 was successfully prepared by means of a chemical reaction between Ca(OH)2, Mg(OH)2 and H3PO4. WH/PU scaffolds were synthesized via in situ polymerization. Synthesized WH particles and WH/PU composite scaffolds were characterized using FTIR, XRD, SEM and EDS. The porosity of scaffolds was calculated by the liquid displacement method. The water contact angle of scaffolds was tested. Mechanical characterization of WH/PU composite scaffolds was evaluated according to monotonic and cyclic compression examination. MC3T3-E1 cells were employed to evaluate the cytocompatibility of scaffolds. The results showed that WH and PU were completely integrated into composite biomaterials. The maximum compressive strength and elastic modulus of WH/PU composite scaffold reached up to 5.2 and 14.1 MPa, respectively. WH/PU composite scaffold had maximum 73% porosity. The minimum contact angle of WH/PU composite scaffold was 89.16°. WH/PU composite scaffolds have a good elasticity. Cyclic compression tests showed that scaffold could recover 90% of its original shape 1 h after removing the load. WH/PU composite scaffolds exhibited a high affinity to MC3T3-E1 cells. WH/PU composite scaffolds significantly promoted proliferation and alkaline phosphatase activity of MC3T3-E1 cells when compared to those grown on tissue culture well plates. It is suggested that the WH/PU scaffolds might be suitable for the application of bone tissue engineering.
Collapse
Affiliation(s)
- Jingjing Du
- Analytical & Testing Center, Hainan University, Haikou 570228, P. R. China
| | - Yang Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jiaqi Wang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Mengjie Xu
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Miao Qin
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiumei Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
30
|
Mao Y, Chen Y, Li W, Wang Y, Qiu J, Fu Y, Guan J, Zhou P. Physiology-Inspired Multilayer Nanofibrous Membranes Modulating Endogenous Stem Cell Recruitment and Osteo-Differentiation for Staged Bone Regeneration. Adv Healthc Mater 2022; 11:e2201457. [PMID: 36027596 DOI: 10.1002/adhm.202201457] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Indexed: 01/28/2023]
Abstract
Bone regeneration involves a cascade of sophisticated, multiple-staged cellular and molecular events, where early-phase stem cell recruitment mediated by chemokines and late-phase osteo-differentiation induced by pro-osteogenic factors play the crucial roles. Herein, enlightened by a bone physiological and regenerative mechanism, the multilayer nanofibrous membranes (PLLA@SDF-1α@MT01) consisting of PLLA/MT01 micro-sol electrospun nanofibers as intima and PLLA/PEG/SDF-1α electrospun nanofibers as adventitia are fabricated through micro-sol electrospinning and manual multi-layer stacking technologies. In vitro releasing profiles show that PLLA@SDF-1α@MT01 represents the rapid release of stromal cell-derived SDF-1α (SDF-1α) in the outer layers, while with long-term sustained release of MT01 in the inner layer. Owing to interconnected porosity like the natural bone extracellular matrix and improved hydrophilia, PLLA@SDF-1α@MT01 manifests good biocompatibility both in vitro and in vivo. Furthermore, PLLA@SDF-1α@MT01 can promote bone marrow mesenchymal stem cells (BMSCs) migration by amplifying the SDF-1α/CXCR4 axis and stimulating BMSCs osteo-differentiation via activating the MAPK pathway in vitro. PLLA@SDF-1α@MT01, with a programmed dual-delivery system, exhibits the synergetic promotion of bone regeneration and vascularization by emulating key characteristics of the staged bone repair in vivo. Overall, PLLA@SDF-1α@MT01 that mimics the endogenous cascades of bone regeneration can enrich the physiology-mimetic staged regenerative strategy and represent a promising tissue-engineered scaffold for the bone defect.
Collapse
Affiliation(s)
- Yingji Mao
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Yu Chen
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
| | - Weifeng Li
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China
| | - Ying Wang
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
| | - Jingjing Qiu
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Yingxiao Fu
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China
| | - Jianzhong Guan
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Pinghui Zhou
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| |
Collapse
|
31
|
Abedi F, Moghaddam SV, Ghandforoushan P, Aghazadeh M, Ebadi H, Davaran S. Synthesis and characterization of growth factor free nanoengineered bioactive scaffolds for bone tissue engineering. J Biol Eng 2022; 16:28. [PMID: 36253790 PMCID: PMC9578226 DOI: 10.1186/s13036-022-00303-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To address the obstacles that come with orthopedic surgery for biological graft tissues, including immune rejections, bacterial infections, and weak osseointegration, bioactive nanocomposites have been used as an alternative for bone grafting since they can mimic the biological and mechanical properties of the native bone. Among them, PCL-PEG-PCL (PCEC) copolymer has gained much attention for bone tissue engineering as a result of its biocompatibility and ability for osteogenesis. METHODS Here, we designed a growth factor-free nanoengineered scaffold based on the incorporation of Fe3O4 and hydroxyapatite (HA) nanoparticles into the PCL-PEG-PCL/Gelatin (PCEC/Gel) nanocomposite. We characterized different formulations of nanocomposite scaffolds in terms of physicochemical properties. Also, the mechanical property and specific surface area of the prepared scaffolds, as well as their feasibility for human dental pulp stem cells (hDPSCs) adhesion were assessed. RESULTS The results of in vitro cell culture study revealed that the PCEC/Gel Fe3O4&HA scaffold could promote osteogenesis in comparison with the bare scaffold, which confirmed the positive effect of the Fe3O4 and HA nanoparticles in the osteogenic differentiation of hDPSCs. CONCLUSION The incorporation of Fe3O4 and HA with PCEC/gelatin could enhance osteogenic differentiation of hDPSCs for possible substitution of bone grafting tissue.
Collapse
Affiliation(s)
- Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Ghandforoushan
- Department of Medicinal chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Oral Medicine Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hafez Ebadi
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medicinal chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
32
|
Wan C, Hu M, Peng X, Lei N, Ding H, Luo Y, Yu X. Novel multifunctional dexamethasone carbon dots synthesized using the one-pot green method for anti-inflammatory, osteogenesis, and osteoimmunomodulatory in bone regeneration. Biomater Sci 2022; 10:6291-6306. [PMID: 36135326 DOI: 10.1039/d2bm01153k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone tissue regeneration is still a major orthopedic challenge. The process of bone regeneration is often disrupted by inflammation. Elevated levels of reactive oxygen species (ROS) can lead to aggravated inflammation and even hinder tissue repairs. Therefore, inhibiting the inflammatory response during the process of bone regeneration and promoting bone tissue regeneration under inflammatory conditions are the goals that need to be achieved urgently. In this work, dexamethasone carbon dots (DCDs) were developed by a one-pot facile hydrothermal method using citric acid, ammonium fluoride, and a trace amount of dexamethasone. The obtained DCDs exhibited good biocompatibility and could promote the differentiation of rBMSCs under both normal and inflammatory conditions. Owing to the abundant-reducing groups, DCDs could also scavenge ROS (˙OH) and retain the pharmacological activity of dexamethasone, thereby reducing the inflammatory response. Moreover, DCDs presented a good osteoimmunomodulatory activity to induce a bone immune microenvironment and further promote the differentiation of BMSCs. DCDs could promote macrophage phenotype switching (from M1-type macrophages to M2-type macrophages) under inflammatory conditions, which was beneficial to the anti-inflammatory response. All in all, DCDs could reduce the inflammatory response of bone tissue and accelerate bone regeneration in combination with the regulation of the bone immune. Undoubtedly, it also provided a new idea for developing a novel carbon nanomaterial for repairing bone tissue defects.
Collapse
Affiliation(s)
- Chang Wan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China. .,Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Hongmei Ding
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| |
Collapse
|
33
|
Abdel Nasser Atia G, Shalaby HK, Zehravi M, Ghobashy MM, Ahmad Z, Khan FS, Dey A, Rahman MH, Joo SW, Barai HR, Cavalu S. Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review. Polymers (Basel) 2022; 14:polym14142964. [PMID: 35890740 PMCID: PMC9319147 DOI: 10.3390/polym14142964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022] Open
Abstract
Bone and periodontium are tissues that have a unique capacity to repair from harm. However, replacing or regrowing missing tissues is not always effective, and it becomes more difficult as the defect grows larger. Because of aging and the increased prevalence of debilitating disorders such as diabetes, there is a considerable increase in demand for orthopedic and periodontal surgical operations, and successful techniques for tissue regeneration are still required. Even with significant limitations, such as quantity and the need for a donor area, autogenous bone grafts remain the best solution. Topical administration methods integrate osteoconductive biomaterial and osteoinductive chemicals as hormones as alternative options. This is a promising method for removing the need for autogenous bone transplantation. Furthermore, despite enormous investigation, there is currently no single approach that can reproduce all the physiologic activities of autogenous bone transplants. The localized bioengineering technique uses biomaterials to administer different hormones to capitalize on the host’s regeneration capacity and capability, as well as resemble intrinsic therapy. The current study adds to the comprehension of the principle of hormone redirection and its local administration in both bone and periodontal tissue engineering.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo 13759, Egypt;
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Sang Woo Joo
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Piata 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| |
Collapse
|
34
|
Győrgy R, Kostoglou M, Mantalaris A, Georgiadis MC. Development of a multi-scale model to simulate Mesenchymal Stem Cell osteogenic differentiation within hydrogels in a rotating wall bioreactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
35
|
Peña Fernández M, Sasso SJ, McPhee S, Black C, Kanczler J, Tozzi G, Wolfram U. Nonlinear micro finite element models based on digital volume correlation measurements predict early microdamage in newly formed bone. J Mech Behav Biomed Mater 2022; 132:105303. [PMID: 35671669 DOI: 10.1016/j.jmbbm.2022.105303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/21/2022]
Abstract
Bone regeneration in critical-sized defects is a clinical challenge, with biomaterials under constant development aiming at enhancing the natural bone healing process. The delivery of bone morphogenetic proteins (BMPs) in appropriate carriers represents a promising strategy for bone defect treatment but optimisation of the spatial-temporal release is still needed for the regeneration of bone with biological, structural, and mechanical properties comparable to the native tissue. Nonlinear micro finite element (μFE) models can address some of these challenges by providing a tool able to predict the biomechanical strength and microdamage onset in newly formed bone when subjected to physiological or supraphysiological loads. Yet, these models need to be validated against experimental data. In this study, experimental local displacements in newly formed bone induced by osteoinductive biomaterials subjected to in situ X-ray computed tomography compression in the apparent elastic regime and measured using digital volume correlation (DVC) were used to validate μFE models. Displacement predictions from homogeneous linear μFE models were highly correlated to DVC-measured local displacements, while tissue heterogeneity capturing mineralisation differences showed negligible effects. Nonlinear μFE models improved the correlation and showed that tissue microdamage occurs at low apparent strains. Microdamage seemed to occur next to large cavities or in biomaterial-induced thin trabeculae, independent of the mineralisation. While localisation of plastic strain accumulation was similar, the amount of damage accumulated in these locations was slightly higher when including material heterogeneity. These results demonstrate the ability of the nonlinear μFE model to capture local microdamage in newly formed bone tissue and can be exploited to improve the current understanding of healing bone and mechanical competence. This will ultimately aid the development of BMPs delivery systems for bone defect treatment able to regenerate bone with optimal biological, mechanical, and structural properties.
Collapse
Affiliation(s)
- Marta Peña Fernández
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK.
| | - Sebastian J Sasso
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK
| | - Samuel McPhee
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK
| | - Cameron Black
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Development Sciences, University of Southampton, SO16 6YD, UK
| | - Janos Kanczler
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Development Sciences, University of Southampton, SO16 6YD, UK
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK
| | - Uwe Wolfram
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, EH14 4AS, UK.
| |
Collapse
|
36
|
Li B, Wang M, Liu Y, Zhou Y, Tang L, You P, Deng Y. Independent effects of structural optimization and resveratrol functionalization on extracellular matrix scaffolds for bone regeneration. Colloids Surf B Biointerfaces 2022; 212:112370. [PMID: 35144132 DOI: 10.1016/j.colsurfb.2022.112370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 11/26/2022]
Abstract
Due to their natural biological activity and low immunogenicity, decellularized extracellular matrix (ECM) materials have aroused interest as potential scaffold materials in tissue engineering. Decellularized small intestinal submucosa (SIS) is one ECM biomaterial that can be easily sourced. In the present study, we tested whether the osteogenesis of SIS scaffolds was enhanced via structural optimization and resveratrol (RSV) functionalization and explored the independent effects of these modifications. We obtained SIS scaffolds with different pore structures by controlling the preparation concentration. The group with superior osteogenic properties was further RSV-functionalized via covalent immobilization. We conducted a series of in vitro and in vivo studies to explore the effects of these two optimization strategies on the osteogenic properties of SIS scaffolds. The results showed that pore structure and RSV functionalization significantly affected the osteogenic properties of SIS scaffolds. With a fabrication concentration of 1%, the SIS scaffolds had superior osteogenic properties. Through covalent coupling, RSV was successfully grafted onto SIS scaffolds, where it was slowly released. The most significant improvements in osteogenic properties were obtained with a coupling concentration of 1%. Furthermore, in in vivo experiments, vascular and new bone tissue formation was enhanced with RSV/SIS scaffolds compared with SIS scaffolds and the blank control group at 4 weeks after implantation. These findings indicate that the RSV/SIS scaffolds obtained via dual optimization strategies show promise as biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Bowen Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; Department of Stomatology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
| | - Mei Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yuhua Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China.
| | - Lin Tang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Pengyue You
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yi Deng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| |
Collapse
|
37
|
Ionic Cross-Linkable Alendronate-Conjugated Biodegradable Polyurethane Films for Potential Guided Bone Regeneration. Macromol Res 2022. [DOI: 10.1007/s13233-022-0014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Xie D, Wang Z, Li J, Guo DA, Lu A, Liang C. Targeted Delivery of Chemotherapeutic Agents for Osteosarcoma Treatment. Front Oncol 2022; 12:843345. [PMID: 35311145 PMCID: PMC8931218 DOI: 10.3389/fonc.2022.843345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Since osteosarcoma (OS) is an aggressive bone cancer with unknown molecular pathways of etiology and pathophysiology, improving patient survival has long been a challenge. The conventional therapy is a complex multidisciplinary management that include radiotherapy, chemotherapy which followed by surgery and then post-operative adjuvant chemotherapy. However, they have severe side effects because the majority of the medicines used have just a minor selectivity for malignant tissue. As a result, treating tumor cells specifically without damaging healthy tissue is currently a primary goal in OS therapy. The coupling of chemotherapeutic drugs with targeting ligands is a unique therapy method for OS that, by active targeting, can overcome the aforementioned hurdles. This review focuses on advances in ligands and chemotherapeutic agents employed in targeted delivery to improve the capacity of active targeting and provide some insight into future therapeutic research for OS.
Collapse
Affiliation(s)
- Duoli Xie
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhuqian Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jie Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - De-an Guo
- National Engineering Laboratory for Standardization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica of the Chinese Academy of Sciences, Shanghai, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- *Correspondence: Chao Liang, ; Aiping Lu,
| | - Chao Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Chao Liang, ; Aiping Lu,
| |
Collapse
|
39
|
Shi G, Yang C, Wang Q, Wang S, Wang G, Ao R, Li D. Traditional Chinese Medicine Compound-Loaded Materials in Bone Regeneration. Front Bioeng Biotechnol 2022; 10:851561. [PMID: 35252158 PMCID: PMC8894853 DOI: 10.3389/fbioe.2022.851561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Bone is a dynamic organ that has the ability to repair minor injuries via regeneration. However, large bone defects with limited regeneration are debilitating conditions in patients and cause a substantial clinical burden. Bone tissue engineering (BTE) is an alternative method that mainly involves three factors: scaffolds, biologically active factors, and cells with osteogenic potential. However, active factors such as bone morphogenetic protein-2 (BMP-2) are costly and show an unstable release. Previous studies have shown that compounds of traditional Chinese medicines (TCMs) can effectively promote regeneration of bone defects when administered locally and systemically. However, due to the low bioavailability of these compounds, many recent studies have combined TCM compounds with materials to enhance drug bioavailability and bone regeneration. Hence, the article comprehensively reviewed the local application of TCM compounds to the materials in the bone regeneration in vitro and in vivo. The compounds included icariin, naringin, quercetin, curcumin, berberine, resveratrol, ginsenosides, and salvianolic acids. These findings will contribute to the potential use of TCM compound-loaded materials in BTE.
Collapse
Affiliation(s)
- Guiwen Shi
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chaohua Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Song Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gaoju Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rongguang Ao
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Dejian Li
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| |
Collapse
|
40
|
Motamedian SR, Mohaghegh S, Lakmazaheri E, Ahmadi N, Kouhestani F. Efficacy of regenerative medicine for alveolar cleft reconstruction: A systematic review and meta-analysis. Curr Stem Cell Res Ther 2022; 17:446-465. [DOI: 10.2174/1574888x17666220204145347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Objective:
Objective: To analyze the efficacy and complications of regenerative medicine compared to autogenous bone graft for alveolar cleft reconstruction.
Method:
Method: Electronic search was done in PubMed, Scopus, Embase and Cochrane database for studies published until May 2021. No limitations were considered for the type of the included studies. The risk of bias (ROB) of the studies was assessed using the Cochrane Collaborations and NIH quality assessment tool. Meta-analyses were performed to assess the difference in the amount of bone formation and rate of complications. Grading of Recommendations, Assessment, Development and Evaluation (GRADE) was used for analyzing the level of the evidence.
Results:
Results: Among a total of 42 included studies, 21 studies used growth factors, 16 studies delivered cells, and five studies used biomaterials for bone regeneration of the alveolar cleft. Results showed no significant difference in the amount of bone formation between bone morphogenic protein-2 and iliac graft treated patients after six months (P=0.44) and 12 months (P=0.17) follow-up. Besides, higher swelling (OR=9.46,P<0.01) and less infection (OR=0.19,P=0.01) observed in BMP treated patients. Using stem cells can reduce the post-treatment pain (OR=0.04,P=0.01) but it has no significant impact on other complications (P>0.05). Using tissue engineering methods reduced the operation time (SD=1.06,P<0.01). GRADE assessment showed that results regarding the amount of bone formation volume after six and 12 months have low level of evidence.
Conclusion:
Conclusion: Tissue engineering methods can provide a comparable amount of bone formation as of the autogenous graft and reduce some of the complications, operation time and hospitalization duration.
Collapse
Affiliation(s)
| | - Sadra Mohaghegh
- Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Ehsan Lakmazaheri
- Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Nima Ahmadi
- University of Medical Sciences, Tehran 1983963113, Iran
| | | |
Collapse
|
41
|
|
42
|
Zhang Y, Li Z, Wang Z, Yan B, Shi A, Xu J, Guan J, Zhang L, Zhou P, Mao Y. Mechanically enhanced composite hydrogel scaffold for in situ bone repairs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112700. [DOI: 10.1016/j.msec.2022.112700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
|
43
|
Schröder P, Mench M, Povilaitis V, Rineau F, Rutkowska B, Schloter M, Szulc W, Žydelis R, Loit E. Relaunch cropping on marginal soils by incorporating amendments and beneficial trace elements in an interdisciplinary approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149844. [PMID: 34525739 DOI: 10.1016/j.scitotenv.2021.149844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
In the EU and world-wide, agriculture is in transition. Whilst we just converted conventional farming imprinted by the post-war food demand and heavy agrochemical usage into integrated and sustainable farming with optimized production, we now have to focus on even smarter agricultural management. Enhanced nutrient efficiency and resistance to pests/pathogens combined with a greener footprint will be crucial for future sustainable farming and its wider environment. Future land use must embrace efficient production and utilization of biomass for improved economic, environmental, and social outcomes, as subsumed under the EU Green Deal, including also sites that have so far been considered as marginal and excluded from production. Another frontier is to supply high-quality food and feed to increase the nutrient density of staple crops. In diets of over two-thirds of the world's population, more than one micronutrient (Fe, Zn, I or Se) is lacking. To improve nutritious values of crops, it will be necessary to combine integrated, systems-based approaches of land management with sustainable redevelopment of agriculture, including central ecosystem services, on so far neglected sites: neglected grassland, set aside land, and marginal lands, paying attention to their connectivity with natural areas. Here we need new integrative approaches which allow the application of different instruments to provide us not only with biomass of sufficient quality and quantity in a site specific manner, but also to improve soil ecological services, e.g. soil C sequestration, water quality, habitat and soil resistance to erosion, while keeping fertilization as low as possible. Such instruments may include the application of different forms of high carbon amendments, the application of macro- and microelements to improve crop performance and quality as well as a targeted manipulation of the soil microbiome. Under certain caveats, the potential of such sites can be unlocked by innovative production systems, ready for the sustainable production of crops enriched in micronutrients and providing services within a circular economy.
Collapse
Affiliation(s)
- Peter Schröder
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Research Unit for Comparative Microiome Analysis, D-85764 Neuherberg, Germany.
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, UMR 1202, F-33615 Pessac, France
| | - Virmantas Povilaitis
- Lithuanian Research Centre for Agriculture and Forestry, Akademija LT-58344, Kedainiai distr. Lithuania
| | - Francois Rineau
- Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - Beata Rutkowska
- Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - Michael Schloter
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Research Unit for Comparative Microiome Analysis, D-85764 Neuherberg, Germany
| | - Wieslaw Szulc
- Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - Renaldas Žydelis
- Lithuanian Research Centre for Agriculture and Forestry, Akademija LT-58344, Kedainiai distr. Lithuania
| | - Evelin Loit
- Estonian University of Life Sciences, Chair of Field Crops and Plant Biology, 51006 Tartu, Estonia.
| |
Collapse
|
44
|
From Blood to Bone-The Osteogenic Activity of L-PRF Membranes on the Ex Vivo Embryonic Chick Femur Development Model. MATERIALS 2021; 14:ma14247830. [PMID: 34947427 PMCID: PMC8707053 DOI: 10.3390/ma14247830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
(1) Background: To evaluate the effects of the direct and indirect contact of leukocyte and platelet-rich fibrin (L-PRF) on bone development, in an ex vivo embryonic chick femur model. (2) Methods: Both sections of L-PRF membranes (red and yellow portions) were evaluated with scanning electron microscopy and histochemical staining. The in vivo angiogenic activity was evaluated using a chorioallantoic membrane model. The osteogenic activity was assessed with an organotypic culture of embryonic chick femora through direct and indirect contact, and assessment was conducted by microtomographic and histological analysis. Descriptive statistics, One-Way ANOVA and Tukey’s multiple comparisons tests were performed for datasets that presented a normal distribution, and Kruskal-Wallis tests were performed for non-parametric datasets. A significance level of 0.05 was considered. (3) Results: The L-PRF induced angiogenesis reflected by a higher number and a larger and more complex gauge in the vessels that invaded the membrane. The physical presence of the membrane over the bone (direct contact) unleashes the full potential of the L-PRF effects on bone growth enhancement. The greatest increase in mineral content was observed in the diaphysis region. (4) Conclusion: The L-PRF direct contact group presented higher values on mineral content for bone volume, bone surface and bone mineral density than the indirect contact and control groups.
Collapse
|
45
|
Physicochemical and biological properties of carboxymethyl chitosan zinc (CMCS-Zn)/α‑calcium sulfate hemihydrate (α-CSH) composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112496. [PMID: 34857282 DOI: 10.1016/j.msec.2021.112496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022]
Abstract
To improve the osteoinductivity, antibacterial activity, and clinical application of calcium sulfate hemihydrate (CSH), carboxymethyl chitosan zinc (CMCS-Zn) and α-CSH were prepared using different mass ratios. The setting time and injectability of the CMCS-Zn/α-CSH composite were increased with increasing CMCS-Zn content. After adding different amounts of CMCS-Zn to α-CSH, the fine lamellar structure of CMCS-Zn was found by scanning electron microscopy (SEM), which is evenly distributed in the matrix of α-CSH. With the increase of CMCS-Zn, the pores on the surface gradually increased. After mixing CMCS-Zn and α-CSH, no new phase was measured by X-ray diffraction (XRD) and Fourier transform (FTIR) spectroscopy. The degradation rate of CMCS-Zn/α-CSH decreased with increasing CMCS-Zn content, and the pH was stable during the degradation process. The release of Zn2+ increased with increasing CMCS-Zn content, while the release of Ca2+ decreased. Extracts of CMCS-Zn/α-CSH composites up-regulated the osteoinduction and migration of rat bone marrow stem cells. The antibacterial ability of CMCS-Zn/α-CSH was evaluated as a function of CMCS-Zn content. In the rat bone defect model, 5% CMCS-Zn/α-CSH group revealed a higher volume and density of trabeculae by micro-CT 8 weeks after the operation. Therefore, CMCS-Zn/α-CSH was demonstrated to be an adjustable, degradable, substitute biomaterial (with osteogenesis-promoting effects) for use in bone defects, which also has antibacterial activity that can suppress bone infection.
Collapse
|
46
|
Activated Carbon Fiber Cloth/Biomimetic Apatite: A Dual Drug Delivery System. Int J Mol Sci 2021; 22:ijms222212247. [PMID: 34830128 PMCID: PMC8624510 DOI: 10.3390/ijms222212247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
A biomaterial that is both bioactive and capable of controlled drug release is highly attractive for bone regeneration. In previous works, we demonstrated the possibility of combining activated carbon fiber cloth (ACC) and biomimetic apatite (such as calcium-deficient hydroxyapatite (CDA)) to develop an efficient material for bone regeneration. The aim to use the adsorption properties of an activated carbon/biomimetic apatite composite to synthetize a biomaterial to be used as a controlled drug release system after implantation. The adsorption and desorption of tetracycline and aspirin were first investigated in the ACC and CDA components and then on ACC/CDA composite. The results showed that drug adsorption and release are dependent on the adsorbent material and the drug polarity/hydrophilicity, leading to two distinct modes of drug adsorption and release. Consequently, a double adsorption approach was successfully performed, leading to a multifunctional and innovative ACC-aspirin/CDA-tetracycline implantable biomaterial. In a second step, in vitro tests emphasized a better affinity of the drug (tetracycline or aspirin)-loaded ACC/CDA materials towards human primary osteoblast viability and proliferation. Then, in vivo experiments on a large cortical bone defect in rats was carried out to test biocompatibility and bone regeneration ability. Data clearly highlighted a significant acceleration of bone reconstruction in the presence of the ACC/CDA patch. The ability of the aspirin-loaded ACC/CDA material to release the drug in situ for improving bone healing was also underlined, as a proof of concept. This work highlights the possibility of bone patches with controlled (multi)drug release features being used for bone tissue repair.
Collapse
|
47
|
Matheus HR, Ervolino E, Gusman DJR, Alves BES, Fiorin LG, Pereira PA, de Almeida JM. Association of hyaluronic acid with a deproteinized bovine graft improves bone repair and increases bone formation in critical-size bone defects. J Periodontol 2021; 92:1646-1658. [PMID: 33258112 DOI: 10.1002/jper.20-0613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND This study is designed to evaluate the potential of different formulations of hyaluronic acid (HA) to improve new bone formation in critical-size calvaria defect (CSD) when combined with a deproteinized bovine graft (DBG) material. METHODS Thirty male rats were used. A 5-mm-diameter CSD was created and three experimental groups (n = 10) were randomly assigned based on the treatments performed. Group DBG: CSD filled with a DBG; group DBG/LV: CSD filled by the combination of DBG and HA in a low-viscosity crosslinking agent; group DBG/HV: CSD filled by the combination of DBG and HA in a high-viscosity crosslinking agent. Animals were euthanized 30 days postoperatively. Histological, histometric (percentage of newly formed bone [PNFB], percentage of remaining graft particles, histochemical, and immunohistochemical (bone morphogenetic protein 2/4 [BMP2/4], osteocalcin [OCN], and tartrate-resistant acid phosphatase [TRAP]) analyses were performed. RESULTS The highest PNFB was observed in DBG/HV when compared with the other groups (P ≤0.05). DBG/LV and DBG/HV presented almost no inflammatory cells. In contrast, inflammation was observed in group DBG. Extensive resorption of graft particles was observed in group DBG, which was not present in DBG/LV and DBG/HV as confirmed by the larger size of the particles (P ≤0.05). BMP2/4 and OCN immunolabeling were higher in DBG/HV when compared with group DBG (P ≤0.05). Increased number of TRAP-positive cells was observed in DBG/LV and DBG/HV (P ≤0.05). Lower percentage of mature collagen fibers was observed in DBG/HV (P ≤0.05). CONCLUSION The combination of HA in a high-viscosity crosslinking agent with DBG improves the bone repair process and increases the amount of newly formed bone towards CSDs in rat calvaria.
Collapse
Affiliation(s)
- Henrique R Matheus
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - David Jonathan Rodrigues Gusman
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Breno Edson Sendão Alves
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Luiz Guilherme Fiorin
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Priscilla Aparecida Pereira
- Private practice. Director of the Pro-clinic Nucleus of Orofacial Harmonization, São Paulo, São Paulo, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
48
|
Should local drug delivery systems be used in dentistry? Drug Deliv Transl Res 2021; 12:1395-1407. [PMID: 34545538 DOI: 10.1007/s13346-021-01053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/27/2022]
Abstract
In dentistry, the use of biomaterial-based drug delivery systems (DDS) aiming the release of the active compounds directly to the site of action is slowly getting more awareness among the scientific and medical community. Emerging technologies including nanotechnological platforms are offering novel approaches, but the majority are still in the proof-of-concept stage. This study critically reviews the potential use of DDS in anesthesiology, oral diseases, cariology, restorative dentistry, periodontics, endodontics, implantology, fixed and removable prosthodontics, and orthodontics with a special focus on infections. It also stresses the gaps and challenges faced. Despite numerous clinical and pharmacological advantages, some disadvantages of DDS pose an obstacle to their widespread use. The biomaterial's biofunctionality may be affected when the drug is incorporated and may cause an additional risk of toxicity. Also, the release of sub-therapeutic levels of drugs such as antibiotics may lead to microbial resistance. Multiple available techniques for the manufacture of DDS may affect drug release profiles and their bioavailability. If the benefits outweigh the costs, DDS may be potentially used to prevent or treat oral pathologies as an alternative to conventional strategies. A case-by-case approach must be followed.
Collapse
|
49
|
Cheng X, Wei J, Ge Q, Xing D, Zhou X, Qian Y, Jiang G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv 2021; 28:37-53. [PMID: 33336610 PMCID: PMC7751395 DOI: 10.1080/10717544.2020.1856225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some cancers such as human breast cancer, prostate cancer, and lung cancer easily metastasize to bone, leading to osteolysis and bone destruction accompanied by a complicated microenvironment. Systemic administration of bisphosphonates (BP) or denosumab is the routine therapy for osteolysis but with non-negligible side effects such as mandibular osteonecrosis and hypocalcemia. Thus, it is imperative to exploit optimized drug delivery systems, and some novel nanotechnology and nanomaterials have opened new horizons for scientists. Targeted and local drug delivery systems can optimize biodistribution depending on nanoparticles (NPs) or microspheres (MS) and implantable biomaterials with the controllable property. Drug delivery kinetics can be optimized by smart and sustained/local drug delivery systems for responsive delivery and sustained delivery. These delicately fabricated drug delivery systems with special matrix, structure, morphology, and modification can minimize unexpected toxicity caused by systemic delivery and achieve desired effects through integrating multiple drugs or multiple functions. This review summarized recent studies about optimized drug delivery systems for the treatment of cancer metastatic osteolysis, aimed at giving some inspiration in designing efficient multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinrong Wei
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qi Ge
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Danlei Xing
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
50
|
Bădilă AE, Rădulescu DM, Niculescu AG, Grumezescu AM, Rădulescu M, Rădulescu AR. Recent Advances in the Treatment of Bone Metastases and Primary Bone Tumors: An Up-to-Date Review. Cancers (Basel) 2021; 13:4229. [PMID: 34439383 PMCID: PMC8392383 DOI: 10.3390/cancers13164229] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, the treatment of primary and secondary bone tumors has faced a slow-down in its development, being mainly based on chemotherapy, radiotherapy, and surgical interventions. However, these conventional therapeutic strategies present a series of disadvantages (e.g., multidrug resistance, tumor recurrence, severe side effects, formation of large bone defects), which limit their application and efficacy. In recent years, these procedures were combined with several adjuvant therapies, with different degrees of success. To overcome the drawbacks of current therapies and improve treatment outcomes, other strategies started being investigated, like carrier-mediated drug delivery, bone substitutes for repairing bone defects, and multifunctional scaffolds with bone tissue regeneration and antitumor properties. Thus, this paper aims to present the types of bone tumors and their current treatment approaches, further focusing on the recent advances in new therapeutic alternatives.
Collapse
Affiliation(s)
- Adrian Emilian Bădilă
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| | - Dragoș Mihai Rădulescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.-G.N.); (A.M.G.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Adrian Radu Rădulescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| |
Collapse
|