1
|
Schmidt RDCDR, Oliveira TED, Deon M. Polymeric nanocomposites in a biological interface: From a molecular view to final applications. Colloids Surf B Biointerfaces 2025; 251:114605. [PMID: 40073629 DOI: 10.1016/j.colsurfb.2025.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Polymeric nanocomposites have been valuable materials for the pharmaceutical and biomedical fields because they associate the unique properties of a material on a nanoscale with a polymeric matrix, with a synergistic outcome that improves their physical, chemical, and mechanical properties. Understanding the nature of the physical and chemical interactions and effects that take place at the polymer-nanomaterial interface is crucial to predict and explain how the nanocomposite behaves when set forth a health-related application and faces a biological interface. Therefore, this review aimed to assemble and examine experimental articles in which the molecular-level interaction between nanomaterials and polymer matrices were determinants of the biological outcome. For health applications, the nanocomposite systems were found to be most applied as antimicrobials, for tissue engineering, and for drug delivery. A plethora of biocompatible polymers have been reported, although for nanomaterials the most distinguished effects were attained with metal and metal oxide nanoparticles. The bioactivity of the nanocomposite was found to be dependent on features such as: colloidal size, release, and disintegration of the nanoparticle, controlled by the polymer matrix; hydrophilicity, degree of crosslinking, porosity, mechanical strength, and stability/responsiveness of the polymer, modified by the nanofiller; and the final charge and functional groups available at the whole nanocomposite surface. As a result, researchers can gather insights to design and characterize advanced polymeric nanocomposites with optimized performance for use in biomedical devices, drug delivery systems, and other therapeutic applications.
Collapse
Affiliation(s)
- Rita de Cássia Dos Reis Schmidt
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Tiago Espinosa de Oliveira
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| | - Monique Deon
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| |
Collapse
|
2
|
Nayak A, Chaudhary P, Bhushan B. Biogenic, sustainable cellulose nanocrystals for removal of pharmaceuticals from water: a prospective upgradation and value addition of Grewia Optiva fiber. Int J Biol Macromol 2025; 309:143123. [PMID: 40233903 DOI: 10.1016/j.ijbiomac.2025.143123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Biogenic, sustainable adsorbents in general and more specifically from cellulosic origin are in demand for enabling cost-effective and environmentally friendly wastewater treatment. A novel carbonaceous, highly crystalline, mesoporous cellulose-nanocrystal (GOF@n-CL) was extracted from Grewia Optiva fiber (GOF) via 40 % H2SO4 hydrolysis and successfully applied for adsorptive removal of some pharmaceuticals (Diclofenac, Ciprofloxacin, Tetracycline, Ofloxacin, Norflox-TZ) from wastewater. While 13C NMR and FTIR spectral data confirmed the sanctity of cellulosic structure, XRD revealed cellulose-I structure having high crystallinity of 77.4 % in the fabricated GOF@n-CL. TEM analysis revealed a networked porous structure due to agglomeration of nearly spherical shaped GOF@n-CL with SAED confirming its poly-crystalline nature. Batch studies showed 96 % tetracycline (TTC) removals by GOF@n-CL and isotherm studies reflected its binding affinity was onto the heterogeneous surface. Physisorption binding mechanism via the involvement of pore diffusion, hydrogen bonding and electrostatic interactions was indicated from kinetics and from FTIR studies. The efficacy of the GOF@n-CL was further demonstrated by high removals of ciprofloxacin (81 %), diclofenac (46 %), ofloxacin (78 %) (under single adsorbate system) and of norflox-TZ (norfloxacin-48 %; trinidazole-35 %; dual adsorbate system). The promising results have suggested a pathway for upgradation of GOF to value added water-based biogenic and sustainable adsorbents.
Collapse
Affiliation(s)
- Arunima Nayak
- Department of Chemistry, Graphic Era University-248002, Dehradun, India.
| | - Priya Chaudhary
- Department of Chemistry, Graphic Era University-248002, Dehradun, India
| | - Brij Bhushan
- Department of Chemistry, Graphic Era University-248002, Dehradun, India
| |
Collapse
|
3
|
Solomon M, Holban AM, Bălăceanu-Gurău B, Dițu LM, Alberts A, Grumezescu AM, Manolescu LSC, Mihai MM. Silver Nanoparticles Functionalized with Polymeric Substances to Reduce the Growth of Planktonic and Biofilm Opportunistic Pathogens. Int J Mol Sci 2025; 26:3930. [PMID: 40362173 PMCID: PMC12071338 DOI: 10.3390/ijms26093930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
The global rise in antimicrobial resistance, particularly among ESKAPE pathogens, has intensified the demand for alternative therapeutic strategies. Silver nanoparticles (AgNPs) have exhibited broad-spectrum antimicrobial activity and represent a promising approach to combat multidrug-resistant infections. This study aimed to synthesize and functionalize AgNPs using various polymeric agents-ethylene glycol (EG), polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and their combinations-and to evaluate their antimicrobial and antibiofilm efficacy against clinically relevant bacterial strains. AgNPs were synthesized via chemical reduction and functionalized as Ag@EG, Ag@PEG, Ag@EG/PVP, and Ag@PEG/PVP. A total of 68 clinical isolates-including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa-were tested. Antimicrobial susceptibility was assessed using disc diffusion and broth microdilution assays, while antibiofilm activity was evaluated via the crystal violet method. Among all tested formulations, Ag@EG/PVP exhibited the highest antimicrobial and antibiofilm activity, with notably low minimum inhibitory concentrations (MIC50) and minimum biofilm eradication concentrations (MBEC50) for Ps. aeruginosa and K. pneumoniae. In contrast, AgNPs functionalized with PEG or EG alone showed limited efficacy. Biofilm-forming isolates, particularly Staphylococcus spp., required higher concentrations for inhibition. These results highlight the critical role of functionalization in modulating the antimicrobial properties of AgNPs, with Ag@EG/PVP demonstrating potent activity against both planktonic and biofilm-associated multidrug-resistant bacteria. Overall, this study supports further developing AgNPs-based formulations as adjuncts or alternatives to conventional antibiotics, particularly for managing biofilm-related infections. Future research should focus on formulation optimization, safety assessment, and translational potential.
Collapse
Affiliation(s)
- Mădălina Solomon
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.S.); (L.S.C.M.)
- Clinical Laboratory of Medical Microbiology, Marius Nasta Institute of Pneumology, 050159 Bucharest, Romania
| | - Alina Maria Holban
- Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (L.M.D.); (A.M.G.)
- Research Institute of the University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| | - Beatrice Bălăceanu-Gurău
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Lia Mara Dițu
- Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (L.M.D.); (A.M.G.)
- Research Institute of the University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| | - Adina Alberts
- Department of Public Health and Management, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (L.M.D.); (A.M.G.)
- Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street No. 1–7, 011061 Bucharest, Romania
| | - Loredana Sabina Cornelia Manolescu
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.S.); (L.S.C.M.)
- Clinical Laboratory of Medical Microbiology, Marius Nasta Institute of Pneumology, 050159 Bucharest, Romania
| | - Mara Mădălina Mihai
- Research Institute of the University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
4
|
Harun-Ur-Rashid M, Foyez T, Krishna SBN, Poda S, Imran AB. Recent advances of silver nanoparticle-based polymer nanocomposites for biomedical applications. RSC Adv 2025; 15:8480-8505. [PMID: 40109922 PMCID: PMC11920860 DOI: 10.1039/d4ra08220f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Silver nanoparticle-polymer nanocomposites (AgNP-PNCs) represent a transformative advancement in biomedical material science, integrating the potent antimicrobial properties of AgNPs with the structural versatility of polymer matrices. This synergy enables enhanced infection control, mechanical stability, and controlled drug delivery, making these nanocomposites highly suitable for applications such as wound healing, medical coatings, tissue engineering, and biosensors. Recent progress in synthesis and functionalization has led to greater control over particle morphology, dispersion, and stability, optimizing AgNP-PNCs for clinical and translational applications. However, challenges related to cytotoxicity, long-term stability, immune response, and scalability persist, necessitating systematic improvements in surface functionalization, hybridization strategies, and biocompatibility assessments. This review critically evaluates the latest advancements in AgNP-PNC development, focusing on their functionalization techniques, regulatory considerations, and emerging strategies to overcome biomedical challenges. Additionally, it discusses preclinical and translational aspects, including commercialization barriers and regulatory frameworks such as FDA and EMA guidelines, ensuring a comprehensive outlook on their clinical feasibility. By bridging the gap between innovation and practical application, this review investigates the transformative potential of AgNP-PNCs in advancing next-generation biomedical materials.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology (IUBAT) Sector 10, Uttara Model Town Dhaka 1230 Bangladesh
| | - Tahmina Foyez
- Department of Pharmacy, School of Life Sciences, United International University United City, Madani Ave Dhaka 1212 Bangladesh
| | - Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology P. O. Box 1334 Durban 4000 South Africa
| | - Sudhakar Poda
- Department of Biotechnology, Acharya Nagarjuna University Andhra Pradesh India
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| |
Collapse
|
5
|
Zhang Y, Wei X, Xu Y, Xia W, Zheng C, Zhang H, Chen W, Xu K, Huang Q. Zinc sulfate gel reshapes the wound microenvironment to promote full-thickness wound healing in mice. Regen Ther 2025; 28:582-590. [PMID: 40034541 PMCID: PMC11872640 DOI: 10.1016/j.reth.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Delayed healing of skin wounds significantly impacts human life, Zinc plays a pivotal role in human growth, the immune system, and various cellular processes. Previous studies have demonstrated that zinc supplementation or topical zinc ion therapy can accelerate wound healing in cases of skin injury. Zinc deficiency has been linked to delayed wound healing, but the role it plays remains to be elucidated. In this study, we report the preparation of zinc sulfate gel to promote wound healing by treating inflammation, antioxidant effects, and angiogenesis. We demonstrated the efficacy of zinc sulfate gel in wound healing in a mouse model of full-thickness skin excision, spared the anti-inflammatory and antioxidant capabilities of zinc ions. Furthermore, Zinc sulfate gel can stimulate tissue to enter the proliferative phase by regulating macrophage polarization, thereby accelerating collagen deposition, granulation tissue formation, and extracellular matrix production and remodeling. In conclusion, zinc ion gel provides a promising strategy for skin wounds regeneration.
Collapse
Affiliation(s)
- Ying Zhang
- The Third People's Hospital Health Care Group of Cixi, Ningbo, China
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xuebo Wei
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Yun Xu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Weidong Xia
- National Key Clinical Specialty (Wound Healing), Burn and Wound Healing Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - ChaoYu Zheng
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Weiting Chen
- The Third People's Hospital Health Care Group of Cixi, Ningbo, China
| | - Ke Xu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Qun Huang
- The Third People's Hospital Health Care Group of Cixi, Ningbo, China
| |
Collapse
|
6
|
Krishna RH, Chandraprabha MN, Monika P, Br T, Chaudhary V, Manjunatha C. Biomolecule conjugated inorganic nanoparticles for biomedical applications: A review. Biotechnol Genet Eng Rev 2024; 40:3611-3652. [PMID: 36424727 DOI: 10.1080/02648725.2022.2147678] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/29/2022] [Indexed: 11/27/2022]
Abstract
Last decade has witnessed impressive progress in the fields of medicine and bioengineering with the aid of nanomaterials. Nanomaterials are favoured for their improved bio-chemical as well as mechanical properties with tremendous applications in biomedical domains such as disease diagnosis, targeted drug delivery, medical imaging, in vitro diagnostics, designing innovatory cross-functional implants and regenerative tissue engineering. The current situation insists upon crafting nanotools that are capable of catering to biological needs and construct more efficient biomedical strategies. In the recent years, surface functionalization and capping with biomolecules has initiated substantial interest towards research. In this regard, search of suitable biofunctionalized nanoparticles seem to be like finding pearls from ocean. Conjugating biological molecules with inorganic materials has paved the way for unravelling innovative functional materials with dramatically improved properties and a wide range of uses. Inorganic nanoparticles such as metals, metal oxides, as well as quantum dots have been hybridised or conjugated with biomolecules such as proteins, peptides, carbohydrates, and nucleic acids. The present review reports on various biomolecule functionalized inorganic nanomaterials highlighting the biomolecule-inorganic nanoparticle interaction studies, the mechanism of functionalization, antimicrobial efficacy of the functionalised nanoconjugates and its use in various biomedical applications.
Collapse
Affiliation(s)
- R Hari Krishna
- Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore, India
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - M N Chandraprabha
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Prakash Monika
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Tanuja Br
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - C Manjunatha
- Center for Nanomaterials and devices, Department of Chemistry, RV College of Engineering, Bangalore, India
| |
Collapse
|
7
|
Liu F, Robinson WL, Kirscht T, Fichthorn KA, Jiang S. Biobased Polymers Enabling the Synthesis of Ultralong Silver Nanowires and Other Nanostructures. NANO LETTERS 2024; 24:14381-14388. [PMID: 39475371 DOI: 10.1021/acs.nanolett.4c04130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Conventional polyol synthesis of silver nanowires has exclusively relied on polyvinylpyrrolidone (PVP), a nonbiodegradable polymer with no viable alternatives. The underlying reaction mechanism remains unclear. Herein, we discovered a new sustainable solution by employing biobased cellulose derivatives, including hydroxyethyl cellulose (HEC), as effective substitutes for PVP. Under mild reaction conditions (125 °C, ambient pressure), HEC facilitates the growth of ultralong silver nanowires (>100 μm) from penta-twinned silver seeds through a four-stage kinetic process. Theoretical calculations further reveal that HEC is physiosorbed onto the silver surfaces, while the presence of bromide ions (Br-) facilitates the evolution of seeds into nanowires. By varying halide ion concentrations and substitution in different cellulose derivatives, we successfully synthesized silver nanostructures with additional intriguing morphologies, including quasi-spherical nanoparticles, bipyramids, and nanocubes. Furthermore, transparent conductive films fabricated from ultralong silver nanowires synthesized with HEC demonstrated superior performance compared to those made with PVP-synthesized nanowires.
Collapse
Affiliation(s)
- Fei Liu
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - William L Robinson
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tyler Kirscht
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kristen A Fichthorn
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shan Jiang
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
8
|
Thomas S, Gonsalves RA, Jose J, Zyoud SH, Prasad AR, Garvasis J. Plant-based synthesis, characterization approaches, applications and toxicity of silver nanoparticles: A comprehensive review. J Biotechnol 2024; 394:135-149. [PMID: 39159752 DOI: 10.1016/j.jbiotec.2024.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
The development of an environmentally benign method for the synthesis of nanoparticles has been facilitated by green chemistry. "Green synthesis" uses a range of biological elements like microbes, plants, and other biodegradable materials to produce NPs. Active biomolecules that are secreted by natural strains and present in the plant extracts serve as both reducing and capping/stabilizing agents. Microorganisms' intracellular enzymes can reduce metal ions, which explains how NPs might potentially nucleate. Plant-based synthesis of nanomaterials is particularly promising owing to abundant resources, simplicity of synthesis, and low cost. Silver nanoparticles (AgNPs) are attracting great attention in the research community due to their wide variety of applications in chemistry, food technology, microbiology, and biomedicine. Recent years have seen a large amount of research on the bio-genic synthesis of AgNPs employing biomaterials like plant extract and bacteria as reducing agents. Herein we discuss a thorough overview of the plant-based synthesis of silver nanoparticles (AgNPs), characterization approaches, applications, and toxicity. The review covers the green chemistry and nanotechnology elements of producing AgNPs, including a thorough discussion of the plant extract mediated synthesis, detailed formation mechanism, and a well-balanced emphasis on hazards and advantages. Based on current developments, the optimisation strategies, applications, and interdisciplinary characteristics are also covered in detail.
Collapse
Affiliation(s)
- Shijith Thomas
- Department of Applied Science and Humanities, Vimal Jyothi Engineering College, Kannur 670632, India.
| | - Richard A Gonsalves
- Department of Chemistry, St. Aloysius College (Autonomous), Mangalore 575003, India.
| | - Jomy Jose
- Department of Applied Science and Humanities, Vimal Jyothi Engineering College, Kannur 670632, India.
| | - Samer H Zyoud
- Department of Mathematics and Sciences, Center of Medical and Bio-Allied Health Science Research, Ajman University, P.O.Box: 346, United Arab Emirates.
| | - Anupama R Prasad
- Department of Chemistry, Christ College (Autonomous), Thrissur 680125, India.
| | - Julia Garvasis
- Department of Chemistry, University of Calicut, Malappuram 680566, India.
| |
Collapse
|
9
|
Kirscht T, Jiang L, Liu F, Jiang X, Marander M, Ortega R, Qin H, Jiang S. Silver Nano-Inks Synthesized with Biobased Polymers for High-Resolution Electrohydrodynamic Printing Toward In-Space Manufacturing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44225-44235. [PMID: 39079046 DOI: 10.1021/acsami.4c07592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Electrohydrodynamic (EHD) printing is an additive manufacturing technique capable of producing micro/nanoscale features by precisely jetting ink under an electric field. However, as a new technique compared to more conventional methods, commercially available inks designed and optimized for EHD are currently very limited. To address this challenge, a new silver nanoink platform was developed by synthesizing silver nanoparticles in situ with biobased polymer 2-hydroxyethyl cellulose (HEC). Typically used as a thickening agent, HEC is cost-effect, biocompatible, and versatile in developing inks that meet the rheology criteria for high-resolution EHD jetting. This approach significantly outperforms the traditional use of polyvinylpyrrolidone (PVP), enabling the stabilization of high solids content (>50 wt %) nanoinks for over 10 months with an HEC dosage 20 times lower than that required by PVP. The HEC-synthesized silver ink displays excellent electrical properties, yielding resistivities as low as 2.81 μΩ cm upon sintering, less than twice that of pure silver. Additionally, the capability to sinter at low temperatures (<200 °C) enables the use of this ink on polymer substrates for flexible devices. The synthesized nanoinks were also found to be capable of producing precise, high-resolution features by EHD printing with smooth lines narrower than 5 μm printed using a 100 μm nozzle. Additionally, a semiempirical model was developed to reveal the relationship between printing resolution, ink properties, and printing parameters, enabling precise printing control. Moreover, for the first time, the unique ability of EHD to achieve precise fabrication under microgravity was conclusively demonstrated through a parabolic flight test utilizing the HEC-based nanoinks. The study greatly expands the potential of printing thin films for the on-demand manufacturing of electronic devices in space.
Collapse
Affiliation(s)
- Tyler Kirscht
- Department of Material Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Liangkui Jiang
- Department of Industrial and Systems Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Fei Liu
- Department of Material Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Xuepeng Jiang
- Department of Industrial and Systems Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Matthew Marander
- Department of Material Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Ricardo Ortega
- Department of Material Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Hantang Qin
- Department of Industrial and Systems Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Shan Jiang
- Department of Material Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
10
|
Rana MM, De la Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024; 10:216. [PMID: 38667635 PMCID: PMC11049329 DOI: 10.3390/gels10040216] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, being hydrophilic polymer networks capable of absorbing and retaining aqueous fluids, hold significant promise in biomedical applications owing to their high water content, permeability, and structural similarity to the extracellular matrix. Recent chemical advancements have bolstered their versatility, facilitating the integration of the molecules guiding cellular activities and enabling their controlled activation under time constraints. However, conventional synthetic hydrogels suffer from inherent weaknesses such as heterogeneity and network imperfections, which adversely affect their mechanical properties, diffusion rates, and biological activity. In response to these challenges, hybrid hydrogels have emerged, aiming to enhance their strength, drug release efficiency, and therapeutic effectiveness. These hybrid hydrogels, featuring improved formulations, are tailored for controlled drug release and tissue regeneration across both soft and hard tissues. The scientific community has increasingly recognized the versatile characteristics of hybrid hydrogels, particularly in the biomedical sector. This comprehensive review delves into recent advancements in hybrid hydrogel systems, covering the diverse types, modification strategies, and the integration of nano/microstructures. The discussion includes innovative fabrication techniques such as click reactions, 3D printing, and photopatterning alongside the elucidation of the release mechanisms of bioactive molecules. By addressing challenges, the review underscores diverse biomedical applications and envisages a promising future for hybrid hydrogels across various domains in the biomedical field.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Blood Research, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Mikhailidi A, Ungureanu E, Belosinschi D, Tofanica BM, Volf I. Cellulose-Based Metallogels-Part 3: Multifunctional Materials. Gels 2023; 9:878. [PMID: 37998968 PMCID: PMC10671087 DOI: 10.3390/gels9110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The incorporation of the metal phase into cellulose hydrogels, resulting in the formation of metallogels, greatly expands their application potential by introducing new functionalities and improving their performance in various fields. The unique antiviral, antibacterial, antifungal, and anticancer properties of metal and metal oxide nanoparticles (Ag, Au, Cu, CuxOy, ZnO, Al2O3, TiO2, etc.), coupled with the biocompatibility of cellulose, allow the development of composite hydrogels with multifunctional therapeutic potential. These materials can serve as efficient carriers for controlled drug delivery, targeting specific cells or pathogens, as well as for the design of artificial tissues or wound and burn dressings. Cellulose-based metallogels can be used in the food packaging industry to provide biodegradable and biocidal materials to extend the shelf life of the goods. Metal and bimetallic nanoparticles (Au, Cu, Ni, AuAg, and AuPt) can catalyze chemical reactions, enabling composite cellulose hydrogels to be used as efficient catalysts in organic synthesis. In addition, metal-loaded hydrogels (with ZnO, TiO2, Ag, and Fe3O4 nanoparticles) can exhibit enhanced adsorption capacities for pollutants, such as dyes, heavy metal ions, and pharmaceuticals, making them valuable materials for water purification and environmental remediation. Magnetic properties imparted to metallogels by iron oxides (Fe2O3 and Fe3O4) simplify the wastewater treatment process, making it more cost-effective and environmentally friendly. The conductivity of metallogels due to Ag, TiO2, ZnO, and Al2O3 is useful for the design of various sensors. The integration of metal nanoparticles also allows the development of responsive materials, where changes in metal properties can be exploited for stimuli-responsive applications, such as controlled release systems. Overall, the introduction of metal phases augments the functionality of cellulose hydrogels, expanding their versatility for diverse applications across a broad spectrum of industries not envisaged during the initial research stages.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia;
| | - Elena Ungureanu
- “Ion Ionescu de la Brad” University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Dan Belosinschi
- Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies, University of Quebec at Trois-Rivières, 3351, Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada;
- CellON AS, Lakkegata 75C, NO-0562 Oslo, Norway
| | - Bogdan-Marian Tofanica
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Irina Volf
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| |
Collapse
|
13
|
Choudhari M, Damle S, Saha RN, Dubey SK, Singhvi G. Emerging Applications of Hydroxypropyl Methylcellulose Acetate Succinate: Different Aspects in Drug Delivery and Its Commercial Potential. AAPS PharmSciTech 2023; 24:188. [PMID: 37715004 DOI: 10.1208/s12249-023-02645-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
Hydroxypropyl methylcellulose acetate succinate (HPMCAS) has multi-disciplinary applications spanning across the development of drug delivery systems, in 3D printing, and in tissue engineering, etc. HPMCAS helps in maintaining the drug in a super-saturated condition by inhibiting its precipitation, thereby increasing the rate and extent of dissolution in the aqueous media. HPMCAS has several distinctive characteristics, such as being amphiphilic in nature, having an ionization pH, and a succinyl and acetyl substitution ratio, all of which are beneficial while developing formulations. This review provides insights regarding the various types of formulations being developed using HPMCAS, including amorphous solid dispersion (ASD), amorphous nanoparticles, dry coating, and 3D printing, along with their applicability in drug delivery and biomedical fields. Furthermore, HPMCAS, compared with other carbohydrate polymers, shows several benefits in drug delivery, including proficiency in imparting stable ASD with a high dissolution rate, being easily processable, and enhancing bioavailability. The various commercially available formulations, regulatory considerations, and key patents containing the HPMCAS have been discussed in this review.
Collapse
Affiliation(s)
- Manisha Choudhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India
| | - Shantanu Damle
- Colorcon Asia Pvt. Ltd. Verna Industrial Estate, Verna, Goa, 403722, India
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India.
- R&D Healthcare Emami Ltd., Belgharia, Kolkata, 700056, India.
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
14
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
15
|
Nie P, Zhao Y, Xu H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114636. [PMID: 36806822 DOI: 10.1016/j.ecoenv.2023.114636] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Silver nanoparticles (AgNPs) have become one of the most popular objects of study for the past few decades. The ability to design AgNPs through different synthetic methods according to the application area and desired features is their advantage in many applications. Green synthesis of silver nanoparticles has become one of the most potential synthesis methods. Because of their strong antibacterial activity, AgNPs have been used in a wide range of applications, such as food packaging and medical products and devices. With the increasing application of AgNPs, it is becoming necessary for a better understanding of the toxicity of AgNPs and their potential mechanism of toxicity. In the review, we first describe the synthetic methods of AgNPs. The application of AgNPs in the field is then briefly described. The toxicity of AgNPs and their potential toxicity mechanisms are discussed.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
16
|
More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms 2023; 11:369. [PMID: 36838334 PMCID: PMC9961011 DOI: 10.3390/microorganisms11020369] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
This review highlights the different modes of synthesizing silver nanoparticles (AgNPs) from their elemental state to particle format and their mechanism of action against multidrug-resistant and biofilm-forming bacterial pathogens. Various studies have demonstrated that the AgNPs cause oxidative stress, protein dysfunction, membrane disruption, and DNA damage in bacteria, ultimately leading to bacterial death. AgNPs have also been found to alter the adhesion of bacterial cells to prevent biofilm formation. The benefits of using AgNPs in medicine are, to some extent, counter-weighted by their toxic effect on humans and the environment. In this review, we have compiled recent studies demonstrating the antibacterial activity of AgNPs, and we are discussing the known mechanisms of action of AgNPs against bacterial pathogens. Ongoing clinical trials involving AgNPs are briefly presented. A particular focus is placed on the mechanism of interaction of AgNPs with bacterial biofilms, which are a significant pathogenicity determinant. A brief overview of the use of AgNPs in other medical applications (e.g., diagnostics, promotion of wound healing) and the non-medical sectors is presented. Finally, current drawbacks and limitations of AgNPs use in medicine are discussed, and perspectives for the improved future use of functionalized AgNPs in medical applications are presented.
Collapse
Affiliation(s)
- Pragati Rajendra More
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Santosh Pandit
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Bio Sustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
17
|
Kushwaha R, Kumar S, Das A, Sukriti, Verma ML. Silver nanoparticle-based nanocomposite hydrogels for biomedical applications. FUNCTIONAL NANOCOMPOSITE HYDROGELS 2023:241-265. [DOI: 10.1016/b978-0-323-99638-9.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Kumar B, Smita K, Awasthi SK, Debut A, Cumbal L. Capsicum baccatum (Andean Chilli)-assisted phytosynthesis of silver nanoparticles and their H 2O 2 sensing ability. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.2006381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Brajesh Kumar
- Department of Chemistry, TATA College, Kolhan University, Chaibasa, Jharkhand, India
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| | - Kumari Smita
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| | - Satish Kumar Awasthi
- Department of Chemistry, Chemical Biology Laboratory, University of Delhi, Delhi, India
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| | - Luis Cumbal
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| |
Collapse
|
19
|
Lukhey MS, Shende P. Advancement in wound healing treatment using functional nanocarriers. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2099393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mihir S. Lukhey
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Mumbai, India
| |
Collapse
|
20
|
Mabrouk M, Ismail E, Beherei H, Abo-Elfadl MT, Salem ZA, Das DB, AbuBakr N. Biocompatibility of hydroxyethyl cellulose/glycine/RuO 2 composite scaffolds for neural-like cells. Int J Biol Macromol 2022; 209:2097-2108. [PMID: 35504415 DOI: 10.1016/j.ijbiomac.2022.04.190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Fabrication of scaffolds for nerve regeneration is one of the most challenging topics in regenerative medicine at the moment, which is also interlinked with the development of biocompatible substrates for cells growth. This work is targeted towards the development of green biomaterial composite scaffolds for nerve cell culture applications. Hybrid scaffolds of hydroxyethyl cellulose/glycine (HEC/Gly) composite doped with different concentrations of green ruthenium oxide (RuO2) were synthesized and characterized via a combination of different techniques. X-rays diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed a crystalline nature for all the samples with noticeable decrease in the peak intensity of the fabricated scaffolds as compared to that for pure glycine. Fourier transform infrared spectroscopy (FTIR) tests revealed an increase in the vibrational bands of the synthesized RuO2 containing scaffolds which are related to the functional groups of the natural plant extract (Aspalathuslinearis) used for RuO2 nanoparticles (NPs) synthesis. Scanning electron microscopy (SEM) results revealed a 3D porous structure of the scaffolds with variant features attributed to the concentration of RuO2 NPs in the scaffold. The compressive test results recorded an enhancement in mechanical properties of the fabricated scaffolds (up to 8.55 MPa), proportionally correlated to increasing the RuO2 NPs concentration in HEC/Gly composite scaffold. Our biocompatibility tests revealed that the composite scaffolds doped with 1 and 2 ml of RuO2 demonstrated the highest proliferation percentages (152.2 and 135.6%) compared to control. Finally, the SEM analyses confirmed the impressive cells attachments and differentiation onto the scaffold surfaces as evidenced by the presence of many neuron-like cells with apparent cell bodies and possessing few short neurite-like processes. The presence of RuO2 and glycine was due to their extraordinary biocompatibility due to their cytoprotective and regenerative effects. Therefore, we conclude that these scaffolds are promising for accommodation and growth of neural-like cells.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, Giza, P.O.12622, Egypt.
| | - Enas Ismail
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa; Physics Department, Faculty of Science (Girl's branch), Al Azhar University, Nasr City, Cairo, Egypt
| | - Hanan Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, Giza, P.O.12622, Egypt.
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt; Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Zeinab A Salem
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt; Faculty of Oral and Dental Medicine, Ahram Canadian University, Cairo, Egypt
| | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Nermeen AbuBakr
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt; Stem Cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
A Review on Current Designation of Metallic Nanocomposite Hydrogel in Biomedical Applications. NANOMATERIALS 2022; 12:nano12101629. [PMID: 35630851 PMCID: PMC9146518 DOI: 10.3390/nano12101629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023]
Abstract
In the past few decades, nanotechnology has been receiving significant attention globally and is being continuously developed in various innovations for diverse applications, such as tissue engineering, biotechnology, biomedicine, textile, and food technology. Nanotechnological materials reportedly lack cell-interactive properties and are easily degraded into unfavourable products due to the presence of synthetic polymers in their structures. This is a major drawback of nanomaterials and is a cause of concern in the biomedicine field. Meanwhile, particulate systems, such as metallic nanoparticles (NPs), have captured the interest of the medical field due to their potential to inhibit the growth of microorganisms (bacteria, fungi, and viruses). Lately, researchers have shown a great interest in hydrogels in the biomedicine field due to their ability to retain and release drugs as well as to offer a moist environment. Hence, the development and innovation of hydrogel-incorporated metallic NPs from natural sources has become one of the alternative pathways for elevating the efficiency of therapeutic systems to make them highly effective and with fewer undesirable side effects. The objective of this review article is to provide insights into the latest fabricated metallic nanocomposite hydrogels and their current applications in the biomedicine field using nanotechnology and to discuss the limitations of this technology for future exploration. This article gives an overview of recent metallic nanocomposite hydrogels fabricated from bioresources, and it reviews their antimicrobial activities in facilitating the demands for their application in biomedicine. The work underlines the fabrication of various metallic nanocomposite hydrogels through the utilization of natural sources in the production of biomedical innovations, including wound healing treatment, drug delivery, scaffolds, etc. The potential of these nanocomposites in relation to their mechanical strength, antimicrobial activities, cytotoxicity, and optical properties has brought this technology into a new dimension in the biomedicine field. Finally, the limitations of metallic nanocomposite hydrogels in terms of their methods of synthesis, properties, and outlook for biomedical applications are further discussed.
Collapse
|
22
|
Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Thangavelu S, Muthupandian S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol 2022; 16:115-144. [PMID: 35426251 PMCID: PMC9114445 DOI: 10.1049/nbt2.12078] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
The alarming effect of antibiotic resistance prompted the search for alternative medicine to resolve the microbial resistance conflict. Over the last two decades, scientists have become increasingly interested in metallic nanoparticles to discover their new dimensions. Green nano synthesis is a rapidly expanding field of interest in nanotechnology due to its feasibility, low toxicity, eco‐friendly nature, and long‐term viability. Some plants have long been used in medicine because they contain a variety of bioactive compounds. Silver has long been known for its antibacterial properties. Silver nanoparticles have taken a special place among other metal nanoparticles. Silver nanotechnology has a big impact on medical applications like bio‐coating, novel antimicrobial agents, and drug delivery systems. This review aims to provide a comprehensive understanding of the pharmaceutical qualities of medicinal plants, as well as a convenient guideline for plant‐based silver nanoparticles and their antimicrobial activity.
Collapse
Affiliation(s)
| | - Ranjithkumar Dhandapani
- Medical Microbiology Unit Department of Microbiology Alagappa University Karaikudi Tamilnadu India
- Chimertech Private Limited Chennai Tamilnadu India
| | - Santhoshini Narayanan
- Medical Microbiology Unit Department of Microbiology Alagappa University Karaikudi Tamilnadu India
| | - Velmurugan Palanivel
- Centre for Materials Engineering and Regenerative Medicine Bharath Institute of Higher Education and Research Chennai Tamilnadu India
| | | | | | - Sathiamoorthi Thangavelu
- Medical Microbiology Unit Department of Microbiology Alagappa University Karaikudi Tamilnadu India
| | - Saravanan Muthupandian
- Division of Biomedical Sciences College of Health Sciences School of Medicine Mekelle Ethiopia
- AMR and Nanotherapeutics Laboratory Department of Pharmacology Saveetha Dental College and Hospital Saveetha Institute of Medical and Technical Sciences (SIMATS) Chennai Tamilnadu India
| |
Collapse
|
23
|
Ziauddin, Hussain T, Nazir A, Mahmood U, Hameed M, Ramakrishna S, Abid S. Nanoengineered therapeutic scaffolds for burn wound management. Curr Pharm Biotechnol 2022; 23:1417-1435. [PMID: 35352649 DOI: 10.2174/1389201023666220329162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/05/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Wound healing is a complex process, and selecting an appropriate treatment is crucial and varies from one wound to another. Among injuries, burn wounds are more challenging to treat. Different dressings and scaffolds come into play when skin is injured. These scaffolds provide the optimum environment for wound healing. With the advancements of nanoengineering, scaffolds have been engineered to improve wound healing with lower fatality rates. OBJECTIVES Nanoengineered systems have emerged as one of the promising candidates for burn wound management. This review paper aims to provide an in-depth understanding of burn wounds and the role of nanoengineering in burn wound management. The advantages of nanoengineered scaffolds, their properties, and their proven effectiveness have been discussed. Nanoparticles and nanofibers-based nanoengineered therapeutic scaffolds provide optimum protection, infection management, and accelerated wound healing due to their unique characteristics. These scaffolds increase cell attachment and proliferation for desired results. RESULTS The literature review suggested that the utilization of nanoengineered scaffolds has accelerated burn wound healing. Nanofibers provide better cell attachment and proliferation among different nanoengineered scaffolds due to their 3D structure mimics the body's extracellular matrix. CONCLUSION With the application of these advanced nanoengineered scaffolds, better burn wound management is possible due to sustained drug delivery, better cell attachment, and an infection-free environment.
Collapse
Affiliation(s)
- Ziauddin
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Tanveer Hussain
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Ahsan Nazir
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Urwa Mahmood
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Misbah Hameed
- Department of Pharmaceutics, Faculty of pharmaceutical science, Government College University, Faisalabad, Pakistan
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology (CNN), National University of Singapore (NUS), Singapore
| | - Sharjeel Abid
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| |
Collapse
|
24
|
Fouladi-Fard R, Aali R, Mohammadi-Aghdam S, Mortazavi-derazkola S. The surface modification of spherical ZnO with Ag nanoparticles: A novel agent, biogenic synthesis, catalytic and antibacterial activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
25
|
Tarrahi R, Khataee A, Karimi A, Yoon Y. The latest achievements in plant cellulose-based biomaterials for tissue engineering focusing on skin repair. CHEMOSPHERE 2022; 288:132529. [PMID: 34637866 DOI: 10.1016/j.chemosphere.2021.132529] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The present work reviews recent developments in plant cellulose-based biomaterial design and applications, properties, characterizations, and synthesis for skin tissue engineering and wound healing. Cellulose-based biomaterials are promising materials for their remarkable adaptability with three-dimensional polymeric structure. They are capable of mimicking tissue properties, which plays a key role in tissue engineering. Besides, concerns for environmental issues have motivated scientists to move toward eco-friendly materials and natural polymer-based materials for applications in the tissue engineering field these days. Therefore, cellulose as an appropriate substitute for common polymers based on crude coal, animal, and human-derived biomolecules is greatly considered for various applications in biomedical fields. Generally, natural biomaterials lack good mechanical properties for skin tissue engineering. But using modified cellulose-based biopolymers tackles these restrictions and prevents immunogenic responses. Moreover, tissue engineering is a quick promoting field focusing on the generation of novel biomaterials with modified characteristics to improve scaffold function through physical, biochemical, and chemical tailoring. Also, nanocellulose with a broad range of applications, particularly in tissue engineering, advanced wound dressing, and as a material for coupling with drugs and sensorics, has been reviewed here. Moreover, the potential cytotoxicity and immunogenicity of cellulose-based biomaterials are addressed in this review.
Collapse
Affiliation(s)
- Roshanak Tarrahi
- Health Promotion Research Center, Iran University of Medical Sciences, 14496-14535, Tehran, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Afzal Karimi
- Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
26
|
Sultan M, Nagieb ZA, El-Masry HM, Taha GM. Physically-crosslinked hydroxyethyl cellulose-g-poly (acrylic acid-co-acrylamide)-Fe 3+/silver nanoparticles for water disinfection and enhanced adsorption of basic methylene blue dye. Int J Biol Macromol 2022; 196:180-193. [PMID: 34813782 DOI: 10.1016/j.ijbiomac.2021.11.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
In this study, we report the development of physically cross-linked hydroxyethyl cellulose grafted polyacrylic acid-co-polyacrylamide/silver nanocomposite [Ag@HEC-g-P(AA-co-AM)-Fe3+] possesses excellent antimicrobial and enhanced MB adsorption. A green in-situ reduction process was used to prepare silver nanoparticles. UV-Vis spectroscopy, TEM, ATR-IR, XRD, SEM-EDS were used to analyze the green produced silver nanoparticles and Ag@HEC-g-P(AA-co-AM)-Fe3+. The swelling ratio of Ag@HEC-g-P(AA-co-AM)-Fe3+ is dependent on AgNPs content and pH. The swelling kinetics fitted with Pseudo-second order. The cumulative release#% of AgNPs was 29.63 ± 1.7%, respectively up to 10 h and its kinetics obey Korsmeyer-Peppas model. The grafting to HEC and incorporation of AgNPs into HEC-g-P(AA-co-AM)-Fe3+ enhances the thermal stabilities and increases total activation energies from 19,122.2 to 66,287.1 KJ mol. Ag@HEC-g-P(AA-co-AM)-Fe3+ has powerful antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Micrococcus leutus, Staphyllococus aureus. The maximum adsorption capacity of MB was 133.38 ± 1.25 mg/g at nanocomposite concentration (300 mg/L), pH (9.0), and MB concentration (5 mg/L). To anticipate the adsorption mechanism, Pseudo-first and second-order models, as well as three isotherm models (Langmuir, Freundlich, and Temkin) were used to model adsorption kinetics. The nonlinear Langmuir models and second-order kinetics were the most appropriate.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Zenat Adeeb Nagieb
- Cellulose and Paper Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Hossam Mohammed El-Masry
- Chemistry of Natural and Microbial Products, Pharmaceutical and Drug, National Research Centre, Dokki, Cairo, Egypt
| | - Ghada M Taha
- Pre-treatment, and Finishing of Cellulose-based Textiles Department, 33 El-Behouth St. (former El-Tahrir str.), Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
27
|
Fadilah NIM, Isa ILM, Zaman WSWK, Tabata Y, Fauzi MB. The Effect of Nanoparticle-Incorporated Natural-Based Biomaterials towards Cells on Activated Pathways: A Systematic Review. Polymers (Basel) 2022; 14:476. [PMID: 35160466 PMCID: PMC8838324 DOI: 10.3390/polym14030476] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The advancement of natural-based biomaterials in providing a carrier has revealed a wide range of benefits in the biomedical sciences, particularly in wound healing, tissue engineering and regenerative medicine. Incorporating nanoparticles within polymer composites has been reported to enhance scaffolding performance, cellular interactions and their physico-chemical and biological properties in comparison to analogue composites without nanoparticles. This review summarized the current knowledge of nanoparticles incorporated into natural-based biomaterials with effects on their cellular interactions in wound healing. Although the mechanisms of wound healing and the function of specific cells in wound repair have been partially described, many of the underlying signaling pathways remain unknown. We also reviewed the current understanding and new insights into the wingless/integrated (Wnt)/β-catenin pathway and other signaling pathways of transforming growth factor beta (TGF-β), Notch, and Sonic hedgehog during wound healing. The findings demonstrated that most of the studies reported positive outcomes of biomaterial scaffolds incorporated with nanoparticles on cell attachment, viability, proliferation, and migration. Combining therapies consisting of nanoparticles and biomaterials could be promising for future therapies and better outcomes in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8397, Japan;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
28
|
Beyler Çiğil A, Şen F, Birtane H, Kahraman MV. Covalently bonded nanosilver-hydroxyethyl cellulose/polyacrylic acid/sorbitol hybrid matrix: thermal, morphological and antibacterial properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04089-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Zalite V, Lungevics J, Vecstaudza J, Stipniece L, Locs J. Nanosized calcium deficient hydroxyapatites for tooth enamel protection. J Biomed Mater Res B Appl Biomater 2021; 110:1354-1367. [PMID: 34965008 PMCID: PMC9306847 DOI: 10.1002/jbm.b.35005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022]
Abstract
Calcium phosphates (CaP) are extensively studied as additives to dental care products for tooth enamel protection against caries. However, it is not clear yet whether substituted CaP could provide better enamel protection. In this study we produced, characterized and tested in vitro substituted and co‐substituted calcium deficient hydroxyapatite (CDHAp) with Sr2+ and F− ions. X‐ray powder diffractometry, Fourier transformation infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, Brunauer–Emmett–Teller were used to characterize synthesized powders and also cytotoxicity was evaluated. pH = f(t) test was performed to estimate, weather synthesized CDHAp suspensions are able to increase pH of experimental media after acid addition. Synthesis products were incorporated into paste to perform in vitro remineralization on the bovine enamel. In addition to mentioned instrumental methods, profilometry was used for evaluation of remineralised enamel samples. The obtained results confirmed formation of CDHAp substituted with 1.5–1.6 wt% of fluoride and 7.4–7.8 wt% of strontium. pH = f(t) experiment pointed out that pH increased by approximately 0.3 within 10 min after acid addition for all CDHAp suspensions. A new layer of the corresponding CDHAp was formed on the enamel. Its thickness increased by 0.8 ± 0.1 μm per day and reached up to 5.8 μm after 7 days. Additionally, octa calcium phosphates were detected on the surface of control samples. In conclusion, we can assume that CDHAp substituted with Sr2+ and/or F− could be used as an effective additive to dental care products promoting formation of protecting layer on the enamel, but there was no significant difference among sample groups.
Collapse
Affiliation(s)
- Vita Zalite
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Janis Lungevics
- Department of Mechanical Engineering and Mechatronics, Faculty of Mechanical Engineering, Transport and Aeronautics, Riga Technical University, Riga, Latvia
| | - Jana Vecstaudza
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Liga Stipniece
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia.,Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
30
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
31
|
Tudoroiu EE, Dinu-Pîrvu CE, Albu Kaya MG, Popa L, Anuța V, Prisada RM, Ghica MV. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals (Basel) 2021; 14:1215. [PMID: 34959615 PMCID: PMC8706040 DOI: 10.3390/ph14121215] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Presently, notwithstanding the progress regarding wound-healing management, the treatment of the majority of skin lesions still represents a serious challenge for biomedical and pharmaceutical industries. Thus, the attention of the researchers has turned to the development of novel materials based on cellulose derivatives. Cellulose derivatives are semi-synthetic biopolymers, which exhibit high solubility in water and represent an advantageous alternative to water-insoluble cellulose. These biopolymers possess excellent properties, such as biocompatibility, biodegradability, sustainability, non-toxicity, non-immunogenicity, thermo-gelling behavior, mechanical strength, abundance, low costs, antibacterial effect, and high hydrophilicity. They have an efficient ability to absorb and retain a large quantity of wound exudates in the interstitial sites of their networks and can maintain optimal local moisture. Cellulose derivatives also represent a proper scaffold to incorporate various bioactive agents with beneficial therapeutic effects on skin tissue restoration. Due to these suitable and versatile characteristics, cellulose derivatives are attractive and captivating materials for wound-healing applications. This review presents an extensive overview of recent research regarding promising cellulose derivatives-based materials for the development of multiple biomedical and pharmaceutical applications, such as wound dressings, drug delivery devices, and tissue engineering.
Collapse
Affiliation(s)
- Elena-Emilia Tudoroiu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mădălina Georgiana Albu Kaya
- Department of Collagen, Division Leather and Footwear Research Institute, National Research and Development Institute for Textile and Leather, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Răzvan Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| |
Collapse
|
32
|
Kalirajan C, Dukle A, Nathanael AJ, Oh TH, Manivasagam G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers (Basel) 2021; 13:3015. [PMID: 34503054 PMCID: PMC8433665 DOI: 10.3390/polym13173015] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Natural and synthetic polymers have been explored for many years in the field of tissue engineering and regeneration. Researchers have developed many new strategies to design successful advanced polymeric biomaterials. In this review, we summarized the recent notable advancements in the preparation of smart polymeric biomaterials with self-healing and shape memory properties. We also discussed novel approaches used to develop different forms of polymeric biomaterials such as films, hydrogels and 3D printable biomaterials. In each part, the applications of the biomaterials in soft and hard tissue engineering with their in vitro and in vivo effects are underlined. The future direction of the polymeric biomaterials that could pave a path towards successful clinical implications is also underlined in this review.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| |
Collapse
|
33
|
Cao H, Qin H, Li Y, Jandt KD. The Action-Networks of Nanosilver: Bridging the Gap between Material and Biology. Adv Healthc Mater 2021; 10:e2100619. [PMID: 34309242 PMCID: PMC11468843 DOI: 10.1002/adhm.202100619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Indexed: 01/06/2023]
Abstract
The emergence of nanosilver (silver in nanoscale shapes and their assemblies) benefits the landscape of modern healthcare; however, this brings about concerns over its safety issues associated with an ultrasmall size and high mobility. By reviewing previous reporting details about the synthesis and characterization of nanosilver and its biological responses, a gap between materials synthesis and their biomedical uses is characterized by the insufficient understanding of the interacting and interplaying nanoscale actions of silver. To improve reporting quality and advance clinical translations, it is suggested that researchers have a comprehensive recognition of the "Indications for use" before designing innovative nanosilver-based materials and an "Action-network" concept addressing the acting range and strength of those nanoscale actions is implemented. Although this discussion is specific to nanosilver, the idea of "Indications for use" centered design and synthesis is generally applicable to other biomedical nanomaterials.
Collapse
Affiliation(s)
- Huiliang Cao
- Lab of Low‐Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
- Shanghai Engineering Research Center of Hierarchical NanomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
- Chair of Materials ScienceOtto Schott Institute of Materials ResearchFriedrich Schiller University JenaJena07743Germany
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yongsheng Li
- Lab of Low‐Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
- Shanghai Engineering Research Center of Hierarchical NanomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Klaus D. Jandt
- Chair of Materials ScienceOtto Schott Institute of Materials ResearchFriedrich Schiller University JenaJena07743Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJena07743Germany
- Jena School for Microbial Communication (JSMC)Neugasse 23Jena07743Germany
| |
Collapse
|
34
|
Echeverria Molina MI, Malollari KG, Komvopoulos K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front Bioeng Biotechnol 2021; 9:617141. [PMID: 34195178 PMCID: PMC8236583 DOI: 10.3389/fbioe.2021.617141] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous surgical procedures are daily performed worldwide to replace and repair damaged tissue. Tissue engineering is the field devoted to the regeneration of damaged tissue through the incorporation of cells in biocompatible and biodegradable porous constructs, known as scaffolds. The scaffolds act as host biomaterials of the incubating cells, guiding their attachment, growth, differentiation, proliferation, phenotype, and migration for the development of new tissue. Furthermore, cellular behavior and fate are bound to the biodegradation of the scaffold during tissue generation. This article provides a critical appraisal of how key biomaterial scaffold parameters, such as structure architecture, biochemistry, mechanical behavior, and biodegradability, impart the needed morphological, structural, and biochemical cues for eliciting cell behavior in various tissue engineering applications. Particular emphasis is given on specific scaffold attributes pertaining to skin and brain tissue generation, where further progress is needed (skin) or the research is at a relatively primitive stage (brain), and the enumeration of some of the most important challenges regarding scaffold constructs for tissue engineering.
Collapse
Affiliation(s)
- Maria I Echeverria Molina
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Katerina G Malollari
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Kyriakos Komvopoulos
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
35
|
The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J Control Release 2021; 332:460-492. [DOI: 10.1016/j.jconrel.2021.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
|
36
|
Muthukrishnan L. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. Carbohydr Polym 2021; 260:117774. [PMID: 33712131 DOI: 10.1016/j.carbpol.2021.117774] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
3D printing, one of its kinds has been a recent technological trend to fabricate complex and patterned biomaterial with controlled precision. With the conventional kick-start of printing metals and plastics, advancements in printing viable cells, polysaccharides or microbes themselves have been achieved. The additive antimicrobial properties in bioinks sourced from organic and inorganic materials have profound implications in tissue engineering. Cellulose, alginate, exopolysaccharides, ceramics and synthetic polymers are integrated as a viable component in inks and used for bio-printing. To date, bacterial infection and immunogenicity pose a potential health risk during a tissue implant or bone substitution. In order to mitigate microbial infection, antimicrobial bioinks with significant antimicrobial potential have been the much sought after strategies. This approach could be an effective frontline defense against microbial interference in tissue engineering and biomedical applications. An overview on the antimicrobial potential of polysaccharides as bioinks for 3D bioprinting has been critically reviewed.
Collapse
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
37
|
Chinta ML, Velidandi A, Pabbathi NPP, Dahariya S, Parcha SR. Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. Int J Biol Macromol 2021; 175:495-515. [PMID: 33539959 DOI: 10.1016/j.ijbiomac.2021.01.196] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
Cartilage is a connective tissue, which is made up of ~80% of water. It is alymphatic, aneural and avascular with only one type of cells present, chondrocytes. They constitute about 1-5% of the entire cartilage tissue. It has a very limited capacity for spontaneous repair. Articular cartilage defects are quite common due to trauma, injury or aging and these defects eventually lead to osteoarthritis, affecting the daily activities. Tissue engineering (TE) is a promising strategy for the regeneration of articular cartilage when compared to the existing invasive treatment strategies. Cellulose is the most abundant natural polymer and has desirable properties for the development of a scaffold, which can be used for the regeneration of cartilage. This review discusses about (i) the basic science behind cartilage TE and the study of cellulose properties that can be exploited for the construction of the engineered scaffold with desired properties for cartilage tissue regeneration, (ii) about the requirement of scaffolds properties, fabrication mechanisms and assessment of cellulose based scaffolds, (iii) details about the modification of cellulose surface by employing various chemical approaches for the production of cellulose derivatives with enhanced characteristics and (iv) limitations and future research prospects of cartilage TE.
Collapse
Affiliation(s)
- Madhavi Latha Chinta
- Stem Cell Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Aditya Velidandi
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | | | - Swati Dahariya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sreenivasa Rao Parcha
- Stem Cell Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India.
| |
Collapse
|
38
|
Madni A, Kousar R, Naeem N, Wahid F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.01.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
39
|
Preparation and properties of carboxymethyl chitosan/oxidized hydroxyethyl cellulose hydrogel. Int J Biol Macromol 2020; 162:1692-1698. [DOI: 10.1016/j.ijbiomac.2020.07.282] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/20/2022]
|
40
|
Naghizadeh A, Mohammadi-Aghdam S, Mortazavi-Derazkola S. Novel CoFe 2O 4@ZnO-CeO 2 ternary nanocomposite: Sonochemical green synthesis using Crataegus microphylla extract, characterization and their application in catalytic and antibacterial activities. Bioorg Chem 2020; 103:104194. [PMID: 32890997 DOI: 10.1016/j.bioorg.2020.104194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
In this study, CoFe2O4@ZnO-CeO2 magnetic nanocomposite (CoFe@Zn-Ce MNC) was successfully prepared by facile sonochemical method for the first time. CoFe@Zn-Ce MNC was obtained by green and cost-effective process in the presence of Crataegus microphylla (C. microphylla) fruit extract. Influence of some parameters like capping agents (C. microphylla, SDS and CTAB), sonication time (10, 30 and 60 min) and sonication power (40, 60 and 80 W) were studied to achieve optimum condition. The as-obtained products were characterized by FT-IR, FESEM, TEM, DRS, VSM, EDS, TGA and XRD analysis. Results showed that high magnetic properties (20.38 emug-1), 70-80 nm size and spherical morphology were unique characteristics of synthesized nanocomposite. Antibacterial activity of CoFe@Zn-Ce MNC was examined against E. coli, P. aeruginoss and S. aureus bacteria. Among theme, S. aureus as gram-positive bacteria showed excellent antibacterial activity. Furthermore, photocatalytic performance of the CoFe@Zn-Ce MNC was investigated by degradation of humic acid (HA) molecules under visible and UV light irradiations. The influence of morphology of products and incorporation of cerium oxide with CoFe2O4@ZnO on photocatalytic activity of CoFe2O4@ZnO was performed. After 100 min illumination, the decomposition of HA pollutant by magnetic nanocomposite were 97.2% and 72.4% under exposure of UV and visible light irradiations, respectively. Also, CoFe@Zn-Ce MNC demonstrated high stability in the cycling decomposition experiment after six times cycling runs.
Collapse
Affiliation(s)
- Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sobhan Mortazavi-Derazkola
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
41
|
Demir D, Ceylan S, Atakav Y, Bölgen N. Synthesis of silver nanoflakes on chitosan hydrogel beads and their antimicrobial potential. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1801293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Didem Demir
- Chemical Engineering Department, Mersin University, Mersin, Turkey
| | - Seda Ceylan
- Bioengineering Department, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Yağmur Atakav
- Bioengineering Department, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Nimet Bölgen
- Chemical Engineering Department, Mersin University, Mersin, Turkey
| |
Collapse
|
42
|
Paca AM, Ajibade PA. Effect of temperature on structural and optical properties of iron sulfide nanocrystals prepared from tris(N-methylbenzyldithiocarbamato) iron(III) complex. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1789996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Athandwe M. Paca
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|
43
|
Zhang F, King MW. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Adv Healthc Mater 2020; 9:e1901358. [PMID: 32424996 DOI: 10.1002/adhm.201901358] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/03/2020] [Indexed: 01/15/2023]
Abstract
Biodegradable polymers play a pivotal role in in situ tissue engineering. Utilizing various technologies, researchers have been able to fabricate 3D tissue engineering scaffolds using biodegradable polymers. They serve as temporary templates, providing physical and biochemical signals to the cells and determining the successful outcome of tissue remodeling. Furthermore, a biodegradable scaffold also presents the fourth dimension for tissue engineering, namely time. The properties of the biodegradable polymer change over time, presenting continuously changing features during the degradation process. These changes become more complicated when different materials are combined together to fabricate a composite or heterogeneous scaffold. This review undertakes a systematic analysis of the basic characteristics of biodegradable polymers and describe recent advances in making composite biodegradable scaffolds for in situ tissue engineering and regenerative medicine. The interaction between implanted biodegradable biomaterials and the in vivo environment are also discussed, including the properties and functional changes of the degradable scaffold, the local effect of degradation on the contiguous tissue and their evaluation using both in vitro and in vivo models.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of TextilesNorth Carolina State University Raleigh NC 27606 USA
| | - Martin W. King
- Wilson College of TextilesNorth Carolina State University Raleigh NC 27606 USA
- College of TextilesDonghua University Songjiang District Shanghai 201620 China
| |
Collapse
|
44
|
Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, Loh HS, Lim YP, Lee CF, Bhattamishra SK, Kesharwani P, Gorain B. Silver nanoparticles: Advanced and promising technology in diabetic wound therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110925. [PMID: 32409075 DOI: 10.1016/j.msec.2020.110925] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Wounds associated with diabetes mellitus are the most severe co-morbidities, which could be progressed to cause cell necrosis leading to amputation. Statistics on the recent status of the diabetic wounds revealed that the disease affects 15% of diabetic patients, where 20% of them undergo amputation of their limb. Conventional therapies are found to be ineffective due to changes in the molecular architecture of the injured area, urging novel deliveries for effective treatment. Therefore, recent researches are on the development of new and effective wound care materials. Literature is evident in providing potential tools in topical drug delivery for wound healing under the umbrella of nanotechnology, where nano-scaffolds and nanofibers have shown promising results. The nano-sized particles are also known to promote healing of wounds by facilitating proper movement through the healing phases. To date, focuses have been made on the efficacy of silver nanoparticles (AgNPs) in treating the diabetic wound, where these nanoparticles are known to exploit potential biological properties in producing anti-inflammatory and antibacterial activities. AgNPs are also known to activate cellular mechanisms towards the healing of chronic wounds; however, associated toxicities of AgNPs are of great concern. This review is an attempt to illustrate the use of AgNPs in wound healing to facilitate this delivery system in bringing into clinical applications for a superior dressing and treatment over wounds and ulcers in diabetes patients.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Yan Qing Lim
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chea Yee Low
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Cheng Teck Lee
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Tee Cheng Ling Marilyn
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Huai Seang Loh
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Yee Ping Lim
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Cheng Feng Lee
- Bachelor of Pharmacy Student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Subrat Kumar Bhattamishra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500, Selengor, Malaysia.
| |
Collapse
|
45
|
El Fawal G, Hong H, Song X, Wu J, Sun M, He C, Mo X, Jiang Y, Wang H. Fabrication of antimicrobial films based on hydroxyethylcellulose and ZnO for food packaging application. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100462] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Noreen A, Zia KM, Tabasum S, Khalid S, Shareef R. A review on grafting of hydroxyethylcellulose for versatile applications. Int J Biol Macromol 2020; 150:289-303. [PMID: 32004607 DOI: 10.1016/j.ijbiomac.2020.01.265] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 01/15/2023]
Abstract
Hydroxyethylcellulose (HEC) is a biocompatible, biodegradable, nontoxic, hydrophilic, non- ionic water soluble derivative of cellulose. It is broadly used in biomedical field, paint industry, as a soil amendment in agriculture, coal dewatering, cosmetics, absorbent pads, wastewater treatment and gel electrolyte membranes. Industrial uses of HEC can be extended by the its grafting with different polymers including poly acrylic acid, polyacrylamide, polylactic acid, polyethyleneglycol, polydimethyleamide, polycaprolactone, polylactic acid and dimethylamino ethylmethacrylate. This permits the formation of new biomaterials with improved properties and versatile applications. In this article, a comprehensive overview of graft copolymers of HEC with other polymers/compounds and their applications in drug delivery, stimuli sensitive hydrogels, super absorbents, personal hygiene products and coal dewatering is presented.
Collapse
Affiliation(s)
- Aqdas Noreen
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan
| | - Khalid Mahmood Zia
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan.
| | - Shazia Tabasum
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan
| | - Sana Khalid
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan
| | - Rahila Shareef
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan
| |
Collapse
|
47
|
Souto EB, Ribeiro AF, Ferreira MI, Teixeira MC, Shimojo AAM, Soriano JL, Naveros BC, Durazzo A, Lucarini M, Souto SB, Santini A. New Nanotechnologies for the Treatment and Repair of Skin Burns Infections. Int J Mol Sci 2020; 21:E393. [PMID: 31936277 PMCID: PMC7013843 DOI: 10.3390/ijms21020393] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Burn wounds are highly debilitating injuries, with significant morbidity and mortality rates worldwide. In association with the damage of the skin integrity, the risk of infection is increased, posing an obstacle to healing and potentially leading to sepsis. Another limitation against healing is associated with antibiotic resistance mainly due to the use of systemic antibiotics for the treatment of localized infections. Nanotechnology has been successful in finding strategies to incorporate antibiotics in nanoparticles for the treatment of local wounds, thereby avoiding the systemic exposure to the drug. This review focuses on the most recent advances on the use of nanoparticles in wound dressing formulations and in tissue engineering for the treatment of burn wound infections.
Collapse
Affiliation(s)
- Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.F.R.); (M.I.F.); (M.C.T.); (A.A.M.S.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - André F. Ribeiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.F.R.); (M.I.F.); (M.C.T.); (A.A.M.S.)
| | - Maria I. Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.F.R.); (M.I.F.); (M.C.T.); (A.A.M.S.)
| | - Maria C. Teixeira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.F.R.); (M.I.F.); (M.C.T.); (A.A.M.S.)
| | - Andrea A. M. Shimojo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.F.R.); (M.I.F.); (M.C.T.); (A.A.M.S.)
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, Brazil
| | - José L. Soriano
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.L.S.); (B.C.N.)
| | - Beatriz C. Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.L.S.); (B.C.N.)
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Selma B. Souto
- Department of Endocrinology of Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
48
|
Amirsadeghi A, Jafari A, Eggermont LJ, Hashemi SS, Bencherif SA, Khorram M. Vascularization strategies for skin tissue engineering. Biomater Sci 2020; 8:4073-4094. [DOI: 10.1039/d0bm00266f] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lack of proper vascularization after skin trauma causes delayed wound healing. This has sparked the development of various tissue engineering strategies to improve vascularization.
Collapse
Affiliation(s)
- Armin Amirsadeghi
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | - Arman Jafari
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | | | - Seyedeh-Sara Hashemi
- Burn & Wound Healing Research Center
- Shiraz University of Medical Science
- Shiraz 71345-1978
- Iran
| | - Sidi A. Bencherif
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
- Department of Bioengineering
| | - Mohammad Khorram
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| |
Collapse
|
49
|
Solazzo M, O'Brien FJ, Nicolosi V, Monaghan MG. The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioeng 2019; 3:041501. [PMID: 31650097 PMCID: PMC6795503 DOI: 10.1063/1.5116579] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
The human heart possesses minimal regenerative potential, which can often lead to chronic heart failure following myocardial infarction. Despite the successes of assistive support devices and pharmacological therapies, only a whole heart transplantation can sufficiently address heart failure. Engineered scaffolds, implantable patches, and injectable hydrogels are among the most promising solutions to restore cardiac function and coax regeneration; however, current biomaterials have yet to achieve ideal tissue regeneration and adequate integration due a mismatch of material physicochemical properties. Conductive fillers such as graphene, carbon nanotubes, metallic nanoparticles, and MXenes and conjugated polymers such as polyaniline, polypyrrole, and poly(3,4-ethylendioxythiophene) can possibly achieve optimal electrical conductivities for cardiac applications with appropriate suitability for tissue engineering approaches. Many studies have focused on the use of these materials in multiple fields, with promising effects on the regeneration of electrically active biological tissues such as orthopedic, neural, and cardiac tissue. In this review, we critically discuss the role of heart electrophysiology and the rationale toward the use of electroconductive biomaterials for cardiac tissue engineering. We present the emerging applications of these smart materials to create supportive platforms and discuss the crucial role that electrical stimulation has been shown to exert in maturation of cardiac progenitor cells.
Collapse
|
50
|
Chatchawanwirote L, Chuysinuan P, Thanyacharoen T, Ekabutr P, Supaphol P. Green synthesis of photomediated silver nanoprisms via a light-induced transformation reaction and silver nanoprism-impregnated bacteria cellulose films for use as antibacterial wound dressings. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|