1
|
Brogini S, Tschon M, Vivarelli L, Gambardella A, De Bonis A, Giavaresi G, Fini M, Dallari D, Rau JV, Govoni M. Enhanced Bioactivity of Cu-Doped Bioactive Glass Coatings on Human Freeze-Dried Cortical Bone: An In Vitro Study. Bioengineering (Basel) 2025; 12:354. [PMID: 40281714 PMCID: PMC12024917 DOI: 10.3390/bioengineering12040354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Bone grafting is one of the most used surgical techniques to favor bone regeneration and repair in orthopedic procedures. Despite autografting continuing to be considered the gold standard, allogeneic bone tissues remain a viable alternative albeit in the last decades, only a few studies have been carried out to translate enhanced allogeneic bone grafts into clinical solutions. In this in vitro study, cortical allogeneic bone samples were coated with copper-doped bioactive glass 45S5 (Cu-BG) by means of the pulsed-laser deposition technique to combine the mechanical support and osteoconductive properties of human bone with the osteogenic and pro-angiogenic features of the bioactive material. Contact angle (CA), scanning electron microscopy (SEM), and atomic force microscopy (AFM) measurements were carried out to quantitatively compare the impact on the bone surface properties of the morphological changes induced by the presence of the coating. Specifically, the obtained results have shown a total absorption of the drop on the coated samples. The coating on the bone tissue surface consisted of a homogeneous Cu-BG background layer with micrometric grain-like aggregates on it-a morphological feature that can facilitate osteoblast adhesion and proliferation. Cytotoxicity and cell viability were carried out on Saos-2 osteoblast-like cells, demonstrating the biocompatibility of the novel composite bone tissue and the absence of cytotoxic residuals. Moreover, human bone marrow-derived mesenchymal stem cells (hBMSCs) were seeded on Cu-BG and not-coated (NC) samples to evaluate the bioactivity and their differentiation toward the osteogenic phenotype. Our findings showed the pro-osteogenic and pro-angiogenic potential of Cu-BG coatings, although dynamic changes were observed over time. At seven days, the Cu-BG samples exhibited significantly higher expressions of SP7, SPP1, and BGLAP genes, indicating an enhanced early osteogenic commitment. Moreover, VEGF expression was significantly increased in Cu-BG compared to the control. These results pave the way for the development of an innovative class of bone-based products distributed by tissue banks.
Collapse
Affiliation(s)
- Silvia Brogini
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.B.); (M.T.); (A.G.); (G.G.)
| | - Matilde Tschon
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.B.); (M.T.); (A.G.); (G.G.)
| | - Leonardo Vivarelli
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (D.D.); (M.G.)
| | - Alessandro Gambardella
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.B.); (M.T.); (A.G.); (G.G.)
| | - Angela De Bonis
- Department of Science, University of Basilicata, 85100 Potenza, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.B.); (M.T.); (A.G.); (G.G.)
| | - Milena Fini
- Scientific Director, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Dante Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (D.D.); (M.G.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Marco Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (D.D.); (M.G.)
| |
Collapse
|
2
|
Li K, Cao H, Huang H, Tang S, Wang H, Yang Q, Hu Y, Weng J, Chen X. Advances in copper-containing biomaterials for managing bone-related diseases. Regen Biomater 2025; 12:rbaf014. [PMID: 40259976 PMCID: PMC12011366 DOI: 10.1093/rb/rbaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 04/23/2025] Open
Abstract
Bone-related diseases pose a major challenge in contemporary society, with significant implications for both health and economy. Copper, a vital trace metal in the human body, facilitates a wide range of physiological processes by being crucial for the function of proteins and enzymes. Numerous studies have validated copper's role in bone regeneration and protection, particularly in the development and expansion of bone collagen. Owing to copper's numerous biological advantages, an increasing number of scientists are endeavoring to fabricate novel, multifunctional copper-containing biomaterials as an effective treatment strategy for bone disorders. This review integrates the current understanding regarding the biological functions of copper from the molecular and cellular levels, highlighting its potential for bone regeneration and protection. It also reviews the novel fabrication techniques for developing copper-containing biomaterials, including copper-modified metals, calcium phosphate bioceramics, bioactive glasses, bone cements, hydrogels and biocomposites. The fabrication strategies and various applications of these biomaterials in addressing conditions such as fractures, bone tumors, osteomyelitis, osteoporosis, osteoarthritis and osteonecrosis are carefully elaborated. Moreover, the long-term safety and toxicity assessments of these biomaterials are also presented. Finally, the review addresses current challenges and future prospects, in particular the regulatory challenges and safety issues faced in clinical implementation, with the aim of guiding the strategic design of multifunctional copper-based biomaterials to effectively manage bone-related diseases.
Collapse
Affiliation(s)
- Kunwei Li
- School of Life Science and Engineering, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Huan Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hao Huang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Songyuan Tang
- School of Life Science and Engineering, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Han Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu 610014, China
| | - Qing Yang
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Chengdu 610014, China
| | - Yonghe Hu
- College of Medicine, Southwest Jiao Tong University, Chengdu 610031, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiao Tong University, Chengdu, Sichuan 610031, China
| | - Xin Chen
- School of Life Science and Engineering, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| |
Collapse
|
3
|
Irfa'i MA, Muryanto S, Pusparizkita YM, Prihanto A, Sancho Vaquer A, Schmahl WW, Ismail R, Jamari J, Bayuseno AP. Calcination-based direct extraction of hydroxyapatite from bovine bone waste. ENVIRONMENTAL TECHNOLOGY 2024; 45:6249-6261. [PMID: 38488117 DOI: 10.1080/09593330.2024.2330478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 12/05/2024]
Abstract
The main chemical components of waste cow bones are apatite minerals, especially those containing calcium and phosphorus. This study investigated whether this bone could produce extracted hydroxyapatite through calcining at 900° C for different holding times (1-6 h). An average mass loss of 45% occurred in this experiment during the preparation of bone powders, which involved crushing and further calcining at this temperature. The quantitative XRD analysis showed that 99.97 wt.% hydroxyapatite and over 0.3 wt.% calcite were present in the raw and as-calcined bone powders, with trace amounts of CaFe3O5 (calcium ferrite) phases appearing in the calcined product. Depending on the holding calcining times, SEM images of the calcined bovine powders revealed aggregate sizes ranging from 0.5-3 µm and crystallite (grain) sizes ranging from 70 to 340 nm in all calcium-phosphate powder products. Following EDX analysis of all sample surfaces, possible calcium-deficient hydroxyapatite instead of hydroxyapatite formed, as evidenced by the calcined product's Ca/P ratio exceeding 1.67. Additionally, calcining cow bones for 5-6 h at 900° C yielded a high-purity nano-crystalline hydroxyapatite powder precursor in biomedical applications.
Collapse
Affiliation(s)
- M A Irfa'i
- Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
- Department of Mechanical Engineering, Universitas Negeri Surabaya, Surabaya, Indonesia
| | - S Muryanto
- Department of Chemical Engineering, UNTAG University in Semarang, Semarang, Indonesia
| | - Y M Pusparizkita
- Department of Environmental Engineering, Diponegoro University, Semarang, Indonesia
| | - A Prihanto
- Vacational Chemical Engineering Program, Catholic Polytechnic Mangunwijaya, Semarang, Indonesia
| | - A Sancho Vaquer
- Department of Earth and Environmental Sciences, Ludwig-Maximilians- University of Munich, Munich, Germany
| | - W W Schmahl
- Department of Earth and Environmental Sciences, Ludwig-Maximilians- University of Munich, Munich, Germany
| | - R Ismail
- Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
| | - J Jamari
- Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
| | - A P Bayuseno
- Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
4
|
Spaeth K, Nawaz Q, Schilling T, Goetz-Neunhoeffer F, Detsch R, Boccaccini AR, Hurle K. New Insights Into Application Relevant Properties of Cu 2+-Doped Brushite Cements. J Biomed Mater Res B Appl Biomater 2024; 112:e35479. [PMID: 39225415 DOI: 10.1002/jbm.b.35479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Doping of brushite cements with metal ions can entail many positive effects on biological and physicochemical properties. Cu2+ ions are known to exhibit antibacterial properties and can additionally have different positive effects on cells as trace elements, whereas high Cu2+ concentrations are cytotoxic. For therapeutical applications of bone cement, a combination of good biocompatibility and sufficient mechanical properties is required. Therefore, the aim of this study was to investigate different physicochemical and biological aspects, relevant for application, of a brushite cement with Cu2+-doped β-tricalcium phosphate, monocalcium phosphate monohydrate and phytic acid as setting retarder. Additionally, the ion release was compared with a cement with citric acid as setting retarder. The investigated cements showed good injectability coefficients, as well as compressive strength values sufficient for application. Furthermore, no antibacterial effects were detected irrespective of the Cu2+ concentration or the bacterial strain. The cell experiments with eluate samples showed that the viability of MC3T3-E1 cells tended to decrease with increasing Cu2+ concentration in the cement. It is suggested that these biological responses are caused by the difference in the Cu2+ release from the hardened cement depending on the solvent medium. Furthermore, the cements showed a steady release of Cu2+ ions to a lesser extent in comparison with a cement with citric acid as setting retarder, where a burst release of Cu2+ was observed. In conclusion, despite the anticipated antibacterial effect of Cu2+-doped cements was lacking and mammalian cell viability was slightly affected, Cu2+-concentrations maintained the physicochemical properties as well as the compressive strength of cements and the slow ion release from cements produced with phytic acid is considered advantageous compared to citric acid-based formulations.
Collapse
Affiliation(s)
- Karla Spaeth
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Qaisar Nawaz
- Department Materials Science and Engineering, Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tatjana Schilling
- Department for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, Julius-Maximilians-Universität Würzburg (JMU), Würzburg, Germany
| | | | - Rainer Detsch
- Department Materials Science and Engineering, Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aldo R Boccaccini
- Department Materials Science and Engineering, Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
5
|
Vlajić Tovilović T, Petrović S, Lazarević M, Pavić A, Plačkić N, Milovanović A, Milošević M, Miletic V, Veljović D, Radunović M. Effect of Acetylsalicylic Acid on Biological Properties of Novel Cement Based on Calcium Phosphate Doped with Ions of Strontium, Copper, and Zinc. Int J Mol Sci 2024; 25:7940. [PMID: 39063181 PMCID: PMC11276672 DOI: 10.3390/ijms25147940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to compare the biological properties of newly synthesized cements based on calcium phosphate with a commercially used cement, mineral trioxide aggregate (MTA). Strontium (Sr)-, Copper (Cu)-, and Zinc (Zn)-doped hydroxyapatite (miHAp) powder was obtained through hydrothermal synthesis and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry (EDX). Calcium phosphate cement (CPC) was produced by mixing miHAp powder with a 20 wt.% citric acid solution, followed by the assessment of its compressive strength, setting time, and in vitro bioactivity. Acetylsalicylic acid (ASA) was added to the CPC, resulting in CPCA. Biological tests were conducted on CPC, CPCA, and MTA. The biocompatibility of the cement extracts was evaluated in vitro using human dental pulp stem cells (hDPSCs) and in vivo using a zebrafish model. Antibiofilm and antimicrobial effect (quantified by CFUs/mL) were assessed against Streptococcus mutans and Lactobacillus rhamnosus. None of the tested materials showed toxicity, while CPCA even increased hDPSCs proliferation. CPCA showed a better safety profile than MTA and CPC, and no toxic or immunomodulatory effects on the zebrafish model. CPCA exhibited similar antibiofilm effects against S. mutans and L. rhamnosus to MTA.
Collapse
Affiliation(s)
- Tamara Vlajić Tovilović
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| | - Sanja Petrović
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| | - Miloš Lazarević
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.P.); (N.P.)
| | - Nikola Plačkić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.P.); (N.P.)
| | - Aleksa Milovanović
- Faculty of Mechanical Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.M.); (M.M.)
| | - Miloš Milošević
- Faculty of Mechanical Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.M.); (M.M.)
| | - Vesna Miletic
- Faculty of Medicine and Health, Sydney Dental School, University of Sydney, Surry Hills, NSW 2010, Australia;
| | - Djordje Veljović
- Faculty of Technology and Metallurgy, University of Belgrade, 11 000 Belgrade, Serbia
| | - Milena Radunović
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| |
Collapse
|
6
|
Ghezzi D, Graziani G, Cappelletti M, Fadeeva IV, Montesissa M, Sassoni E, Borciani G, Barbaro K, Boi M, Baldini N, Rau JV. New strontium-based coatings show activity against pathogenic bacteria in spine infection. Front Bioeng Biotechnol 2024; 12:1347811. [PMID: 38665815 PMCID: PMC11044685 DOI: 10.3389/fbioe.2024.1347811] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Infections of implants and prostheses represent relevant complications associated with the implantation of biomedical devices in spine surgery. Indeed, due to the length of the surgical procedures and the need to implant invasive devices, infections have high incidence, interfere with osseointegration, and are becoming increasingly difficult to threat with common therapies due to the acquisition of antibiotic resistance genes by pathogenic bacteria. The application of metal-substituted tricalcium phosphate coatings onto the biomedical devices is a promising strategy to simultaneously prevent bacterial infections and promote osseointegration/osseoinduction. Strontium-substituted tricalcium phosphate (Sr-TCP) is known to be an encouraging formulation with osseoinductive properties, but its antimicrobial potential is still unexplored. To this end, novel Sr-TCP coatings were manufactured by Ionized Jet Deposition technology and characterized for their physiochemical and morphological properties, cytotoxicity, and bioactivity against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P human pathogenic strains. The coatings are nanostructured, as they are composed by aggregates with diameters from 90 nm up to 1 μm, and their morphology depends significantly on the deposition time. The Sr-TCP coatings did not exhibit any cytotoxic effects on human cell lines and provided an inhibitory effect on the planktonic growth of E. coli and S. aureus strains after 8 h of incubation. Furthermore, bacterial adhesion (after 4 h of exposure) and biofilm formation (after 24 h of cell growth) were significantly reduced when the strains were cultured on Sr-TCP compared to tricalcium phosphate only coatings. On Sr-TCP coatings, E. coli and S. aureus cells lost their organization in a biofilm-like structure and showed morphological alterations due to the toxic effect of the metal. These results demonstrate the stability and anti-adhesion/antibiofilm properties of IJD-manufactured Sr-TCP coatings, which represent potential candidates for future applications to prevent prostheses infections and to promote osteointegration/osteoinduction.
Collapse
Affiliation(s)
- Daniele Ghezzi
- University of Bologna, Department of Pharmacy and Biotechnology, Bologna, Italy
| | - Gabriela Graziani
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
| | - Martina Cappelletti
- University of Bologna, Department of Pharmacy and Biotechnology, Bologna, Italy
| | - Inna V. Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
| | - Matteo Montesissa
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Enrico Sassoni
- University of Bologna, Department of Civil, Chemical, Environmental and Materials Engineering, Bologna, Italy
| | - Giorgia Borciani
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
| | | | - Marco Boi
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Rome, Italy
| |
Collapse
|
7
|
Goldberg MA, Gafurov MR, Makshakova ON, Smirnov SV, Fomin AS, Murzakhanov FF, Komlev VS. Peculiarities of charge compensation in lithium-doped hydroxyapatite. Heliyon 2024; 10:e25291. [PMID: 38384581 PMCID: PMC10878879 DOI: 10.1016/j.heliyon.2024.e25291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Hydroxyapatite (HA) remains one of the most popular materials for various biomedical applications and its fields of application have been expanding. Lithium (Li+) is a promising candidate for modifying the biological behavior of HA. Li+ is present in trace amounts in the human body as an alkaline and bioelectric material. At the same time, the introduction of Li+ into the HA structure required charge balance compensation due to the difference in oxidation degree, and the scheme of this compensation is still an open question. In the present work, the results of the theoretical and experimental study of the Li+-doped HA synthesis are presented. According to X-ray diffraction data, Fourier transform infrared spectroscopy as well as the combination of electron paramagnetic resonance methods, the introduction of Li+ in the amount up to 0.05 mol% resulted in the preservation of the HA structure. Density functional theory calculations show that Li+ preferentially incorporates into the Ca (1) position with a small geometry perturbation. The less probable positioning in the Ca (2) position leads to a drastic perturbation of the anion channel.
Collapse
Affiliation(s)
- Margarita A. Goldberg
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, 119334, Russian Federation
| | | | - Olga N. Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, 420111, Russian Federation
| | - Sergey V. Smirnov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, 119334, Russian Federation
| | - Alexander S. Fomin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, 119334, Russian Federation
| | | | - Vladimir S. Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, 119334, Russian Federation
| |
Collapse
|
8
|
Popova AD, Sheveyko AN, Kuptsov KA, Advakhova DY, Karyagina AS, Gromov AV, Krivozubov MS, Orlova PA, Volkov AV, Slukin PV, Ignatov SG, Shubina IZ, Ilnitskaya AS, Gloushankova NA, Timoshenko RV, Erofeev AS, Shtansky DV. Osteoconductive, Osteogenic, and Antipathogenic Plasma Electrolytic Oxidation Coatings on Titanium Implants with BMP-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37274-37289. [PMID: 37499236 DOI: 10.1021/acsami.3c08954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We report a one-pot plasma electrolytic oxidation (PEO) strategy for forming a multi-element oxide layer on the titanium surface using complex electrolytes containing Na2HPO4, Ca(OH)2, (NH2)2CO, Na2SiO3, CuSO4, and KOH compounds. For even better bone implant ingrowth, PEO coatings were additionally loaded with bone morphogenetic protein-2 (BMP-2). The samples were tested in vivo in a mouse craniotomy model. Tests for bactericidal and fungicidal activity were carried out using clinically isolated multi-drug-resistant Escherichia coli (E. coli) K261, E. coli U20, methicillin-resistant Staphylococcus aureus (S. aureus) CSA154 bacterial strains, and Neurospora crassa (N. crassa) and Candida albicans (C. albicans) D2528/20 fungi. The PEO-Cu coating effectively inactivated both Gram-positive and Gram-negative bacteria at low concentrations of Cu2+ ions: minimal bactericidal concentration for E. coli and N. crassa (99.9999%) and minimal inhibitory concentration (99.0%) for S. aureus were 5 ppm. For all studied bacterial and fungal strains, PEO-Cu coating completely prevented the formation of bacterial and fungal biofilms. PEO and PEO-Cu coatings demonstrated bone remodeling and moderate osteoconductivity in vivo, while BMP-2 significantly enhanced osteoconduction and osteogenesis. The obtained results are encouraging and indicate that Ti-based materials with PEO coatings loaded with BMP-2 can be widely used in customized medicine as implants for orthopedics and cranio-maxillofacial surgery.
Collapse
Affiliation(s)
- Anastasiya D Popova
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | | | | | - Darya Yu Advakhova
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Anna S Karyagina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gori 1, Str. 40, Moscow 119992, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
| | - Alexander V Gromov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
| | - Mikhail S Krivozubov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
| | - Polina A Orlova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
| | - Alexey V Volkov
- The Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Pavel V Slukin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia, National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Sergei G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia, National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Irina Zh Shubina
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Alla S Ilnitskaya
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Natalia A Gloushankova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Roman V Timoshenko
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Alexander S Erofeev
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| |
Collapse
|
9
|
Fadeeva IV, Deyneko DV, Knotko AV, Olkhov AA, Slukin PV, Davydova GA, Trubitsyna TA, Preobrazhenskiy II, Gosteva AN, Antoniac IV, Rau JV. Antibacterial Composite Material Based on Polyhydroxybutyrate and Zn-Doped Brushite Cement. Polymers (Basel) 2023; 15:polym15092106. [PMID: 37177252 PMCID: PMC10181370 DOI: 10.3390/polym15092106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
A composite material based on electrospinning printed polyhydroxybutyrate fibers impregnated with brushite cement containing Zn substitution was developed for bone implant applications. Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy were applied for materials characterization. Soaking the composite in Ringer's solution led to the transformation of brushite into apatite phase, accompanied by the morphology changes of the material. The bending strength of the composite material was measured to be 3.1 ± 0.5 MPa. NCTC mouse fibroblast cells were used to demonstrate by means of the MTT test that the developed material was not cytotoxic. The behavior of the human dental pulp stem cells on the surface of the composite material investigated by the direct contact method was similar to the control. It was found that the developed Zn containing composite material possessed antibacterial properties, as testified by microbiology investigations against bacteria strains of Escherichia coli and Staphylococcus aureus. Thus, the developed composite material is promising for the treatment of damaged tissues with bacterial infection complications.
Collapse
Affiliation(s)
- Inna V Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky Prospect 49, 119334 Moscow, Russia
| | - Dina V Deyneko
- Chemistry Department, Lomonosov Moscow State University, Vorobievy Gory 1, 119991 Moscow, Russia
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Str., 184209 Apatity, Russia
| | - Alexander V Knotko
- Chemistry Department, Lomonosov Moscow State University, Vorobievy Gory 1, 119991 Moscow, Russia
| | - Anatoly A Olkhov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Building 1, 119991 Moscow, Russia
- Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia
| | - Pavel V Slukin
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor 24, Block A, 142279 Obolensk, Russia
| | - Galina A Davydova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Moscow, Russia
| | - Taisiia A Trubitsyna
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Moscow, Russia
| | - Ilya I Preobrazhenskiy
- Materials Science Department, Lomonosov Moscow State University, Vorobievy Gory 1, 119991 Moscow, Russia
| | - Alevtina N Gosteva
- Kola Science Centre RAS, Tananaev Institute of Chemistry, Akademgorodok District 26A, 184209 Apatity, Russia
| | - Iulian V Antoniac
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, ISM-CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
10
|
Vezenkova A, Locs J. Sudoku of porous, injectable calcium phosphate cements - Path to osteoinductivity. Bioact Mater 2022; 17:109-124. [PMID: 35386461 PMCID: PMC8964990 DOI: 10.1016/j.bioactmat.2022.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
With the increase of global population, people's life expectancy is growing as well. Humans tend to live more active lifestyles and, therefore, trauma generated large defects become more common. Instances of tumour resection or pathological conditions and complex orthopaedic issues occur more frequently increasing necessity for bone substitutes. Composition of calcium phosphate cements (CPCs) is comparable to the chemical structure of bone minerals. Their ability to self-set and resorb in vivo secures a variety of potential applications in bone regeneration. Despite the years-long research and several products already reaching the market, finding the right properties for calcium phosphate cement to be osteoinductive and both injectable and suitable for clinical use is still a sudoku. This article is focused on injectable, porous CPCs, reviewing the latest developments on the path toward finding osteoinductive material, which is suitable for injection.
Collapse
Affiliation(s)
- Agneta Vezenkova
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of Genera Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of Genera Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
11
|
Prosolov KA, Lastovka VV, Khimich MA, Chebodaeva VV, Khlusov IA, Sharkeev YP. RF Magnetron Sputtering of Substituted Hydroxyapatite for Deposition of Biocoatings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6828. [PMID: 36234169 PMCID: PMC9573009 DOI: 10.3390/ma15196828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Functionalization of titanium (Ti)-based alloy implant surfaces by deposition of calcium phosphates (CaP) has been widely recognized. Substituted hydroxyapatites (HA) allow the coating properties to be tailored based on the use of different Ca substitutes. The formation of antibacterial CaP coatings with the incorporation of Zn or Cu by an RF magnetron sputtering is proposed. The influence of RF magnetron targets elemental composition and structure in the case of Zn-HA and Cu-HA, and the influence of substrate's grain size, the substrate's temperature during the deposition, and post-deposition heat treatment (HT) on the resulting coatings are represented. Sintering the targets at 1150 °C resulted in a noticeable structural change with an increase in cell volume and lattice parameters for substituted HA. The deposition rate of Cu-HA and Zn-HA was notably higher compared to stochiometric HA (10.5 and 10) nm/min vs. 9 ± 0.5 nm/min, respectively. At the substrate temperature below 100 °C, all deposited coatings were found to be amorphous with an atomic short-range order corresponding to the {300} plane of crystalline HA. All deposited coatings were found to be hyper-stochiometric with Ca/P ratios varying from 1.9 to 2.5. An increase in the substrate temperature to 200 °C resulted in the formation of equiaxed grain structure on both coarse-grained (CG) and nanostructured (NS) Ti. The use of NS Ti notably increased the scratch resistance of the deposited coatings from18 ± 1 N to 22 ± 2 N. Influence of HT in air or Ar atmosphere is also discussed. Thus, the deposition of Zn- or Cu-containing CaP is a complex process that could be fine-tuned using the obtained research results.
Collapse
Affiliation(s)
- Konstantin A. Prosolov
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
| | - Vladimir V. Lastovka
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
| | - Margarita A. Khimich
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
| | - Valentina V. Chebodaeva
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| | - Igor A. Khlusov
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| | - Yurii P. Sharkeev
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia
| |
Collapse
|
12
|
Xu VW, Nizami MZI, Yin IX, Yu OY, Lung CYK, Chu CH. Application of Copper Nanoparticles in Dentistry. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:805. [PMID: 35269293 PMCID: PMC8912653 DOI: 10.3390/nano12050805] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Nanoparticles based on metal and metallic oxides have become a novel trend for dental applications. Metal nanoparticles are commonly used in dentistry for their exclusive shape-dependent properties, including their variable nano-sizes and forms, unique distribution, and large surface-area-to-volume ratio. These properties enhance the bio-physio-chemical functionalization, antimicrobial activity, and biocompatibility of the nanoparticles. Copper is an earth-abundant inexpensive metal, and its nanoparticle synthesis is cost effective. Copper nanoparticles readily intermix and bind with other metals, ceramics, and polymers, and they exhibit physiochemical stability in the compounds. Hence, copper nanoparticles are among the commonly used metal nanoparticles in dentistry. Copper nanoparticles have been used to enhance the physical and chemical properties of various dental materials, such as dental amalgam, restorative cements, adhesives, resins, endodontic-irrigation solutions, obturation materials, dental implants, and orthodontic archwires and brackets. The objective of this review is to provide an overview of copper nanoparticles and their applications in dentistry.
Collapse
Affiliation(s)
| | - Mohammed Zahedul Islam Nizami
- Faculty of Dentistry, University of Hong Kong, Hong Kong 999077, China; (V.W.X.); (I.X.Y.); (O.Y.Y.); (C.Y.K.L.); (C.H.C.)
| | | | | | | | | |
Collapse
|
13
|
Fosca M, Rau JV, Uskoković V. Factors influencing the drug release from calcium phosphate cements. Bioact Mater 2022; 7:341-363. [PMID: 34466737 PMCID: PMC8379446 DOI: 10.1016/j.bioactmat.2021.05.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
Thanks to their biocompatibility, biodegradability, injectability and self-setting properties, calcium phosphate cements (CPCs) have been the most economical and effective biomaterials of choice for use as bone void fillers. They have also been extensively used as drug delivery carriers owing to their ability to provide for a steady release of various organic molecules aiding the regeneration of defective bone, including primarily antibiotics and growth factors. This review provides a systematic compilation of studies that reported on the controlled release of drugs from CPCs in the last 25 years. The chemical, compositional and microstructural characteristics of these systems through which the control of the release rates and mechanisms could be achieved have been discussed. In doing so, the effects of (i) the chemistry of the matrix, (ii) porosity, (iii) additives, (iv) drug types, (v) drug concentrations, (vi) drug loading methods and (vii) release media have been distinguished and discussed individually. Kinetic specificities of in vivo release of drugs from CPCs have been reviewed, too. Understanding the kinetic and mechanistic correlations between the CPC properties and the drug release is a prerequisite for the design of bone void fillers with drug release profiles precisely tailored to the application area and the clinical picture. The goal of this review has been to shed light on these fundamental correlations.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy
- I.M. Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991, Moscow, Russia
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, Irvine, CA 92604, United States
| |
Collapse
|
14
|
Fadeeva IV, Lazoryak BI, Davidova GA, Murzakhanov FF, Gabbasov BF, Petrakova NV, Fosca M, Barinov SM, Vadalà G, Uskoković V, Zheng Y, Rau JV. Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112410. [PMID: 34579919 DOI: 10.1016/j.msec.2021.112410] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022]
Abstract
The development of new materials with antibacterial properties and the scope to decrease or eliminate the excessive antibiotic use is an urgent priority due to the growing antibiotic resistance-related mortalities. New bone substitute materials with intrinsic antibacterial characteristics are highly requested for various clinical applications. In this study, the choice of copper ions as substitutes for calcium in tricalcium phosphate (TCP) has been justified by their pronounced broad-spectrum antibacterial properties. Copper-substituted TCP (Cu-TCP) ceramics with the copper content of 1.4 and 0.1 wt% were synthesized by mechano-chemical activation. X-ray diffraction (XRD) analyses established that both pure and copper-containing compounds adopted the structure of whitlockite (β-TCP). XRD and electron paramagnetic resonance (EPR) spectroscopy revealed the partial isovalent substitution of calcium ions with copper ions in the β-TCP lattice. With the use of infrared and EPR spectroscopies, it was detected that carbonate ions got incorporated into the β-TCP structure during the synthesis procedure. By releasing the tension in the M(5)O6 octahedron consequential to the lower CaO bond length than the corresponding sum of ionic radii, the substitution of calcium with smaller copper ions stabilizes the structure of β-TCP. As concluded form the thermal analyses, the introduction of Cu prevented the polymorphic transformation of β- to α-TCP. At the same time, the introduction of Cu to the β-TCP structure enhanced the crystal growth and porosity of the ceramics, which had a positive effect on the cytocompatibility of the material. The MTT colorimetric assay showed that the metabolic activity of the mouse fibroblast NCTC L929 cell line during 24 h of incubation with 3-day extracts from Cu-TCP (1.4 wt%) and β-TCP pellets in the cell culture medium was similar to the negative control, indicating the absence of any inhibitory effects on cells. The seeding and the growth of human dental pulp stem cells on the surface of Cu-TCP (1.4 wt%) and β-TCP ceramics also showed the absence of any signs of cytotoxicity. Finally, microbiological assays demonstrated the antibacterial activity of Cu-TCP ceramics against Escherichia coli and Salmonella enteritidis, whereas β-TCP did not exhibit such an activity. Overall, the addition of Cu ions to β-TCP improves its antibacterial properties without diminishing the biocompatibility of the material, thus making it more attractive than pure β-TCP for clinical applications such as synthetic bone grafts and orthopaedic implant coatings.
Collapse
Affiliation(s)
- Inna V Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky prospect 49, 119334 Moscow, Russia.
| | - Bogdan I Lazoryak
- M.V. Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 119991 Moscow, Russia
| | - Galina A Davidova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Puschino, 142290, Moscow region, Russia
| | | | | | - Natalya V Petrakova
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky prospect 49, 119334 Moscow, Russia
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Sergey M Barinov
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky prospect 49, 119334 Moscow, Russia
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991 Moscow, Russia.
| |
Collapse
|
15
|
Mechanical Behavior of Bi-Layer and Dispersion Coatings Composed of Several Nanostructures on Ti13Nb13Zr Alloy. MATERIALS 2021; 14:ma14112905. [PMID: 34071468 PMCID: PMC8199481 DOI: 10.3390/ma14112905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Titanium implants are commonly used because of several advantages, but their surface modification is necessary to enhance bioactivity. Recently, their surface coatings were developed to induce local antibacterial properties. The aim of this research was to investigate and compare mechanical properties of three coatings: multi-wall carbon nanotubes (MWCNTs), bi-layer composed of an inner MWCNTs layer and an outer TiO2 layer, and dispersion coatings comprised of simultaneously deposited MWCNTs and nanoCu, each electrophoretically deposited on the Ti13Nb13Zr alloy. Optical microscopy, scanning electron microscopy, X-ray electron diffraction spectroscopy, and nanoindentation technique were applied to study topography, chemical composition, hardness, plastic and elastic properties. The results demonstrate that the addition of nanocopper or titanium dioxide to MWCNTs coating increases hardness, lowers Young’s modulus, improves plastic and elastic properties, wear resistance under deflection, and plastic deformation resistance. The results can be attributed to different properties, structure and geometry of applied particles, various deposition techniques, and the possible appearance of porous structures. These innovative coatings of simultaneously high strength and elasticity are promising to apply for deposition on long-term titanium implants.
Collapse
|
16
|
Zhang D, Zhu X, Li J, Zheng Z, Liang T, Yang H. A Method to Prepare Hollow Spherical Hydroxyapatite Granules for Drug Delivery. CHEM LETT 2021. [DOI: 10.1246/cl.200918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dong Zhang
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - XinWei Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, P. R. China
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, P. R. China
| | - JinYuan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, P. R. China
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, P. R. China
| | - ZhaoLi Zheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, P. R. China
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, P. R. China
| | - TongXiang Liang
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Hui Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, P. R. China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, P. R. China
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Ganzhou 341000, P. R. China
| |
Collapse
|
17
|
Hurle K, Oliveira J, Reis R, Pina S, Goetz-Neunhoeffer F. Ion-doped Brushite Cements for Bone Regeneration. Acta Biomater 2021; 123:51-71. [PMID: 33454382 DOI: 10.1016/j.actbio.2021.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Decades of research in orthopaedics has culminated in the quest for formidable yet resorbable biomaterials using bioactive materials. Brushite cements most salient features embrace high biocompatibility, bioresorbability, osteoconductivity, self-setting characteristics, handling, and injectability properties. Such type of materials is also effectively applied as drug delivery systems. However, brushite cements possess limited mechanical strength and fast setting times. By means of incorporating bioactive ions, which are incredibly promising in directing cell fate when incorporated within biomaterials, it can yield biomaterials with superior mechanical properties. Therefore, it is a key to develop fine-tuned regenerative medicine therapeutics. A comprehensive overview of the current accomplishments of ion-doped brushite cements for bone tissue repair and regeneration is provided herein. The role of ionic substitution on the cements physicochemical properties, such as structural, setting time, hydration products, injectability, mechanical behaviour and ion release is discussed. Cell-material interactions, osteogenesis, angiogenesis, and antibacterial activity of the ion-doped cements, as well as its potential use as drug delivery carriers are also presented. STATEMENT OF SIGNIFICANCE: Ion-doped brushite cements have unbolted a new era in orthopaedics with high clinical interest to restore bone defects and facilitate the healing process, owing its outstanding bioresorbability and osteoconductive/osteoinductive features. Ion incorporation expands their application by increasing the osteogenic and neovascularization potential of the materials, as well as their mechanical performance. Recent accomplishments of brushite cements incorporating bioactive ions are overviewed. Focus was placed on the role of ions on the physicochemical and biological properties of the biomaterials, namely their structure, setting time, injectability and handling, mechanical behaviour, ion release and in vivo osteogenesis, angiogenesis and vascularization. Antibacterial activity of the cements and their potential use for delivery of drugs are also highlighted herein.
Collapse
|
18
|
Effect of zoledronic acid and graphene oxide on the physical and in vitro properties of injectable bone substitutes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111758. [PMID: 33545899 DOI: 10.1016/j.msec.2020.111758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 12/26/2022]
Abstract
The aim of this work was to develop injectable bone substitutes (IBS) consisting of zoledronic acid (ZOL) and graphene oxide (GO) for the treatment of osteoporosis and metastasis. The powder phase was consisting of tetra calcium phosphate (TTCP), dicalcium phosphate dihyrate (DCPD) and calcium sulfate dihyrate (CSD), while the liquid phase comprised of methylcellulose (MC), gelatin and sodium citrate dihyrate (SC), ZOL and GO. The structural analysis of IBS samples was performed by Fourier Transform Infrared Spectroscopy (FTIR). Injectability, setting time and mechanical strength were investigated. Additionally, in vitro properties of synthesized IBS were analyzed by means of bioactivity, ZOL release, degradation, pH variation, PO43- ion release and cell studies. Overall, all IBS exhibited excellent injectability results with no phase separation. The setting time of the IBS was prolonged with ZOL incorporation while the prolonging effect decreased with GO incorporation. The mechanical properties decreased with ZOL addition and increased with the incorporation of GO. The maximum compressive strength was found as 25.73 MPa for 1.5GO0ZOL incorporated IBS. In vitro results showed that ZOL and GO loaded IBS also revealed clinically suitable properties with controlled release of ZOL, pH value and PO43- ions. In in vitro cell studies, both the inhibitory effect of ZOL and GO loaded IBS on MCF-7 cells and proliferative effect on osteoblast cells were observed. Moreover, the prepared IBS led to proliferation, differentiation and mineralization of osteoblasts. The results are encouraging and support the conclusion that developed IBS have promising physical and in vitro properties which needs to be further validated by gene expression and in vivo studies.
Collapse
|
19
|
Jacobs A, Renaudin G, Forestier C, Nedelec JM, Descamps S. Biological properties of copper-doped biomaterials for orthopedic applications: A review of antibacterial, angiogenic and osteogenic aspects. Acta Biomater 2020; 117:21-39. [PMID: 33007487 DOI: 10.1016/j.actbio.2020.09.044] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Copper is an essential trace element required for human life, and is involved in several physiological mechanisms. Today researchers have found and confirmed that Cu has biological properties which are particularly useful for orthopedic biomaterials applications such as implant coatings or biodegradable filler bone substitutes. Indeed, Cu exhibits antibacterial functions, provides angiogenic ability and favors osteogenesis; these represent major key points for ideal biomaterial integration and the healing process that follows. The antibacterial performances of copper-doped biomaterials present an interesting alternative to the massive use of prophylactic antibiotics and help to limit the development of antibiotic resistance. By stimulating blood vessel growth and new bone formation, copper contributes to the improved bio-integration of biomaterials. This review describes the bio-functional advantages offered by Cu and focuses on the antibacterial, angiogenic and osteogenic properties of Cu-doped biomaterials with potential for orthopedic applications.
Collapse
|
20
|
Li X, Li G, Zhang K, Pei Z, Zhao S, Li J. Cu-loaded Brushite bone cements with good antibacterial activity and operability. J Biomed Mater Res B Appl Biomater 2020; 109:877-889. [PMID: 33112029 DOI: 10.1002/jbm.b.34752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 09/28/2020] [Accepted: 10/17/2020] [Indexed: 01/29/2023]
Abstract
Bone defect-related surgical procedures are traumatic processes carrying potential inflammation and infection risks in the clinic, which are associated with prolonged antibiotic therapy that promotes bacterial antibiotic-resistance. In the present study, Cu-loaded brushite bone cements were designed, and the properties of the bone cements were evaluated. The setting time of the cement was prolonged from 12 to 50 min as the copper content increased. All cements were anti-washout, and the injectable coefficient of the cements was approximately 88%. Scanning electron microscopy results revealed that the crystal grains grew larger and thicker as the copper content in the cement increased, and brushite was determined to be the dominant crystalline phase for all the cements. However, a small amount of newly formed calcium copper phosphate was observed in the cement. Simultaneously, band shifts were observed in the Fourier transform infrared spectroscopy results at a Cu content of 5%. Moreover, the addition of Cu improved the compressive strength of brushite cements, and all cements were degradable. Furthermore, the Cu-loaded brushite bone cements performed well in inhibiting the growth and proliferation of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and the diameter of the inhibition zone increased with increasing copper content. The study revealed that the Cu-loaded brushite bone cements possessed good cellular affinity to mouse bone marrow stem cells when a lower dose of copper was added in vitro. These results support the great potential of injectable antibacterial brushite bone cement specifically for bone tissue defect-related repair and regeneration.
Collapse
Affiliation(s)
- Xiaoyu Li
- Central laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Guangda Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kaili Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhengjun Pei
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Santuan Zhao
- College of Material Science and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
21
|
Prosolov KA, Lastovka VV, Belyavskaya OA, Lychagin DV, Schmidt J, Sharkeev YP. Tailoring the Surface Morphology and the Crystallinity State of Cu- and Zn-Substituted Hydroxyapatites on Ti and Mg-Based Alloys. MATERIALS 2020; 13:ma13194449. [PMID: 33036465 PMCID: PMC7579569 DOI: 10.3390/ma13194449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022]
Abstract
Titanium-based alloys are known as a “gold standard” in the field of implantable devices. Mg-based alloys, in turn, are very promising biocompatible material for biodegradable, temporary implants. However, the clinical application of Mg-based alloys is currently limited due to the rapid resorption rate in the human body. The deposition of a barrier layer in the form of bioactive calcium phosphate coating is proposed to decelerate Mg-based alloys resorption. The dissolution rate of calcium phosphates is strongly affected by their crystallinity and structure. The structure of antibacterial Cu- and Zn-substituted hydroxyapatite deposited by an radiofrequency (RF) magnetron sputtering on Ti and Mg–Ca substrates is tailored by post-deposition heat treatment and deposition at increased substrate temperatures. It is established that upon an increase in heat treatment temperature mean crystallite size decreases from 47 ± 17 to 13 ± 9 nm. The character of the crystalline structure is not only governed by the temperature itself but relies on the condition such as either post-deposition treatment, where an amorphous calcium phosphate undergoes crystallization or instantaneous crystalline coating growth during deposition on the hot substrate. A higher treatment temperature at 700 °C results in local coating micro-cracking and induced defects, while the temperature of 400–450 °C resulted in the formation of dense, void-free structure.
Collapse
Affiliation(s)
- Konstantin A. Prosolov
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, 634055 Tomsk, Russia; (V.V.L.); (O.A.B.); (Y.P.S.)
- Correspondence: ; Tel.: +7-961-888-58-33
| | - Vladimir V. Lastovka
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, 634055 Tomsk, Russia; (V.V.L.); (O.A.B.); (Y.P.S.)
| | - Olga A. Belyavskaya
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, 634055 Tomsk, Russia; (V.V.L.); (O.A.B.); (Y.P.S.)
| | - Dmitry V. Lychagin
- Department of Mineralogy and Geochemistry, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia;
| | - Juergen Schmidt
- Department of Electrochemistry, Innovent Technology Development, Pruessingstrasse 27 B, D-07745 Jena, Germany;
| | - Yurii P. Sharkeev
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, 634055 Tomsk, Russia; (V.V.L.); (O.A.B.); (Y.P.S.)
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russia
| |
Collapse
|
22
|
Goldberg M, Krohicheva P, Fomin A, Khairutdinova D, Antonova O, Baikin A, Smirnov V, Fomina A, Leonov A, Mikheev I, Sergeeva N, Akhmedova S, Barinov S, Komlev V. Insitu magnesium calcium phosphate cements formation: From one pot powders precursors synthesis to in vitro investigations. Bioact Mater 2020; 5:644-658. [PMID: 32420515 PMCID: PMC7217922 DOI: 10.1016/j.bioactmat.2020.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/17/2022] Open
Abstract
Calcium phosphate cements are of great interest for researchers and their applications in medical practice expanded. Nevertheless, they have a number of drawbacks including the insufficient level of mechanical properties and low degradation rate. Struvite (MgNH4PO4) -based cements, which grew in popularity in recent years, despite their neutral pH and acceptable mechanical performance, release undesirable NH4 + ions during their resorption. This issue could be avoided by replacement of ammonia ions in the cement liquid with sodium, however, such cements have a pH values of 9-10, leading to cytotoxicity. Thus, the main goal of this investigation is to optimize the composition of cements to achieve the combination of desirable properties: neutral pH, sufficient mechanical properties, and the absence of cytotoxicity, applying Na2HPO4-based cement liquid. For this purpose, cement powders precursors in the CaO-MgO-P2O5 system were synthesized by one-pot process in a wide composition range, and their properties were investigated. The optimal performance was observed for the cements with (Ca + Mg)/P ratio of 1.67, which are characterized by newberyite phase formation during setting reaction, pH values close to 7, sufficient compressive strength up to 22 ± 3 MPa (for 20 mol.% of Mg), dense microstructure and adequate matrix properties of the surface. This set of features make those materials promising candidates for medical applications.
Collapse
Affiliation(s)
- M.A. Goldberg
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Leninsky av, 49, Moscow, Russian Federation
| | - P.A. Krohicheva
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Leninsky av, 49, Moscow, Russian Federation
| | - A.S. Fomin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Leninsky av, 49, Moscow, Russian Federation
| | - D.R. Khairutdinova
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Leninsky av, 49, Moscow, Russian Federation
| | - O.S. Antonova
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Leninsky av, 49, Moscow, Russian Federation
| | - A.S. Baikin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Leninsky av, 49, Moscow, Russian Federation
| | - V.V. Smirnov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Leninsky av, 49, Moscow, Russian Federation
| | - A.A. Fomina
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Leninsky av, 49, Moscow, Russian Federation
| | - A.V. Leonov
- M.V. Lomonosov Moscow State University, Department of Chemistry, 119991, Leninskie Gory, 1, Moscow, Russian Federation
| | - I.V. Mikheev
- M.V. Lomonosov Moscow State University, Department of Chemistry, 119991, Leninskie Gory, 1, Moscow, Russian Federation
| | - N.S. Sergeeva
- Federal State Budgetary Institution National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 125284, 2nd Botkinsky pass., 3, Moscow, Russian Federation
| | - S.A. Akhmedova
- Federal State Budgetary Institution National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 125284, 2nd Botkinsky pass., 3, Moscow, Russian Federation
| | - S.M. Barinov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Leninsky av, 49, Moscow, Russian Federation
| | - V.S. Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Leninsky av, 49, Moscow, Russian Federation
| |
Collapse
|
23
|
Rau JV, Fosca M, Fadeeva IV, Kalay S, Culha M, Raucci MG, Fasolino I, Ambrosio L, Antoniac IV, Uskoković V. Tricalcium phosphate cement supplemented with boron nitride nanotubes with enhanced biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111044. [DOI: 10.1016/j.msec.2020.111044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 11/26/2022]
|
24
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
25
|
Yousefi AM. A review of calcium phosphate cements and acrylic bone cements as injectable materials for bone repair and implant fixation. J Appl Biomater Funct Mater 2020; 17:2280800019872594. [PMID: 31718388 DOI: 10.1177/2280800019872594] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Treatment of bone defects caused by trauma or disease is a major burden on human healthcare systems. Although autologous bone grafts are considered as the gold standard, they are limited in availability and are associated with post-operative complications. Minimally invasive alternatives using injectable bone cements are currently used in certain clinical procedures, such as vertebroplasty and balloon kyphoplasty. Nevertheless, given the high incidence of fractures and pathologies that result in bone voids, there is an unmet need for injectable materials with desired properties for minimally invasive procedures. This paper provides an overview of the most common injectable bone cement materials for clinical use. The emphasis has been placed on calcium phosphate cements and acrylic bone cements, while enabling the readers to compare the opportunities and challenges for these two classes of bone cements. This paper also briefly reviews antibiotic-loaded bone cements used in bone repair and implant fixation, including their efficacy and cost for healthcare systems. A summary of the current challenges and recommendations for future directions has been brought in the concluding section of this paper.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| |
Collapse
|
26
|
Shu X, Liao J, Wang L, Shi Q, Xie X. Osteogenic, Angiogenic, and Antibacterial Bioactive Nano-Hydroxyapatite Co-Synthesized Using γ-Polyglutamic Acid and Copper. ACS Biomater Sci Eng 2020; 6:1920-1930. [PMID: 33455304 DOI: 10.1021/acsbiomaterials.0c00096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nano-antibacterial calcium phosphate (CaP) has attracted intense attention with regard to its wide variety of medical and biological applications. The γ-polyglutamic acid and copper cosynthesized hydroxyapatite (γ-PGA/CuxHAp) was synthesized using the wet method. Structural and chemical characterizations demonstrate that copper was quantitatively incorporated into the hydroxyapatite structure, and the degree of Cu substitution was up to 20 mol % in the synthesized nanocrystals. Morphology characterization showed that the size of the γ-PGA/CuxHAp nanoparticles decreases with the increased copper content. γ-PGA/CuxHAp exhibited a steady release of Cu ions. Two experimental protocols were applied to compare the antibacterial activity of the γ-PGA/CuxHAp samples. A positive correlation was observed between Cu content and the inhibition of bacterial growth. The study also showed that nanoparticles with smaller particle sizes exhibited higher antibacterial activities than the larger particles. Endothelial and osteoblast cells rapidly proliferated on γ-PGA/CuxHAp, whereas high concentrations (20 mol %) of Cu ions reduced cell proliferation. In the rat calvarial defect model, some γ-PGA/CuxHAp samples such as γ-PGA/CuxHAp (x = 8, 16) showed efficient bone regeneration capacities at 12 weeks post implantation. Thus, the multibiofunctional γ-PGA/CuxHAp nanocomposite exhibited degradative, angiogenic, bactericidal and bone regenerative properties, providing a potential means to address some of the critical challenges in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Xiulin Shu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture, Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, Guangdong 510070, China
| | - Junda Liao
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture, Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, Guangdong 510070, China
| | - Lingling Wang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture, Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, Guangdong 510070, China
| | - Qingshan Shi
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture, Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, Guangdong 510070, China
| | - Xiaobao Xie
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture, Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, Guangdong 510070, China
| |
Collapse
|
27
|
Modification of PMMA Cements for Cranioplasty with Bioactive Glass and Copper Doped Tricalcium Phosphate Particles. Polymers (Basel) 2019; 12:polym12010037. [PMID: 31881672 PMCID: PMC7023726 DOI: 10.3390/polym12010037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
Cranioplasty represents the surgical repair of bone defects or deformities in the cranium arising from traumatic skull bone fracture, cranial bone deformities, bone cancer, and infections. The actual gold standard in surgery procedures for cranioplasty involves the use of biocompatible materials, and repair or regeneration of large cranial defects is particularly challenging from both a functional and aesthetic point of view. PMMA-based bone cement are the most widely biomaterials adopted in the field, with at least four different surgical approaches. Modifications for improving biological and mechanical functions of PMMA-based bone cement have been suggested. To this aim, the inclusion of antibiotics to prevent infection has been shown to provide a reduction of mechanical properties in bending. Therefore, the development of novel antibacterial active agents to overcome issues related to mechanical properties and bacterial resistance to antibiotics is still encouraged. In this context, mechanical, biological, and antibacterial feature against P. aeruginosa and S. aureus bacterial strains of surgical PMMA cement modified with BG and recently developed Cu-TCP bioactive particles have been highlighted.
Collapse
|
28
|
Properties of Nanohydroxyapatite Coatings Doped with Nanocopper, Obtained by Electrophoretic Deposition on Ti13Zr13Nb Alloy. MATERIALS 2019; 12:ma12223741. [PMID: 31766219 PMCID: PMC6888410 DOI: 10.3390/ma12223741] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Nowadays, hydroxyapatite coatings are the most common surface modification of long-term implants. These coatings are characterized by high thickness and poor adhesion to the metallic substrate. The present research is aimed at characterizing the properties of nanohydroxyapatite (nanoHAp) with the addition of copper nanoparticle (nanoCu) coatings deposited on the Ti13Zr13Nb alloy by an electrophoresis process. The deposition of coatings was carried out for various amounts of nanoCu powder and various average particle sizes. Microstructure, topography, phase, and chemical composition were examined with scanning electron microscopy, atomic force microscopy, and X-ray diffraction. Corrosion properties were determined by potentiodynamic polarization technique in simulated body fluid. Nanomechanical properties were determined based on nanoindentation and scratch tests. The wettability of coatings was defined by the contact angle. It was proven that nanoHAp coatings containing nanocopper, compared to nanoHAp coatings without nanometals, demonstrated smaller number of cracks, lower thickness, and higher nanomechanical properties. The influence of the content and the average size of nanoCu on the quality of the coatings was observed. All coatings exhibited hydrophilic properties. The deposition of nanohydroxyapatite coatings doped with nanocopper may be a promising way to improve the antibacterial properties and mechanical stability of coatings.
Collapse
|
29
|
Goldberg M, Gafurov M, Makshakova O, Smirnov V, Komlev V, Barinov S, Kudryavtsev E, Sergeeva N, Achmedova S, Mamin G, Murzakhanov F, Orlinskii S. Influence of Al on the Structure and in Vitro Behavior of Hydroxyapatite Nanopowders. J Phys Chem B 2019; 123:9143-9154. [DOI: 10.1021/acs.jpcb.9b08157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Margarita Goldberg
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky pr., 119334 Moscow, Russia
| | - Marat Gafurov
- Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Olga Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str. 2/31, 420111 Kazan, Russian Federation
| | - Valeriy Smirnov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky pr., 119334 Moscow, Russia
| | - Vladimir Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky pr., 119334 Moscow, Russia
| | - Sergei Barinov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky pr., 119334 Moscow, Russia
| | - Egor Kudryavtsev
- The National Research University ″Belgorod State University″, 85 Pobedy str., 308015 Belgorod, Russia
| | - Natalia Sergeeva
- Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 3 2nd Botkinsky pass., 125284 Moscow, Russia
| | - Suraya Achmedova
- Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 3 2nd Botkinsky pass., 125284 Moscow, Russia
| | - Georgy Mamin
- Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Fadis Murzakhanov
- Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Sergei Orlinskii
- Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| |
Collapse
|
30
|
Zhang J, Wu H, He F, Wu T, Zhou L, Ye J. Concentration-dependent osteogenic and angiogenic biological performances of calcium phosphate cement modified with copper ions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1199-1212. [PMID: 30889654 DOI: 10.1016/j.msec.2019.02.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 01/26/2019] [Accepted: 02/13/2019] [Indexed: 01/14/2023]
Abstract
Development of multifunctional bone grafting biomaterials with both osteogenesis and angiogenesis properties have earned increasing interest in the field of regenerative medicine. In the present investigation, copper-doped β-tricalcium phosphate (Cu-TCP) powders were successfully synthesized. And Cu-containing calcium phosphate cement (Cu-CPC) was acquired through uniformly mixing CPC and Cu-TCP powders, with Cu-TCP serving as the donor of Cu2+. Cu-CPC exhibited suitable setting time, and the incorporation of Cu-TCP aggregating into CPC exhibited positive effect on the compressive strength while Cu2+ was in lower concentration. Investigation results showed that Cu-CPC had relatively low releasing amount of Cu2+, which was attributed to the re-bonding of Cu2+ into the newly formed HA crystals on surface. In vitro osteogenesis and angiogenesis properties of Cu-CPC were systematically evaluated through co-culture with mouse bone marrow stromal cells (mBMSCs) and human umbilical vein endothelial cells (HUVECs) respectively. The results indicated dose-dependent biological functions of Cu2+ in Cu-CPCs. The mBMSCs and HUVECs showed well activity and attachment morphology on TCP/CPC, 0.05 Cu-TCP/CPC, 0.1 Cu-TCP/CPC. The upregulated osteogenic-related genes expression and angiogenic-related genes expression were detected with lower Cu2+ content. Taken together, Cu-containing CPC is of great potential for the regeneration of vascularized new bone.
Collapse
Affiliation(s)
- Jing Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huae Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tingting Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510006, China
| | - Lian Zhou
- Department of Stomatology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science (CAMS) and PUMC, Beijing 100730, China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| |
Collapse
|
31
|
Uskoković V, Graziani V, Wu VM, Fadeeva IV, Fomin AS, Presniakov IA, Fosca M, Ortenzi M, Caminiti R, Rau JV. Gold is for the mistress, silver for the maid: Enhanced mechanical properties, osteoinduction and antibacterial activity due to iron doping of tricalcium phosphate bone cements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:798-810. [PMID: 30423766 PMCID: PMC6366449 DOI: 10.1016/j.msec.2018.10.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 09/17/2018] [Accepted: 10/04/2018] [Indexed: 11/23/2022]
Abstract
Self-hardening calcium phosphate cements present ideal bone tissue substitutes from the standpoints of bioactivity and biocompatibility, yet they suffer from (a) weak mechanical properties, (b) negligible osteoinduction without the use of exogenous growth factors, and (c) a lack of intrinsic antibacterial activity. Here we attempt to improve on these deficiencies by studying the properties of self-setting Fe-doped bone-integrative cements containing two different concentrations of the dopant: 0.49 and 1.09 wt% Fe. The hardening process, which involved the transformation of Fe-doped β-tricalcium phosphate (Fe-TCP) to nanocrystalline brushite, was investigated in situ by continuously monitoring the cements using the Energy Dispersive X-Ray Diffraction technique. The setting time was 20 min and the hardening time 2 h, but it took 50 h for the cement to completely stabilize compositionally and mechanically. Still, compared to other similar systems, the phase transformation during hardening was relatively fast and it also followed a relatively simple reaction path, virtually free of complex intermediates and noisy background. Mössbauer spectrometry demonstrated that 57Fe atoms in Fe-TCP were located in two non-equivalent crystallographic sites and distributed over positions with a strong crystal distortion. The pronounced presence of ultrafine crystals in the final, brushite phase contributed to the reduction of the porosity and thereby to the enhancement of the mechanical properties. The compressive strength of the hardened TCP cements increased by more than twofold when Fe was added as a dopant, i.e., from 11.5 ± 0.5 to 24.5 ± 2.0 MPa. The amount of iron released from the cements in physiological media steadied after 10 days and was by an order of magnitude lower than the clinical threshold that triggers the toxic response. The cements exhibited osteoinductive activity, as observed from the elevated levels of expression of genes encoding for osteocalcin and Runx2 in both undifferentiated and differentiated MC3T3-E1 cells challenged with the cements. The osteoinductive effect was inversely proportional to the content of Fe ions in the cements, indicating that an excessive amount of iron can have a detrimental effect on the induction of bone growth by osteoblasts in contact with the cement. In contrast, the antibacterial activity of the cement in the agar assay increased against all four bacterial species analysed (E. coli, S. enteritidis, P. aeruginosa, S. aureus) in direct proportion with the concentration of Fe ions in it, indicating their key effect on the promotion of the antibacterial effect in this material. This effect was less pronounced in broth assays. Experiments involving co-incubation of cements with cells in an alternate magnetic radiofrequency field for 30 min demonstrated a good potential for the use of these magnetic cements in hyperthermia cancer therapies. Specifically, the population of human glioblastoma cells decreased six-fold at the 24 h time point following the end of the magnetic field treatment, while the population of the bone cancer cells dropped approximately twofold. The analysis of the MC3T3-E1 cell/cement interaction reiterated the effects of iron in the cement on the bone growth marker expression by showing signs of adverse effects on the cell morphology and proliferation only for the cement containing the higher concentration of Fe ions (1.09 wt%). Biological testing concluded that the effects of iron are beneficial from the perspective of a magnetic hyperthermia therapy and antibacterial prophylaxis, but its concentration in the material must be carefully optimized to avoid the adverse effects induced above a certain level of iron concentrations.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA; Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052, USA
| | - Valerio Graziani
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
| | - Victoria M Wu
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA
| | - Inna V Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119991 Moscow, Russia
| | - Alexander S Fomin
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119991 Moscow, Russia
| | - Igor A Presniakov
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
| | - Marzo Ortenzi
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
| | - Ruggero Caminiti
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy; Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy.
| |
Collapse
|
32
|
Wu VM, Tang S, Uskoković V. Calcium Phosphate Nanoparticles as Intrinsic Inorganic Antimicrobials: The Antibacterial Effect. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34013-34028. [PMID: 30226742 DOI: 10.1021/acsami.8b12784] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cheap and simple to make, calcium phosphate (CP), thanks to its unusual functional pleiotropy, belongs to the new wave of abundant and naturally accessible nanomaterials applicable as a means to various technological ends. It is used in a number of industries, including the biomedical, but its intrinsic antibacterial activity in the nanoparticle form has not been sufficiently explored to date. In this study, we report on this intrinsic antibacterial effect exhibited by two distinct CP phases: an amorphous CP (ACP) and hydroxyapatite (HAp). The effect is prominent against a number of regular bacterial species, including Staphylococcus aureus, Staphylococcus epidermis, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa, but also their multidrug-resistant (MDR) analogues. Although ACP and HAp displayed similar levels of activity against Gram-negative organisms, ACP proved to be more effective against the Gram-positive ones, with respect to which HAp was mostly inert, yet this trend became reversed for the MDR strains. In addition to the intrinsic antimicrobial effect of CP nanoparticles, we have also observed a synergistic effect between the nanoparticles and certain antibiotics. Both forms of CP were engaged in a synergistic relationship with a variety of concomitantly delivered antibiotics, including ampicillin, kanamycin, oxacillin, vancomycin, minocycline, erythromycin, linezolid, and clindamycin, and enabled even antibiotics completely ineffective against particular bacterial strains to significantly suppress their growth. This relationship was complex; depending on a particular CP phase, bacterial strain and antibiotic, the antibacterial activity (i) intensified proportionally to the nanoparticle concentration, (ii) plateaued immediately after the introduction of nanoparticles in minute amounts, or (iii) exhibited concentration-dependent minima due to stress-induced biofilm formation. These findings present grounds for the further optimization of CP properties and maximization of this intriguing effect, which could in the long run make this material comparable in activity to the inorganics of choice for this application, including silver, copper, or zinc oxide, while retaining its superb safety profile and positive eukaryotic versus prokaryotic cell selectivity.
Collapse
Affiliation(s)
- Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery , Chapman University , Irvine , California 92618-1908 , United States
| | - Sean Tang
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery , Chapman University , Irvine , California 92618-1908 , United States
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery , Chapman University , Irvine , California 92618-1908 , United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering , University of Illinois , Chicago , Illinois 60607-7052 , United States
| |
Collapse
|
33
|
Laskus A, Kolmas J. Ionic Substitutions in Non-Apatitic Calcium Phosphates. Int J Mol Sci 2017; 18:E2542. [PMID: 29186932 PMCID: PMC5751145 DOI: 10.3390/ijms18122542] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/25/2022] Open
Abstract
Calcium phosphate materials (CaPs) are similar to inorganic part of human mineralized tissues (i.e., bone, enamel, and dentin). Owing to their high biocompatibility, CaPs, mainly hydroxyapatite (HA), have been investigated for their use in various medical applications. One of the most widely used ways to improve the biological and physicochemical properties of HA is ionic substitution with trace ions. Recent developments in bioceramics have already demonstrated that introducing foreign ions is also possible in other CaPs, such as tricalcium phosphates (amorphous as well as α and β crystalline forms) and brushite. The purpose of this paper is to review recent achievements in the field of non-apatitic CaPs substituted with various ions. Particular attention will be focused on tricalcium phosphates (TCP) and "additives" such as magnesium, zinc, strontium, and silicate ions, all of which have been widely investigated thanks to their important biological role. This review also highlights some of the potential biomedical applications of non-apatitic substituted CaPs.
Collapse
Affiliation(s)
- Aleksandra Laskus
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| | - Joanna Kolmas
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
34
|
Huang J, Zhou J, Zhuang J, Gao H, Huang D, Wang L, Wu W, Li Q, Yang DP, Han MY. Strong Near-Infrared Absorbing and Biocompatible CuS Nanoparticles for Rapid and Efficient Photothermal Ablation of Gram-Positive and -Negative Bacteria. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36606-36614. [PMID: 28976189 DOI: 10.1021/acsami.7b11062] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are the most common infectious bacteria in our daily life, and seriously affect human's health. Because of the frequent and extensive use of antibiotics, the microbial strains forming drug resistance have become more and more difficult to deal with. Herein, we utilized bovine serum albumin (BSA) as the template to synthesize uniform copper sulfide (CuS) nanoparticles via a biomineralization method. The as-prepared BSA-CuS nanocomposites showed good biocompatibility and strong near-infrared absorbance performance and can be used as an efficient photothermal conversion agent for pathogenic bacteria ablation with a 980 nm laser at a low power density of 1.59 W/cm2. The cytotoxicity of BSA-CuS nanocomposite was investigated using skin fibroblast cells and displayed good biocompatibility. Furthermore, the antibacterial tests indicated that BSA-CuS nanocomposite showed no antibacterial activity without NIR irradiation. In contrast, they demonstrated satisfying killing bacterial ability in the presence of NIR irradiation. Interestingly, S. aureus and E. coli showed various antibacterial mechanisms, possibly because of the different architectures of bacterial walls. Considering the low cost, easy preparation, excellent biocompatibility and strong photothermal convention efficiency (24.68%), the BSA-CuS nanocomposites combined with NIR irradiation will shed bright light on the treatment of antibiotic-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
| | - Jinfei Zhou
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Junyang Zhuang
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Hongzhi Gao
- The Second Affiliated Hospital of Fujian Medical University , Quanzhou 362000, Fujian Province, Pr China
| | - Donghong Huang
- The Second Affiliated Hospital of Fujian Medical University , Quanzhou 362000, Fujian Province, Pr China
| | - Lixing Wang
- The Second Affiliated Hospital of Fujian Medical University , Quanzhou 362000, Fujian Province, Pr China
| | - Wenlin Wu
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Da-Peng Yang
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Ming-Yong Han
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
- Institute of Materials Research and Engineering , Singapore 138634
| |
Collapse
|
35
|
Uskoković V, Rau JV. Nonlinear Oscillatory Dynamics of the Hardening of Calcium Phosphate Bone Cements. RSC Adv 2017; 7:40517-40532. [PMID: 29276582 PMCID: PMC5739343 DOI: 10.1039/c7ra07395j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Here we report on the nonlinear, oscillatory dynamics detected in the evolution of phase composition during the setting of different calcium phosphate cements, two of which evolved toward brushite and one toward hydroxyapatite as the final product. Whereas both brushite-forming cements contained ion-doped β-tricalcium phosphate as the initial phase, the zinc-containing one yielded scholzite as an additional phase during setting and the oscillations between these two products were pronounced throughout the entire 80 h setting period, long after the hardening processes was over from the mechanical standpoint. Oscillations in the copper-containing system involved the amount of brushite as the main product of the hardening reaction and they progressed faster toward an equilibrium point than in the zinc-containing system. Initially detected with the use of in situ energy-dispersive X-ray diffractometry, the oscillations were confirmed with a sufficient level of temporal matching in an in situ Fourier transform infrared spectroscopic analysis. The kinetic reaction analysis based on the Johnson-Mehl-Avrami-Kolmogorov model indicated an edge-controlled nucleation mechanism for brushite. The hydroxyapatite-forming cement comprised gelatin as an additional phase with a role of slowing down diffusion and allowing the detection of otherwise rapid oscillations in crystallinity and in the amount of the apatitic phase on the timescale of minutes. A number of possible causes for these dynamic instabilities were discussed. The classical chemical oscillatory model should not apply to these systems unless in combination with less exotic mechanisms of physicochemical nature. One possibility is that the variations in viscosity, directly affecting diffusion and nucleation rates and accompanying growth and transformation from the lower to the higher interfacial energy per the Ostwald-Lussac rule, are responsible for the oscillatory dynamics. The conception of bone replacement materials and tissue engineering constructs capable of engaging in the dynamics of integration with the natural tissues in compliance with this oscillatory nature may open a new avenue for the future of this type of medical devices. To succeed in this goal, the mechanism of these and similar instabilities must be better understood.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, Irvine, CA 92618-1908, USA
- Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
| |
Collapse
|