1
|
Zheng M, Tan Y, Yuan Y, Wang H, Yang H. Regulatory Mechanisms of Cytotoxicity and Hemocompatibility Induced by Phase Transformation of Kaolinite Nanocarrier. J Phys Chem Lett 2025; 16:3945-3953. [PMID: 40211690 DOI: 10.1021/acs.jpclett.5c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Revealing the regulatory mechanism underlying the cytotoxicity and hemocompatibility of nanocarriers is crucial for their biofunctionalized design and practical application in nanotherapeutics. However, the microstructural and physicochemical properties of nanocarriers inevitably change during the modification process, and the impact of these changes on biosafety remains unclear. Herein, we investigate the effects of phase transformation of kaolinite (Kaol) nanoclay on its biosafety. Experimental results indicate that the adjoint dehydration, dehydroxylation, and disaggregation during phase transformation of Kaol could alter the mode of interaction at the cell interface and mitigate damage to cell membranes. Furthermore, the heat-treated Kaol exhibits reduced hemolysis while maintaining red blood cell adhesion and pro-coagulant functions, without affecting the structure of plasma proteins. Collectively, this study could provide a novel insight into the correlation between Kaol microstructure and biosafety.
Collapse
Affiliation(s)
- Meng Zheng
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Ya Tan
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yiting Yuan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
2
|
Zhao T, Ren R, Qiao S, Tang X, Chi Z, Jiang F, Liu C. Multi-crosslinking nanoclay/oxidized cellulose hydrogel bandage with robust mechanical strength, antibacterial and adhesive properties for emergency hemostasis. J Colloid Interface Sci 2025; 683:828-844. [PMID: 39752932 DOI: 10.1016/j.jcis.2024.12.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025]
Abstract
Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method. The hydrogel was composed of kaolin, N-hydroxysuccinimide-grafted oxidized microcrystalline cellulose (OMCC-NHS), and polyacrylic acid (PAA). Featuring a multi-crosslinked network, it exhibited favorable elasticity (∼942 %), tensile strength (∼220 kPa), fatigue resistance, and robust tissue adhesion (∼55 kPa)-3.9 times stronger than commercial wound-closure strips, and it maintained adhesion even underwater. In addition to its mechanical properties, the hydrogel also exhibited satisfactory antibacterial activity, cytocompatibility, and histocompatibility. In vivo evaluations revealed an impressive hemostatic performance in rat models of liver bleeding, femoral artery bleeding, and tail amputation. Specifically, in the liver bleeding model, the hydrogel reduced blood loss to only 0.1 g, which is just 32 % of the blood loss seen with medical gauze. Notably, in New Zealand rabbit models with cardiac punctures and liver injuries, the hydrogel achieved rapid hemostasis and stopped the bleeding within seconds. The effective hemostatic ability of this hydrogel is primarily due to its ability to facilitate multistep hemostasis, which includes sealing the wound, rapidly absorbing blood, promoting RBC and platelets adhesion, and activating the intrinsic coagulation cascade. Therefore, this study provides a promising approach for developing gel-based hemostatic bandages, specifically tailored for emergency compressible bleeding scenarios.
Collapse
Affiliation(s)
- Tiange Zhao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Ruyi Ren
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Shiyue Qiao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Xinyi Tang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Fei Jiang
- Medical College, Linyi University, Shuangling Road, Linyi 276005, China.
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|
3
|
Quan M, Li J, Cui M, Sha G, Wang Y, Wu B, Zhu J, Chen J. Copper peroxide-loaded lignin-based non-isocyanate polyurethane foam for wound repair applications. Int J Biol Macromol 2025; 288:138733. [PMID: 39672447 DOI: 10.1016/j.ijbiomac.2024.138733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 12/15/2024]
Abstract
Wound healing is a complex process and the mechanism of the tissue repair process involves many complex steps: inflammation, proliferation, and maturation. Wounds can be divided into two main categories: acute and chronic wounds. Non-healing wounds usually follow a bacterial infection. Many types of materials on the market have been developed for use as wound dressings. Polyurethane foam for wound dressings has many advantages over other materials, especially for moderate wounds and drainage. In this study, lignin-based non-isocyanate polyurethane foams were prepared using a green route by oxygen alkylation modification of enzymatically dissolved lignin, cyclic carbonation and polymerization with diamines to add a blowing agent. By loading CuO2 on the surface of the prepared lignin-based non-isocyanate polyurethane foam, a pH-responsive wound dressing, named lignin-based non-isocyanate polyurethane/copper peroxide composite foam (named NIPU foam-CuO2), was prepared, which can specifically release the strong oxidizing OH under acidic conditions. The composite foam can effectively kill the bacteria in the wound. The test results proved that the composite foam has excellent mechanical properties, thermal stability, and biocompatibility. NIPU-foam-CuO2 100 mM inhibited two types of bacteria, Escherichia coli, and Staphylococcus aureus, by up to 98 % and 95 % within 8 h, respectively. It also shows excellent performance in promoting wound healing in organism experiments as well as in the subsequent histological staining. The lignin-based NIPU foams of this work exhibit remarkable innovation and unique properties in terms of environmental friendliness, performance and antimicrobial resistance. At the same time, we also mention potential problems such as drug resistance in the long-term use of NIPU-CuO2 foams.
Collapse
Affiliation(s)
- Mengqiu Quan
- College of Materials Science and Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201, PR China
| | - Jingrui Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201, PR China
| | - Minghui Cui
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201, PR China
| | - Genzheng Sha
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201, PR China
| | - Yuqing Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201, PR China
| | - Bozhen Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201, PR China
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201, PR China.
| |
Collapse
|
4
|
Shakya KR, Mansoori N, Anand A, Sharma V, Verma V. Agarose Cryogels Loaded with Polydopamine Microspheres for Sustainable Wound Care with Enhanced Hemostatic and Antioxidant Properties. ACS APPLIED BIO MATERIALS 2024; 7:6808-6822. [PMID: 39350639 DOI: 10.1021/acsabm.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Excessive bleeding presents a grave risk to life, especially in scenarios involving deep wounds such as those inflicted by gunshots and accidental stabs. Despite advancements in wound care management, existing commercial hemostatic agents have limitations, necessitating the development of enhanced solutions. In this study, we developed cryogels using agarose and polydopamine microspheres as a hemostatic dressing to effectively manage profuse bleeding. The resulting cryogels demonstrated impressive attributes, such as high absorption capacity (>4000%), shape recovery ability, antioxidant properties, and excellent biocompatibility in mammalian cell lines. Particularly noteworthy was the rapid blood clotting observed in vitro, with the agarose/PDA cryogels achieving complete clotting within just 90 s. Subsequent validation in the rat trauma model further underscored their hemostatic efficacy, with clotting times of 40 and 53 s recorded in tail amputation and liver puncture models, respectively. The porous structure and hydrophilicity of the cryogels facilitated superior blood absorption and retention, while the amine groups of polydopamine played a pivotal role in enhancing blood clotting activity. This study represents a significant step forward in utilizing agarose/polydopamine cryogels as advanced materials for hemostatic wound dressings, promising an impactful contribution to wound therapy.
Collapse
Affiliation(s)
- Kaushal R Shakya
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nasim Mansoori
- Department of Surgical Discipline, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anmol Anand
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijay Sharma
- Department of Surgical Discipline, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur 208016, India
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre of Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
5
|
Salmanipour S, Rezaie A, Alipour N, Ghahremani-Nasab M, Zakerhamidi MS, Akbari-Gharalari N, Mehdipour A, Salehi R, Jarolmasjed S. Development of Polyphosphate/Nanokaolin-Modified Alginate Sponge by Gas-Foaming and Plasma Glow Discharge Methods for Ultrarapid Hemostasis in Noncompressible Bleeding. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34684-34704. [PMID: 38919152 DOI: 10.1021/acsami.4c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Effective bleeding management strategies in uncontrollable and noncompressible massive hemorrhage are becoming important in both clinical and combat situations. Here, a novel approach was developed to create a superporous and highly absorbable hemostatic sponge through a facile chemical gas-foaming method by cross-linking long-chain polyphosphate along with nanokaolin and Ca2+ in an alginate structure to synergistically activate the coagulation pathway. Natural kaolin obtained from the Marand mine in East Azarbaijan was converted into pseudohexagonal-shaped kaolin nanoparticles (30 to 150 nm) using ball milling followed by a newly developed glow discharge plasma treatment method. The obtained ultralight sponges (>90% porosity) exhibit ultrarapid water/blood absorption capacity (∼4000%) and excellent shape memory, which effectively concentrates coagulation factors. The results of in vitro tests demonstrated that the proposed sponges exhibited enhanced blood clotting ability (BCI < 10%) and superior cohesion with red blood cells (∼100) and platelets (∼80%) compared to commercially available hemostatic products. The in vivo host response results exhibited biosafety with no systemic and significant local inflammatory response by hematological, pathological, and biochemical parameter assessments. In a rat femoral artery complete excision model, the application of alginate/k/polyp nanocomposite sponges resulted in a complete hemostasis time of 60 s by significant reduction of hemostasis time (∼6.7-8.3 fold) and blood loss (∼2-2.8-fold) compared to commercially available hemostatic agents (P < 0.001). In conclusion, distinct physical characteristics accompanied by unique chemical composition multifunctional sponges activate hemostasis synergistically by triggering the XII, XI, X, IX, V, and II factors and the contact pathway and have the ability of rapid hemostasis in noncompressible severe bleeding.
Collapse
Affiliation(s)
- Salar Salmanipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Ali Rezaie
- School of Process Engineering, Department of Chemical Engineering, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Nastaran Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Mohammad Sadegh Zakerhamidi
- Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz 51666-16471, Iran
- Faculty of Physics, University of Tabriz, Tabriz 51666-16471, Iran
| | - Naeimeh Akbari-Gharalari
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Clinical Research Development Unite of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz 51666-18559, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 51666-16471, Iran
| |
Collapse
|
6
|
Liu Y, Yin X, Hu Y, Kang M, Hu J, Wei Y, Huang D, Wang Y. Water-triggered shape memory cellulose / sodium alginate / montmorillonite composite sponges for rapid hemostasis. Int J Biol Macromol 2024; 271:132679. [PMID: 38801854 DOI: 10.1016/j.ijbiomac.2024.132679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Uncontrollable bleeding caused by severe trauma is life-threatening. Therefore, it is of great significance to develop hemostatic materials that meet the rapid hemostasis of wounds. In this study, a water-triggered shape memory carboxylated cellulose nanofiber/sodium alginate/montmorillonite (CNSAMMTCa) composite hemostatic sponge was prepared, which can promote coagulation by concentrating the blood and activating intrinsic pathway. The anisotropic three-dimensional porous structure formed by directional freeze-drying technology improved the performance of composite sponges which showed good prospects in rapid hemostasis. The results showed that CNSAMMTCa composite sponge had good porous structure, water absorption ability, cytocompatibility and blood cell aggregation capacity. Simultaneously, we confirmed that CNSA3MMT2Ca has best coagulation performance in the mouse censored bleeding model and liver rupture bleeding model. Therefore, CNSAMMTCa composite hemostatic sponge is a safe and efficient rapid hemostatic material which is expected to become an alternative material for clinical hemostatic materials.
Collapse
Affiliation(s)
- Yeying Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiangfei Yin
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Min Kang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Junjie Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yubin Wang
- Department of Urology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, PR China.
| |
Collapse
|
7
|
Ding K, Cong W, Liu Y, Song C, Mi H, Liu C, Ma Y, Shen C. Antibacterial polyurethane foams with quaternized-chitosan as a chain extender for nasal packing and hemostasis. Acta Biomater 2024; 181:249-262. [PMID: 38704113 DOI: 10.1016/j.actbio.2024.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Endoscopic surgery is an effective and common clinical practice for chronic sinusitis. Nasal packing materials are applied in nasal surgery to prevent hemorrhage and promote wound healing. In this study, a degradable polyurethane foam dressing is successfully developed as a promising nasal packing material with good biocompatibility and antibacterial capability. Specifically, quaternized chitosan (QCS) serves as the crosslinker instead of polyols to offer polyurethane foam (PUF-QCS) antibacterial capability. The PUF-QCS2.0 % (with 2.0 wt% QCS) exhibits satisfactory liquid absorption capacity (19.4 g/g), high compressive strengths at both wet (14.5 kPa) and dry states (7.7 kPa), and a good degradation rate (8.3 %) within 7 days. Meanwhile, PUF-QCS2.0 % retains long-term antibacterial activity for 7 days and kills 97.3 % of S. aureus and 91.8 % of E. coli within 6 hours in antibacterial testing. Furthermore, PUF-QCS2.0 % demonstrates a positive hemostatic response in the rabbit nasal septum mucosa trauma model by reducing hemostatic time over 50.0 % and decreasing blood loss up to 76.1 % compared to the commercial PVA nasal packing sponge. Importantly, PUF-QCS also exhibits a significant antibacterial activity in nasal cavity. This nasal packing material has advantages in post-surgery bleeding control and infection prevention. STATEMENT OF SIGNIFICANCE: The performance of a nasal packing sponge requires good mechanical properties, fast and high liquid absorption rate, effective degradability and strong antibacterial activity. These features are helpful for improving the postoperative recovery and patient healing. However, integrating these into a single polyurethane foam is a challenge. In this study, quaternized chitosan (QCS) is synthesized and used as a chain extender and antibacterial agent in preparing a degradable polyurethane foam (PUF-QCS) dressing. PUF-QCS undergoes partial degradation and exhibits effective broad-spectrum antibacterial activity in 7 days. The reduction of postoperative bleeding and infection observed in the animal experiment further demonstrates that the PUF-QCS developed here outperforms the existing commercial nasal packing materials.
Collapse
Affiliation(s)
- Kaidi Ding
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Wenlong Cong
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changtong Song
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoyang Mi
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yuhong Ma
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Changyu Shen
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
8
|
Lungulescu EM, Fierascu RC, Stan MS, Fierascu I, Radoi EA, Banciu CA, Gabor RA, Fistos T, Marutescu L, Popa M, Voinea IC, Voicu SN, Nicula NO. Gamma Radiation-Mediated Synthesis of Antimicrobial Polyurethane Foam/Silver Nanoparticles. Polymers (Basel) 2024; 16:1369. [PMID: 38794562 PMCID: PMC11125184 DOI: 10.3390/polym16101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Nosocomial infections represent a major threat within healthcare systems worldwide, underscoring the critical need for materials with antimicrobial properties. This study presents the development of polyurethane foam embedded with silver nanoparticles (PUF/AgNPs) using a rapid, eco-friendly, in situ radiochemical synthesis method. The nanocomposites were characterized by UV-vis and FTIR spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray technique (SEM/EDX), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile and compression strengths, antimicrobial activity, and foam toxicity tests. The resulting PUF/AgNPs demonstrated prolonged stability (over 12 months) and good dispersion of AgNPs. Also, the samples presented higher levels of hardness compared to samples without AgNPs (deformation of 1682 µm for V1 vs. 4307 µm for V0, under a 5 N force), tensile and compression strength of 1.80 MPa and 0.34 Mpa, respectively. Importantly, they exhibited potent antimicrobial activity against a broad range of bacteria (including Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and Enterococcus faecalis) and a fungal mixture (no fungal growth on the sample surface was observed after 28 days of exposure). Furthermore, these materials were non-toxic to human keratinocytes, which kept their specific morphology after 24 h of incubation, highlighting their potential for safe use in biomedical applications. We envision promising applications for PUF/AgNPs in hospital bed mattresses and antimicrobial mats, offering a practical strategy to reduce nosocomial infections and enhance patient safety within healthcare facilities.
Collapse
Affiliation(s)
- Eduard-Marius Lungulescu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (E.-M.L.); (E.A.R.); (C.A.B.)
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (I.F.); (R.A.G.); (T.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.N.V.)
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (I.F.); (R.A.G.); (T.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Elena Andreea Radoi
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (E.-M.L.); (E.A.R.); (C.A.B.)
| | - Cristina Antonela Banciu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (E.-M.L.); (E.A.R.); (C.A.B.)
| | - Raluca Augusta Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (I.F.); (R.A.G.); (T.F.)
| | - Toma Fistos
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (I.F.); (R.A.G.); (T.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Luminita Marutescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (L.M.); (M.P.)
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (L.M.); (M.P.)
| | - Ionela C. Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.N.V.)
| | - Sorina N. Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.N.V.)
| | - Nicoleta-Oana Nicula
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (E.-M.L.); (E.A.R.); (C.A.B.)
| |
Collapse
|
9
|
Lee H, Kim J, Myung S, Jung TG, Han DW, Kim B, Lee JC. Extraction of γ-chitosan from insects and fabrication of PVA/γ-chitosan/kaolin nanofiber wound dressings with hemostatic properties. DISCOVER NANO 2024; 19:77. [PMID: 38693438 PMCID: PMC11063014 DOI: 10.1186/s11671-024-04016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
A nanofiber-based composite nonwoven fabric was fabricated for hemostatic wound dressing, integrating polyvinyl alcohol (PVA), kaolin, and γ-chitosan extracted from three type of insects. The γ-chitosan extracted from Protaetia brevitarsis seulensis exhibited the highest yield at 21.5%, and demonstrated the highest moisture-binding capacity at 535.6%. In the fabrication process of PVA/kaolin/γ-chitosan nonwoven fabrics, an electrospinning technique with needle-less and mobile spinneret was utilized, producing nanofibers with average diameters ranging from 172 to 277 nm. The PVA/kaolin/γ-chitosan nonwoven fabrics demonstrated enhanced biocompatibility, with cell survival rates under certain compositions reaching up to 86.9% (compared to 74.2% for PVA). Furthermore, the optimized fabric compositions reduced blood coagulation time by approximately 2.5-fold compared to PVA alone, highlighting their efficacy in hemostasis. In other words, the produced PVA/kaolin/γ-chitosan nonwoven fabrics offer potential applications as hemostatic wound dressings with excellent biocompatibility and improved hemostatic performance.
Collapse
Affiliation(s)
- Hakyong Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Jinkyeong Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Suwan Myung
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Tae-Gon Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Chungju, 28160, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute, Seoul National University Dental Hospital, Seoul, 03080, Republic of Korea.
| | - Jae-Chang Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
| |
Collapse
|
10
|
Tan Y, Yang Q, Zheng M, Sarwar MT, Yang H. Multifunctional Nanoclay-Based Hemostatic Materials for Wound Healing: A Review. Adv Healthc Mater 2024; 13:e2302700. [PMID: 37816310 DOI: 10.1002/adhm.202302700] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/01/2023] [Indexed: 10/12/2023]
Abstract
Bleeding to death accounts for around 30-40% of all trauma-related fatalities. Current hemostatic materials are mainly mono-functional or have insufficient hemostatic capacity. Nanoclay has been recently shown to accelerate hemostasis, improve wound healing, and provide the resulting multifunctional hemostatic materials antibacterial, anti-inflammatory, and healing-promoting due to its distinctive morphological structure and physicochemical properties. Herein, the chemical design and action mechanism of nanoclay-based hemostatic, antibacterial, and pro-wound healing materials in the context of wound healing are discussed. The physiological processes of hemostasis and wound healing to elucidate the significance of nanoclay for functional wound hemostatic dressing design are outlined. A summary of the features of various nanoclay and product types used in wound hemostatic dressings is provided. Nanoclay can be antimicrobial due to the slow release of metal ions and has an abundant surface charge allowing for high affinity for proteins and cells, which can activate the coagulation reaction or facilitate tissue repair. Nanoclay with a microporous structure can be used as drug carriers to create composites critical for inhibiting bacterial growth on wounds or promoting the regeneration of vascular, muscle, and skin tissues. Directions for further research and innovation of nanoclay-based multifunctional materials for hemostasis and tissue regeneration are explored.
Collapse
Affiliation(s)
- Ya Tan
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Qian Yang
- Centre for Immune-Oncology, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7BN, UK
| | - Meng Zheng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
11
|
Huang X, Hu B, Zhang X, Fan P, Chen Z, Wang S. Recent advances in the application of clay-containing hydrogels for hemostasis and wound healing. Expert Opin Drug Deliv 2024; 21:457-477. [PMID: 38467560 DOI: 10.1080/17425247.2024.2329641] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Immediate control of bleeding and anti-infection play important roles in wound management. Multiple organ dysfunction syndrome and death may occur if persistent bleeding, hemodynamic instability, and hypoxemia are not addressed. The combination of clay and hydrogel provides a new outlet for wound hemostasis. In this review, the current research progress of hydrogel/clay composite hemostatic agents was reviewed. AREAS COVERED This paper summarizes the characteristics of several kinds of clay including kaolinite, montmorillonite, laponite, sepiolite, and palygorskite. The advantages and disadvantages of its application in hemostasis were also summarized. Future directions for the application of hydrogel/clay composite hemostatic agents are presented. EXPERT OPINION Clay can activate the endogenous hemostatic pathway by increasing blood cell concentration and promoting plasma absorption to accelerate the hemostasis. Clay is antimicrobial due to the slow release of metal ions and has a rich surface charge with a high affinity for proteins and cells to promote tissue repair. Hydrogels have some properties such as good biocompatibility, strong adhesion, high stretchability, and good self-healing. Despite promising advances, hydrogel/clay composite hemostasis remains a limitation. Therefore, more evidence is needed to further elucidate the risk factors and therapeutic effects of hydrogel/clay in hemostasis and wound healing.
Collapse
Affiliation(s)
- Xiaojuan Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Xinyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
12
|
Bhattacharjee A, Savargaonkar AV, Tahir M, Sionkowska A, Popat KC. Surface modification strategies for improved hemocompatibility of polymeric materials: a comprehensive review. RSC Adv 2024; 14:7440-7458. [PMID: 38433935 PMCID: PMC10906639 DOI: 10.1039/d3ra08738g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Polymeric biomaterials are a widely used class of materials due to their versatile properties. However, as with all other types of materials used for biomaterials, polymers also have to interact with blood. When blood comes into contact with any foreign body, it initiates a cascade which leads to platelet activation and blood coagulation. The implant surface also has to encounter a thromboinflammatory response which makes the implant integrity vulnerable, this leads to blood coagulation on the implant and obstructs it from performing its function. Hence, the surface plays a pivotal role in the design and application of biomaterials. In particular, the surface properties of biomaterials are responsible for biocompatibility with biological systems and hemocompatibility. This review provides a report on recent advances in the field of surface modification approaches for improved hemocompatibility. We focus on the surface properties of polysaccharides, proteins, and synthetic polymers. The blood coagulation cascade has been discussed and blood - material surface interactions have also been explained. The interactions of blood proteins and cells with polymeric material surfaces have been discussed. Moreover, the benefits as well as drawbacks of blood coagulation on the implant surface for wound healing purposes have also been studied. Surface modifications implemented by other researchers to enhance as well as prevent blood coagulation have also been analyzed.
Collapse
Affiliation(s)
- Abhishek Bhattacharjee
- School of Advanced Material Discovery, Colorado State University Fort Collins CO 80523 USA
| | | | - Muhammad Tahir
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University Gagarina 7 87-100 Torun Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University Gagarina 7 87-100 Torun Poland
| | - Ketul C Popat
- School of Advanced Material Discovery, Colorado State University Fort Collins CO 80523 USA
- Department of Mechanical Engineering, Colorado State University Fort Collins CO 80523 USA
- Department of Bioengineering, George Mason University Fairfax VA 22030 USA
| |
Collapse
|
13
|
Praharaj R, Rautray TR. Polymer Composites for Biomedical Applications. ENGINEERING MATERIALS 2024:489-532. [DOI: 10.1007/978-981-97-2075-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Yang Y, Wang X, Yang F, Mu B, Wang A. Progress and future prospects of hemostatic materials based on nanostructured clay minerals. Biomater Sci 2023; 11:7469-7488. [PMID: 37873611 DOI: 10.1039/d3bm01326j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The occurrence of uncontrolled hemorrhage is a significant threat to human life and health. Although hemostatic materials have made remarkable advances in the biomaterials field, it remains a challenge to develop safe and effective hemostatic materials for global medical use. Natural clay minerals (CMs) have long been used as traditional inorganic hemostatic agents due to their good hemostatic capability, biocompatibility and easy availability. With the advancement of science, technology and ideology, CM-based hemostatic materials have undergone continuous innovations by integrating new inspirations with conventional concepts. This review systematically summarizes the hemostatic mechanisms of different natural CMs based on their nanostructures. Moreover, it also comprehensively reviews the latest research progress for CM-based hemostatic hybrid and nanocomposite materials, and discusses the challenges and developments in this field.
Collapse
Affiliation(s)
- Yinfeng Yang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, P. R. China
| | - Xiaomei Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Fangfang Yang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| |
Collapse
|
15
|
Li M, Xia W, Khoong YM, Huang L, Huang X, Liang H, Zhao Y, Mao J, Yu H, Zan T. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res 2023; 27:87. [PMID: 37717028 PMCID: PMC10504797 DOI: 10.1186/s40824-023-00426-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
The global increase of cutaneous wounds imposes huge health and financial burdens on patients and society. Despite improved wound healing outcomes, conventional wound dressings are far from ideal, owing to the complex healing process. Smart wound dressings, which are sensitive to or interact with changes in wound condition or environment, have been proposed as appealing therapeutic platforms to effectively facilitate wound healing. In this review, the wound healing processes and features of existing biomaterials are firstly introduced, followed by summarizing the mechanisms of smart responsive materials. Afterwards, recent advances and designs in smart and versatile materials of extensive applications for cutaneous wound healing were submarined. Finally, clinical progresses, challenges and future perspectives of the smart wound dressing are discussed. Overall, by mapping the composition and intrinsic structure of smart responsive materials to their individual needs of cutaneous wounds, with particular attention to the responsive mechanisms, this review is promising to advance further progress in designing smart responsive materials for wounds and drive clinical translation.
Collapse
Affiliation(s)
- Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Min Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
16
|
Wu Q, Liao J, Yang H. Recent Advances in Kaolinite Nanoclay as Drug Carrier for Bioapplications: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300672. [PMID: 37344357 PMCID: PMC10477907 DOI: 10.1002/advs.202300672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Advanced functional two-dimensional (2D) nanomaterials offer unique advantages in drug delivery systems for disease treatment. Kaolinite (Kaol), a nanoclay mineral, is a natural 2D nanomaterial because of its layered silicate structure with nanoscale layer spacing. Recently, Kaol nanoclay is used as a carrier for controlled drug release and improved drug dissolution owing to its advantageous properties such as surface charge, strong biocompatibility, and naturally layered structure, making it an essential development direction for nanoclay-based drug carriers. This review outlines the main physicochemical characteristics of Kaol and the modification methods used for its application in biomedicine. The safety and biocompatibility of Kaol are addressed, and details of the application of Kaol as a drug delivery nanomaterial in antibacterial, anti-inflammatory, and anticancer treatment are discussed. Furthermore, the challenges and prospects of Kaol-based drug delivery nanomaterials in biomedicine are discussed. This review recommends directions for the further development of Kaol nanocarriers by improving their physicochemical properties and expanding the bioapplication range of Kaol.
Collapse
Affiliation(s)
- Qianwen Wu
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Juan Liao
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
- Engineering Research Center of Nano‐Geomaterials of Ministry of EducationChina University of GeosciencesWuhan430074China
- Laboratory of Advanced Mineral MaterialsChina University of GeosciencesWuhan430074China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| |
Collapse
|
17
|
Andrabi SM, Kumar A. A kaolin/calcium incorporated shape memory and antimicrobial chitosan-dextran based cryogel as an efficient haemostatic dressing for uncontrolled hemorrhagic wounds. BIOMATERIALS ADVANCES 2023; 150:213424. [PMID: 37068405 DOI: 10.1016/j.bioadv.2023.213424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Increased mortalities associated with uncontrolled and excessive bleeding is still of paramount concern in the clinics, caregivers and military medics. Herein, we designed a shape memory cryogel based on chitosan (C) and functionalized-dextran (D), incorporated with Kaolin (K) and calcium (Ca2+) as haemostatic agents. The developed cryogel (CDKCa) exhibits a uniform interconnected porous architecture with profound fluid absorption ability, rapid blood clotting, stable clot formation and good antibacterial activity. The CDKCa elucidates significantly less clotting time (~30 s; in-vitro) and increased aggregation and activation of platelets/red blood cells in comparison to the control groups and commercial dressings (Axiostat and QuikClot). The developed CDKCa also significantly reduced the aPTT and PT values by ~58 % and 31 % respectively, leading to the activation of intrinsic and extrinsic coagulation cascades. The CDKCa cryogel displays enhanced mechanical stability, flexibility and a good shape memory, a property quintessential to cease uncontrolled bleeding in irregular and non-compressible wounds. Further, the Kaolin and Ca2+ incorporated shape memory CDKCa cryogel demonstrates a rapid blood coagulation and stable clot formation in different compressible and non-compressible rat liver and femur hemorrhagic models. In summary, the endorsed results of CDKCa suggest that the design, fabrication and excellent clotting ability may attribute to high haemostatic efficiency of CDKCa dressing and have a great potential to prevent uncontrollable hemorrhages.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre of Excellence, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
18
|
Song Y, Li S, Chen H, Han X, Duns GJ, Dessie W, Tang W, Tan Y, Qin Z, Luo X. Kaolin-loaded carboxymethyl chitosan/sodium alginate composite sponges for rapid hemostasis. Int J Biol Macromol 2023; 233:123532. [PMID: 36740110 DOI: 10.1016/j.ijbiomac.2023.123532] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
There are several factors that contribute to the mortality of people who suffer from unmanageable bleeding. Therefore, the development of rapid hemostatic materials is necessary. Herein, novel rapid hemostatic composite sponges were developed by incorporation of kaolin (K) into carboxymethyl chitosan (CMCS)/sodium alginate (SA) via a combination of methods that includes ionic crosslinking, polyelectrolyte action, and freeze-drying. The CMCS/SA-K composite sponges were cross-linked with calcium ions provided by a sustained-release system consisting of D-gluconolactone (GDL) and Ca-EDTA, and the hemostatic ability of the sponges was enhanced by loading the inorganic hemostatic agent-kaolin (K). It was demonstrated that the CMCS/SA-K composite sponges had a good porous structure and water absorption properties, excellent mechanical properties, outstanding biodegradability, and biocompatibility. Simultaneously, they exhibited rapid hemostatic properties, both in vitro and in vivo. Significantly, the hemostatic time of the CMCS/SA-K60 sponge was improved by 82.76 %, 191.82 %, and 153.05 %, compared with those of commercially available gelatin sponges in the rat tail amputation, femoral vein, and liver injury hemorrhage models respectively, indicating that its hemostatic ability was superior to that of commercially available hemostatic materials. Therefore, CMCS/SA-K composite sponges show great promise for rapid hemostasis.
Collapse
Affiliation(s)
- Yannan Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Huifang Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Xinyi Han
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Gregory J Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wufei Tang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Yimin Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Zuodong Qin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China.
| | - Xiaofang Luo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China.
| |
Collapse
|
19
|
Chen T, Tang Y, Zhao H, Zhang K, Meng K. Sustainable wheat gluten foams with self-expansion and water/blood-triggered shape recovery. J Biomater Appl 2023; 37:1687-1696. [PMID: 36762923 DOI: 10.1177/08853282231154672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A cheap and easily obtainable wheat gluten (WG) was used to fabricate bio-foams via a simple method of stirring, heating, and lyophilization. The foam possesses a 3D layered porous structure with interconnected channels, and the biofoam has excellent mechanical properties through glycerol plasticization and glutaraldehyde (GA) cross-linking. The water absorption and volume expansion rate can reach 793.67 ∼ 918.45% and 201.47 ∼ 239.53% respectively. In dry state, the foams had good compression resilience, and can basically recover its original shape after withstanding 60% compression strain for about 7 h. In wet state, they can withstand 10 cycles of compression test, and had good compressive resilience and durability; they also had fast liquid-triggered shape recovery performance, of which the foams can reabsorb liquid, expand, and recover its original shape within 40 seconds after withstanding 80% compression strain. In addition, The hemolysis rates of red blood cells treated with 1, 3, and 5 mg/mL of 14WG-20g-5GA foam suspension were 0.53 ± 0.12%, 2.12 ± 0.34%, and 3.97 ± 0.21%, respectively, all of which were below the permissible range for biological materials (<5%). The above-mentioned advantages made the sustainable foams be potentially useful for medical dressings, especially for the treatment of non-compressible haemorrhaging, which offered a new field of application for WG protein and its added value was also increased obviously.
Collapse
Affiliation(s)
- Tuying Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, 12582Soochow University, Suzhou, China
| | - Yingzi Tang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, 12582Soochow University, Suzhou, China
| | - Huijing Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, 12582Soochow University, Suzhou, China
| | - Keqin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, 12582Soochow University, Suzhou, China
| | - Kai Meng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, 12582Soochow University, Suzhou, China
| |
Collapse
|
20
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Thum MD, Lu Q, Stockmaster KT, Haridas D, Fears KP, Balow RB, Lundin JG. 3D‐printable cyclic peptide loaded microporous polymers for antimicrobial wound dressing materials. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew D. Thum
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | - Qin Lu
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | | | - Dhanya Haridas
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | - Kenan P. Fears
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | - Robert B. Balow
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| | - Jeffrey G. Lundin
- Chemistry Division U.S. Naval Research Laboratory Washington, DC USA
| |
Collapse
|
22
|
Xu N, Yuan Y, Ding L, Li J, Jia J, Li Z, He D, Yu Y. Multifunctional chitosan/gelatin@tannic acid cryogels decorated with in situ reduced silver nanoparticles for wound healing. BURNS & TRAUMA 2022; 10:tkac019. [PMID: 35910193 PMCID: PMC9327735 DOI: 10.1093/burnst/tkac019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/06/2022] [Indexed: 11/12/2022]
Abstract
Background Most traditional wound dressings only partially meet the needs of wound healing because of their single function. Patients usually suffer from the increasing cost of treatment and pain resulting from the frequent changing of wound dressings. Herein, we have developed a mutifunctional cryogel to promote bacterial infected wound healing based on a biocompatible polysaccharide. Methods The multifunctional cryogel is made up of a compositive scaffold of chitosan (CS), gelatin (Gel) and tannic acid (TA) and in situ formed silver nanoparticles (Ag NPs). A liver bleeding rat model was used to evaluate the dynamic hemostasis performance of the various cryogels. In order to evaluate the antibacterial properties of the prepared cryogels, gram-positive bacterium Staphylococcus aureus (S. aureus) and gram-negative bacterium Escherichia coli (E. coli) were cultured with the cryogels for 12 h. Meanwhile, S. aureus was introduced to cause bacterial infection in vivo. After treatment for 2 days, the exudates from wound sites were dipped for bacterial colony culture. Subsequently, the anti-inflammatory effect of the various cryogels was evaluated by western blotting and enzyme-linked immunosorbent assay. Finally, full-thickness skin defect models on the back of SD rats were established to assess the wound healing performances of the cryogels. Results Due to its porous structure, the multifunctional cryogel showed fast liver hemostasis. The introduced Ag NPs endowed the cryogel with an antibacterial efficiency of >99.9% against both S. aureus and E. coli. Benefited from the polyphenol groups of TA, the cryogel could inhibit nuclear factor-κB nuclear translocation and down-regulate inflammatory cytokines for an anti-inflammatory effect. Meanwhile, excessive reactive oxygen species could also be scavenged effectively. Despite the presence of Ag NPs, the cryogel did not show cytotoxicity and hemolysis. Moreover, in vivo experiments demonstrated that the biocompatible cryogel displayed effective bacterial disinfection and accelerated wound healing. Conclusions The multifunctional cryogel, with fast hemostasis, antibacterial and anti-inflammation properties and the ability to promote cell proliferation could be widely applied as a wound dressing for bacterial infected wound healing.
Collapse
Affiliation(s)
- Na Xu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yucheng Yuan
- School of Materials science and Engineering, Xihua University, No.999, Jinzhou Road, Jinniu District, Chengdu City, Sichuan Province, Chengdu, 610039, China
| | - Liangping Ding
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiangfeng Li
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiezhi Jia
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zheng Li
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Dengfeng He
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yunlong Yu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
23
|
Fan C, Xu Q, Hao R, Wang C, Que Y, Chen Y, Yang C, Chang J. Multi-functional wound dressings based on silicate bioactive materials. Biomaterials 2022; 287:121652. [PMID: 35785753 DOI: 10.1016/j.biomaterials.2022.121652] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
Most traditional wound dressings passively offer a protective barrier for the wounds, which lacks the initiative in stimulating tissue regeneration. In addition, cutaneous wound healing is usually accompanied by various complicated conditions, including bacterial infection, skin cancer, and damaged skin appendages, bringing further challenges for wound management in clinic. Therefore, an ideal wound dressing should not only actively stimulate wound healing but also hold multi-functions for solving problems associated with different specific wound conditions. Recent studies have demonstrated that silicate bioceramics and bioglasses are one type of promising materials for the development of wound dressings, as they can actively accelerate wound healing by regulating endothelial cells, dermal fibroblasts, macrophages, and epidermal cells. In particular, silicate-based biomaterials can be further functionalized by specific structural design or doping with functional components, which endow materials with enhanced bioactivities or expanded physicochemical properties such as photothermal, photodynamic, chemodynamic, or imaging properties. The functionalized materials can be used to address wound healing with different demands including but not limited to antibacterial, anticancer, skin appendages regeneration, and wound monitoring. In this review, we summarized the current research on the development of silicate-based multi-functional wound dressings and prospected the development of advanced wound dressings in the future.
Collapse
Affiliation(s)
- Chen Fan
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Qing Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Ruiqi Hao
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Chun Wang
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Yumei Que
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Yanxin Chen
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Chen Yang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| | - Jiang Chang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, PR China.
| |
Collapse
|
24
|
Jari Litany RI, Praseetha PK. Tiny tots for a big-league in wound repair: Tools for tissue regeneration by nanotechniques of today. J Control Release 2022; 349:443-459. [PMID: 35835401 DOI: 10.1016/j.jconrel.2022.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/13/2022]
Abstract
Overall, chronic injuries place considerable burden on patients and health systems. The skin injuries are exposed to inflammatory bacteria and hinder the healing process. The skin being the biggest tissue of the whole body ensures protection against microbial invasion, dehydration, and against chemical, thermal, bright radiations and mechanical agents. When injured, the skin loses its defensive purpose and the attack of bacterial types arises with the loss of protein, water, and electrolytes. Improved wound closure therapy helps to restore normal skin function by managing wounds with the help of a suitable skin replacement. According to the type of wound and its healing ability, an appropriate skin replacement system must be identified. Nanofibrous layers because of their permeable structure, their large superficial reach and their similarity with the local extracellular network serve as cutaneous substitution for dealing with deep and superficial injuries. By a diminished microbial load without infestation, scab formation and infiltration of defense cells in the initial phase, acute injuries are usually characterized. Here recovery is related with epithelialization, angiogenesis and relocation of fibroblasts. The wound becomes obstinate when microbial biofilms are developed while the immune system does not manage to eliminate the infection. Increased inflammatory process, lower deep tissue oxygenation, fibrin cuffs, fibroblastic senescence, altered angiogenesis, stalled re-epithelialization and chronic infection have been visualized. Conventional wound mending treatments for the most part falling flat to supply a great clinical result, either basically like wound epithelialization and regulation of fluid loss or practically like histological highlights that decide versatility, strength, affectability, etc. Conventional wound therapies commonly fail to offer a better medical output, like wound epithelialization and regulation of fluid reduction or physiologically like cellular features that determine durability, sensitivity, elasticity, etc. Nanotechnology may be a dependable investigation space for wound-healing treatments through their versatile physicochemical properties. Advancing nano platforms with novel solutions for curing chronicdiabetic wounds are discussed in detail that can guide further research in this sector.
Collapse
Affiliation(s)
- R I Jari Litany
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu 629180, India
| | - P K Praseetha
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu 629180, India.
| |
Collapse
|
25
|
Bioactive Natural and Synthetic Polymers for Wound Repair. Macromol Res 2022. [DOI: 10.1007/s13233-022-0062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Chen J, Yang X, Chen Y, Feng Y, Pan J, Shi C. Expandable, biodegradable, bioactive quaternized gelatin sponges for rapidly controlling incompressible hemorrhage and promoting wound healing. BIOMATERIALS ADVANCES 2022; 136:212776. [PMID: 35929314 DOI: 10.1016/j.bioadv.2022.212776] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Designing expandable sponges with biodegradability and effective antibacterial properties are the urgent challenge for incompressible hemorrhage and wound healing. In the present investigation, based on quaternized gelatin (QG) and oxidized dextran (OD), a series of expandable sponges (ODQG) with high-water absorption capacity and robust mechanical properties were prepared. ODQG had good biodegradability in vitro and in vivo, and had inherent antibacterial activity (90% for E. coli and 99.74% for S. aureus). Due to the synergy effect of electrostatic interaction and blood concentration, ODQG could effectively attract and activate red blood cells/platelets and accelerate the coagulation process. Therefore, ODQG showed better hemostatic performance than Kuaikang® gelatin sponges and gauzes in incompressible hemorrhage model. Furthermore, ODQG could regulate inflammatory factor (TNF-α) and cytokines (TGF-β, VEGF), and greatly promote wound healing process. The biodegradable sponges with excellent antibacterial properties might have potential application prospect for incompressible hemostasis and wound healing in the future.
Collapse
Affiliation(s)
- Jie Chen
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yeyi Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jingye Pan
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Changcan Shi
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| |
Collapse
|
27
|
Influence of hydrophilic polymers on mechanical property and wound recovery of hybrid bilayer wound dressing system for delivering thermally unstable probiotic. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112696. [DOI: 10.1016/j.msec.2022.112696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 12/26/2022]
|
28
|
Wendels S, Balahura R, Dinescu S, Ignat S, Costache M, Avérous L. Influence of the Macromolecular architecture on the properties of biobased polyurethane tissue adhesives. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Zhang M, Lin P, Song X, Chen K, Yang Y, Xu Y, Zhang Q, Wu Y, Zhang Y, Cheng Y. Injectable and self‐healing hydrogels with tissue adhesiveness and antibacterial activity as wound dressings for infected wound healing. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengyuan Zhang
- School of Chemistry Xi'an Jiaotong University Xi'an China
| | - Peiling Lin
- School of Chemistry Xi'an Jiaotong University Xi'an China
| | - Xiaofan Song
- School of Chemistry Xi'an Jiaotong University Xi'an China
| | - Kun Chen
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Yuxuan Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University Xi'an China
| | - Yongliang Xu
- ZhejiangYunFeng New Material Technology Co., Ltd Jinhua China
| | - Qiang Zhang
- School of Chemistry Xi'an Jiaotong University Xi'an China
| | - Youshen Wu
- School of Chemistry Xi'an Jiaotong University Xi'an China
| | - Yanfeng Zhang
- School of Chemistry Xi'an Jiaotong University Xi'an China
| | - Yilong Cheng
- School of Chemistry Xi'an Jiaotong University Xi'an China
| |
Collapse
|
30
|
Tudoroiu EE, Dinu-Pîrvu CE, Albu Kaya MG, Popa L, Anuța V, Prisada RM, Ghica MV. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals (Basel) 2021; 14:1215. [PMID: 34959615 PMCID: PMC8706040 DOI: 10.3390/ph14121215] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Presently, notwithstanding the progress regarding wound-healing management, the treatment of the majority of skin lesions still represents a serious challenge for biomedical and pharmaceutical industries. Thus, the attention of the researchers has turned to the development of novel materials based on cellulose derivatives. Cellulose derivatives are semi-synthetic biopolymers, which exhibit high solubility in water and represent an advantageous alternative to water-insoluble cellulose. These biopolymers possess excellent properties, such as biocompatibility, biodegradability, sustainability, non-toxicity, non-immunogenicity, thermo-gelling behavior, mechanical strength, abundance, low costs, antibacterial effect, and high hydrophilicity. They have an efficient ability to absorb and retain a large quantity of wound exudates in the interstitial sites of their networks and can maintain optimal local moisture. Cellulose derivatives also represent a proper scaffold to incorporate various bioactive agents with beneficial therapeutic effects on skin tissue restoration. Due to these suitable and versatile characteristics, cellulose derivatives are attractive and captivating materials for wound-healing applications. This review presents an extensive overview of recent research regarding promising cellulose derivatives-based materials for the development of multiple biomedical and pharmaceutical applications, such as wound dressings, drug delivery devices, and tissue engineering.
Collapse
Affiliation(s)
- Elena-Emilia Tudoroiu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mădălina Georgiana Albu Kaya
- Department of Collagen, Division Leather and Footwear Research Institute, National Research and Development Institute for Textile and Leather, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Răzvan Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| |
Collapse
|
31
|
Liu L, Hu E, Yu K, Xie R, Lu F, Lu B, Bao R, Li Q, Dai F, Lan G. Recent advances in materials for hemostatic management. Biomater Sci 2021; 9:7343-7378. [PMID: 34672315 DOI: 10.1039/d1bm01293b] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Traumatic hemorrhage can be a fatal event, particularly when large quantities of blood are lost in a short period of time. Therefore, hemostasis has become a crucial part of emergency treatment. For small wounds, hemostasis can be achieved intrinsically depending on the body's own blood coagulation mechanism; however, for large-area wounds, particularly battlefield and complex wounds, materials delivering rapid and effective hemostasis are required. In parallel with the constant progress in science, technology, and society, advances in hemostatic materials have also undergone various iterations by integrating new ideas with old concepts. There are various natural and synthetic hemostatic materials, including hemostatic powders, adhesives, hydrogels, and tourniquets, for the treatment of severe external trauma. This review covers the differences among the currently available hemostatic materials and comprehensively describes the hemostatic effects of different materials based on the underlying mechanisms. Finally, solutions for current issues related to trauma bleeding are discussed, and the prospects of hemostatic materials are proposed.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. .,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. .,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. .,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. .,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Rong Bao
- The Ninth People's Hospital of Chongqing, 400715, China
| | - Qing Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. .,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. .,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| |
Collapse
|
32
|
Goncharuk O, Korotych O, Samchenko Y, Kernosenko L, Kravchenko A, Shtanova L, Tsуmbalуuk O, Poltoratska T, Pasmurtseva N, Mamyshev I, Pakhlov E, Siryk O. Hemostatic dressings based on poly(vinyl formal) sponges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112363. [PMID: 34579882 DOI: 10.1016/j.msec.2021.112363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
The development of novel hemostatic agents is related to the fact that severe blood loss due to hemorrhage continues to be the leading cause of preventable death of patients with military trauma and the second leading cause of death of civilian patients with injuries. Herein we assessed the hemostatic properties of porous sponges based on biocompatible hydrophilic polymer, poly(vinyl formal) (PVF), which meets the main requirements for the development of hemostatic materials. A series of composite hemostatic materials based on PVF sponges with different porosities and fillers were synthesized by acetalization of poly(vinyl alcohol) with formaldehyde. Nano-sized aminopropyl silica, micro-sized calcium carbonate, and chitosan hydrogel were used to modify PVF matrixes. The physicochemical properties (pore size, elemental composition, functional groups, hydrophilicity, and acetalization degree) of the synthesized composite sponges were studied by gravimetrical analysis, optical microscopy, scanning electron microscopy combined with energy dispersive x-ray spectroscopy, infrared spectroscopy, and nuclear magnetic resonance. Hemostatic properties of the materials were assessed using a model of parenchymal bleeding from the liver of white male Wistar rat with a gauze bandage as a control. All investigated PVF-based porous sponges showed high hemostatic activity: upon the application of PVF-samples the bleeding decreased within 3 min by 68.4-94.4% (р < 0.001). The bleeding time upon the application of PVF-based composites decreased by 78.3-90.4% (p < 0.001) compared to the application of well-known commercial product Celox™.
Collapse
Affiliation(s)
- O Goncharuk
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine; Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - O Korotych
- University of Florida, Chemical Engineering Department, Gainesville, United States of America; University of Tennessee, Department of Biochemistry and Cellular and Molecular Biology, Knoxville, TN, United States of America.
| | - Yu Samchenko
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - L Kernosenko
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - A Kravchenko
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - L Shtanova
- Biology and Medicine Institute Science Educational Center of Taras, Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - O Tsуmbalуuk
- Biology and Medicine Institute Science Educational Center of Taras, Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - T Poltoratska
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - N Pasmurtseva
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - I Mamyshev
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - E Pakhlov
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O Siryk
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
33
|
Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater 2021; 6:1083-1106. [PMID: 33102948 PMCID: PMC7569269 DOI: 10.1016/j.bioactmat.2020.10.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Polyurethanes (PUs) are a major family of polymers displaying a wide spectrum of physico-chemical, mechanical and structural properties for a large range of fields. They have shown suitable for biomedical applications and are used in this domain since decades. The current variety of biomass available has extended the diversity of starting materials for the elaboration of new biobased macromolecular architectures, allowing the development of biobased PUs with advanced properties such as controlled biotic and abiotic degradation. In this frame, new tunable biomedical devices have been successfully designed. PU structures with precise tissue biomimicking can be obtained and are adequate for adhesion, proliferation and differentiation of many cell's types. Moreover, new smart shape-memory PUs with adjustable shape-recovery properties have demonstrated promising results for biomedical applications such as wound healing. The fossil-based starting materials substitution for biomedical implants is slowly improving, nonetheless better renewable contents need to be achieved for most PUs to obtain biobased certifications. After a presentation of some PU generalities and an understanding of a biomaterial structure-biocompatibility relationship, recent developments of biobased PUs for non-implantable devices as well as short- and long-term implants are described in detail in this review and compared to more conventional PU structures.
Collapse
Affiliation(s)
- Sophie Wendels
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
34
|
Tamer TM, Sabet MM, Omer AM, Abbas E, Eid AI, Mohy-Eldin MS, Hassan MA. Hemostatic and antibacterial PVA/Kaolin composite sponges loaded with penicillin-streptomycin for wound dressing applications. Sci Rep 2021; 11:3428. [PMID: 33564036 PMCID: PMC7873205 DOI: 10.1038/s41598-021-82963-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Hemorrhage is the major hindrance over the wound healing, which triggers microbial infections and might provoke traumatic death. Herein, new hemostatic and antibacterial PVA/Kaolin composite sponges were crosslinked using a freeze-thawing approach and boosted by penicillin-streptomycin (Pen-Strep). Physicochemical characteristics of developed membranes were analyzed adopting Fourier transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), a thermal gravimetric analyzer (TGA), and differential scanning calorimetry (DSC). Furthermore, the impacts of kaolin concentrations on porosity, swelling behavior, gel fraction, and degradation of the membranes were investigated. SEM analyses revealed a spongy-like structure of hydrogels associated with high dispersion of kaolin inside PVA matrix. The thermal characteristics of PVA/Kaolin were significantly ameliorated compared to the prime PVA. Moreover, the results exhibited significant variations of swelling performance, surface roughness and pore capacity due to the alterations of kaolin contents. Besides, the adhesive strength ability was manifestly enhanced for PVA-K0.1 sponge. Biomedical evaluations including antibacterial activity, blood clotting index and thrombogenicity of the membranes were studied. The contact of PVA/Kaolin to blood revealed notable augmentation in blood clotting. Furthermore, the incorporation of kaolin into PVA presented mild diminution in antibacterial activities. Moreover, PVA/Kaolin composites illustrated no cellular toxicity towards fibroblast cells. These remarkable features substantiate that the PVA-K0.1 sponge could be applied as a multifunctional wound dressing.
Collapse
Affiliation(s)
- Tamer M Tamer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt.
| | - Maysa M Sabet
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Alaa I Eid
- Advanced Materials Division, Composites Department, Central Metallurgical Research Institute (CMRDI), Eltebbin, Helwan, 12422, Cairo, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt.
| |
Collapse
|
35
|
Huang X, Fu Q, Deng Y, Wang F, Xia B, Chen Z, Chen G. Surface roughness of silk fibroin/alginate microspheres for rapid hemostasis in vitro and in vivo. Carbohydr Polym 2021; 253:117256. [DOI: 10.1016/j.carbpol.2020.117256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023]
|
36
|
Elsabahy M, Hamad MA. Design and Preclinical Evaluation of Chitosan/Kaolin Nanocomposites with Enhanced Hemostatic Efficiency. Mar Drugs 2021; 19:md19020050. [PMID: 33499020 PMCID: PMC7911196 DOI: 10.3390/md19020050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
In the current study, hemostatic compositions including a combination of chitosan and kaolin have been developed. Chitosan is a marine polysaccharide derived from chitins, a structural component in the shells of crustaceans. Both chitosan and kaolin have the ability to mediate a quick and efficient hemostatic effect following immediate application to injury sites, and thus they have been widely exploited in manufacturing of hemostatic composites. By combining more than one hemostatic agent (i.e., chitosan and kaolin) that act via more than one mechanism, and by utilizing different nanotechnology-based approaches to enhance the surface areas, the capability of the dressing to control bleeding was improved, in terms of amount of blood loss and time to hemostasis. The nanotechnology-based approaches utilized to enhance the effective surface area of the hemostatic agents included the use of Pluronic nanoparticles, and deposition of chitosan micro- and nano-fibers onto the carrier. The developed composites effectively controlled bleeding and significantly improved hemostasis and survival rates in two animal models, rats and rabbits, compared to conventional dressings and QuikClot® Combat Gauze. The composites were well-tolerated as demonstrated by their in vivo biocompatibility and absence of clinical and biochemical changes in the laboratory animals after application of the dressings.
Collapse
Affiliation(s)
- Mahmoud Elsabahy
- Science Academy, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Science Park, Misr University for Science and Technology, Giza 12566, Egypt
- Correspondence: (M.E.); (M.A.H.); Tel.: +20-1000607466 (M.E.); +20-1222438186 (M.A.H.)
| | - Mostafa A. Hamad
- Department of Surgery, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Correspondence: (M.E.); (M.A.H.); Tel.: +20-1000607466 (M.E.); +20-1222438186 (M.A.H.)
| |
Collapse
|
37
|
Zhang Q, Yu G, Zhou Q, Li J, Feng Y, Wang L, Tang Y, Peng Y. Eco-friendly interpenetrating network hydrogels integrated with natural soil colloid as a green and sustainable modifier for slow release of agrochemicals. JOURNAL OF CLEANER PRODUCTION 2020; 269:122060. [DOI: 10.1016/j.jclepro.2020.122060] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
38
|
Griffin M, Castro N, Bas O, Saifzadeh S, Butler P, Hutmacher DW. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:272-283. [DOI: 10.1089/ten.teb.2019.0224] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michelle Griffin
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free Hospital, London, United Kingdom
| | - Nathan Castro
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Onur Bas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Siamak Saifzadeh
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Peter Butler
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Dietmar Werner Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
39
|
Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110649. [DOI: 10.1016/j.msec.2020.110649] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/21/2019] [Accepted: 01/03/2020] [Indexed: 02/05/2023]
|
40
|
Li L, Du Y, Yin Z, Li L, Peng H, Zheng H, Yang A, Li H, Lv G. Preparation and the hemostatic property study of porous gelatin microspheres both in vitro and in vivo. Colloids Surf B Biointerfaces 2020; 187:110641. [DOI: 10.1016/j.colsurfb.2019.110641] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 01/19/2023]
|
41
|
Peptide-immobilized starch/PEG sponge with rapid shape recovery and dual-function for both uncontrolled and noncompressible hemorrhage. Acta Biomater 2019; 99:220-235. [PMID: 31449930 DOI: 10.1016/j.actbio.2019.08.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/07/2019] [Accepted: 08/21/2019] [Indexed: 01/19/2023]
Abstract
It is challenging for traditional hemostatic sponges to meet the clinic demand for both uncontrolled and noncompressible hemorrhage. With the aim to develop a rapid shape recovery material with both active and passive hemostatic performance, a dual-functional hemostatic sponge (TRAP-Sp) with a macroporous structure and good mechanical properties for controlling massive and noncompressible hemorrhage was prepared by chemically immobilizing thrombin-receptor-agonist-peptide (TRAP) onto a starch/polyethylene glycol (PEG) sponge. The TRAP2-Sp1 showed the best hemostatic performance among all samples in both rat artery uncontrollable hemorrhage and liver defect noncompressible hemorrhage models. When analyzing the hemostatic mechanism of TRAP-Sp, the high water absorption capacity of the sponge contributed to absorbing plasma, concentrating blood cells, and enhancing blood coagulation. After absorbing water, the shape-fixed TRAP-Sp with sufficient mechanical strength and high resilience can rapidly expand and apply pressure to the wound. TRAP immobilized on the sponge could activate the adhered platelets in an active pathway. Additionally, evaluation of cytotoxicity, hemolysis, and histology further highlighted the adequate biocompatibility of TRAP-Sp. With excellent hemostatic performance and biosafety, this sponge could be a potential candidate as a topical hemostatic agent for uncontrolled and noncompressible hemorrhage. STATEMENT OF SIGNIFICANCE: There is a need for innovative hemostatic materials for both uncontrolled and noncompressible hemorrhage. This manuscript describes a rapid shape recovery hemostatic sponge with both active and passive hemostatic performances synthesized by foaming technique, cross-linking reaction, and chemical immobilization of thrombin-receptor-agonist-peptide (TRAP). On contact with blood, the shape-fixed sponge can not only rapidly recover its original shape and concentrate platelets and RBCs but also activate the adhered platelets efficiently. The dual-functional sponge has excellent hemostatic efficacy in rat femoral artery hemorrhage and can control noncompressible hemorrhage in penetrating liver wound. Thus, we believe that this sponge could be a potential candidate as a topical hemostatic agent for uncontrolled and noncompressible hemorrhage.
Collapse
|
42
|
Wang G, Yang T. Preparation of open cell rigid polyurethane foams and modified with organo-kaolin. J CELL PLAST 2019. [DOI: 10.1177/0021955x19880507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The open cell rigid polyurethane foam (ORPUF) was prepared by adding chemical cell openers including O-500 and AK-9903. The FTIR results of cell openers and open cell rate of ORPUFs showed that O-500 has more effective cell opening capacity. In the ORPUF foaming formulation using O-500 as cell opener, silane coupling agent (KH-550) modified kaolin (organo-kaolin) was introduced into ORPUF with different weight loadings. The cellular morphology, apparent density, and compressive strength of the foams were tested in order to investigate the effects of organo-kaolin on the open cell rate and compressive property of the foams. The results showed that the open cell rate of ORPUFs slightly increased from 83.9% to 92.9% with the content of organo-kaolin. Meanwhile, compared to neat ORPUF, the compressive strength of foams increased by 72.8% when the content of introduced organo-kaolin was 4 parts per hundred of polyol by mass (php).
Collapse
Affiliation(s)
- Guojian Wang
- School of Materials Science and Engineering, Tongji University, Shanghai, PR China
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai, PR China
| | - Tao Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| |
Collapse
|
43
|
Bužarovska A, Dinescu S, Lazar AD, Serban M, Pircalabioru GG, Costache M, Gualandi C, Avérous L. Nanocomposite foams based on flexible biobased thermoplastic polyurethane and ZnO nanoparticles as potential wound dressing materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109893. [PMID: 31500045 DOI: 10.1016/j.msec.2019.109893] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/26/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022]
Abstract
In the present study biobased and soft thermoplastic polyurethane (TPU), obtained by polymerization from fatty acids, was used to produce TPU/ZnO nanocomposite foams by thermally induced phase separation method (TIPS). The produced foams were characterized and evaluated regarding their potential uses as wound dressing materials. The structure and morphology of the prepared flexible polymer foams with different content of ZnO nanofiller (1, 2, 5 and 10 wt% related to the polymer) were studied by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). Highly porous nanocomposite structure made of interconnected pores with dimensions between 10 and 60 μm was created allowing water vapor transmission rate (WVTR) up to 8.9 mg/cm2·h. The TPU/ZnO foams, tested for their ability to support cells and their growth, showed highest cell proliferation for TPU nanocomposite foams with 2 and 5 wt% ZnO. Overall, the nanocomposite foams displayed a low cytotoxic potential (varied proportionally to the ZnO content) and good biocompatibility. All tested nanocomposite foams were found to be significantly active against biofilms formed by different Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Based on their behaviors, flexible TPU/ZnO nanocomposite foams can be considered for biomedical applications such as potential active wound dressing.
Collapse
Affiliation(s)
- Aleksandra Bužarovska
- Faculty of Technology and Metallurgy, Sts Cyril and Methodius University, Rudjer Boskovic 16, 1000 Skopje, Macedonia.
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania
| | - Andreea D Lazar
- Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania
| | - Mirela Serban
- Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania
| | - Gratiela G Pircalabioru
- Research Institute of University of Bucharest, University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Advanced Mechanics and Materials - Interdepartmental Center, University of Bologna, Viale del Risorgimento 2, 40123 Bologna, Italy
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 67087 Strasbourg Cedex 2, France
| |
Collapse
|
44
|
Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S. Wound dressings: Current advances and future directions. J Appl Polym Sci 2019. [DOI: 10.1002/app.47738] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Erfan Rezvani Ghomi
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 8415683111 Iran
| | - Shahla Khalili
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 8415683111 Iran
| | - Saied Nouri Khorasani
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 8415683111 Iran
| | - Rasoul Esmaeely Neisiany
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 8415683111 Iran
- Division of Materials ScienceLuleå University of Technology Luleå SE‐97187 Sweden
- Center for Nanofibers and Nanotechnology, Department of Mechanical EngineeringFaculty of Engineering Singapore 117576 Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical EngineeringFaculty of Engineering Singapore 117576 Singapore
| |
Collapse
|
45
|
Lundin JG, McGann CL, Weise NK, Estrella LA, Balow RB, Streifel BC, Wynne JH. Iodine binding and release from antimicrobial hemostatic polymer foams. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Xia L, Lu L, Liang Y, Cheng B. Fabrication of centrifugally spun prepared poly(lactic acid)/gelatin/ciprofloxacin nanofibers for antimicrobial wound dressing. RSC Adv 2019; 9:35328-35335. [PMID: 35528085 PMCID: PMC9074732 DOI: 10.1039/c9ra07826f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/21/2019] [Indexed: 01/24/2023] Open
Abstract
Centrifugal spinning is a novel technology for producing ultrafine fibers in high yield with diameters ranging from micro to nanometers. The obtained fibers have potential applications in the field of tissue engineering, wound dressing, and biomedicine etc. In this paper, a system of poly(lactic acid)/gelatin (PLA/GE) nanofibers loaded with ciprofloxacin (CPF) drug for wound dressings were successfully prepared by centrifugal spinning. The nanofibers were characterized by scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). In addition, the nanofibers' properties in terms of hydrophilicity, antibacterial properties and in vitro drug release were further investigated. The results showed that the CPF drug was successfully loaded and in an amorphous state in the PLA/GE nanofibers, the surface of the nanofibers was smooth and the nanofibers' diameter became large after the drug was loaded. The thermal stability of the nanofiber was reduced while the hydrophilicity was improved. Antibacterial and in vitro drug release experiments showed that the nanofibers have obvious antibacterial properties and have the positive effect of sustained release of the drug. Drug-loaded PLA/GE nanofibers could be good candidates for wound dressing. Centrifugal spinning is a novel technology for producing ultrafine fibers in high yield with diameters ranging from micro to nanometers.![]()
Collapse
Affiliation(s)
- Lei Xia
- School of Textile Science and Engineering
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Linlin Lu
- School of Textile Science and Engineering
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Yuxia Liang
- School of Mathematical Science
- Tianjin Normal University
- Tianjin 300387
- China
| | - Bowen Cheng
- School of Textile Science and Engineering
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| |
Collapse
|
47
|
Li X, Su X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 2018; 6:4714-4730. [PMID: 32254299 DOI: 10.1039/c8tb01078a] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, clinical applications have been proposed for various hydrogel products. Hydrogels can be derived from animal tissues, plant extracts and/or adipose tissue extracellular matrices; each type of hydrogel presents significantly different functional properties and may be used for many different applications, including medical therapies, environmental pollution treatments, and industrial materials. Due to complicated preparation techniques and the complexities associated with the selection of suitable materials, the applications of many host-guest supramolecular polymeric hydrogels are limited. Thus, improvements in the design and construction of smart materials are highly desirable in order to increase the lifetimes of functional materials. Here, we summarize different functional hydrogels and their varied preparation methods and source materials. The multifunctional properties of hydrogels, particularly their unique ability to adapt to certain environmental stimuli, are chiefly based on the incorporation of smart materials. Smart materials may be temperature sensitive, pH sensitive, pH/temperature dual sensitive, photoresponsive or salt responsive and may be used for hydrogel wound repair, hydrogel bone repair, hydrogel drug delivery, cancer therapy, and so on. This review focuses on the recent development of smart hydrogels for tissue engineering applications and describes some of the latest advances in using smart materials to create hydrogels for cancer therapy.
Collapse
Affiliation(s)
- Xian Li
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China.
| | | |
Collapse
|
48
|
Zagho MM, Hussein EA, Elzatahry AA. Recent Overviews in Functional Polymer Composites for Biomedical Applications. Polymers (Basel) 2018; 10:E739. [PMID: 30960664 PMCID: PMC6403933 DOI: 10.3390/polym10070739] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/30/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
Composite materials are considered as an essential part of our daily life due to their outstanding properties and diverse applications. Polymer composites are a widespread class of composites, characterized by low cost, facile processing methods, and varied applications ranging from daily-use issues to highly complicated electronics and advanced medical combinations. In this review, we focus on the most important fabrication techniques for bioapplied polymer composites such as electrospinning, melt-extrusion, solution mixing, and latex technology, as well as in situ methods. Additionally, significant and recent advances in biomedical applications are spotlighted, such as tissue engineering (including bone, blood vessels, oral tissues, and skin), dental resin-based composites, and wound dressing.
Collapse
Affiliation(s)
- Moustafa M Zagho
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| | - Essraa A Hussein
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| |
Collapse
|
49
|
Streifel BC, Lundin JG, Sanders AM, Gold KA, Wilems TS, Williams SJ, Cosgriff‐Hernandez E, Wynne JH. Hemostatic and Absorbent PolyHIPE–Kaolin Composites for 3D Printable Wound Dressing Materials. Macromol Biosci 2018; 18:e1700414. [DOI: 10.1002/mabi.201700414] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/23/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Benjamin C. Streifel
- Chemistry Division Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Jeffrey G. Lundin
- Chemistry Division Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Allix M. Sanders
- National Cancer Institute/National Institutes of Health Frederick MD 21701 USA
| | - Karli A. Gold
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Thomas S. Wilems
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Sierra J. Williams
- Chemistry Division Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | | | - James H. Wynne
- Chemistry Division Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| |
Collapse
|