1
|
Norouz Dolatabadi E, Akbarzadeh Zaky MR, Hashim Abbas F, Eftekhari Milani A, André H, Alizadeh E. Recent advances on modeling retinal disease: Towards efficient gene/drug therapy. Exp Eye Res 2025; 256:110416. [PMID: 40320033 DOI: 10.1016/j.exer.2025.110416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/22/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Advanced modeling biotechnologies are required to understand retinal diseases and develop effective treatments based on the patient's genetic background, lifestyle, and environment. In this work, recent advances in different types of study models that are used in the retinal disease area of research will be explored. The retinal models to be covered are: in vivo systems (human and animal), in vitro organisms (cell lines, primary cells, patient-derived stem cells, microfluidics, organoids, and spheroids), ex vivo models (explant cultures and retinal tissue preparations), and in silico models (computational and mathematical). Moreover, the unique comprehension of models of retinal disease, advantages, and disadvantages will be scrutinized. Finally, innovations/improvements derived from models towards gene and pharmacological therapy that display promise for treating retinal illnesses are elucidated.
Collapse
Affiliation(s)
- Elham Norouz Dolatabadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatima Hashim Abbas
- Department of Aesthetic and Laser Techniques, College of Health and Medical Techniques, Al-Mustagbal University, Babylon, Iraq
| | | | - Helder André
- Department of Clinical Neuroscience, Karolinska Institute, Karolinska, Sweden
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Endocrin Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Abdulsalam L, Mordecai J, Ahmad I. Non-viral gene therapy for Leber's congenital amaurosis: progress and possibilities. Nanomedicine (Lond) 2025; 20:291-304. [PMID: 39707712 PMCID: PMC11792828 DOI: 10.1080/17435889.2024.2443387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Leber's congenital amaurosis (LCA) represents a set of rare and pervasive hereditary conditions of the retina that cause severe vision loss starting in early childhood. Targeted treatment intervention has become possible thanks to recent advances in understanding LCA genetic basis. While viral vectors have shown efficacy in gene delivery, they present challenges related to safety, low cargo capacity, and the potential for random genomic integration. Non-viral gene therapy is a safer and more flexible alternative to treating the underlying genetic mutation causing LCA. Non-viral gene delivery methods, such as inorganic nanoparticles, polymer-based delivery systems, and lipid-based nanoparticles, bypass the risks of immunogenicity and genomic integration, potentially offering a more versatile and personalized treatment for patients. This review explores the genetic background of LCA, emphasizing the mutations involved, and explores diverse non-viral gene delivery methods being developed. It also highlights recent studies on non-viral gene therapy for LCA in animal models and clinical trials. It presents future perspectives for gene therapy, including integrating emerging technologies like CRISPR-Cas9, interdisciplinary collaborations, personalized medicine, and ethical considerations.
Collapse
Affiliation(s)
- Latifat Abdulsalam
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - James Mordecai
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| |
Collapse
|
3
|
Corydon TJ, Bek T. Multiple gene therapy as a tool for regulating the expression of molecules involved in neovascular age-related macular degeneration. Prog Retin Eye Res 2025; 104:101323. [PMID: 39672501 DOI: 10.1016/j.preteyeres.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapies have revolutionized the treatment of neovascular age-related macular degeneration (nAMD) and other retinal diseases. However, the necessity for repeated intravitreal injections and the observation of variable treatment responses calls for new treatment modalities where fewer and more effective interventions can result in a clinical effect. Gene therapy might be such an alternative, and therefore the development and clinical application of gene therapy aimed at modifying gene expression has received considerable attention. The article reviews current knowledge of the background, pathophysiological mechanisms, technologies, limitations, and future directions for gene therapy aimed at modifying the synthesis of compounds involved in acquired and senescent retinal disease. The authors have contributed to the field by developing gene therapy to reduce the expression of vascular endothelial growth factor (VEGF), as well as multiple gene therapy for simultaneous downregulation of the synthesis of VEGF and upregulation of pigment epithelium-derived factor (PEDF) using adeno-associated virus (AAV) vectors. It is suggested that such multi-target gene therapy might be included in future treatments of retinal diseases where the underlying mechanisms are complex and cannot be attributed to one specific mediator. Such diseases might include dry AMD (dAMD) with geographic atrophy, but also diabetic macular edema (DME) and retinal vein occlusion (RVO). Gene therapy can be expected to be most beneficial for the patients in need of multiple intra-vitreal injections and in whom the therapeutic response is insufficient. It is concluded, that in parallel with basic research, there is a need for clinical studies aimed at identifying factors that can be used to identify patients who will benefit from gene therapy already at the time of diagnosis of the retinal disease.
Collapse
Affiliation(s)
- Thomas J Corydon
- Department of Biomedicine, Hoegh Guldbergs Gade 10, Aarhus University, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
4
|
Zhang Y, Shi Y, Khan MM, Xiao F, Chen W, Tao W, Yao K, Kong N. Ocular RNA nanomedicine: engineered delivery nanoplatforms in treating eye diseases. Trends Biotechnol 2024; 42:1439-1452. [PMID: 38821834 DOI: 10.1016/j.tibtech.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Ocular disorders remain a major global health challenge with unmet medical needs. RNA nanomedicine has shown significant therapeutic benefits and safety profiles in patients with complex eye disorders, already benefiting numerous patients with gene-related eye disorders. The effective delivery of RNA to the unique structure of the eye is challenging owing to RNA instability, off-target effects, and ocular physiological barriers. Specifically tailored RNA medication, coupled with sophisticated engineered delivery platforms, is crucial to guide and advance developments in treatments for oculopathy. Herein we review recent advances in RNA-based nanomedicine, innovative delivery strategies, and current clinical progress and present challenges in ocular disease therapy.
Collapse
Affiliation(s)
- Yiming Zhang
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Muhammad M Khan
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ke Yao
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Torkashvand A, Izadian A, Hajrasouliha A. Advances in ophthalmic therapeutic delivery: A comprehensive overview of present and future directions. Surv Ophthalmol 2024; 69:967-983. [PMID: 38986847 PMCID: PMC11392635 DOI: 10.1016/j.survophthal.2024.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Ophthalmic treatment demands precision and consistency in delivering therapeutic agents over extended periods to address many conditions, from common eye disorders to complex diseases. This diversity necessitates a range of delivery strategies, each tailored to specific needs. We delve into various delivery cargos that are pivotal in ophthalmic care. These cargos encompass biodegradable implants that gradually release medication, nonbiodegradable implants for sustained drug delivery, refillable tools allowing flexibility in treatment, hydrogels capable of retaining substances while maintaining ocular comfort, and advanced nanotechnology devices that precisely target eye tissues. Within each cargo category, we explore cutting-edge research-level approaches and FDA-approved methods, providing a thorough overview of the current state of ophthalmic drug delivery. In particular, our focus on nanotechnology reveals the promising potential for gene delivery, cell therapy administration, and the implantation of active devices directly into the retina. These advancements hold the key to more effective, personalized, and minimally- invasive ophthalmic treatments, revolutionizing the field of eye care.
Collapse
Affiliation(s)
- Ali Torkashvand
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Afshin Izadian
- Electrical and Computer Engineering Technology, Purdue University, West Lafayette, IN, United States
| | - Amir Hajrasouliha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
6
|
Mullin JA, Rahmani E, Kiick KL, Sullivan MO. Growth factors and growth factor gene therapies for treating chronic wounds. Bioeng Transl Med 2024; 9:e10642. [PMID: 38818118 PMCID: PMC11135157 DOI: 10.1002/btm2.10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Chronic wounds are an unmet clinical need affecting millions of patients globally, and current standards of care fail to consistently promote complete wound closure and prevent recurrence. Disruptions in growth factor signaling, a hallmark of chronic wounds, have led researchers to pursue growth factor therapies as potential supplements to standards of care. Initial studies delivering growth factors in protein form showed promise, with a few formulations reaching clinical trials and one obtaining clinical approval. However, protein-form growth factors are limited by instability and off-target effects. Gene therapy offers an alternative approach to deliver growth factors to the chronic wound environment, but safety concerns surrounding gene therapy as well as efficacy challenges in the gene delivery process have prevented clinical translation. Current growth factor delivery and gene therapy approaches have primarily used single growth factor formulations, but recent efforts have aimed to develop multi-growth factor approaches that are better suited to address growth factor insufficiencies in the chronic wound environment, and these strategies have demonstrated improved efficacy in preclinical studies. This review provides an overview of chronic wound healing, emphasizing the need and potential for growth factor therapies. It includes a summary of current standards of care, recent advances in growth factor, cell-based, and gene therapy approaches, and future perspectives for multi-growth factor therapeutics.
Collapse
Affiliation(s)
- James A. Mullin
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Erfan Rahmani
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Kristi L. Kiick
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Materials Science and EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
7
|
van der Veen I, Heredero Berzal A, Koster C, ten Asbroek ALMA, Bergen AA, Boon CJF. The Road towards Gene Therapy for X-Linked Juvenile Retinoschisis: A Systematic Review of Preclinical Gene Therapy in Cell-Based and Rodent Models of XLRS. Int J Mol Sci 2024; 25:1267. [PMID: 38279267 PMCID: PMC10816913 DOI: 10.3390/ijms25021267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss of visual acuity. XLRS is caused by loss-of-function mutations in the retinoschisin gene located on the X chromosome (RS1, MIM 30083). While proof-of-concept studies for gene augmentation therapy have been promising in in vitro and rodent models, clinical trials in XLRS patients have not been successful thus far. We performed a systematic literature investigation using search strings related to XLRS and gene therapy in in vivo and in vitro models. Three rounds of screening (title/abstract, full text and qualitative) were performed by two independent reviewers until consensus was reached. Characteristics related to study design and intervention were extracted from all studies. Results were divided into studies using (1) viral and (2) non-viral therapies. All in vivo rodent studies that used viral vectors were assessed for quality and risk of bias using the SYRCLE's risk-of-bias tool. Studies using alternative and non-viral delivery techniques, either in vivo or in vitro, were extracted and reviewed qualitatively, given the diverse and dispersed nature of the information. For in-depth analysis of in vivo studies using viral vectors, outcome data for optical coherence tomography (OCT), immunohistopathology and electroretinography (ERG) were extracted. Meta-analyses were performed on the effect of recombinant adeno-associated viral vector (AAV)-mediated gene augmentation therapies on a- and b-wave amplitude as well as the ratio between b- and a-wave amplitudes (b/a-ratio) extracted from ERG data. Subgroup analyses and meta-regression were performed for model, dose, age at injection, follow-up time point and delivery method. Between-study heterogeneity was assessed with a Chi-square test of homogeneity (I2). We identified 25 studies that target RS1 and met our search string. A total of 19 of these studies reported rodent viral methods in vivo. Six of the 25 studies used non-viral or alternative delivery methods, either in vitro or in vivo. Of these, five studies described non-viral methods and one study described an alternative delivery method. The 19 aforementioned in vivo studies were assessed for risk of bias and quality assessments and showed inconsistency in reporting. This resulted in an unclear risk of bias in most included studies. All 19 studies used AAVs to deliver intact human or murine RS1 in rodent models for XLRS. Meta-analyses of a-wave amplitude, b-wave amplitude, and b/a-ratio showed that, overall, AAV-mediated gene augmentation therapy significantly ameliorated the disease phenotype on these parameters. Subgroup analyses and meta-regression showed significant correlations between b-wave amplitude effect size and dose, although between-study heterogeneity was high. This systematic review reiterates the high potential for gene therapy in XLRS, while highlighting the importance of careful preclinical study design and reporting. The establishment of a systematic approach in these studies is essential to effectively translate this knowledge into novel and improved treatment alternatives.
Collapse
Affiliation(s)
- Isa van der Veen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Céline Koster
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Anneloor L. M. A. ten Asbroek
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Arthur A. Bergen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Ophthalmology, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
8
|
Esposito EP, Han IC, Johnson TV. Gene and cell-based therapies for retinal and optic nerve disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:243-262. [PMID: 39341657 DOI: 10.1016/b978-0-323-90120-8.00016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Leading causes of blindness worldwide include neurodegenerative diseases of the retina, which cause irreversible loss of retinal pigment epithelium (RPE) and photoreceptors, and optic neuropathies, which result in retinal ganglion cell (RGC) death. Because photoreceptor and RGCs do not spontaneously regenerate in mammals, including humans, vision loss from these conditions is, at present, permanent. Recent advances in gene and cell-based therapies have provided new hope to patients affected by these conditions. This chapter reviews the current state and future of these approaches to treating ocular neurodegenerative disease. Gene therapies for retinal degeneration and optic neuropathies primarily focus on correcting known pathogenic mutations that cause inherited conditions to halt progression. There are multiple retinal and optic neuropathy gene therapies in clinical trials, and one retinal gene therapy is approved in the United States, Canada, Europe, and Australia. Cell-based therapies are mutation agnostic and have the potential to repopulate neurons regardless of the underlying etiology of degeneration. While photoreceptor cell replacement is nearing a human clinical trial, RPE transplantation is currently in phase I/II clinical trials. RGC replacement faces numerous logistical challenges, but preclinical research has laid the foundation for functional repair of optic neuropathies to be feasible.
Collapse
Affiliation(s)
- Edward P Esposito
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ian C Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thomas V Johnson
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
9
|
Brar AS, Parameswarappa DC, Takkar B, Narayanan R, Jalali S, Mandal S, Fujinami K, Padhy SK. Gene Therapy for Inherited Retinal Diseases: From Laboratory Bench to Patient Bedside and Beyond. Ophthalmol Ther 2024; 13:21-50. [PMID: 38113023 PMCID: PMC10776519 DOI: 10.1007/s40123-023-00862-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
This comprehensive review provides a thorough examination of inherited retinal diseases (IRDs), encompassing their classification, genetic underpinnings, and the promising landscape of gene therapy trials. IRDs, a diverse group of genetic conditions causing vision loss through photoreceptor cell death, are explored through various angles, including inheritance patterns, gene involvement, and associated systemic disorders. The focal point is gene therapy, which offers hope for halting or even reversing the progression of IRDs. The review highlights ongoing clinical trials spanning retinal cell replacement, neuroprotection, pharmacological interventions, and optogenetics. While these therapies hold tremendous potential, they face challenges like timing optimization, standardized assessment criteria, inflammation management, vector refinement, and raising awareness among vision scientists. Additionally, translating gene therapy success into widespread adoption and addressing cost-effectiveness are crucial challenges to address. Continued research and clinical trials are essential to fully harness gene therapy's potential in treating IRDs and enhancing the lives of affected individuals.
Collapse
Affiliation(s)
- Anand Singh Brar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India
| | - Deepika C Parameswarappa
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Raja Narayanan
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Subhadra Jalali
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Sohini Mandal
- Dr Rajendra Prasad Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, 152-8902, Japan
| | - Srikanta Kumar Padhy
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India.
| |
Collapse
|
10
|
Finocchio L, Zeppieri M, Gabai A, Toneatto G, Spadea L, Salati C. Recent Developments in Gene Therapy for Neovascular Age-Related Macular Degeneration: A Review. Biomedicines 2023; 11:3221. [PMID: 38137442 PMCID: PMC10740940 DOI: 10.3390/biomedicines11123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex and multifactorial disease and a leading cause of irreversible blindness in the elderly population. The anti-vascular endothelial growth factor (anti-VEGF) therapy has revolutionized the management and prognosis of neovascular AMD (nAMD) and is currently the standard of care for this disease. However, patients are required to receive repeated injections, imposing substantial social and economic burdens. The implementation of gene therapy methods to achieve sustained delivery of various therapeutic proteins holds the promise of a single treatment that could ameliorate the treatment challenges associated with chronic intravitreal therapy, and potentially improve visual outcomes. Several early-phase trials are currently underway, evaluating the safety and efficacy of gene therapy for nAMD; however, areas of controversy persist, including the therapeutic target, route of administration, and potential safety issues. In this review, we assess the evolution of gene therapy for nAMD and summarize several preclinical and early-stage clinical trials, exploring challenges and future directions.
Collapse
Affiliation(s)
- Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Giacomo Toneatto
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
11
|
Fan X, Jiang K, Geng F, Lu W, Wei G. Ocular therapies with biomacromolecules: From local injection to eyedrop and emerging noninvasive delivery strategies. Adv Drug Deliv Rev 2023; 197:114864. [PMID: 37156266 DOI: 10.1016/j.addr.2023.114864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The last two decades have witnessed a continuously increasing number of biomacromolecules approved for the treatment of ocular diseases. The eye possesses multiple protective mechanisms to resist the invasion of exogenous substances, but meanwhile these physiological defense systems also act as strong barriers, impeding absorption of most biomacromolecules into the eye. As a result, local injections play predominant roles for posterior ocular delivery of biomacromolecules in clinical practice. To achieve safe and convenient application of biomacromolecules, alternative strategies to realize noninvasive intraocular delivery are necessary. Various nanocarriers, novel penetration enhancers and physical strategies have been explored to facilitate delivery of biomacromolecules to both anterior and posterior ocular segments but still suffered difficulties in clinical translation. This review compares the anatomical and physiological characteristics of the eyes from those frequently adopted experimental species and profiles the well-established animal models of ocular diseases. We also summarize the ophthalmic biomacromolecules launched on the market and put emphasis on emerging noninvasive intraocular delivery strategies of peptides, proteins and genes.
Collapse
Affiliation(s)
- Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200030, P.R. China
| | - Feiyang Geng
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, PR China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, PR China; Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, 201203, PR China.
| |
Collapse
|
12
|
Harmening N, Johnen S, Izsvák Z, Ivics Z, Kropp M, Bascuas T, Walter P, Kreis A, Pajic B, Thumann G. Enhanced Biosafety of the Sleeping Beauty Transposon System by Using mRNA as Source of Transposase to Efficiently and Stably Transfect Retinal Pigment Epithelial Cells. Biomolecules 2023; 13:biom13040658. [PMID: 37189405 DOI: 10.3390/biom13040658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Neovascular age-related macular degeneration (nvAMD) is characterized by choroidal neovascularization (CNV), which leads to retinal pigment epithelial (RPE) cell and photoreceptor degeneration and blindness if untreated. Since blood vessel growth is mediated by endothelial cell growth factors, including vascular endothelial growth factor (VEGF), treatment consists of repeated, often monthly, intravitreal injections of anti-angiogenic biopharmaceuticals. Frequent injections are costly and present logistic difficulties; therefore, our laboratories are developing a cell-based gene therapy based on autologous RPE cells transfected ex vivo with the pigment epithelium derived factor (PEDF), which is the most potent natural antagonist of VEGF. Gene delivery and long-term expression of the transgene are enabled by the use of the non-viral Sleeping Beauty (SB100X) transposon system that is introduced into the cells by electroporation. The transposase may have a cytotoxic effect and a low risk of remobilization of the transposon if supplied in the form of DNA. Here, we investigated the use of the SB100X transposase delivered as mRNA and showed that ARPE-19 cells as well as primary human RPE cells were successfully transfected with the Venus or the PEDF gene, followed by stable transgene expression. In human RPE cells, secretion of recombinant PEDF could be detected in cell culture up to one year. Non-viral ex vivo transfection using SB100X-mRNA in combination with electroporation increases the biosafety of our gene therapeutic approach to treat nvAMD while ensuring high transfection efficiency and long-term transgene expression in RPE cells.
Collapse
Affiliation(s)
- Nina Harmening
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Zoltan Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Thais Bascuas
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Andreas Kreis
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Bojan Pajic
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Eye Clinic ORASIS, Swiss Eye Research Foundation, 5734 Reinach, Switzerland
- Faculty of Sciences, Department of Physics, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
13
|
Ewaisha R, Anderson KS. Immunogenicity of CRISPR therapeutics-Critical considerations for clinical translation. Front Bioeng Biotechnol 2023; 11:1138596. [PMID: 36873375 PMCID: PMC9978118 DOI: 10.3389/fbioe.2023.1138596] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
CRISPR offers new hope for many patients and promises to transform the way we think of future therapies. Ensuring safety of CRISPR therapeutics is a top priority for clinical translation and specific recommendations have been recently released by the FDA. Rapid progress in the preclinical and clinical development of CRISPR therapeutics leverages years of experience with gene therapy successes and failures. Adverse events due to immunogenicity have been a major setback that has impacted the field of gene therapy. As several in vivo CRISPR clinical trials make progress, the challenge of immunogenicity remains a significant roadblock to the clinical availability and utility of CRISPR therapeutics. In this review, we examine what is currently known about the immunogenicity of CRISPR therapeutics and discuss several considerations to mitigate immunogenicity for the design of safe and clinically translatable CRISPR therapeutics.
Collapse
Affiliation(s)
- Radwa Ewaisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Microbiology and Immunology, School of Pharmacy, Newgiza University, Newgiza, Egypt
| | - Karen S. Anderson
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
14
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
15
|
Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug delivery to the retina: current status and implications for gene therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1477-1507. [PMID: 36107200 PMCID: PMC9630211 DOI: 10.1007/s00210-022-02287-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Blindness affects more than 60 million people worldwide. Retinal disorders, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma, are the leading causes of blindness. Finding means to optimize local and sustained delivery of drugs or genes to the eye and retina is one goal to advance the development of new therapeutics. Despite the ease of accessibility of delivering drugs via the ocular surface, the delivery of drugs to the retina is still challenging due to anatomic and physiologic barriers. Designing a suitable delivery platform to overcome these barriers should enhance drug bioavailability and provide a safe, controlled, and sustained release. Current inventions for posterior segment treatments include intravitreal implants and subretinal viral gene delivery that satisfy these criteria. Several other novel drug delivery technologies, including nanoparticles, micelles, dendrimers, microneedles, liposomes, and nanowires, are now being widely studied for posterior segment drug delivery, and extensive research on gene delivery using siRNA, mRNA, or aptamers is also on the rise. This review discusses the current state of retinal drug/gene delivery and highlights future therapeutic opportunities.
Collapse
Affiliation(s)
- Mohamed Tawfik
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Fang Chen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
16
|
Ren D, Fisson S, Dalkara D, Ail D. Immune Responses to Gene Editing by Viral and Non-Viral Delivery Vectors Used in Retinal Gene Therapy. Pharmaceutics 2022; 14:1973. [PMID: 36145721 PMCID: PMC9502120 DOI: 10.3390/pharmaceutics14091973] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a leading cause of blindness in industrialized countries, and gene therapy is quickly becoming a viable option to treat this group of diseases. Gene replacement using a viral vector has been successfully applied and advanced to commercial use for a rare group of diseases. This, and the advances in gene editing, are paving the way for the emergence of a new generation of therapies that use CRISPR-Cas9 to edit mutated genes in situ. These CRISPR-based agents can be delivered to the retina as transgenes in a viral vector, unpackaged transgenes or as proteins or messenger RNA using non-viral vectors. Although the eye is considered to be an immune-privileged organ, studies in animals, as well as evidence from clinics, have concluded that ocular gene therapies elicit an immune response that can under certain circumstances result in inflammation. In this review, we evaluate studies that have reported on pre-existing immunity, and discuss both innate and adaptive immune responses with a specific focus on immune responses to gene editing, both with non-viral and viral delivery in the ocular space. Lastly, we discuss approaches to prevent and manage the immune responses to ensure safe and efficient gene editing in the retina.
Collapse
Affiliation(s)
- Duohao Ren
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Sylvain Fisson
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
| | - Divya Ail
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
- Institut de la Vision, INSERM UMR S968, 17 rue Moreau, 75012 Paris, France
| |
Collapse
|
17
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
18
|
Ghoraba HH, Akhavanrezayat A, Karaca I, Yavari N, Lajevardi S, Hwang J, Regenold J, Matsumiya W, Pham B, Zaidi M, Mobasserian A, DongChau AT, Or C, Yasar C, Mishra K, Do D, Nguyen QD. Ocular Gene Therapy: A Literature Review with Special Focus on Immune and Inflammatory Responses. Clin Ophthalmol 2022; 16:1753-1771. [PMID: 35685379 PMCID: PMC9173725 DOI: 10.2147/opth.s364200] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hashem H Ghoraba
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Amir Akhavanrezayat
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Irmak Karaca
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Negin Yavari
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Sherin Lajevardi
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Jaclyn Hwang
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Jonathan Regenold
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Wataru Matsumiya
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Brandon Pham
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Moosa Zaidi
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Azadeh Mobasserian
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Anthony Toan DongChau
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Christopher Or
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Cigdem Yasar
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Kapil Mishra
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Diana Do
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Quan Dong Nguyen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Correspondence: Quan Dong Nguyen, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, USA, Tel +1 6507257245, Fax +1 6507368232, Email
| |
Collapse
|
19
|
Nikforouz B, Allafchian A, Jalali SAH, Shakeripour H, Mohammadinezhad R. Quince seed mucilage coated iron oxide nanoparticles for plasmid DNA delivery. NANOTECHNOLOGY 2021; 33:075102. [PMID: 34727534 DOI: 10.1088/1361-6528/ac3576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the potential of iron oxide nanoparticles (Fe3O4) and quince seed mucilage as combined genetic carriers to deliver plasmid DNA (pDNA) through the gastrointestinal system. The samples are characterized by x-ray diffraction (XRD), zeta potential, dynamic light scattering, FT-IR spectroscopy, field emission scanning electron microscopy and vibrating sample magnetometry. The stability of pDNA loading on the nanocarriers and their release pattern are evaluated in simulated gastrointestinal environments by electrophoresis. The XRD patterns reveal that the nanocarriers could preserve their structure during various synthesis levels. The saturation magnetization (Ms) of the Fe3O4cores are 56.48 emu g-1without any magnetic hysteresis. Not only does the loaded pDNA contents experience a remarkable stability in the simulated gastric environment, but also, they could be released up to 99% when exposed to an alkaline environment similar to the intestinal fluid of fish. The results indicate that the synthesized nanoparticles could be employed as efficient low-cost pDNA carriers.
Collapse
Affiliation(s)
- Bahar Nikforouz
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Seyed Amir Hossein Jalali
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hamideh Shakeripour
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rezvan Mohammadinezhad
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
20
|
Liu J, Wang F, Qin Y, Feng X. Advances in the Genetically Engineered KillerRed for Photodynamic Therapy Applications. Int J Mol Sci 2021; 22:ijms221810130. [PMID: 34576293 PMCID: PMC8468639 DOI: 10.3390/ijms221810130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinical treatment for cancer or non-neoplastic diseases, and the photosensitizers (PSs) are crucial for PDT efficiency. The commonly used chemical PSs, generally produce ROS through the type II reaction that highly relies on the local oxygen concentration. However, the hypoxic tumor microenvironment and unavoidable dark toxicity of PSs greatly restrain the wide application of PDT. The genetically encoded PSs, unlike chemical PSs, can be modified using genetic engineering techniques and targeted to unique cellular compartments, even within a single cell. KillerRed, as a dimeric red fluorescent protein, can be activated by visible light or upconversion luminescence to execute the Type I reaction of PDT, which does not need too much oxygen and surely attract the researchers’ focus. In particular, nanotechnology provides new opportunities for various modifications of KillerRed and versatile delivery strategies. This review more comprehensively outlines the applications of KillerRed, highlighting the fascinating features of KillerRed genes and proteins in the photodynamic systems. Furthermore, the advantages and defects of KillerRed are also discussed, either alone or in combination with other therapies. These overviews may facilitate understanding KillerRed progress in PDT and suggest some emerging potentials to circumvent challenges to improve the efficiency and accuracy of PDT.
Collapse
|
21
|
Wang Y, Hu LF, Zhou TJ, Qi LY, Xing L, Lee J, Wang FZ, Oh YK, Jiang HL. Gene therapy strategies for rare monogenic disorders with nuclear or mitochondrial gene mutations. Biomaterials 2021; 277:121108. [PMID: 34478929 DOI: 10.1016/j.biomaterials.2021.121108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Rare monogenic disorders are a group of single-gene-mutated diseases that have a low incidence rate (less than 0.5‰) and eventually lead to patient disability and even death. Due to the relatively low number of people affected, these diseases typically fail to attract a great deal of commercial investment and research interest, and the affected patients thus have unmet medical needs. Advances in genomics biology, gene editing, and gene delivery can now offer potentially effective options for treating rare monogenic diseases. Herein, we review the application of gene therapy strategies (traditional gene therapy and gene editing) against various rare monogenic diseases with nuclear or mitochondrial gene mutations, including eye, central nervous system, pulmonary, systemic, and blood cell diseases. We summarize their pathologic features, address the barriers to gene delivery for these diseases, discuss available therapies in the clinic and in clinical trials, and sum up in-development gene delivery systems for various rare monogenic disorders. Finally, we elaborate the possible directions and outlook of gene therapy for rare monogenic disorders.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Yu Qi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Feng-Zhen Wang
- Department of Clinical Pharmacy, The First Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China; Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
22
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
23
|
Hyaluronic acid in ocular drug delivery. Carbohydr Polym 2021; 264:118006. [DOI: 10.1016/j.carbpol.2021.118006] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
|
24
|
Neuroprotective Effect of siRNA Entrapped in Hyaluronic Acid-Coated Lipoplexes by Intravitreal Administration. Pharmaceutics 2021; 13:pharmaceutics13060845. [PMID: 34200993 PMCID: PMC8226864 DOI: 10.3390/pharmaceutics13060845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022] Open
Abstract
Since the possibility of silencing specific genes linked to retinal degeneration has become a reality with the use of small interfering RNAs (siRNAs), this technology has been widely studied to promote the treatment of several ocular diseases. Despite recent advances, the clinical success of gene silencing in the retina is significantly reduced by inherent anatomical and physiological ocular barriers, and new strategies are required to achieve intraocular therapeutic effectiveness. In this study, we developed lipoplexes, prepared with sodium alginate as an adjuvant and strategically coated with hyaluronic acid (HA-LIP), and investigated the potential neuroprotective effect of these systems in a retinal light damage model. Successful functionalization of the lipoplexes with hyaluronic acid was indicated in the dynamic light scattering and transmission electron microscopy results. Moreover, these HA-LIP nanoparticles were able to protect and deliver siRNA molecules targeting caspase-3 into the retina. After retinal degeneration induced by high light exposure, in vitro and in vivo quantitative reverse transcription-PCR (RT-qPCR) assays demonstrated significant inhibition of caspase-3 expression by HA-LIP. Furthermore, these systems were shown to be safe, as no evidence of retinal toxicity was observed by electroretinography, clinical evaluation or histology.
Collapse
|
25
|
Araújo RS, Bitoque DB, Silva GA. Development of strategies to modulate gene expression of angiogenesis-related molecules in the retina. Gene 2021; 791:145724. [PMID: 34010703 DOI: 10.1016/j.gene.2021.145724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
Intravitreal anti-vascular endothelial growth factor agents are the gold standard treatment of ocular neovascular diseases. However, their short-term efficacy implies frequent intravitreal injections. Gene therapy has the ability to provide longer duration of the therapeutic effect. We have previously described the effectiveness of the self-replicating episomal vector, pEPito, in long-term gene expression in mouse retina. In this study, we evaluated different constructs to overexpress pigment epithelium-derived factor (PEDF), an angiogenesis inhibitor, and simultaneously, to silence placental growth factor (PlGF), a key player in neovascularization. We employed the human cytomegalovirus promoter to drive the expression of PEDF and PlGF shRNA, in conjunction with cis-acting ribozymes, using pEPito as expressing vector. Our results demonstrated that the non-viral systems were able to efficiently promote a sustained increase of the PEDF: PlGF ratio in the mice retina, decreased in pathological conditions. This innovative approach could open avenues for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Rute S Araújo
- iNOVA4Health, CEDOC, NOVA Medical School, Universidade Nova de, Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; Bioengineering - Cell Therapies and Regenerative Medicine PhD Program, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Diogo B Bitoque
- iNOVA4Health, CEDOC, NOVA Medical School, Universidade Nova de, Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | - Gabriela A Silva
- iNOVA4Health, CEDOC, NOVA Medical School, Universidade Nova de, Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
| |
Collapse
|
26
|
Michalakis S, Gerhardt M, Rudolph G, Priglinger S, Priglinger C. Gene Therapy for Inherited Retinal Disorders: Update on Clinical Trials. Klin Monbl Augenheilkd 2021; 238:272-281. [PMID: 33784790 DOI: 10.1055/a-1384-0818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Within the last decade, continuous advances in molecular biological techniques have made it possible to develop causative therapies for inherited retinal disorders (IRDs). Some of the most promising options are gene-specific approaches using adeno-associated virus-based vectors to express a healthy copy of the disease-causing gene in affected cells of a patient. This concept of gene supplementation therapy is already advocated for the treatment of retinal dystrophy in RPE65-linked Leber's congenital amaurosis (LCA) patients. While the concept of gene supplementation therapy can be applied to treat autosomal recessive and X-linked forms of IRD, it is not sufficient for autosomal dominant IRDs, where the pathogenic gene product needs to be removed. Therefore, for autosomal dominant IRDs, alternative approaches that utilize CRISPR/Cas9 or antisense oligonucleotides to edit or deplete the mutant allele or gene product are needed. In recent years, research retinal gene therapy has intensified and promising approaches for various forms of IRD are currently in preclinical and clinical development. This review article provides an overview of current clinical trials for the treatment of IRDs.
Collapse
Affiliation(s)
| | - Maximilian Gerhardt
- Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| | - Günter Rudolph
- Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| | | | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, München, Germany
| |
Collapse
|
27
|
Zou M, Du Y, Liu R, Zheng Z, Xu J. Nanocarrier-delivered small interfering RNA for chemoresistant ovarian cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1648. [PMID: 33682310 DOI: 10.1002/wrna.1648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related death in women in the United States. Because success in early screening is limited, and most patients with advanced disease develop resistance to multiple treatment modalities, the overall prognosis of ovarian cancer is poor. Despite the revolutionary role of surgery and chemotherapy in curing ovarian cancer, recurrence remains a major challenge in treatment. Thus, improving our understanding of the pathogenesis of ovarian cancer is essential for developing more effective treatments. In this review, we analyze the underlying molecular mechanisms leading to chemotherapy resistance. We discuss the clinical benefits and potential challenges of using nanocarrier-delivered small interfering RNA to treat chemotherapy-resistant ovarian cancer. We aim to elicit collaborative studies on nanocarrier-delivered small interfering RNA to improve the long-term survival rate and quality of life of patients with ovarian cancer. This article is categorized under: RNA Methods > RNA Nanotechnology Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Mingyuan Zou
- Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruizhen Liu
- The First People's Hospital of Wu'an, Wu'an, Hebei, China
| | - Zeliang Zheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Pishavar E, Luo H, Bolander J, Atala A, Ramakrishna S. Nanocarriers, Progenitor Cells, Combinational Approaches, and New Insights on the Retinal Therapy. Int J Mol Sci 2021; 22:1776. [PMID: 33579019 PMCID: PMC7916765 DOI: 10.3390/ijms22041776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Progenitor cells derived from the retinal pigment epithelium (RPECs) have shown promise as therapeutic approaches to degenerative retinal disorders including diabetic retinopathy, age-related macular degeneration and Stargardt disease. However, the degeneration of Bruch's membrane (BM), the natural substrate for the RPE, has been identified as one of the major limitations for utilizing RPECs. This degeneration leads to decreased support, survival and integration of the transplanted RPECs. It has been proposed that the generation of organized structures of nanofibers, in an attempt to mimic the natural retinal extracellular matrix (ECM) and its unique characteristics, could be utilized to overcome these limitations. Furthermore, nanoparticles could be incorporated to provide a platform for improved drug delivery and sustained release of molecules over several months to years. In addition, the incorporation of tissue-specific genes and stem cells into the nanostructures increased the stability and enhanced transfection efficiency of gene/drug to the posterior segment of the eye. This review discusses available drug delivery systems and combination therapies together with challenges associated with each approach. As the last step, we discuss the application of nanofibrous scaffolds for the implantation of RPE progenitor cells with the aim to enhance cell adhesion and support a functionally polarized RPE monolayer.
Collapse
Affiliation(s)
- Elham Pishavar
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran;
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Johanna Bolander
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Antony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117581, Singapore
| |
Collapse
|
29
|
Koponen S, Kokki E, Kinnunen K, Ylä-Herttuala S. Viral-Vector-Delivered Anti-Angiogenic Therapies to the Eye. Pharmaceutics 2021; 13:pharmaceutics13020219. [PMID: 33562561 PMCID: PMC7915489 DOI: 10.3390/pharmaceutics13020219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Pathological vessel growth harms vision and may finally lead to vision loss. Anti-angiogenic gene therapy with viral vectors for ocular neovascularization has shown great promise in preclinical studies. Most of the studies have been conducted with different adeno-associated serotype vectors. In addition, adeno- and lentivirus vectors have been used. Therapy has been targeted towards blocking vascular endothelial growth factors or other pro-angiogenic factors. Clinical trials of intraocular gene therapy for neovascularization have shown the treatment to be safe without severe adverse events or systemic effects. Nevertheless, clinical studies have not proceeded further than Phase 2 trials.
Collapse
Affiliation(s)
- Sanna Koponen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (S.K.); (E.K.)
| | - Emmi Kokki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (S.K.); (E.K.)
| | - Kati Kinnunen
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland;
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (S.K.); (E.K.)
- Gene Therapy Unit, Kuopio University Hospital, 70211 Kuopio, Finland
- Correspondence: ; Tel./Fax: +358-403-552-075
| |
Collapse
|
30
|
Naik S, Shreya AB, Raychaudhuri R, Pandey A, Lewis SA, Hazarika M, Bhandary SV, Rao BSS, Mutalik S. Small interfering RNAs (siRNAs) based gene silencing strategies for the treatment of glaucoma: Recent advancements and future perspectives. Life Sci 2020; 264:118712. [PMID: 33159955 DOI: 10.1016/j.lfs.2020.118712] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 01/22/2023]
Abstract
RNA-interference-based mechanisms, especially the use of small interfering RNAs (siRNAs), have been under investigation for the treatment of several ailments and have shown promising results for ocular diseases including glaucoma. The eye, being a confined compartment, serves as a good target for the delivery of siRNAs. This review focuses on siRNA-based strategies for gene silencing to treat glaucoma. We have discussed the ocular structures and barriers to gene therapy (tear film, corneal, conjunctival, vitreous, and blood ocular barriers), methods of administration for ocular gene delivery (topical instillation, periocular, intracameral, intravitreal, subretinal, and suprachoroidal routes) and various viral and non-viral vectors in siRNA-based therapy for glaucoma. The components and mechanism of siRNA-based gene silencing have been mentioned briefly followed by the basic strategies and challenges faced during siRNA therapeutics development. We have emphasized different therapeutic targets for glaucoma which have been under research by scientists and the current siRNA-based drugs used in glaucoma treatment. We also mention briefly strategies for siRNA-based treatment after glaucoma surgery.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla Basavaraj Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Manali Hazarika
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Director - Research, Directorte of Research, Manipal Academy of Higher Education, Manipal and School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
31
|
Yi Z, Luo X, Zhao L. Research Advances in Chitosan Oligosaccharides: From Multiple Biological Activities to Clinical Applications. Curr Med Chem 2020; 27:5037-5055. [PMID: 31309881 DOI: 10.2174/0929867326666190712180147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/12/2019] [Accepted: 06/16/2019] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COS), hydrolysed products of chitosan, are low-molecular weight polymers with a positive charge and good biocompatibility. COS have recently been reported to possess various biological activities, including hypoglycaemic, hypolipidaemic, antioxidantantioxidant, immune regulation, anti-inflammatory, antitumour, antibacterial, and tissue engineering activities, exhibiting extensive application prospects. Currently, the biological processes and mechanisms of COS are attractive topics of study, ranging from the genetic, molecular and protein levels. This article reviews the recent discoveries about COS, especially in metabolic regulation, immune function and tissue repair, providing important insights into their multiple biological activities, medical benefits, and therapeutic mechanisms.
Collapse
Affiliation(s)
- Zhen Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Luo
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
32
|
Kesavan K, Mohan P, Gautam N, Sheffield VC. Topical Ocular Delivery of Nanocarriers: A Feasible Choice for Glaucoma Management. Curr Pharm Des 2020; 26:5518-5532. [PMID: 32938345 DOI: 10.2174/1381612826666200916145609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Topical ocular delivery is an acceptable and familiar approach for the treatment of common ocular diseases. Novel strategies for the treatment of inherited eye diseases include new pharmacologic agents, gene therapy and genome editing, which lead to the expansion of new management options for eye disorders. The topical ocular delivery of nanocarriers is a technique, which has the potential to facilitate novel treatments. Nanocarrier- based strategies have proven effective for site-targeted delivery. This review summarizes recent development in the area of topical delivery of different nanocarriers (Polymer, Vesicular and dispersed systems) for the management of glaucoma, a group of ocular disorders characterized by progressive and accelerated degeneration of the axons of retinal ganglion cells, which make up the optic nerve. Unique cellular targets for glaucoma treatment, primarily the trabecular meshwork of the anterior segment of the eye, make glaucoma facilitated by the use of nanocarriers an ideal disorder for novel molecular therapies.
Collapse
Affiliation(s)
- Karthikeyan Kesavan
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G. 495009, India
| | - Parasuraman Mohan
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G. 495009, India
| | - Nivedita Gautam
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G. 495009, India
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics and Genomics, Carver College of Medicine, University of Iowa, IA, 52242, United States
| |
Collapse
|
33
|
Reddy OL, Savani BN, Stroncek DF, Panch SR. Advances in gene therapy for hematologic disease and considerations for transfusion medicine. Semin Hematol 2020; 57:83-91. [PMID: 32892847 DOI: 10.1053/j.seminhematol.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/26/2022]
Abstract
As the list of regulatory agency-approved gene therapies grows, these products are now in the therapeutic spotlight with the potential to cure or dramatically alleviate several benign and malignant hematologic diseases. The mechanisms for gene manipulation are diverse, and include the use of a variety of cell sources and both viral vector- and nuclease-based targeted approaches. Gene editing has also reached the realm of blood component therapy and testing, where cultured products are being developed to improve transfusion support for individuals with rare blood types. In this review, we summarize the milestones in the development of gene therapies for hematologic diseases, mechanisms for gene manipulation, and implications for transfusion medicine and blood centers as these therapies continue to advance and grow.
Collapse
Affiliation(s)
- Opal L Reddy
- Center for Cellular Engineering, National institutes of Health, Clinical Center, Bethesda, Maryland
| | - Bipin N Savani
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - David F Stroncek
- Center for Cellular Engineering, National institutes of Health, Clinical Center, Bethesda, Maryland
| | - Sandhya R Panch
- Center for Cellular Engineering, National institutes of Health, Clinical Center, Bethesda, Maryland.
| |
Collapse
|
34
|
Paris JL, Coelho F, Teixeira A, Diéguez L, Silva BFB, Abalde-Cela S. In Vitro Evaluation of Lipopolyplexes for Gene Transfection: Comparing 2D, 3D and Microdroplet-Enabled Cell Culture. Molecules 2020; 25:molecules25143277. [PMID: 32708478 PMCID: PMC7397275 DOI: 10.3390/molecules25143277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Complexes combining nucleic acids with lipids and polymers (lipopolyplexes) show great promise for gene therapy since they enable compositional, physical and functional versatility to be optimized for therapeutic efficiency. When developing lipopolyplexes for gene delivery, one of the first evaluations performed is an in vitro transfection efficiency experiment. Many different in vitro models can be used, and the effect of the model on the experiment outcome has not been thoroughly studied. The objective of this work was to compare the insights obtained from three different in vitro models, as well as the potential limitations associated with each of them. We have prepared a series of lipopolyplex formulations with three different cationic polymers (poly-l-lysine, bioreducible poly-l-lysine and polyethyleneimine), and assessed their in vitro biological performance in 2D monolayer cell culture, 3D spheroid culture and microdroplet-based single-cell culture. Lipopolyplexes from different polymers presented varying degrees of transfection efficiency in all models. The best-performing formulation in 2D culture was the polyethyleneimine lipopolyplex, while lipoplexes prepared with bioreducible poly-l-lysine were the only ones achieving any transfection in microdroplet-enabled cell culture. None of the prepared formulations achieved significant gene transfection in 3D culture. All of the prepared formulations were well tolerated by cells in 2D culture, while at least one formulation (poly-l-lysine polyplex) delayed 3D spheroid growth. These results highlight the need for selecting the appropriate in vitro model depending on the intended application.
Collapse
|
35
|
Paris JL, Vallet-Regí M. Mesoporous Silica Nanoparticles for Co-Delivery of Drugs and Nucleic Acids in Oncology: A Review. Pharmaceutics 2020; 12:E526. [PMID: 32521800 PMCID: PMC7356816 DOI: 10.3390/pharmaceutics12060526] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Mesoporous silica nanoparticles have attracted much attention in recent years as drug and gene delivery systems for biomedical applications. Among their most beneficial features for biomedicine, we can highlight their biocompatibility and their outstanding textural properties, which provide a great loading capacity for many types of cargos. In the context of cancer nanomedicine, combination therapy and gene transfection/silencing have recently been highlighted as two of its most promising fields. In this review, we aim to provide an overview of the different small molecule drug-nucleic acid co-delivery combinations that have been developed using mesoporous silica nanoparticles as carriers. By carefully selecting the chemotherapeutic drug and nucleic acid cargos to be co-delivered by mesoporous silica nanoparticles, different therapeutic goals can be achieved by overcoming resistance mechanisms, combining different cytotoxic mechanisms, or providing an additional antiangiogenic effect. The examples here presented highlight the great promise of this type of strategies for the development of future therapeutics.
Collapse
Affiliation(s)
- Juan L Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Civil, 29009 Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas (Unidad Docente de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
- Centro de Investigación Biomédicaen Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
36
|
Jiang J, Zhang X, Tang Y, Li S, Chen J. Progress on ocular siRNA gene-silencing therapy and drug delivery systems. Fundam Clin Pharmacol 2020; 35:4-24. [PMID: 32298491 DOI: 10.1111/fcp.12561] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) and glaucoma are global ocular diseases with high blindness rate. RNA interference (RNAi) is being increasingly used in the treatment of these disorders with siRNA drugs, bevasiranib, AGN211745 and PF-04523655 for AMD, and SYL040012 and QPI-1007 for glaucoma. Administration routes and vectors of gene drugs affect their therapeutic effect. Compared with the non-viral vectors, viral vectors have limited payload capacity and potential immunogenicity. This review summarizes the progress of the ocular siRNA gene-silencing therapy by focusing on siRNA drugs for AMD and glaucoma already used in clinical research, the main routes of drug delivery and the non-viral vectors for siRNA drugs.
Collapse
Affiliation(s)
- Jinjin Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.1, DongQing Road, Guiyang, 550014, People's Republic of China.,Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Xinru Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.1, DongQing Road, Guiyang, 550014, People's Republic of China.,Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Yue Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.1, DongQing Road, Guiyang, 550014, People's Republic of China.,Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Shuhan Li
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Jing Chen
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing, 211198, People's Republic of China
| |
Collapse
|
37
|
Maurya S, Jayandharan GR. Exosome-associated SUMOylation mutant AAV demonstrates improved ocular gene transfer efficiency in vivo. Virus Res 2020; 283:197966. [PMID: 32302639 PMCID: PMC7212041 DOI: 10.1016/j.virusres.2020.197966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/24/2020] [Accepted: 04/08/2020] [Indexed: 01/08/2023]
Abstract
Exosome associated Adeno-associated virus (AAV) vectors have emerged as a promising tool in gene therapy. Recently, we elucidated the role of SUMOylation post-translational modification in AAV2 capsid and demonstrated that capsid modifications at SUMOylation sites, enhance vector transduction. The present study was designed to study the combinatorial effect of exosome delivery of a SUMOylation site modified AAV2, during ocular gene therapy. In the first set of experiments, we investigated the in vitro gene transfer potential of exo-some-associated SUMOylation mutant AAV2 (Exo-K105Q-EGFP) in human retinal pigmental epithelial (ARPE19) cells. Our data showed that, Exo-K105Q vectors had a significantly higher transduction potential in ARPE19 cells when compared to exosomes derived from wildtype AAV2 (Exo-AAV2-EGFP) vector packaging. Subsequently, an intravitreal administration of exosome associated mutant AAV2 vectors in C57BL6/J mice, demonstrated a significant increase reporter gene (EFGP) expression 4 weeks after gene transfer. Further immunostaining, revealed that these exosome-based vectors also had a better permeation across the retinal layers. These data highlight the translational potential of exosome associated SUMOylation mutant AAV for ocular gene therapy.
Collapse
Affiliation(s)
- Shubham Maurya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.
| |
Collapse
|
38
|
Alvarez-Rivera F, Rey-Rico A, Venkatesan JK, Diaz-Gomez L, Cucchiarini M, Concheiro A, Alvarez-Lorenzo C. Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene Therapy. Pharmaceutics 2020; 12:pharmaceutics12040335. [PMID: 32283694 PMCID: PMC7238179 DOI: 10.3390/pharmaceutics12040335] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
As an alternative to eye drops and ocular injections for gene therapy, the aim of this work was to design for the first time hydrogel contact lenses that can act as platforms for the controlled delivery of viral vectors (recombinant adeno-associated virus, rAAV) to the eye in an effective way with improved patient compliance. Hydrogels of hydroxyethyl methacrylate (HEMA) with aminopropyl methacrylamide (APMA) (H1: 40, and H2: 80 mM) or without (Hc: 0 mM) were synthesized, sterilized by steam heat (121 °C, 20 min), and then tested for gene therapy using rAAV vectors to deliver the genes to the cornea. The hydrogels showed adequate light transparency, oxygen permeability, and swelling for use as contact lenses. Loading of viral vectors (rAAV-lacZ, rAAV-RFP, or rAAV-hIGF-I) was carried out at 4 °C to maintain viral vector titer. Release in culture medium was monitored by fluorescence with Cy3-rAAV-lacZ and AAV Titration ELISA. Transduction efficacy was tested through reporter genes lacZ and RFP in human bone marrow derived mesenchymal stem cells (hMSCs). lacZ was detected with X-Gal staining and quantified with Beta-Glo®, and RFP was monitored by fluorescence. The ability of rAAV-hIGF-I-loaded hydrogels to trigger cell proliferation in hMSCs was evaluated by immunohistochemistry. Finally, the ability of rAAV-lacZ-loaded hydrogels to transduce bovine cornea was confirmed through detection with X-Gal staining of β-galactosidase expressed within the tissue.
Collapse
Affiliation(s)
- Fernando Alvarez-Rivera
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain;
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany; (J.K.V.); (M.C.)
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany; (J.K.V.); (M.C.)
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
- Correspondence: ; Tel.: +34-881815239
| |
Collapse
|
39
|
Vanderwall AG, Milligan ED. Cytokines in Pain: Harnessing Endogenous Anti-Inflammatory Signaling for Improved Pain Management. Front Immunol 2019; 10:3009. [PMID: 31921220 PMCID: PMC6935995 DOI: 10.3389/fimmu.2019.03009] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Current pain therapeutics offer inadequate relief to patients with chronic pain. A growing literature supports that pro-inflammatory cytokine signaling between immune, glial, and neural cells is integral to the development of pathological pain. Modulation of these communications may hold the key to improved pain management. In this review we first offer an overview of the relationships between pro-inflammatory cytokine and chemokine signaling and pathological pain, with a focus on the actions of cytokines and chemokines in communication between glia (astrocytes and microglia), immune cells (macrophages and T cells), and neurons. These interactions will be discussed in relation to both peripheral and central nervous system locations. Several novel non-neuronal drug targets for controlling pain are emerging as highly promising, including non-viral IL-10 gene therapy, which offer the potential for substantial pain relief through localized modulation of targeted cytokine pathways. Preclinical investigation of the mechanisms underlying the success of IL-10 gene therapy revealed the unexpected discovery of the powerful anti-nociceptive anti-inflammatory properties of D-mannose, an adjuvant in the non-viral gene therapeutic formulation. This review will include gene therapeutic approaches showing the most promise in controlling pro-inflammatory signaling via increased expression of anti-inflammatory cytokines like interleukin-10 (IL-10) or IL-4, or by directly limiting the bioavailability of specific pro-inflammatory cytokines, as with tumor necrosis factor (TNF) by the TNF soluble receptor (TNFSR). Approaches that increase endogenous anti-inflammatory signaling may offer additional opportunities for pain therapeutic development in patients not candidates for gene therapy. Promising novel avenues discussed here include the disruption of lymphocyte function-associated antigen (LFA-1) activity, antagonism at the cannabinoid 2 receptor (CB2R), and toll-like receptor 4 (TLR4) antagonism. Given the partial efficacy of current drugs, new strategies to manipulate neuroimmune and cytokine interactions hold considerable promise.
Collapse
Affiliation(s)
- Arden G. Vanderwall
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Department of Anesthesiology and Critical Care, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Erin D. Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
40
|
Oliveira AV, Sarmento B. Establishment of a multilayered 3D cellular model of the retinal-blood barrier. Int J Pharm 2019; 572:118811. [PMID: 31678524 DOI: 10.1016/j.ijpharm.2019.118811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
Retinal disorders are leading causes of blindness. Still, treatment strategies are limited and the challenging anatomical barriers of the eye limit the evaluation and development of new therapeutics. Among these layers of barriers is the blood-retinal barrier, which separates the retina from the choroid by the Bruch's membrane. This work aimed to establish a 3D cellular model that recapitulates barrier properties of the BRB and diffusion through the vitreous, the main barriers encountered upon intravitreal injection. Several parameters were evaluated namely co-culture time of ARPE-19 and HUVECs and different biomaterial compositions of hydrogels to better mimic the human vitreous. The developed vitreous mimic has viscoelastic properties similar to human vitreous. Co-culture of human retinal and endothelial cells showed increased transepithelial resistance with longer co-culture times concomitant with reduced permeability to FITC-dextran 40 kDa. The proposed models lay the foundation of a platform for faster assessment of a large number of samples and without the use of animals.
Collapse
Affiliation(s)
- Ana V Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
41
|
Mishra B, Wilson DR, Sripathi SR, Suprenant MP, Rui Y, Wahlin KJ, Berlinicke CA, Green JJ, Zack DJ. A combinatorial library of biodegradable polyesters enables non-viral gene delivery to post-mitotic human stem cell-derived polarized RPE monolayers. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 6:273-285. [PMID: 33732871 PMCID: PMC7962803 DOI: 10.1007/s40883-019-00118-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
Safe and effective delivery of DNA to post-mitotic cells, especially highly differentiated cells, remains a challenge despite significant progress in the development of gene delivery tools. Biodegradable polymeric nanoparticles (NPs) offer an array of advantages for gene delivery over viral vectors due to improved safety, carrying capacity, ease of manufacture, and cell-type specificity. Here we demonstrate the use of a high-throughput screening (HTS) platform to synthesize and screen a library of 148 biodegradable polymeric nanoparticles, successfully identifying structures that enable efficient transfection of human pluripotent stem cell differentiated human retinal pigment epithelial (RPE) cells with minimal toxicity. These NPs can deliver plasmid DNA (pDNA) to RPE monolayers more efficiently than leading commercially available transfection reagents. Novel synthetic polymers are described that enable high efficacy non-viral gene delivery to hard-to-transfect polarized human RPE monolayers, enabling gene loss- and gain-of-function studies of cell signaling, developmental, and disease-related pathways. One new synthetic polymer in particular, 3,3'-iminobis(N,N-dimethylpropylamine)-end terminated poly(1,5-pentanediol diacrylate-co-3 amino-1-propanol) (5-3-J12), was found to form self-assembled nanoparticles when mixed with plasmid DNA that transfect a majority of these human post-mitotic cells with minimal cytotoxicity. The platform described here can be utilized as an enabling technology for gene transfer to human primary and stem cell-derived cells, which are often fragile and resistant to conventional gene transfer approaches.
Collapse
Affiliation(s)
- Bibhudatta Mishra
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - David R. Wilson
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231, United States
- Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, MD 21231, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21231, United States
| | - Srinivas R. Sripathi
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Mark P. Suprenant
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231, United States
- Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, MD 21231, United States
| | - Yuan Rui
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231, United States
- Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, MD 21231, United States
| | - Karl J. Wahlin
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Cynthia A. Berlinicke
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Jordan J. Green
- Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
- Biomedical Engineering, Johns Hopkins University, Baltimore, 21231, United States
- Translational Tissue Engineering Center, Johns Hopkins of Medicine, Baltimore, MD 21231, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21231, United States
- Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
- Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21231, United States
- Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Donald J. Zack
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21231, United States
- Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
- Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
- Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
42
|
Behar-Cohen F. Recent advances in slow and sustained drug release for retina drug delivery. Expert Opin Drug Deliv 2019; 16:679-686. [PMID: 31092046 DOI: 10.1080/17425247.2019.1618829] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Striking recent advance has occurred in the field of medical retina, greatly because intraocular drugs have been developed, enhancing their clinical efficacy while avoiding systemic side-effects. However, the burden of repeated intraocular administration makes limits the optimal efficacy of treatments, prompting the development of new drugs with prolonged half-life or of sustained drug delivery systems. AREAS COVERED In this review, we describe the various drugs and drug delivery systems that have reached the clinical stage and those that are in clinical development and we discuss the limitations to clinical translation. EXPERT OPINION Substantial fundamental work is still required to build guidelines on optimal animal models for ocular pharmacokinetics and safety studies depending on the target disease site and the on the type of therapeutic compounds. The effects of a drug administered as a bolus at high concentration in the vitreous might differ from those resulting from the sustained release of a lower concentration, and no delivery platform can be simply adapted to any drug. For the treatment of retinal diseases, development of therapeutic compounds should integrate from its early conception, the combination of an active drug with a specific drug delivery system, administered by a specific route.
Collapse
Affiliation(s)
- Francine Behar-Cohen
- a Inserm UMR_S 1138, Team 17, Physiopathology of ocular diseases: Therapeutic Innovations at Centre de recherche des Cordeliers, Ophthalmopole at Hôpital Cochin , Paris , France.,b Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers , Université Paris Descartes , Paris , France.,c UMR_S 1138, Centre de Recherche des Cordeliers , Sorbonne University, University of Pierre et Marie Curie , Paris , France.,d Assistance Publique-Hôpitaux de Paris , Hôtel-Dieu de , Paris , France
| |
Collapse
|
43
|
Ocular gene therapies in clinical practice: viral vectors and nonviral alternatives. Drug Discov Today 2019; 24:1685-1693. [PMID: 31173914 DOI: 10.1016/j.drudis.2019.05.038] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/17/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Ocular gene therapy has entered into clinical practice. Although viral vectors are currently the best option to replace and/or correct genes, the optimal method to deliver these treatments to the retinal pigment epithelial (RPE) cells and/or photoreceptor cells remains to be improved to increase transduction efficacy and reduce iatrogenic risks. Beyond viral-mediated gene replacement therapies, nonviral gene delivery approaches offer the promise of sustained fine-tuned expression of secreted therapeutic proteins that can be adapted to the evolving stage of the disease course and can address more common nongenetic retinal diseases, such as age-related macular degeneration (AMD). Here, we review current gene therapy strategies for ocular diseases, with a focus on clinical stage products.
Collapse
|
44
|
Patel S, Ryals RC, Weller KK, Pennesi ME, Sahay G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J Control Release 2019; 303:91-100. [PMID: 30986436 DOI: 10.1016/j.jconrel.2019.04.015] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022]
Abstract
Retinal gene therapy has had unprecedented success in generating treatments that can halt vision loss. However, immunogenic response and long-term toxicity with the use of viral vectors remain a concern. Non-viral vectors are relatively non-immunogenic, scalable platforms that have had limited success with DNA delivery to the eye. Messenger RNA (mRNA) therapeutics has expanded the ability to achieve high gene expression while eliminating unintended genomic integration or the need to cross the restrictive nuclear barrier. Lipid-based nanoparticles (LNPs) remain at the forefront of potent delivery vectors for nucleic acids. Herein, we tested eleven different LNP variants for their ability to deliver mRNA to the back of the eye. LNPs that contained ionizable lipids with low pKa and unsaturated hydrocarbon chains showed the highest amount of reporter gene transfection in the retina. The kinetics of gene expression showed a rapid onset (within 4 h) that persisted for 96 h. The gene delivery was cell-type specific with majority of the expression in the retinal pigmented epithelium (RPE) and limited expression in the Müller glia. LNP-delivered mRNA can be used to treat monogenic retinal degenerative disorders of the RPE. The transient nature of mRNA-based therapeutics makes it desirable for applications that are directed towards retinal reprogramming or genome editing. Overall, non-viral delivery of RNA therapeutics to diverse cell types within the retina can provide transformative new approaches to prevent blindness.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, USA
| | - Renee C Ryals
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kyle K Weller
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
45
|
Wang W, Yu Y, Jiang Y, Qu J, Niu L, Yang J, Li M. Silk fibroin scaffolds loaded with angiogenic genes in adenovirus vectors for tissue regeneration. J Tissue Eng Regen Med 2019; 13:715-728. [PMID: 30770653 DOI: 10.1002/term.2819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/20/2019] [Accepted: 02/13/2019] [Indexed: 12/29/2022]
Abstract
Vascularization remains a critical challenge in dermal tissue regeneration. In this study, a vascular endothelial growth factor (VEGF165) and angiopoietin-1 (Ang-1) dual gene coexpression vector that encoded green fluorescent protein (GFP) was constructed from an arginine-glycine-aspartic acid-modified adenovirus. Silk fibroin (SF) scaffolds loaded with adenovirus vectors were fabricated by freeze-drying method. In vitro, the human endothelial-derived cell line EA.hy926 was infected with adenovirus vectors and then expressed GFP, secreted VEGF165 and Ang-1, and promoted cell proliferation effectively. The VEGF165 and Ang-1 genes loaded in the SF scaffolds significantly promoted the formation of abundant microvascular networks in the chick embryo chorioallantoic membrane. In vivo, angiogenic genes loaded in the scaffolds promoted vascularization and collagen deposition in scaffolds, thus effectively accelerating dermal tissue regeneration in a dorsal full-thickness skin defect wound model in Sprague-Dawley rats. In conclusion, SF scaffolds loaded with arginine-glycine-aspartic acid-modified adenovirus vectors encoding VEGF165 and Ang-1 could stimulate the formation of vascular networks through the effective expression of target genes in vascular endothelial cells, thereby accelerating the regeneration of dermal tissue.
Collapse
Affiliation(s)
- Weiwei Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yanni Yu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yi Jiang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Jing Qu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Longxing Niu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Jicheng Yang
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
46
|
Ludwig PE, Freeman SC, Janot AC. Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa. Int J Retina Vitreous 2019; 5:7. [PMID: 30805203 PMCID: PMC6373096 DOI: 10.1186/s40942-019-0158-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Degenerative retinal disease leads to significant visual morbidity worldwide. Diabetic retinopathy and macular degeneration are leading causes of blindness in the developed world. While current therapies for these diseases slow disease progression, stem cell and gene therapy may also reverse the effects of these, and other, degenerative retinal conditions. Novel therapies being investigated include the use of various types of stem cells in the regeneration of atrophic or damaged retinal tissue, the prolonged administration of neurotrophic factors and/or drug delivery, immunomodulation, as well as the replacement of mutant genes, and immunomodulation through viral vector delivery. This review will update the reader on aspects of stem cell and gene therapy in diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa and other less common inherited retinal dystrophies. These therapies include the use of adeno-associated viral vector-based therapies for treatment of various types of retinitis pigmentosa and dry age-related macular degeneration. Other potential therapies reviewed include the use of mesenchymal stem cells in local immunomodulation, and the use of stem cells in generating structures like three-dimensional retinal sheets for transplantation into degenerative retinas. Finally, aspects of stem cell and gene therapy in diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, and other less common inherited retinal dystrophies will be reviewed.
Collapse
Affiliation(s)
- Parker E Ludwig
- 1Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - S Caleb Freeman
- 1Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - Adam C Janot
- Vitreoretinal Institute, 7698 Goodwood Blvd, Baton Rouge, LA 70806 USA.,3Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
47
|
Dillinger AE, Guter M, Froemel F, Weber GR, Perkumas K, Stamer WD, Ohlmann A, Fuchshofer R, Breunig M. Intracameral Delivery of Layer-by-Layer Coated siRNA Nanoparticles for Glaucoma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803239. [PMID: 30353713 PMCID: PMC6599181 DOI: 10.1002/smll.201803239] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/02/2018] [Indexed: 05/12/2023]
Abstract
Glaucoma is the second leading cause of blindness worldwide, often associated with elevated intraocular pressure. Connective tissue growth factor (CTGF) is a mediator of pathological effects in the trabecular meshwork (TM) and Schlemm's canal (SC). A novel, causative therapeutic concept which involves the intracameral delivery of small interfering RNA against CTGF is proposed. Layer-by-layer coated nanoparticles of 200-260 nm with a final layer of hyaluronan (HA) are developed. The HA-coating should provide the nanoparticles sufficient mobility in the extracellular matrix and allow for binding to TM and SC cells via CD44. By screening primary TM and SC cells in vitro, in vivo, and ex vivo, the validity of the concept is confirmed. CD44 expression is elevated in glaucomatous versus healthy cells by about two- to sixfold. CD44 is significantly involved in the cellular uptake of HA-coated nanoparticles. Ex vivo organ culture of porcine, murine, and human eyes demonstrates up to threefold higher accumulation of HA compared to control nanoparticles and much better penetration into the target tissue. Gene silencing in primary human TM cells results in a significant reduction of CTGF expression. Thus, HA-coated nanoparticles combined with RNA interference may provide a potential strategy for glaucoma therapy.
Collapse
Affiliation(s)
- Andrea E Dillinger
- Department of Human Anatomy and Embryology, University Regensburg, Universitaetsstrasse 31, 93040, Regensburg, Germany
| | - Michaela Guter
- Department of Pharmaceutical Technology, University Regensburg, Universitaetsstrasse 31, 93040, Regensburg, Germany
| | - Franziska Froemel
- Department of Human Anatomy and Embryology, University Regensburg, Universitaetsstrasse 31, 93040, Regensburg, Germany
| | - Gregor R Weber
- Department of Human Anatomy and Embryology, University Regensburg, Universitaetsstrasse 31, 93040, Regensburg, Germany
| | - Kristin Perkumas
- Department of Ophthalmology, Duke University, 2351 Erwin Road, Durham, NC, 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, 2351 Erwin Road, Durham, NC, 27710, USA
| | - Andreas Ohlmann
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, 80336, Munich, Germany
| | - Rudolf Fuchshofer
- Department of Human Anatomy and Embryology, University Regensburg, Universitaetsstrasse 31, 93040, Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University Regensburg, Universitaetsstrasse 31, 93040, Regensburg, Germany
| |
Collapse
|
48
|
Apoptosis of A549 cells by small interfering RNA targeting survivin delivery using poly-β-amino ester/guanidinylated O-carboxymethyl chitosan nanoparticles. Asian J Pharm Sci 2018; 15:121-128. [PMID: 32175024 PMCID: PMC7066049 DOI: 10.1016/j.ajps.2018.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/08/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Gene-based therapeutics has emerged as a promising approach for human cancer therapy. Among a variety of non-viral vectors, polymer vectors are particularly attractive due to their safety and multivalent groups on their surface. This study focuses on guanidinylated O-carboxymethyl chitosan (GOCMCS) along with poly-β-amino ester(PBAE) for siRNA delivery. Binding efficiency of PBAE/siRNA/GOCMCS nanoparticles were characterized by gel electrophoresis. The siRNA-loaded nanoparticles were found to be stable in the presence of RNase A, serum and BALF respectively. Fine particle fraction (FPF) which was determined by a two-stage impinger (TSI) was 57.8% ± 2.6%. The particle size and zeta potential of the nanoparticles were 153.8 ± 12.54 nm and + 12.2 ± 4.94 mV. In vitro cell transfection studies were carried out with A549 cells. The cellular uptake was significantly increased. When the cells were incubated with siSurvivin-loaded nanoparticles, it could induce 26.83% ± 0.59% apoptosis of A549 cells and the gene silencing level of survivin expression in A549 cells were 30.93% ± 2.27%. The results suggested that PBAE/GOCMCS nanoparticle was a very promising gene delivery carrier.
Collapse
|
49
|
Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1041-1060. [DOI: 10.1016/j.msec.2017.12.036] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 01/06/2023]
|
50
|
Liu Y, Chen J, Tang Y, Li S, Dou Y, Zheng J. Synthesis and Characterization of Quaternized Poly(β-amino ester) for Highly Efficient Delivery of Small Interfering RNA. Mol Pharm 2018; 15:4558-4567. [DOI: 10.1021/acs.molpharmaceut.8b00549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yun Liu
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jing Chen
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yue Tang
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Shuhan Li
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yushun Dou
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jiewen Zheng
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| |
Collapse
|