1
|
Jia K, Zuo C, Xu Y, Ma W, Wang L, Ji Y, Chen J, Zhang Q, Pan C, Liu T. Carboxymethyl chitosan/alendronate sodium/Sr 2+ modified TiO 2 nanotube arrays enhancing osteogenic activity and antibacterial property. BIOMATERIALS ADVANCES 2025; 167:214107. [PMID: 39522499 DOI: 10.1016/j.bioadv.2024.214107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Titanium and its alloys are widely used as orthopedic implants owing to their good mechanical properties and excellent corrosion resistance. However, the insufficient osteogenic activity and antibacterial properties hinder their clinical applications. To address these issues, TiO2 nanotube arrays (TNT) were first fabricated on the TA2 alloy surface via an anodizing technique, and strontium ions (Sr2+) were then loaded by hydrothermal reaction (TNT + Sr) and annealing treatment (TNT + A). Subsequently, the polydopamine layer (TNT + PDA) was constructed to immobilize the carboxymethyl chitosan and alendronate sodium (TNT + CA) mixture. The prepared coatings were thoroughly characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffractometer (XRD), and water contact angle measurement. The results confirmed that Sr2+ ions, polydopamine, and carboxymethyl chitosan/alendronate sodium were successfully immobilized on the nanotubes. The coating of TNT + CA significantly enhanced the hydrophilicity, and effectively delayed the release of Sr2+ and alendronate. The TNT + CA coating significantly promoted osteoblast adhesion and proliferation, and up-regulated the expressions of alkaline phosphatase (ALP), osteocalcin (OCN), and osteoblast-specific transcription factor (RUNX2). TNT + CA was able to rapidly induce in situ hydroxyapatite deposition from the simulated body fluid (SBF). Moreover, TNT + CA coating showed inhibition against Escherichia coli and Staphylococcus aureus (especially against Escherichia coli). The prepared TNT + CA coating provides a novel strategy for enhancing bone affinity, improving osteoblast behaviors, and antibacterial properties of titanium-based biomaterials.
Collapse
Affiliation(s)
- Kunpeng Jia
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Changpeng Zuo
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Yan Xu
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Wenfu Ma
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Lingtao Wang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yan Ji
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Tingting Liu
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China; The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Wang R, Li J, Bi Q, Yang B, He T, Lin K, Zhu X, Zhang K, Jin R, Huang C, Nie Y, Zhang X. Crystallographic plane-induced selective mineralization of nanohydroxyapatite on fibrous-grained titanium promotes osteointegration and biocorrosion resistance. Biomaterials 2025; 313:122800. [PMID: 39241551 DOI: 10.1016/j.biomaterials.2024.122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The (002) crystallographic plane-oriented hydroxyapatite (HA) and anatase TiO2 enable favorable hydrophilicity, osteogenesis, and biocorrosion resistance. Thus, the crystallographic plane control in HA coating and crystalline phase control in TiO2 is vital to affect the surface and interface bioactivity and biocorrosion resistance of titanium (Ti) implants. However, a corresponding facile and efficient fabrication method is absent to realize the HA(002) mineralization and anatase TiO2 formation on Ti. Herein, we utilized the predominant Ti(0002) plane of the fibrous-grained titanium (FG Ti) to naturally form anatase TiO2 and further achieve a (002) basal plane oriented nanoHA (nHA) film through an in situ mild hydrothermal growth strategy. The formed FG Ti-nHA(002) remarkably improved hydrophilicity, mineralization, and biocorrosion resistance. Moreover, the nHA(002) film reserved the microgroove-like topological structure on FG Ti. It could enhance osteogenic differentiation through promoted contact guidance, showing one order of magnitude higher expression of osteogenic-related genes. On the other hand, the nHA(002) film restrained the osteoclast activity by blocking actin ring formation. Based on these capacities, FG Ti-nHA(002) improved new bone growth and binding strength in rabbit femur implantation, achieving satisfactory osseointegration within 2 weeks.
Collapse
Affiliation(s)
- Ruohan Wang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Juan Li
- Department of Orthodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qunjie Bi
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Binbin Yang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China; The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ting He
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kaifeng Lin
- Department of Orthodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiangdong Zhu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Zhang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Rongrong Jin
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Chongxiang Huang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China; School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xingdong Zhang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
3
|
Yan Y, Yang X, Ning P, Wang C, Sun X, Wang F, Gao P, Li K. Cu/TiO 2 adsorbents modified by air plasma for adsorption-oxidation of H 2S. J Environ Sci (China) 2025; 148:476-488. [PMID: 39095182 DOI: 10.1016/j.jes.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 08/04/2024]
Abstract
In this study, non-thermal plasma (NTP) was employed to modify the Cu/TiO2 adsorbent to efficiently purify H2S in low-temperature and micro-oxygen environments. The effects of Cu loading amounts and atmospheres of NTP treatment on the adsorption-oxidation performance of the adsorbents were investigated. The NTP modification successfully boosted the H2S removal capacity to varying degrees, and the optimized adsorbent treated by air plasma (Cu/TiO2-Air) attained the best H2S breakthrough capacity of 113.29 mg H2S/gadsorbent, which was almost 5 times higher than that of the adsorbent without NTP modification. Further studies demonstrated that the superior performance of Cu/TiO2-Air was attributed to increased mesoporous volume, more exposure of active sites (CuO) and functional groups (amino groups and hydroxyl groups), enhanced Ti-O-Cu interaction, and the favorable ratio of active oxygen species. Additionally, the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicated the main reason for the deactivation was the consumption of the active components (CuO) and the agglomeration of reaction products (CuS and SO42-) occupying the active sites on the surface and the inner pores of the adsorbents.
Collapse
Affiliation(s)
- Yongqi Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xinyu Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Chi Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Gao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; City College, Kunming University of Science and Technology, Kunming 650500, China.
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
4
|
Zhang Q, Gao S, Li B, Li Q, Li X, Cheng J, Peng Z, Liang J, Zhang K, Hai J, Zhang B. Lithium-Doped Titanium Dioxide-Based Multilayer Hierarchical Structure for Accelerating Nerve-Induced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38663861 PMCID: PMC11082843 DOI: 10.1021/acsami.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Despite considerable advances in artificial bone tissues, the absence of neural network reconstruction in their design often leads to delayed or ineffective bone healing. Hence, we propose a multilayer hierarchical lithium (Li)-doped titanium dioxide structure, constructed through microarc oxidation combined with alkaline heat treatment. This structure can induce the sustained release of Li ions, mimicking the environment of neurogenic osteogenesis characterized by high brain-derived neurotrophic factor (BDNF) expression. During in vitro experiments, the structure enhanced the differentiation of Schwann cells (SCs) and the growth of human umbilical vein endothelial cells (HUVECs) and mouse embryo osteoblast progenitor cells (MC3T3-E1). Additionally, in a coculture system, the SC-conditioned media markedly increased alkaline phosphatase expression and the formation of calcium nodules, demonstrating the excellent potential of the material for nerve-induced bone regeneration. In an in vivo experiment based on a rat distal femoral lesion model, the structure substantially enhanced bone healing by increasing the density of the neural network in the tissue around the implant. In conclusion, this study elucidates the neuromodulatory pathways involved in bone regeneration, providing a promising method for addressing bone deformities.
Collapse
Affiliation(s)
- Qianqian Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Shuting Gao
- Dental
Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
| | - Bo Li
- The
Third Affiliated Hospital of AFMU, Air Force
Medical University, Xi’an 710000, China
| | - Qian Li
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xinjie Li
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jingyang Cheng
- Suzhou
Huaxia Stomatological Hospital, Su Zhou 215000, China
| | - Zhenjun Peng
- State
Key Laboratory of Solid Lubrication, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China
| | - Jun Liang
- Research
Institute of Interdisciplinary Science, Dongguan University of Technology, Dongguan 523808, China
| | - Kailiang Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jun Hai
- CAS
Key Laboratory of Chemistry of Northwestern Plant Resources and Key
Laboratory of Natural Medicine of Gansu Province, Chinese Academy
of Sciences, Lanzhou Institute of Chemical
Physics, Lanzhou 730000, China
| | - Baoping Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Melo-Fonseca F, Gasik M, Cruz A, Moreira D, S. Silva F, Miranda G, Mendes Pinto I. Engineering a Hybrid Ti6Al4V-Based System for Responsive and Consistent Osteogenesis. ACS OMEGA 2024; 9:8985-8994. [PMID: 38434873 PMCID: PMC10905591 DOI: 10.1021/acsomega.3c07232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 03/05/2024]
Abstract
As the aging population increases worldwide, the incidence of musculoskeletal diseases and the need for orthopedic implants also arise. One of the most desirable goals in orthopedic reconstructive therapies is de novo bone formation. Yet, reproducible, long-lasting, and cost-effective strategies for implants that strongly induce osteogenesis are still in need. Nanoengineered titanium substrates (and their alloys) are among the most used materials in orthopedic implants. Although having high biocompatibility, titanium alloys hold a low bioactivity profile. The osteogenic capacity and osseointegration of Ti-based implantable systems are limited, as they critically depend on the body-substrate interactions defined by blood proteins adsorbed into implant surfaces that ultimately lead to the recruitment, proliferation, and differentiation of mesenchymal stem cells (MSCs) to comply bone formation and regeneration. In this work, a hybrid Ti6Al4V system combining micro- and nanoscale modifications induced by hydrothermal treatment followed by functionalization with a bioactive compound (fibronectin derived from human plasma) is proposed, aiming for bioactivity improvement. An evaluation of the biological activity and cellular responses in vitro with respect to bone regeneration indicated that the integration of morphological and chemical modifications into Ti6Al4V surfaces induces the osteogenic differentiation of MSCs to improve bone regeneration by an enhancement of mineral matrix formation that accelerates the osseointegration process. Overall, this hybrid system has numerous competitive advantages over more complex treatments, including reproducibility, low production cost, and potential for improved long-term maintenance of the implant.
Collapse
Affiliation(s)
- Francisca Melo-Fonseca
- Center
for MicroElectroMechanical Systems (CMEMS-UMinho), University of Minho, Guimarães 4800-058, Portugal
- LABBELS—Associate
Laboratory, Braga, Guimarães 4710-057, Portugal
- International
Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Michael Gasik
- School
of Chemical Engineering, Aalto University
Foundation, Espoo 00076, Finland
| | - Andrea Cruz
- International
Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Daniel Moreira
- Institute
for Research and Innovation in Health (i3S), Porto 4200-135, Portugal
| | - Filipe S. Silva
- Center
for MicroElectroMechanical Systems (CMEMS-UMinho), University of Minho, Guimarães 4800-058, Portugal
- LABBELS—Associate
Laboratory, Braga, Guimarães 4710-057, Portugal
| | - Georgina Miranda
- CICECO, Aveiro
Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro 3810-193, Portugal
| | - Inês Mendes Pinto
- International
Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
- Institute
for Research and Innovation in Health (i3S), Porto 4200-135, Portugal
| |
Collapse
|
6
|
Li S, Deng Q, Si Q, Li J, Zeng H, Chen S, Guo T. TiO 2nanotubes promote osteogenic differentiation of human bone marrow stem cells via epigenetic regulation of RMRP/ DLEU2/EZH2 pathway. Biomed Mater 2023; 18:055027. [PMID: 37437580 DOI: 10.1088/1748-605x/ace6e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
TiO2nanotubes (TNTs) significantly promote osteogenic differentiation and bone regeneration of cells. Nevertheless, the biological processes by which they promote osteogenesis are currently poorly understood. Long non-coding RNAs (lncRNAs) are essential for controlling osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Epigenetic chromatin modification is one of the pathways in which lncRNAs regulate osteogenic differentiation. Here, we reported that TNTs could upregulate lncRNARMRP, and inhibition of lncRNARMRPin human BMSCs (hBMSCs) grown on TNTs could decrease runt-related transcription factor 2 (RUNX2), alkaline phosphatase, osteopontin, and osteocalcin (OCN) expression. Furthermore, we discovered that inhibiting lncRNARMRPelevated the expression of lncRNADLEU2, and lncRNADLEU2knockdown promoted osteogenic differentiation in hBMSCs. RNA immunoprecipitation experiments showed that lncRNADLEU2could interact with EZH2 to induce H3K27 methylation in the promoter regions of RUNX2 and OCN, suppressing gene expression epigenetically. According to these results, lncRNARMRPis upregulated by TNTs to promote osteogenic differentiation throughDLEU2/EZH2-mediated epigenetic modifications.
Collapse
Affiliation(s)
- Shuangqin Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Qing Deng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Qiqi Si
- School of Life and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - JinSheng Li
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Huanghe Zeng
- School of Life and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Song Chen
- Department of Orthopedics of the General Hospital of Western Theater Command, Chengdu, Sichuan 610086, People's Republic of China
| | - Tailin Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| |
Collapse
|
7
|
Bashiri G, Padilla MS, Swingle KL, Shepherd SJ, Mitchell MJ, Wang K. Nanoparticle protein corona: from structure and function to therapeutic targeting. LAB ON A CHIP 2023; 23:1432-1466. [PMID: 36655824 PMCID: PMC10013352 DOI: 10.1039/d2lc00799a] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Nanoparticle (NP)-based therapeutics have ushered in a new era in translational medicine. However, despite the clinical success of NP technology, it is not well-understood how NPs fundamentally change in biological environments. When introduced into physiological fluids, NPs are coated by proteins, forming a protein corona (PC). The PC has the potential to endow NPs with a new identity and alter their bioactivity, stability, and destination. Additionally, the conformation of proteins is sensitive to their physical and chemical surroundings. Therefore, biological factors and protein-NP-interactions can induce changes in the conformation and orientation of proteins in vivo. Since the function of a protein is closely connected to its folded structure, slight differences in the surrounding environment as well as the surface characteristics of the NP materials may cause proteins to lose or gain a function. As a result, this can alter the downstream functionality of the NPs. This review introduces the main biological factors affecting the conformation of proteins associated with the PC. Then, four types of NPs with extensive utility in biomedical applications are described in greater detail, focusing on the conformation and orientation of adsorbed proteins. This is followed by a discussion on the instances in which the conformation of adsorbed proteins can be leveraged for therapeutic purposes, such as controlling protein conformation in assembled matrices in tissue, as well as controlling the PC conformation for modulating immune responses. The review concludes with a perspective on the remaining challenges and unexplored areas at the interface of PC and NP research.
Collapse
Affiliation(s)
- Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
8
|
Murugapandian R, Clement S, Uthirapathy V. Fabrication and In Vitro Drug Delivery Evaluation of Cephalexin Monohydrate-Loaded PLA:PVA/HAP:TiO 2 Fibrous Scaffolds for Bone Regeneration. ACS OMEGA 2023; 8:5017-5032. [PMID: 36777593 PMCID: PMC9910077 DOI: 10.1021/acsomega.2c07701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Owing to the excellent osteoconductive property of hydroxyapatite, we aimed to design a cephalexin monohydrate-loaded PLA:PVA/HAP:TiO2 nanofibrous scaffold to improve the drug delivery efficiency toward bone regenerative applications. In this study, HAP:TiO2 (anatase and rutile phases) samples were prepared by a coprecipitation method, which were later blended with PLA:PVA polymeric solution (with and without the drug) to fabricate a nanofibrous matrix via the electrospinning technique. All the prepared samples were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, contact angle, porosity, and tensile strength tests. Further, in vitro biodegradation and the drug-releasing ability were examined by varying the concentration of cephalexin monohydrate in the composite matrix. Deposition of the apatite layer on the scaffolds was examined after incubation in simulated body fluid solution to confirm the bioactivity of the prepared nanofibers. Biocompatibility by the MTT assay and osteogenic differentiation by ARS staining were evaluated by culturing MG63 cells on PLA:PVA/HAP:TiO2 nanofibers, which could ensue better support for cell proliferation. Consequently, the sustained release profile and better biocompatibility of the scaffolds revealed a strong potential use in bone regenerative applications.
Collapse
Affiliation(s)
- Rama Murugapandian
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu632014, India
| | - Simona Clement
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia23284, United States
| | - Vijayalakshmi Uthirapathy
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu632014, India
| |
Collapse
|
9
|
Huang HH, Chen ZH, Nguyen DT, Tseng CM, Chen CS, Chang JH. Blood Coagulation on Titanium Dioxide Films with Various Crystal Structures on Titanium Implant Surfaces. Cells 2022; 11:cells11172623. [PMID: 36078030 PMCID: PMC9454428 DOI: 10.3390/cells11172623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Titanium (Ti) is one of the most popular implant materials, and its surface titanium dioxide (TiO2) provides good biocompatibility. The coagulation of blood on Ti implants plays a key role in wound healing and cell growth at the implant site; however, researchers have yet to fully elucidate the mechanism underlying this process on TiO2. Methods: This study examined the means by which blood coagulation was affected by the crystal structure of TiO2 thin films (thickness < 50 nm), including anatase, rutile, and mixed anatase/rutile. The films were characterized in terms of roughness using an atomic force microscope, thickness using an X-ray photoelectron spectrometer, and crystal structure using transmission electron microscopy. The surface energy and dielectric constant of the surface films were measured using a contact angle goniometer and the parallel plate method, respectively. Blood coagulation properties (including clotting time, factor XII contact activation, fibrinogen adsorption, fibrin attachment, and platelet adhesion) were then assessed on the various test specimens. Results: All of the TiO2 films were similar in terms of surface roughness, thickness, and surface energy (hydrophilicity); however, the presence of rutile structures was associated with a higher dielectric constant, which induced the activation of factor XII, the formation of fibrin network, and platelet adhesion. Conclusions: This study provides detailed information related to the effects of TiO2 crystal structures on blood coagulation properties on Ti implant surfaces.
Collapse
Affiliation(s)
- Her-Hsiung Huang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei 103, Taiwan
- Correspondence: (H.-H.H.); (C.-S.C.)
| | - Zhi-Hwa Chen
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Diem Thuy Nguyen
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chuan-Ming Tseng
- Department of Materials Engineering and Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Chiang-Sang Chen
- Department of Orthopedics, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Department of Materials and Textiles, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan
- Correspondence: (H.-H.H.); (C.-S.C.)
| | - Jean-Heng Chang
- Dental Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| |
Collapse
|
10
|
TiO2 Nanocoatings with Controllable Crystal Type and Nanoscale Topography on Zirconia Implants to Accelerate Bone Formation. Bioinorg Chem Appl 2022; 2022:8650659. [PMID: 35529315 PMCID: PMC9068347 DOI: 10.1155/2022/8650659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
In dentistry, zirconia implants have emerged as a promising alternative for replacing missing teeth due to their superior aesthetic performance and chemical stability. To improve the osseointegration of zirconia implants, modifying their surface with hierarchical micro/nanotopography and bioactive chemical composition are two effective ways. In this work, a microscale topography was prepared on a zirconia surface using hydrofluoric acid etching, and then a 50 nm TiO2 nanocoating was deposited via atomic layer deposition (ALD). Subsequently, an annealing treatment was used to transform the TiO2 from amorphous to anatase and simultaneously generate nanoscale topography. Various investigations into the coating surface morphology, topography, wettability, and chemical composition were carried out using scanning electron microscopy, white light interferometry, contact-angle measurement, X-ray diffraction, and X-ray photoelectron spectroscopy. In addition, in vitro cytocompatibility and osteogenic potential performance of the coatings were evaluated by human bone marrow mesenchymal stem cells (hBMSCs), and in vivo osseointegration performance was assessed in a rat femoral condyle model. Moreover, the possible mechanism was also investigated. The deposition of TiO2 film with/without annealing treatment did not alter the microscale roughness of the zirconia surface, whereas the nanotopography changed significantly after annealing. The in vitro studies revealed that the anatase TiO2 coating with regular wavelike nanostructure could promote the adhesion and proliferation of osteoblasts and further improve the osteogenic potential in vitro and osseointegration in vivo. These positive effects may be caused by nanoscale topography via the canonical Wnt/β-catenin pathway. The results suggest that using ALD in combination with annealing treatment to fabricate a nanotopographic TiO2 coating is a promising way to improve the osteogenic properties of zirconia implants.
Collapse
|
11
|
Li K, Lv L, Shao D, Xie Y, Cao Y, Zheng X. Engineering Nanopatterned Structures to Orchestrate Macrophage Phenotype by Cell Shape. J Funct Biomater 2022; 13:jfb13010031. [PMID: 35323231 PMCID: PMC8949710 DOI: 10.3390/jfb13010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Physical features on the biomaterial surface are known to affect macrophage cell shape and phenotype, providing opportunities for the design of novel “immune-instructive” topographies to modulate foreign body response. The work presented here employed nanopatterned polydimethylsiloxane substrates with well-characterized nanopillars and nanopits to assess RAW264.7 macrophage response to feature size. Macrophages responded to the small nanopillars (SNPLs) substrates (450 nm in diameter with average 300 nm edge-edge spacing), resulting in larger and well-spread cell morphology. Increasing interpillar distance to 800 nm in the large nanopillars (LNPLs) led to macrophages exhibiting morphologies similar to being cultured on the flat control. Macrophages responded to the nanopits (NPTs with 150 nm deep and average 800 nm edge-edge spacing) by a significant increase in cell elongation. Elongation and well-spread cell shape led to expression of anti-inflammatory/pro-healing (M2) phenotypic markers and downregulated expression of inflammatory cytokines. SNPLs and NPTs with high availability of integrin binding region of fibronectin facilitated integrin β1 expression and thus stored focal adhesion formation. Increased integrin β1 expression in macrophages on the SNPLs and NTPs was required for activation of the PI3K/Akt pathway, which promoted macrophage cell spreading and negatively regulated NF-κB activation as evidenced by similar globular cell shape and higher level of NF-κB expression after PI3K blockade. These observations suggested that alterations in macrophage cell shape from surface nanotopographies may provide vital cues to orchestrate macrophage phenotype.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
| | - Lin Lv
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
| | - Dandan Shao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
| | - Yunzhen Cao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (K.L.); (L.L.); (D.S.); (Y.X.); (Y.C.)
- Correspondence:
| |
Collapse
|
12
|
Lin J, Dong H, Wen Y, Zhuang X, Li S. Surface Free Energy of Titanium Disks Enhances Osteoblast Activity by Affecting the Conformation of Adsorbed Fibronectin. FRONTIERS IN MATERIALS 2022; 9. [DOI: 10.3389/fmats.2022.840813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This study evaluated the influence of surface free energy (SFE) of titanium disks on the adsorption and conformation of fibronectin (FN) and the biological behavior of osteoblasts cultured on the FN-treated modified surfaces. High [H]-SFE titanium disks were irradiated by a 30 W UV light, while low (L)-SFE titanium disks received no treatment. The surface characteristics of the titanium disks were examined using scanning electron microscope, optical surface profilometer, X-ray photoelectron spectroscopy, and contact angle measurements. Adsorbed FN on different groups was investigated using attenuated total reflection-Fourier transform infrared spectroscopy. MG-63 cells were cultured on FN-treated titanium disks to evaluate the in vitro bioactivity. The experiment showed H-SFE titanium disks adsorbed more FN and acquired more ß-turn content than L-SFE group. MG-63 cells cultured on FN-treated H-SFE titanium disks showed better osteogenic responses, including adhesion, proliferation, alkaline phosphatase activity and mineralization than that on FN-treated L-SFE titanium disks. Compared to L-SFE titanium disks, integrin-β1, integrin-α5 and Rac-1 mRNA levels were significantly higher in MG-63 cells on FN-treated H-SFE after 3 h of culture. These findings suggest that the higher SFE of H-SFE compared to L-SFE titanium disks induced changes in the conformation of adsorbed FN that enhanced the osteogenic activity of MG-63 cells.
Collapse
|
13
|
Zhao Y, Lu R, Wang X, Huai X, Wang C, Wang Y, Chen S. Visible light-induced antibacterial and osteogenic cell proliferation properties of hydrogenated TiO 2 nanotubes/Ti foil composite. NANOTECHNOLOGY 2021; 32:195101. [PMID: 33513586 DOI: 10.1088/1361-6528/abe156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We successfully fabricated the hydrogenated TiO2 nanotubes/Ti foil (H-TNTs/f-Ti) composite via one-step anodization and two-step annealing. H-TNTs/f-Ti composite had a higher visible light-induced photoelectric response and more hydroxyl functional groups compared with Ti foil and unmodified TiO2 nanotubes/Ti foil composite, which contributed to limiting the proliferation of Streptococcus mutans and Porphyromonas gingivalis, promoting the proliferation of MC3T3-E1 cell on the hydroxylated surface, and improving the biocompatibility with osteogenic cells. Our study provides a simple and effective method for significantly improving dental implant efficacy.
Collapse
Affiliation(s)
- Yu Zhao
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Ran Lu
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xin Wang
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xiaochen Huai
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Caiyun Wang
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Yuji Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, People's Republic of China
| | - Su Chen
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
14
|
Mechanistic insights into the adsorption and bioactivity of fibronectin on surfaces with varying chemistries by a combination of experimental strategies and molecular simulations. Bioact Mater 2021; 6:3125-3135. [PMID: 33778193 PMCID: PMC7960943 DOI: 10.1016/j.bioactmat.2021.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
Fibronectin (Fn) is significant to the performance of biomaterials, and the chemistry of biomaterial surface play important roles in Fn adsorption and subsequent cell behavior. However, the "molecular scale" mechanism is still unclear. Herein, we combined experimental strategies with molecular simulations to solve this problem. We prepared self-assembled monolayers with varying chemistries, i.e., SAMs-CH3, SAMs-NH2, SAMs-COOH and SAMs-OH, and characterized Fn adsorption and cell behaviors on them. Next, Monte Carlo method and all-atom molecular dynamics simulations were employed to reveal the orientation/conformation of Fn on surfaces. We found that SAMs-CH3 strongly adsorbed Fn via hydrophobic interactions, but show poor bioactivity as the low exposure of RGD/PHSRN motifs and the deformation of Fn. SAMs-NH2 and SAMs-COOH could adsorb Fn efficiently via vdW interactions, electrostatic interactions, hydrogen bonds and salt bridges. Fn exhibited excellent bioactivity for cell adhesion, proliferation and osteogenic differentiation as high exposure of bioactive motifs on SAMs-NH2, or as the activation of other inferior cell-binding motifs on SAMs-COOH. SAMs-OH showed poor Fn adsorption as the water film. However, the adsorbed Fn displayed non-negligible bioactivity due to high exposure of PHSRN motif and large degree of protein flexibility. We believe that the revealed mechanism presents great potential to rationally design Fn-activating biomaterials.
Collapse
|
15
|
Liu S, Li K, Hu T, Shao D, Huang S, Xie Y, Zheng X. Zn-doped MnO 2 nanocoating with enhanced catalase-mimetic activity and cytocompatibility protects pre-osteoblasts against H 2O 2-induced oxidative stress. Colloids Surf B Biointerfaces 2021; 202:111666. [PMID: 33677135 DOI: 10.1016/j.colsurfb.2021.111666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
Therapeutic application in prevention and treatment of bone diseases, particularly osteoporosis, has recently started to emerge for manganese dioxide (MnO2) nanoparticles and nanocoatings whereby their antioxidant catalase-mimetic property can be exploited to control oxidative stress by reducing the amount of H2O2. Doping is an efficient method to enhance the catalase-mimetic activity of MnO2, which can potentially ameliorate osteogenesis under oxidative stress. Herein, Zn2+ doped MnO2 (Zn-MnO2) nanocoating was fabricated on orthopedic titanium implant by a facile UV-photolysis reaction. The Zn-MnO2 nanocoating showed better cytocompatibility than the MnO2 nanocoating, as indicated by enhanced cell proliferation, differentiation and mineralization of MC3T3-E1 pre-osteoblasts. This was probably due to the increased surface hydrophilicity as well as the combination effect of released Zn2+ and Mn2+ from the Zn-MnO2 nanocoating. Importantly, the Zn-MnO2 nanocoating with enhanced catalase-like activity exerted greater effects to suppress the intracellular oxidation products generation and prevent the depletion of dismutase superoxide levels under H2O2-induced oxidative stress, which in turn protected MC3T3-E1 pre-osteoblast functions. Overall, surface modification of titanium implants with the Zn-MnO2 nanocoating could be utilized to ameliorate oxidative stress-inhibited osteogenesis.
Collapse
Affiliation(s)
- Shiwei Liu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dandan Shao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shansong Huang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Smieszek A, Seweryn A, Marcinkowska K, Sikora M, Lawniczak-Jablonska K, Witkowski BS, Kuzmiuk P, Godlewski M, Marycz K. Titanium Dioxide Thin Films Obtained by Atomic Layer Deposition Promotes Osteoblasts' Viability and Differentiation Potential While Inhibiting Osteoclast Activity-Potential Application for Osteoporotic Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4817. [PMID: 33126628 PMCID: PMC7662580 DOI: 10.3390/ma13214817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Atomic layer deposition (ALD) technology has started to attract attention as an efficient method for obtaining bioactive, ultrathin oxide coatings. In this study, using ALD, we have created titanium dioxide (TiO2) layers. The coatings were characterised in terms of physicochemical and biological properties. The chemical composition of coatings, as well as thickness, roughness, wettability, was determined using XPS, XRD, XRR. Cytocompatibillity of ALD TiO2 coatings was accessed applying model of mouse pre-osteoblast cell line MC3T3-E1. The accumulation of transcripts essential for bone metabolism (both mRNA and miRNA) was determined using RT-qPCR. Obtained ALD TiO2 coatings were characterised as amorphous and homogeneous. Cytocompatibility of the layers was expressed by proper morphology and growth pattern of the osteoblasts, as well as their increased viability, proliferative and metabolic activity. Simultaneously, we observed decreased activity of osteoclasts. Obtained coatings promoted expression of Opn, Coll-1, miR-17 and miR-21 in MC3T3-E1 cells. The results are promising in terms of the potential application of TiO2 coatings obtained by ALD in the field of orthopaedics, especially in terms of metabolic- and age-related bone diseases, including osteoporosis.
Collapse
Affiliation(s)
- Agnieszka Smieszek
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida St. 27 B, PL-50375 Wroclaw, Poland; (A.S.); (K.M.); (M.S.)
| | - Aleksandra Seweryn
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (K.L.-J.); (B.S.W.); (P.K.); (M.G.)
| | - Klaudia Marcinkowska
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida St. 27 B, PL-50375 Wroclaw, Poland; (A.S.); (K.M.); (M.S.)
| | - Mateusz Sikora
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida St. 27 B, PL-50375 Wroclaw, Poland; (A.S.); (K.M.); (M.S.)
| | - Krystyna Lawniczak-Jablonska
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (K.L.-J.); (B.S.W.); (P.K.); (M.G.)
| | - Bartlomiej. S. Witkowski
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (K.L.-J.); (B.S.W.); (P.K.); (M.G.)
| | - Piotr Kuzmiuk
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (K.L.-J.); (B.S.W.); (P.K.); (M.G.)
| | - Marek Godlewski
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (K.L.-J.); (B.S.W.); (P.K.); (M.G.)
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11 Street, 55-124 Malin, Poland
- Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszynski University (UKSW), Wóycickiego 1/3, 01-938 Warsaw, Poland
| |
Collapse
|
17
|
Schoon J, Hesse B, Rakow A, Ort MJ, Lagrange A, Jacobi D, Winter A, Huesker K, Reinke S, Cotte M, Tucoulou R, Marx U, Perka C, Duda GN, Geissler S. Metal-Specific Biomaterial Accumulation in Human Peri-Implant Bone and Bone Marrow. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000412. [PMID: 33101844 PMCID: PMC7578891 DOI: 10.1002/advs.202000412] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/09/2020] [Indexed: 05/13/2023]
Abstract
Metallic implants are frequently used in medicine to support and replace degenerated tissues. Implant loosening due to particle exposure remains a major cause for revision arthroplasty. The exact role of metal debris in sterile peri-implant inflammation is controversial, as it remains unclear whether and how metals chemically alter and potentially accumulate behind an insulating peri-implant membrane, in the adjacent bone and bone marrow (BM). An intensively focused and bright synchrotron X-ray beam allows for spatially resolving the multi-elemental composition of peri-implant tissues from patients undergoing revision surgery. In peri-implant BM, particulate cobalt (Co) is exclusively co-localized with chromium (Cr), non-particulate Cr accumulates in the BM matrix. Particles consisting of Co and Cr contain less Co than bulk alloy, which indicates a pronounced dissolution capacity. Particulate titanium (Ti) is abundant in the BM and analyzed Ti nanoparticles predominantly consist of titanium dioxide in the anatase crystal phase. Co and Cr but not Ti integrate into peri-implant bone trabeculae. The characteristic of Cr to accumulate in the intertrabecular matrix and trabecular bone is reproducible in a human 3D in vitro model. This study illustrates the importance of updating the view on long-term consequences of biomaterial usage and reveals toxicokinetics within highly sensitive organs.
Collapse
Affiliation(s)
- Janosch Schoon
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| | - Bernhard Hesse
- Xploraytion GmbHBerlin10625Germany
- European Synchrotron Radiation FacilityGrenoble38000France
| | - Anastasia Rakow
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Center for Musculoskeletal SurgeryCharité – Universitätsmedizin BerlinBerlin10117Germany
| | - Melanie J. Ort
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| | - Adrien Lagrange
- Xploraytion GmbHBerlin10625Germany
- Department of Materials Science and EngineeringInstitute of Materials Science and TechnologiesTechnische Universität BerlinBerlin10623Germany
| | - Dorit Jacobi
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
| | | | - Katrin Huesker
- Endocrinology and Immunology DepartmentInstitute for Medical DiagnosticsBerlin12247Germany
| | - Simon Reinke
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
| | - Marine Cotte
- European Synchrotron Radiation FacilityGrenoble38000France
- CNRSLaboratoire d'archéologie moléculaire et structuraleLAMSSorbonne UniversitéParis75005France
| | - Remi Tucoulou
- European Synchrotron Radiation FacilityGrenoble38000France
| | | | - Carsten Perka
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
- Center for Musculoskeletal SurgeryCharité – Universitätsmedizin BerlinBerlin10117Germany
| | - Georg N. Duda
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| | - Sven Geissler
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| |
Collapse
|
18
|
Li Y, Dong Y, Zhang Y, Yang Y, Hu R, Mu P, Liu X, Lin C, Huang Q. Synergistic effect of crystalline phase on protein adsorption and cell behaviors on TiO2 nanotubes. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01078-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Tovani C, Ferreira CR, Simão AMS, Bolean M, Coppeta L, Rosato N, Bottini M, Ciancaglini P, Ramos AP. Characterization of the in Vitro Osteogenic Response to Submicron TiO 2 Particles of Varying Structure and Crystallinity. ACS OMEGA 2020; 5:16491-16501. [PMID: 32685813 PMCID: PMC7364638 DOI: 10.1021/acsomega.0c00900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Titanium oxide (TiO2) nano-/microparticles have been widely used in orthopedic and dental sciences because of their excellent mechanical properties, chemical stability, and ability to promote the osseointegration of implants. However, how the structure and crystallinity of TiO2 particles may affect their osteogenic activity remains elusive. Herein, we evaluated the osteogenic response to submicron amorphous, anatase, and rutile TiO2 particles with controlled size and morphology. First, the ability of TiO2 particles to precipitate apatite was assessed in an acellular medium by using a simulated body fluid (SBF). Three days after the addition to SBF, anatase and rutile TiO2 particles induced the precipitation of aggregates of nanoparticles with a platelike morphology, typical for biomimetic apatite. Conversely, amorphous TiO2 particles induced the precipitation of particles with poor Ca/P atomic ratio only after 14 days of exposure to SBF. Next, the osteogenic response to TiO2 particles was assessed in vitro by incubating MC3T3-E1 preosteoblasts with the particles. The viability and mineralization efficiency of osteoblastic cells were maintained in the presence of all the tested TiO2 particles despite the differences in the induction of apatite precipitation in SBF by TiO2 particles with different structures. Analysis of the particles' surface charge and of the proteins adsorbed onto the particles from the culture media suggested that all the tested TiO2 particles acquired a similar biological identity in the culture media. We posited that this phenomenon attenuated potential differences in osteoblast response to amorphous, anatase, and rutile particles. Our study provides an important insight into the complex relationship between the physicochemical properties and function of TiO2 particles and sheds light on their safe use in medicine.
Collapse
Affiliation(s)
- Camila
B. Tovani
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Claudio R. Ferreira
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Ana Maria S. Simão
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Maytê Bolean
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Luca Coppeta
- Department
of Occupational Medicine, University of
Rome Tor Vergata, Rome 00133, Italy
| | - Nicola Rosato
- Department
of Experimental Medicine, University of
Rome Tor Vergata, Rome 00133, Italy
| | - Massimo Bottini
- Department
of Experimental Medicine, University of
Rome Tor Vergata, Rome 00133, Italy
- Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Pietro Ciancaglini
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Ana Paula Ramos
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| |
Collapse
|
20
|
Benčina M, Iglič A, Mozetič M, Junkar I. Crystallized TiO 2 Nanosurfaces in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1121. [PMID: 32517276 PMCID: PMC7353402 DOI: 10.3390/nano10061121] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022]
Abstract
Crystallization alters the characteristics of TiO2 nanosurfaces, which consequently influences their bio-performance. In various biomedical applications, the anatase or rutile crystal phase is preferred over amorphous TiO2. The most common crystallization technique is annealing in a conventional furnace. Methods such as hydrothermal or room temperature crystallization, as well as plasma electrolytic oxidation (PEO) and other plasma-induced crystallization techniques, present more feasible and rapid alternatives for crystal phase initiation or transition between anatase and rutile phases. With oxygen plasma treatment, it is possible to achieve an anatase or rutile crystal phase in a few seconds, depending on the plasma conditions. This review article aims to address different crystallization techniques on nanostructured TiO2 surfaces and the influence of crystal phase on biological response. The emphasis is given to electrochemically anodized nanotube arrays and their interaction with the biological environment. A short overview of the most commonly employed medical devices made of titanium and its alloys is presented and discussed.
Collapse
Affiliation(s)
- Metka Benčina
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (M.M.); (I.J.)
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Zaloška 9, SI-1000 Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (M.M.); (I.J.)
| | - Ita Junkar
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (M.M.); (I.J.)
| |
Collapse
|
21
|
Vedhanayagam M, Anandasadagopan S, Nair BU, Sreeram KJ. Polymethyl methacrylate (PMMA) grafted collagen scaffold reinforced by PdO–TiO2 nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110378. [DOI: 10.1016/j.msec.2019.110378] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 01/27/2023]
|
22
|
Li K, Liu S, Hu T, Razanau I, Wu X, Ao H, Huang L, Xie Y, Zheng X. Optimized Nanointerface Engineering of Micro/Nanostructured Titanium Implants to Enhance Cell-Nanotopography Interactions and Osseointegration. ACS Biomater Sci Eng 2020; 6:969-983. [PMID: 33464841 DOI: 10.1021/acsbiomaterials.9b01717] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The success of orthopedic implants requires rapid and complete osseointegration which relies on an implant surface with optimal features. To enhance cellular function in response to the implant surface, micro- and nanoscale topography have been suggested as essential. The aim of this study was to identify an optimized Ti nanostructure and to introduce it onto a titanium plasma-sprayed titanium implant (denoted NTPS-Ti) to confer enhanced immunomodulatory properties for optimal osseointegration. To this end, three types of titania nanostructures, namely, nanowires, nanonests, and nanoflakes, were achieved on hydrothermally prepared Ti substrates. The nanowire surface modulated protein conformation and directed integrin binding and specificity in such a way as to augment the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and induce a desirable osteoimmune response of RAW264.7 macrophages. In a coculture system, BMSCs on the optimized micro/nanosurface exerted enhanced effects on nonactivated or lipopolysaccharide-stimulated macrophages, causing them to adopt a less inflammatory macrophage profile. The enhanced immunomodulatory properties of BMSCs grown on NTPS-Ti depended on a ROCK-medicated cyclooxygenase-2 (COX2) pathway to increase prostaglandin E2 (PGE2) production, as evidenced by decreased production of PGE2 and concurrent inhibition of immunomodulatory properties after treatment with ROCK or COX2 inhibitors. In vivo evaluation showed that the NTPS-Ti implant resulted in enhanced osseointegration compared with the TPS-Ti and Ti implants. The results obtained in our study may provide a prospective approach for enhancing osseointegration and supporting the application of micro/nanostructured Ti implants.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Shiwei Liu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Ihar Razanau
- Science and Technology Park of BNTU "Polytechnic", Minsk 220013, Belarus
| | - Xiaodong Wu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P. R. China
| | - Haiyong Ao
- School of Materials Science and Engineering, East China Jiao Tong University, Nanchang 330013, P. R. China
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
23
|
Wei H, Feng J, Ma C, Li Z, He M, Wang J, You X, Li L. Effect of iron doping on the hydrophobicity of titanium dioxide film: experiment and simulation. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1696477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hengbin Wei
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jiaheng Feng
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Jiaxing Microelectronic Equipment Research Center, Chinese Academy of Sciences, Jiaxing, People’s Republic of China
| | - Chuandong Ma
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
| | - Zhihao Li
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
| | - Meng He
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
| | - Junxiang Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
| | - Xiaofang You
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
| | - Lin Li
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China
| |
Collapse
|
24
|
Wu H, Xie L, He M, Zhang R, Tian Y, Liu S, Gong T, Huo F, Yang T, Zhang Q, Guo S, Tian W. A wear-resistant TiO 2 nanoceramic coating on titanium implants for visible-light photocatalytic removal of organic residues. Acta Biomater 2019; 97:597-607. [PMID: 31398472 DOI: 10.1016/j.actbio.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
An effective treatment for peri-implantitis is to completely remove all the bacterial deposits from the contaminated implants, especially the organic residues, to regain biocompatibility and re-osseointegration, but none of the conventional decontamination treatments has achieve this goal. The photocatalytic activity of TiO2 coating on titanium implants to degrade organic contaminants has attracted researchers' attention recently. But a pure TiO2 coating only responses to harmful ultraviolet light. Additionally, the poor coating mechanical properties are unable to protect the coating integrity versus initial mechanical decontamination. To address these issues, a unique TiO2 nanoceramic coating was fabricated on titanium substrates through an innovative plasma electrolytic oxidation (PEO) based procedure, which showed a disordered layer with oxygen vacancies on the outmost part. As a result, the coating could decompose methylene blue, rhodamine B, and pre-adsorbed lipopolysaccharide (LPS) under visible light. Additionally, the coating showed two-fold higher hardness than untreated titanium and excellent wear resistance against steel decontamination instruments, which could be attributed to the specific micro-structure, including the densely packed nanocrystals and good metallurgical combination. Moreover, the in vitro response of MG63 cells confirmed that the coating had comparable biocompatibility and osteoconductivity to untreated titanium substrates. This study provides a unique coating technique as well as a photocatalytic cleaning strategy to enhance decontamination of titanium dental implants, which will favour the development of peri-implantitis treatments. STATEMENT OF SIGNIFICANCE: The treatment of peri-implantitis is based on the complete removal of bacterial deposits, especially the organic residues, but conventional decontamination treatments are hard to achieve it. The photocatalytic activity of TiO2 coating on titanium implants to degrade organic contaminants provides a promising strategy for deeper decontamination, but its nonactivation to visible light and poor mechanical properties have limited its application. To address these issues, a unique TiO2 nanoceramic coating was fabricated on titanium substrates based on plasma electrolytic oxidation. The coating showed enhanced visible-light photocatalytic activity, excellent wear resistance and satisfied biocompatibility. Based on this functional coating, it is promising to develop a more efficient strategy for deep decontamination of implant surface, which will favour the development of peri-implantitis treatments.
Collapse
|
25
|
Khokhlova M, Dykas M, Krishnan-Kutty V, Patra A, Venkatesan T, Prellier W. Oxide thin films as bioactive coatings. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:033001. [PMID: 30523972 DOI: 10.1088/1361-648x/aaefbc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Growth and survival of biological cells (eukaryotes and prokaryotes) on artificial environments often depend on their interactions with the specific surface. Various organic materials can be coated on substrates to assist cells' adhesion and other subsequent cellular processes. However, these coatings are expensive, degrade over short time period, and may even interfere with the cells' signaling processes. Therefore, the use of inorganic surfaces in order to control cellular interactions is of scientific importance from fundamental and application perspectives. Among inorganic materials, oxide thin films have received considerable attention. Thin films of oxides have the advantage of tailoring the surfaces for cellular interactions while using a negligible amount of the oxide material. Here, we review the lesser known application of inorganic oxide coatings as biocompatible and implantable platforms for different purposes, such as biofilm inhibition, cell culture and implant enhancements.
Collapse
Affiliation(s)
- M Khokhlova
- Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, Normandie Université, 6 Bd Maréchal Juin, F-14050 Caen Cedex 4, France
| | | | | | | | | | | |
Collapse
|
26
|
Chen Y, Zhang S, Hong Z, Lin Y, Dai H. A mimotope peptide-based dual-signal readout competitive enzyme-linked immunoassay for non-toxic detection of zearalenone. J Mater Chem B 2019; 7:6972-6980. [PMID: 31621766 DOI: 10.1039/c9tb01167f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, a mimotope peptide-based non-toxic photoelectrochemical (PEC) competitive enzyme-linked immunoassay (ELISA) was established for ultrasensitive detection of zearalenone (ZEN) with dual-signal readout.
Collapse
Affiliation(s)
- Yanjie Chen
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Shupei Zhang
- Fujian Provincial Maternity and Children's Hospital
- Affiliated hospital of Fujian Medical University
- Fuzhou
- China
| | - Zhensheng Hong
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Yanyu Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, and Department of Chemistry
- Fuzhou University
- Fuzhou 350002
- P. R. China
| | - Hong Dai
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350108
- P. R. China
- Fujian Provincial Maternity and Children's Hospital
| |
Collapse
|
27
|
Lv L, Xie Y, Li K, Hu T, Lu X, Cao Y, Zheng X. Unveiling the Mechanism of Surface Hydrophilicity-Modulated Macrophage Polarization. Adv Healthc Mater 2018; 7:e1800675. [PMID: 30106513 DOI: 10.1002/adhm.201800675] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/24/2018] [Indexed: 12/22/2022]
Abstract
With inflammation increasingly recognized as a key factor that influences fracture healing, the immunologic response is considered to play a pivotal role in determining implant-mediated osteogenesis. Herein, this paper demonstrates that modification of the surface hydrophilicity of Ti surface oxides can be utilized to control immune response by steering the macrophage polarization toward pro- or anti-inflammation phenotype. Enhanced anti-inflammatory and prohealing performance of macrophages is observed on hydrophilic surfaces compared to hydrophobic ones. Further study on the detailed mechanism demonstrates that the surface hydrophilicity controls specific proteins (fibronectin and fibrinogen) adsorption and conformation, which activate different signaling pathways (PI3K and NF-κB) through selective expression of integrin β1 or β2 to influence the behaviors of macrophages. Thus, this study presents a mechanism of macrophage polarization modulated by surface hydrophilicity for the surface design of advanced implant materials with satisfactory anti-inflammatory and osteogenesis-promoting properties.
Collapse
Affiliation(s)
- Lin Lv
- Key Laboratory of Inorganic Coating Materials CASShanghai Institute of CeramicsChinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 P. R. China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CASShanghai Institute of CeramicsChinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 P. R. China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials CASShanghai Institute of CeramicsChinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 P. R. China
| | - Tao Hu
- Department of Spine SurgeryShanghai East HospitalTongji University School of Medicine Shanghai 200050 P. R. China
| | - Xiang Lu
- Key Laboratory of Inorganic Coating Materials CASShanghai Institute of CeramicsChinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 P. R. China
| | - Yunzhen Cao
- Key Laboratory of Inorganic Coating Materials CASShanghai Institute of CeramicsChinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 P. R. China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CASShanghai Institute of CeramicsChinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 P. R. China
| |
Collapse
|
28
|
Wang L, Zhou B, Liu Z, Dong L, Cheng K, Weng W. Surface hydroxylation regulates cellular osteogeneses on TiO 2 and Ta 2O 5 nanorod films. Colloids Surf B Biointerfaces 2018; 167:213-219. [PMID: 29656204 DOI: 10.1016/j.colsurfb.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 11/15/2022]
Abstract
Titanium and tantalum have been widely used for orthopedic and dental implant applications. However, how their inherent surface features regulate cellular osteogeneses still remains elusive. In this study, we engineered two distinct TiO2 and Ta2O5 nanorod films as the two model oxidized surfaces to investigate their intrinsic osteogenic behaviors. The results indicated that the distinctive gradient on zeta potential against pH, corresponding to the deprotonation rate, but not the hydroxyl amount or hydroxylation polarity played a critical role on the cellular osteogenic performance. TiO2 nanorod film with a higher deprotonation rate significantly upregulated the expression of osteogeneses-related gene and protein, comparing to that of Ta2O5 nanorod film. These results might be attributed to that surface with higher deprotonation rateprovided more Bronsted acid-base surface sites to react with protein residues, leading to a mild change in conformation of the absorbed proteins, and subsequently facilitating to trigger the integrin-focal adhesion cytoskeleton actin transduction pathway. This study, therefore, provides a new insight into the understanding the role of material surface hydroxylation on cellular osteogenic responses.
Collapse
Affiliation(s)
- Liming Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Beibei Zhou
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Zongguang Liu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Lingqing Dong
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China; The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
29
|
Li Z, Jiang Z, Zhao L, Yang X, Zhang J, Song X, Liu B, Ding J. PEGylated stereocomplex polylactide coating of stent for upregulated biocompatibility and drug storage. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:443-451. [PMID: 28887996 DOI: 10.1016/j.msec.2017.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 02/05/2023]
Abstract
Treatment of coronary heart disease by percutaneous coronary intervention (PCT) is usually limited to the high restenosis rate after implantation of bare-metal stent. To solve the problem, the coating of PEGylated stereocomplex poly(l-lactide) (PEG-cPLA) was utilized on the surface modification of stainless steel (SS) sheet. Specifically, the 3-aminopropyltriethoxysilane (APTES)-modified methoxy-poly(ethylene glycol)-poly(d-lactide) (mPEG-PDLA) was grafted onto the surface of hydroxylated SS sheet through coupling reaction, and poly(l-lactide)-poly(ethylene glycol)-poly(l-lactide) (PLLA-PEG-PLLA) was coated onto the surface through stereocomplex interaction between DLA and LLA units. The increase of contact angle firstly confirmed the changes of surface composition and hydrophilicity for the PEG-scPLA-modified SS sheet. The decreased fibrinogen adsorption, down-regulated platelet activation, and improved adhesion of human umbilical vein endothelial cells (HUVECs) indicated the excellent biocompatibility of PEG-scPLA-modified SS sheet. In addition, the drug loading capability of SS sheet was greatly upregulated through the formation of scPLA coating on the surface, where fluorescein (FLU) was chosen as a model molecule. Overall, the surface modification of SS sheet with PEG-scPLA could enhance the comprehensive performances, such as biocompatibility and drug loading capability, demonstrating that PEG-scPLA is a promising coating of coronary stent for PCT.
Collapse
Affiliation(s)
- Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Lei Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xianrui Yang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jin Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xianjing Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
30
|
Macgregor M, Williams R, Downes J, Bachhuka A, Vasilev K. The Role of Controlled Surface Topography and Chemistry on Mouse Embryonic Stem Cell Attachment, Growth and Self-Renewal. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1081. [PMID: 28906470 PMCID: PMC5615735 DOI: 10.3390/ma10091081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
Abstract
The success of stem cell therapies relies heavily on our ability to control their fate in vitro during expansion to ensure an appropriate supply. The biophysical properties of the cell culture environment have been recognised as a potent stimuli influencing cellular behaviour. In this work we used advanced plasma-based techniques to generate model culture substrates with controlled nanotopographical features of 16 nm, 38 nm and 68 nm in magnitude, and three differently tailored surface chemical functionalities. The effect of these two surface properties on the adhesion, spreading, and self-renewal of mouse embryonic stem cells (mESCs) were assessed. The results demonstrated that physical and chemical cues influenced the behaviour of these stem cells in in vitro culture in different ways. The size of the nanotopographical features impacted on the cell adhesion, spreading and proliferation, while the chemistry influenced the cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Melanie Macgregor
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Rachel Williams
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Joni Downes
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Akash Bachhuka
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Krasimir Vasilev
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
31
|
Wang Y, Jiang Z, Yu K, Feng Y, Xi Y, Lai K, Huang T, Wang H, Yang G. Improved osseointegrating functionality of cell sheets on anatase TiO2 nanoparticle surfaces. RSC Adv 2017. [DOI: 10.1039/c7ra05134d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bone marrow mesenchymal stem cell sheets (BMSC sheets) have been reported as a powerful tool for bioengineering applications in accelerating osseointegration.
Collapse
Affiliation(s)
- Ying Wang
- Department of Oral Medicine
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Zhiwei Jiang
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Ke Yu
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Yuting Feng
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Yue Xi
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Kaichen Lai
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Tingben Huang
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Huiming Wang
- Department of Oral and Maxillofacial Surgery
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Guoli Yang
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| |
Collapse
|
32
|
Wang L, Zhou B, Huang X, Dong L, Cheng K, Weng W. Cell responses on a H2Ti3O7 nanowire film. RSC Adv 2017. [DOI: 10.1039/c7ra06029g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell morphologies on H2Ti3O7 nanowire film and anatase nanowire film.
Collapse
Affiliation(s)
- Liming Wang
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Beibei Zhou
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiaoxiao Huang
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Lingqing Dong
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Kui Cheng
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| | - Wenjian Weng
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|