1
|
Hemmati J, Sedighi I, Azizi M, Chegini Z, Zare Shahraki R, Chiani M, Arabestani MR. Formulation and Characterization of Teicoplanin Niosomal Gel for Healing Chronic Wounds Infected with Methicillin-Resistant Staphylococcus aureus (MRSA). Gels 2025; 11:230. [PMID: 40277666 PMCID: PMC12026646 DOI: 10.3390/gels11040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is recognized as a significant pathogen playing a crucial role in causing bacterial infections of skin and soft tissues due to its high capacity for biofilm formation. Niosome-based gel systems offer significant potential for enhancing transdermal drug delivery and increasing the effectiveness of loaded drugs. The current research investigates the feasibility of niosomal gel for formulating the topical administration of teicoplanin (TEC). The thin film hydration method was used for niosome formulation was composed of nonionic surfactant, cholesterol, and mPEG 2000. TEC niosomal gel was prepared with adding hydroxypropyl methylcellulose (HPMC) and Poloxamer 407 polymers to the system. The physiochemical characteristics of prepared niosomal gel formulation, such as particle morphology, size, zeta surface charge, homogeneity, encapsulation efficiency, and in vitro drug release, were evaluated. Also, the in vitro antibacterial potential of the prepared system was analyzed. Further, we examined the in vivo antibacterial activity of the synthesized niosomal gel on infected wounds in Wister rats. We found that the TEC niosomal gel had antibacterial and anti-biofilm capabilities against MRSA isolates, and could be an effective wound material for preventing therapeutic problems related to this superbug.
Collapse
Affiliation(s)
- Jaber Hemmati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan P.O. Box 6517838678, Iran; (J.H.); (Z.C.); (R.Z.S.)
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan P.O. Box 4171-65175, Iran
| | - Iraj Sedighi
- Department of Pediatrics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan P.O. Box 4171-65175, Iran;
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan P.O. Box 6517838736, Iran;
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan P.O. Box 6517838678, Iran; (J.H.); (Z.C.); (R.Z.S.)
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan P.O. Box 4171-65175, Iran
| | - Raha Zare Shahraki
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan P.O. Box 6517838678, Iran; (J.H.); (Z.C.); (R.Z.S.)
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan P.O. Box 4171-65175, Iran
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran P.O. Box 13169-43551, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan P.O. Box 6517838678, Iran; (J.H.); (Z.C.); (R.Z.S.)
- Nutrition Health Research Center, Institute of Health Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan P.O. Box 4171-65175, Iran
| |
Collapse
|
2
|
Sharma P, Singh J, Singh B. Evaluation of physiochemical and biomedical properties of psyllium-poly(vinyl phosphonic acid-co-acrylamide)-cl-N,N-methylene bis acrylamide based hydrogels. Int J Biol Macromol 2024; 260:129546. [PMID: 38246461 DOI: 10.1016/j.ijbiomac.2024.129546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Present investigation deals with the synthesis of psyllium based copolymeric hydrogels and evaluation of their physiochemical and biomedical properties. These copolymers have been prepared by grafting of poly(vinyl phosphonic acid) (poly (VPA)) and poly(acrylamide) (poly(AAm)) onto psyllium in the presence of crosslinker N,N-methylene bis acrylamide (NNMBA). These copolymers [psyllium-poly(VPA-co-AAm)-cl-NNMBA] were characterized by field emission-scanning electron micrographs (FE-SEM), electron dispersion X-ray analysis (EDAX), Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), 13C-nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA)- differential thermal analysis (DTG). FESEM, AFM and XRD demonstrated heterogeneous morphology with a rough surface and an amorphous nature. Diffusion of ornidazole occurred with a non-Fickian diffusion mechanism, and the release profile data was fitted in the Korsemeyer-Peppas kinetic model. Biochemical analysis of hydrogel properties confirmed the blood-compatible nature during blood-polymer interactions and revealed haemolysis value 3.95 ± 0.05 %. The hydrogels exhibited mucoadhesive character during biomembrane-polymer interactions and demonstrated detachment force = 99.0 ± 0.016 mN. During 2,2-diphenyl-1-picrylhydrazyl reagent (DPPH) assay, free radical scavenging was observed 37.83 ± 3.64 % which illustrated antioxidant properties of hydrogels. Physiological and biomedical properties revealed that these hydrogels could be explored for drug delivery uses.
Collapse
Affiliation(s)
- Prerna Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Jasvir Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| |
Collapse
|
3
|
Tarannum N, Pooja K, Jakhar S, Mavi A. Nanoparticles assisted intra and transdermic delivery of antifungal ointment: an updated review. DISCOVER NANO 2024; 19:11. [PMID: 38195832 PMCID: PMC10776542 DOI: 10.1186/s11671-023-03932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
This review paper highlights the trans-dermic delivery of nanoparticles (NPs) based antifungal ointments with the help of nanotechnology. It also describes the novel trans-dermal approach utilizing various nanoparticles which enables an efficient delivery to the target site. This current review gives an overview about past research and developments as well as the current nanoparticle-based ointments. This review also presents data regarding types, causes of infection, and different pathogens within their infection site. It also gives information about antifungal ointments with their activity and side effects of antifungal medicines. Additionally, this review also focuses on the future aspects of the topical administration of nanoparticle-based antifungal ointments. These nanoparticles can encapsulate multiple antifungal drugs as a combination therapy targeting different aspects of fungal infection. Nanoparticles can be designed in such a way that they can specifically target fungal cells and do not affect healthy cells. Nanoparticle based antifungal ointments exhibit outstanding potential to treat fungal diseases. As further research and advancements evolve in nanotechnology, we expect more development of nanoparticle-based antifungal formulations shortly. This paper discusses all the past and future applications, recent trends, and developments in the various field and also shows its bright prospective in the upcoming years.
Collapse
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India.
| | - Km Pooja
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| | - Shivani Jakhar
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| | - Anshika Mavi
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| |
Collapse
|
4
|
Unnikrishnan G, Joy A, Megha M, Kolanthai E, Senthilkumar M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: a critical review. DISCOVER NANO 2023; 18:157. [PMID: 38112849 PMCID: PMC10730791 DOI: 10.1186/s11671-023-03943-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The nanosystems for delivering drugs which have evolved with time, are being designed for greater drug efficiency and lesser side-effects, and are also complemented by the advancement of numerous innovative materials. In comparison to the organic nanoparticles, the inorganic nanoparticles are stable, have a wide range of physicochemical, mechanical, magnetic, and optical characteristics, and also have the capability to get modified using some ligands to enrich their attraction towards the molecules at the target site, which makes them appealing for bio-imaging and drug delivery applications. One of the strong benefits of using the inorganic nanoparticles-drug conjugate is the possibility of delivering the drugs to the affected cells locally, thus reducing the side-effects like cytotoxicity, and facilitating a higher efficacy of the therapeutic drug. This review features the direct and indirect effects of such inorganic nanoparticles like gold, silver, graphene-based, hydroxyapatite, iron oxide, ZnO, and CeO2 nanoparticles in developing effective drug carrier systems. This article has remarked the peculiarities of these nanoparticle-based systems in pulmonary, ocular, wound healing, and antibacterial drug deliveries as well as in delivering drugs across Blood-Brain-Barrier (BBB) and acting as agents for cancer theranostics. Additionally, the article sheds light on the plausible modifications that can be carried out on the inorganic nanoparticles, from a researcher's perspective, which could open a new pathway.
Collapse
Affiliation(s)
- Gayathri Unnikrishnan
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Anjumol Joy
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - M Megha
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Elayaraja Kolanthai
- Department of Materials Sciences and Engineering, Advanced Materials Processing and Analysis Centre, University of Central Florida, Orlando, FL, USA.
| | - M Senthilkumar
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India.
| |
Collapse
|
5
|
Khafaga DSR, El-Khawaga AM, Elfattah Mohammed RA, Abdelhakim HK. Green synthesis of nano-based drug delivery systems developed for hepatocellular carcinoma treatment: a review. Mol Biol Rep 2023; 50:10351-10364. [PMID: 37817020 PMCID: PMC10676320 DOI: 10.1007/s11033-023-08823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
This review presents an overview of one of the effective strategies for improving the anticancer impact of many drugs including sorafenib using a drug delivery system by employing nanoparticles that is produced through a biological system. The biological process has a lot of benefits, including being inexpensive and safe for the environment. Sorafenib is one of a multi-kinase inhibitor that inhibits molecularly targeted kinases. Because of its poor pharmacokinetic characteristics, such as fast elimination and limited water solubility, the bioavailability of Sorafenib is extremely low. More intelligent nano formulations of sorafenib have been developed to boost both the drug's target ability and bioavailability. Researchers in a wide variety of sectors, including nanomedicine, have recently been interested in the topic of nanotechnology. It is possible for the body to develop resistance to widely used drugs available for treatment of liver cancer, including sorafenib. As a result, our goal of this research is to highlight the efficacy of nanomedicine-based drug delivery system to enhance drug's cancer-fighting properties. Because of their magnetic properties, certain nanoparticle materials can be employed as a carrier for the medicine to the exact place where the cancer is located. This can lower the amount of the drug that is administered with no impact on the normal cells.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, 43511, Egypt.
| | - Ahmed M El-Khawaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, 43511, Egypt.
| | | | - Heba K Abdelhakim
- Biochemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
6
|
Harun-Or-Rashid M, Aktar MN, Hossain MS, Sarkar N, Islam MR, Arafat ME, Bhowmik S, Yusa SI. Recent Advances in Micro- and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials. Polymers (Basel) 2023; 15:4563. [PMID: 38231996 PMCID: PMC10708661 DOI: 10.3390/polym15234563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Polymeric drug delivery technology, which allows for medicinal ingredients to enter a cell more easily, has advanced considerably in recent decades. Innovative medication delivery strategies use biodegradable and bio-reducible polymers, and progress in the field has been accelerated by future possible research applications. Natural polymers utilized in polymeric drug delivery systems include arginine, chitosan, dextrin, polysaccharides, poly(glycolic acid), poly(lactic acid), and hyaluronic acid. Additionally, poly(2-hydroxyethyl methacrylate), poly(N-isopropyl acrylamide), poly(ethylenimine), dendritic polymers, biodegradable polymers, and bioabsorbable polymers as well as biomimetic and bio-related polymeric systems and drug-free macromolecular therapies have been employed in polymeric drug delivery. Different synthetic and natural biomaterials are in the clinical phase to mitigate different diseases. Drug delivery methods using natural and synthetic polymers are becoming increasingly common in the pharmaceutical industry, with biocompatible and bio-related copolymers and dendrimers having helped cure cancer as drug delivery systems. This review discusses all the above components and how, by combining synthetic and biological approaches, micro- and nano-drug delivery systems can result in revolutionary polymeric drug and gene delivery devices.
Collapse
Affiliation(s)
- Md. Harun-Or-Rashid
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Most. Nazmin Aktar
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Md. Sabbir Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Easin Arafat
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Shukanta Bhowmik
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| |
Collapse
|
7
|
Summer M, Tahir HM, Ali S. Sonication and heat-mediated synthesis, characterization and larvicidal activity of sericin-based silver nanoparticles against dengue vector (Aedes aegypti). Microsc Res Tech 2023; 86:1363-1377. [PMID: 37119431 DOI: 10.1002/jemt.24333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Fabrication, characterization and evaluation of the larvicidal potential of novel silk protein (sericin)-based silver nanoparticles (Se-AgNPs) were the prime motives of the designed study. Furthermore, investigation of the sericin as natural reducing or stabilizing agent was another objective behind this study. Se-AgNPs were synthesized using sonication and heat. Fabricated Se-AgNPs were characterized using particle size analyzer, UV spectrophotometry, FTIR and SEM which confirmed the fabrication of the Se-AgNPs. Size of sonication-mediated Se-AgNPs was smaller (7.49 nm) than heat-assisted Se-AgNPs (53.6 nm). Being smallest in size, sonication-assisted Se-AgNPs revealed the significantly highest (F4,10 = 39.20, p = .00) larvicidal activity against fourth instar lab and field larvae (F4,10 = 1864, p = .00) of dengue vector (Aedes aegypti) followed by heat-assisted Se-AgNPs and positive control (temephos). Non-significant larvicidal activity was showed by silver (without sericin) which made the temperature stability of silver, debatable. Furthermore, findings of biochemical assays (glutathione-S transferase, esterase, and acetylcholinesterase) showed the levels of resistance in field strain larvae. Aforementioned findings of the study suggests the sonication as the best method for synthesis of Se-AgNPs while the larvicidal activity is inversely proportional to the size of Se-AgNPs, i.e., smallest the size, highest the larvicidal activity. Conclusively, status of the sericin as a natural reducing/stabilizing agent has been endorsed by the findings of this study. RESEARCH HIGHLIGHTS: Incorporation of biocompatible and inexpensive sericin as a capping/reducing agent for synthesis of Se-AgNPs. A novel sonication method was used for the fabrication of Se-AgNPs which were thoroughly characterized by particle size analyzer, UV-visible spectrophotometry, SEM and FTIR. Analysis of enzymatic (GSTs, ESTs) levels in field and lab strains of Aedes aegypti larvae for evaluation of insecticides resistance.
Collapse
Affiliation(s)
- Muhammad Summer
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Hafiz Muhammad Tahir
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Shaukat Ali
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
8
|
Summer M, Tahir HM, Ali S, Abaidullah R, Mumtaz S, Nawaz S, Azizullah. Bactericidal potential of different size sericin-capped silver nanoparticles synthesized by heat, light, and sonication. J Basic Microbiol 2023; 63:1016-1029. [PMID: 36879387 DOI: 10.1002/jobm.202200632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Present study was aimed to assess the bactericidal potential of sericin-capped silver nanoparticles (Se-AgNPs) synthesized by heat, light, and sonication. Se-AgNPs were characterized by size analyzer, UV spectrophotometry, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. Average size of Se-AgNPs synthesized by heat, light and sonication was 53.60, 78.12, and 7.49 nm, respectively. All (10) bacterial strains were exposed to Se-AgNPs prepared from different methods to compare their antibacterial potentials. Largest zone of inhibition (13 ± 1.15 mm) was observed for sonication-based nanoparticles (NPs) against Klebseilla pneumoniae while the smallest zone of light assisted NPs against Serratia rubidaea (5 ± 1 mm). Bacterial strains were also exposed to different concentrations (0.2%, 0.3%, and 0.6%) of Se-AgNPs which showed largest zone (12 ± 1 mm) of inhibition for 0.4% of Se-AgNPs against Protius mirabilis and smallest zone (5 ± 1.154 mm) for 0.3% of Se-AgNPs against Escherichia coli. Furthermore, effect of different temperatures (5°C, 37°C, and 60°C) and pH (3, 7, and 12) on the efficacy and stability of Se-AgNPs was also evaluated against different bacterial strains. Sonication mediated NPs showed highest bactericidal results against K. pneumoniae (F3,8 = 6.154; p = 0.018) with smallest size NPs (7.49 nm) while lowest bactericidal results against S. rubidaea (5 ± 1 mm) were shown with largest size (78.12 nm) NPs prepared by natural light. These variations of bactericidal activities of NPs with difference size endorse that the Se-AgNPs with smallest size have highest antibacterial activity than larger size NPs. Moreover, Se-AgNPs maintain their bactericidal potency at wide range of temperature and pH, hence seemed stable.
Collapse
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Saira Nawaz
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Azizullah
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
9
|
Rahman A, Roy KJ, Deb GK, Ha T, Rahman S, Aktar MK, Ali MI, Kafi MA, Choi JW. Nano-Enabled Antivirals for Overcoming Antibody Escaped Mutations Based SARS-CoV-2 Waves. Int J Mol Sci 2023; 24:13130. [PMID: 37685938 PMCID: PMC10488153 DOI: 10.3390/ijms241713130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Gautam Kumar Deb
- Department of Biotechnology, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Mst. Khudishta Aktar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Isahak Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| |
Collapse
|
10
|
Aftab A, Ahmad B, Bashir S, Rafique S, Bashir M, Ghani T, Gul A, Shah AU, Khan R, Sajini AA. Comparative study of microscale and macroscale technique for encapsulation of Calotropis gigantea extract in metal-conjugated nanomatrices for invasive ductal carcinoma. Sci Rep 2023; 13:13474. [PMID: 37596340 PMCID: PMC10439222 DOI: 10.1038/s41598-023-39330-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023] Open
Abstract
The encapsulation of plant extract in nanomatrices has limitations due to its adhesion to walls, size control, high cost and long durations that results in low yield. Macroscale and microscale level techniques for development of micro/nanoparticles may impact the encapsulation of plant extract. This study aimed to evaluate the relative efficiency of microscale and macroscale techniques for encapsulation of plant extract, which is not compared yet. Keeping this in view, encapsulation of Calotropis gigantea leaves extract (CaG) was attained in silver-conjugated poliglusam nanomatrices (POL/Ag) to induce apoptosis in invasive ductal carcinoma (IDC) cells. The ethanolic CaG extract was prepared using percolation method and characterized by chemical tests for its active phytochemical compounds. The droplet-based microfluidic system was utilized as microscale encapsulation technique for CaG in nanomatrices at two different aqueous to oil flow rate ratios 1.0:1.5, and 1.0:3.0. Moreover, conventional batch system was utilized as macroscale encapsulation technique consisted of hot plate magnetic stirrer. The prepared nanomatrices were analysed for antioxidant activity using DPPH test and for cytotoxicity analysis using MCF-7 cells. The characteristic peaks of UV-Vis, FTIR and XRD spectrum confirmed the synthesis of CaG(POL/Ag) by both the encapsulation methods. However, microfluidic system was found to be more expedient because of attaining small and uniform sized silver nanoparticles (92 ± 19 nm) at high flow rate and achieving high encapsulation efficiency (80.25%) as compared to the conventional batch method (52.5%). CaG(POL/Ag) nanomatrices found to have significant antioxidant activity (p = 0.0014) against DPPH radical scavenging activity. The CaG(POL/Ag) of the smallest sized formulated by the microfluidic system has also shown the highest cytotoxicity (90%) as compared to batch method (70%) at 80 µg/mL. Our results indicate that the microscale technique using microfluidic system is a more efficient method to formulate size-controlled CaG(POL/Ag) nanomatrices and achieve high encapsulation of plant extract. Additionally, CaG(Pol/Ag) was found to be an efficient new combination for inducing potent (p < 0.0001) apoptosis in IDC cells. Therefore, CaG(Pol/Ag) can be further tested as an anti-cancer agent for in-vivo experiments.
Collapse
Affiliation(s)
- Ayesha Aftab
- Department of Biological Sciences, International Islamic University, H10 Campus, Islamabad, Pakistan
| | - Bashir Ahmad
- Department of Biological Sciences, International Islamic University, H10 Campus, Islamabad, Pakistan.
| | - Shazia Bashir
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan.
| | - Saima Rafique
- Department of Physics, Air University, Islamabad, Pakistan
| | - Muhammad Bashir
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Tayyaba Ghani
- Department of Metallurgy and Material Engineering, PIEAS, Islamabad, 45650, Pakistan
| | - Asma Gul
- Department of Biological Sciences, International Islamic University, H10 Campus, Islamabad, Pakistan
| | - Atta Ullah Shah
- National Institute of Laser and Optronics (NILOP), Islamabad, 44000, Pakistan
| | - Ranjha Khan
- UCSF/Benioff Children's Hospital, San Francisco, CA, USA
| | - Abdulrahim A Sajini
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Department of Biomedical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
11
|
Matić A, Sher EK, Farhat EK, Sher F. Nanostructured Materials for Drug Delivery and Tissue Engineering Applications. Mol Biotechnol 2023:10.1007/s12033-023-00784-1. [PMID: 37347435 DOI: 10.1007/s12033-023-00784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Nanotechnology and nanostructured materials for drug delivery and tissue engineering applications are relatively new field that is constantly advancing and expanding. The materials used are at the nanoscale level. Recently, great discoveries and applications have been made (Agents for use in chemotherapy, biological agents and immunotherapy agents) in the treatment of diseases in various areas. Tissue engineering is based on the regeneration and repair of damaged organs and tissues by developing biological substitutes that restore, maintain or improve the function of tissues and organs. Cells isolated from patients are used to seed 3D nanoparticles that can be synthetic or natural biomaterials. For the development of new tissue in tissue engineering, it is necessary to meet the conditions for connecting cells. This paper will present the ways of connecting cells and creating new tissues. Some recent discoveries and advances in the field of nanomedicine and the application of nanotechnology in drug delivery will be presented. Furthermore, the improvement of the effectiveness of new and old drugs based on the application of nanotechnology will be shown.
Collapse
Affiliation(s)
- Antonela Matić
- Faculty of Pharmacy, University of Modern Sciences - CKM, Mostar, 88000, Bosnia and Herzegovina
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Esma Karahmet Farhat
- Department of Food and Nutrition Research, Faculty of Food and Technology, Josip Juraj Strossmayer University of Osijek, Osijek, 31000, Croatia
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
12
|
Sahu KM, Patra S, Swain SK. Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: A review. Int J Biol Macromol 2023; 240:124338. [PMID: 37030461 DOI: 10.1016/j.ijbiomac.2023.124338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/17/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
Among different form of cyclodextrin (CD), β-CD has been taken a special attraction in pharmaceutical science due to lowest aqueous solubility and adequate cavity size. When β-CD forms inclusion complex with drugs then biopolymers such as polysaccharides in combination plays a vital role as a vehicle for safe release of drugs. It is noticed that, β-CD assisted polysaccharide-based composite achieves better drug release rate through host-guest mechanism. Present review is a critical analysis of this host-guest mechanism for release of drugs from polysaccharide supported β-CD inclusion complex. Various important polysaccharides such as cellulose, alginate, chitosan, dextran, etc. in relevant to drug delivery are logically compared in present review by their association with β-CD. Efficacy of mechanism of drug delivery by different polysaccharides with β-CD is analytically examined in schematic form. Drug release capacity at different pH conditions, mode of drug release, along with characterization techniques adopted by individual polysaccharide-based CD complexes are comparatively established in tabular form. This review may explore better visibility for researchers those are working in the area of controlled release of drugs by vehicle consist of β-CD associated polysaccharide composite through host-guest mechanism.
Collapse
Affiliation(s)
- Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
13
|
Bhattacharjee B, Ikbal AMA, Farooqui A, Sahu RK, Ruhi S, Syed A, Miatmoko A, Khan D, Khan J. Superior possibilities and upcoming horizons for nanoscience in COVID-19: noteworthy approach for effective diagnostics and management of SARS-CoV-2 outbreak. CHEMICKE ZVESTI 2023; 77:1-24. [PMID: 37362791 PMCID: PMC10072050 DOI: 10.1007/s11696-023-02795-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/18/2023] [Indexed: 04/07/2023]
Abstract
The outbreak of COVID-19 has caused great havoc and affected many parts of the world. It has imposed a great challenge to the medical and health fraternity with its ability to continue mutating and increasing the transmission rate. Some challenges include the availability of current knowledge of active drugs against the virus, mode of delivery of the medicaments, its diagnosis, which are relatively limited and do not suffice for further prognosis. One recently developed drug delivery system called nanoparticles is currently being utilized in combating COVID-19. This article highlights the existing methods for diagnosis of COVID-19 such as computed tomography scan, reverse transcription-polymerase chain reaction, nucleic acid sequencing, immunoassay, point-of-care test, detection from breath, nanotechnology-based bio-sensors, viral antigen detection, microfluidic device, magnetic nanosensor, magnetic resonance platform and internet-of-things biosensors. The latest detection strategy based on nanotechnology, biosensor, is said to produce satisfactory results in recognizing SARS-CoV-2 virus. It also highlights the successes in the research and development of COVID-19 treatments and vaccines that are already in use. In addition, there are a number of nanovaccines and nanomedicines currently in clinical trials that have the potential to target COVID-19.
Collapse
Affiliation(s)
- Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, Assam 784501 India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, 788011 India
| | - Atika Farooqui
- The Deccan College of Medical Sciences, Kanchan Bagh, Hyderabad, Telangana 500058 India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand 249161 India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Ayesha Syed
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java 60115 Indonesia
| | - Danish Khan
- Panineeya Institute of Dental Science and Research Centre, Kalonji Narayana Rao University of Health Sciences, Warangal, Telangana 506007 India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, 40100 Shah Alam, Selangor Malaysia
| |
Collapse
|
14
|
Akbari M, Morad R, Maaza M. Effect of silver nanoparticle size on interaction with artemisinin: First principle study. RESULTS IN SURFACES AND INTERFACES 2023. [DOI: 10.1016/j.rsurfi.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Luanda A, Badalamoole V. Past, present and future of biomedical applications of dextran-based hydrogels: A review. Int J Biol Macromol 2023; 228:794-807. [PMID: 36535351 DOI: 10.1016/j.ijbiomac.2022.12.129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
This review extensively surveys the biomedical applications of hydrogels containing dextran. Dextran has gained much attention as a biomaterial due to its distinctive properties such as biocompatibility, non-toxicity, water solubility and biodegradability. It has emerged as a critical constituent of hydrogels for biomedical applications including drug delivery devices, tissue engineering scaffolds and biosensor materials. The benefits, challenges and potential prospects of dextran-based hydrogels as biomaterials are highlighted in this review.
Collapse
Affiliation(s)
- Amos Luanda
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India; Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India.
| |
Collapse
|
16
|
Dextran Formulations as Effective Delivery Systems of Therapeutic Agents. Molecules 2023; 28:molecules28031086. [PMID: 36770753 PMCID: PMC9920038 DOI: 10.3390/molecules28031086] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Dextran is by far one of the most interesting non-toxic, bio-compatible macromolecules, an exopolysaccharide biosynthesized by lactic acid bacteria. It has been extensively used as a major component in many types of drug-delivery systems (DDS), which can be submitted to the next in-vivo testing stages, and may be proposed for clinical trials or pharmaceutical use approval. An important aspect to consider in order to maintain high DDS' biocompatibility is the use of dextran obtained by fermentation processes and with a minimum chemical modification degree. By performing chemical modifications, artefacts can appear in the dextran spatial structure that can lead to decreased biocompatibility or even cytotoxicity. The present review aims to systematize DDS depending on the dextran type used and the biologically active compounds transported, in order to obtain desired therapeutic effects. So far, pure dextran and modified dextran such as acetalated, oxidised, carboxymethyl, diethylaminoethyl-dextran and dextran sulphate sodium, were used to develop several DDSs: microspheres, microparticles, nanoparticles, nanodroplets, liposomes, micelles and nanomicelles, hydrogels, films, nanowires, bio-conjugates, medical adhesives and others. The DDS are critically presented by structures, biocompatibility, drugs loaded and therapeutic points of view in order to highlight future therapeutic perspectives.
Collapse
|
17
|
Qamar SA, Riasat A, Jahangeer M, Fatima R, Bilal M, Iqbal HMN, Mu BZ. Prospects of microbial polysaccharides-based hybrid constructs for biomimicking applications. J Basic Microbiol 2022; 62:1319-1336. [PMID: 35048396 DOI: 10.1002/jobm.202100596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 02/05/2023]
Abstract
Polysaccharides are biobased polymers obtained from renewable sources. They exhibit various interesting features including biocompatibility, biodegradability, and nontoxicity. Microbial polysaccharides are produced by several microorganisms including yeast, fungi, algae, and bacteria. Microbial polysaccharides have gained high importance in biotechnology due to their novel physiochemical characteristics and composition. Among microbial polysaccharides, xanthan, alginate, gellan, and dextran are the most commonly reported polysaccharides for the development of biomimetic materials for biomedical applications including targeted drug delivery, wound healing, and tissue engineering. Several chemical and physical cross-linking reactions are performed to increase their technological and functional properties. Owning to the broad-scale applications of microbial polysaccharides, this review aims to summarize the characteristics with different ways of physical/chemical crosslinking for polysaccharide regulation. Recently, several biopolymers have gained high importance due to their biologically active properties. This will help in the formation of bioactive nutraceuticals and functional foods. This review provides a perspective on microbial polysaccharides, with special emphasis given to applications in promising biosectors and the subsequent advancement on the discovery and development of new polysaccharides for adding new products.
Collapse
Affiliation(s)
- Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Areej Riasat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Jahangeer
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Rameen Fatima
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
18
|
Yang X, Wang Q, Zhang A, Shao X, Liu T, Tang B, Fang G. Strategies for sustained release of heparin: A review. Carbohydr Polym 2022; 294:119793. [PMID: 35868762 DOI: 10.1016/j.carbpol.2022.119793] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
Heparin, a sulfate-containing linear polysaccharide, has proven preclinical and clinical efficacy for a variety of disorders. Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH), and ultra-low-molecular-weight heparin (ULMWH), is administered systematically, in the form of a solution in the clinic. However, it is eliminated quickly, due to its short half-life, especially in the case of UFH and LMWH. Frequent administration is required to ensure its therapeutic efficacy, leading to poor patient compliance. Moreover, heparin is used to coat blood-contacting medical devices to avoid thrombosis through physical interaction. However, the short-term durability of heparin on the surface of the stent limits its further application. Various advanced sustained-release strategies have been used to prolong its half-life in vivo as preparation technologies have improved. Herein, we briefly introduce the pharmacological activity and mechanisms of action of heparin. In addition, the strategies for sustained release of heparin are comprehensively summarized.
Collapse
Affiliation(s)
- Xuewen Yang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Aiwen Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xinyao Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
19
|
Fabrication of two hydrogels composites through the coupling of gelatin with ethyl vanillin/polyvinyl alcohol using electron beam irradiation for ciprofloxacin delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Zhao B, Zhang Y, Li D, Mo X, Pan J. Hofmeister effect-enhanced gelatin/oxidized dextran hydrogels with improved mechanical properties and biocompatibility for wound healing. Acta Biomater 2022; 151:235-253. [PMID: 35961521 DOI: 10.1016/j.actbio.2022.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/01/2022]
Abstract
Compared with other types of hydrogels, natural derived hydrogels possess intrinsic advantages of degradability and biocompatibility. However, due to the low mechanical strength, their potential applications in biomedical areas are limited. In this study, Hofmeister effect-enhanced gelatin/oxidized dextran (Gel/O-Dex) hydrogels were designed with improved mechanical properties and biocompatibility to accelerate wound healing. Gel and O-Dex were chemically crosslinked through Schiff base reaction of aldehyde and amino groups. After soaking in kosmotrope solutions physical crosslinking domains were induced by Hofmeister effect including α-helix structures, hydrophobic interaction regions and helical junction zones among Gel molecular chains. The type of anions played different influence on the properties of hydrogels, which was consistent with the order of Hofmeister series. Particularly, H2PO4- treated hydrogels showed enhanced mechanical strength and fatigue resistance superior to that of Gel/O-Dex hydrogels. The underlying mechanism was that the physical crosslinking domains sustained additional mechanical stress and dissipated energy through cyclic association and dissociation process. Furthermore, Hofmeister effect only induced polymer chain entanglements without triggering any chemical reaction. Due to Hofmeister effect of H2PO4- ions, aldehyde groups were embedded in the center of entangled polymer chains that resulted in better biocompatibility. In the full-thickness skin defects of SD rats, Hofmeister effect-enhanced Gel/O-Dex hydrogels by H2PO4- ions accelerated wound healing and exhibited better histological morphology than ordinary hydrogels. Therefore, Hofmeister effect by essential inorganic anions is a promising method of improving mechanical properties and biocompatibility of natural hydrogels to promote medical translation in the field of wound healing from bench to clinic. STATEMENT OF SIGNIFICANCE: Hofmeister effect enhanced hydrogel mechanical properties in accordance with the order of Hofmeister series through physical crosslinking that induced α-helix structures, hydrophobic interaction regions and helical junction zones among Gel molecular chains. Due to the Hofmeister effect of H2PO4- ions, aldehyde groups were embedded in the center of entangled polymer chains that resulted in better biocompatibility. Hofmeister effect-enhanced Gel/O-Dex hydrogels through H2PO4- ions accelerated wound healing and exhibited better histological morphology than ordinary hydrogels. Therefore, Hofmeister effect by essential inorganic anions is a promising method to improve mechanical properties and biocompatibility of natural hydrogels for their medical applications..
Collapse
Affiliation(s)
- Binan Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Yuanzhen Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Dandan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jianfeng Pan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
21
|
Huang Y, Li J, Zhou L, Cheng C, Hu Z, Peng Z. In-situ synthesis of silver nanoparticles on cellulose and its catalytic performance. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Yingchun Huang
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Jialing Li
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Chen Cheng
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Ziqiang Hu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Zhiyuan Peng
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| |
Collapse
|
22
|
Hamimed S, Jabberi M, Chatti A. Nanotechnology in drug and gene delivery. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:769-787. [PMID: 35505234 PMCID: PMC9064725 DOI: 10.1007/s00210-022-02245-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, nanotechnology has widely addressed many nanomaterials in the biomedical area with an opportunity to achieve better-targeted delivery, effective treatment, and an improved safety profile. Nanocarriers have the potential property to protect the active molecule during drug delivery. Depending on the employing nanosystem, the delivery of drugs and genes has enhanced the bioavailability of the molecule at the disease site and exercised an excellent control of the molecule release. Herein, the chapter discusses various advanced nanomaterials designed to develop better nanocarrier systems used to face different diseases such as cancer, heart failure, and malaria. Furthermore, we demonstrate the great attention to the promising role of nanocarriers in ease diagnostic and biodistribution for successful clinical cancer therapy.
Collapse
Affiliation(s)
- Selma Hamimed
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia. .,Departement of Biology, Faculty of Exact Sciences, Natural and Life Sciences, Chaikh Larbi Tebessi University, Tebessa, Algeria.
| | - Marwa Jabberi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia.,Laboratory of Energy and Matter for Development of Nuclear Sciences (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Ariana, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia
| |
Collapse
|
23
|
Pandey S, Son N, Kang M. Synergistic sorption performance of karaya gum crosslink poly(acrylamide-co-acrylonitrile) @ metal nanoparticle for organic pollutants. Int J Biol Macromol 2022; 210:300-314. [PMID: 35537588 DOI: 10.1016/j.ijbiomac.2022.05.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023]
Abstract
In this work, we tailor facile hydrogels nanocomposite (HNC) based on sustainable karaya gum for water treatment. Karaya gum crosslink poly(acrylamide-co-acrylonitrile) @ silver nanoparticle (KG-cl-P(AAm-co-AN)@AgNPs) HNC were made by an aqueous free radical in situ crosslink copolymerization of acrylamide (AAm) and acrylic acid (AA) in aqueous solution of KG-stabilized AgNPs. FTIR, XRD, DTA-TGA, SEM, and TEM were used to characterize HNC. The hydrogels' swelling, diffusion, and network characteristics were investigated. The removal efficiency of HNC was found to be 99% at pH 8 for a crystal violet (CV), dose of 0.02 g after 1 h. Dye adsorption by these hydrogels was also investigated in terms of isotherms, and kinetics. The dye's exceptionally high adsorption capacity on HNC for CV removal is explained by H-bonding interactions, as well as dipole-dipole and electrostatic interactions between anionic adsorbent and cationic dye molecules (Qmax, 1000 mg/g). The HNC can be regenerated with 0.1 M HCl and reused at least 10 times maintaining over 68% dye removal. The loading of AgNPs into the polymeric matrix of KG-cl-P(AAm-co-AN) significantly increases the removal percentage of CV dye from its aqueous solution, according to this study.
Collapse
Affiliation(s)
- Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Namgyu Son
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
24
|
Sultan M, Nagieb ZA, El-Masry HM, Taha GM. Physically-crosslinked hydroxyethyl cellulose-g-poly (acrylic acid-co-acrylamide)-Fe 3+/silver nanoparticles for water disinfection and enhanced adsorption of basic methylene blue dye. Int J Biol Macromol 2022; 196:180-193. [PMID: 34813782 DOI: 10.1016/j.ijbiomac.2021.11.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
In this study, we report the development of physically cross-linked hydroxyethyl cellulose grafted polyacrylic acid-co-polyacrylamide/silver nanocomposite [Ag@HEC-g-P(AA-co-AM)-Fe3+] possesses excellent antimicrobial and enhanced MB adsorption. A green in-situ reduction process was used to prepare silver nanoparticles. UV-Vis spectroscopy, TEM, ATR-IR, XRD, SEM-EDS were used to analyze the green produced silver nanoparticles and Ag@HEC-g-P(AA-co-AM)-Fe3+. The swelling ratio of Ag@HEC-g-P(AA-co-AM)-Fe3+ is dependent on AgNPs content and pH. The swelling kinetics fitted with Pseudo-second order. The cumulative release#% of AgNPs was 29.63 ± 1.7%, respectively up to 10 h and its kinetics obey Korsmeyer-Peppas model. The grafting to HEC and incorporation of AgNPs into HEC-g-P(AA-co-AM)-Fe3+ enhances the thermal stabilities and increases total activation energies from 19,122.2 to 66,287.1 KJ mol. Ag@HEC-g-P(AA-co-AM)-Fe3+ has powerful antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Micrococcus leutus, Staphyllococus aureus. The maximum adsorption capacity of MB was 133.38 ± 1.25 mg/g at nanocomposite concentration (300 mg/L), pH (9.0), and MB concentration (5 mg/L). To anticipate the adsorption mechanism, Pseudo-first and second-order models, as well as three isotherm models (Langmuir, Freundlich, and Temkin) were used to model adsorption kinetics. The nonlinear Langmuir models and second-order kinetics were the most appropriate.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Zenat Adeeb Nagieb
- Cellulose and Paper Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Hossam Mohammed El-Masry
- Chemistry of Natural and Microbial Products, Pharmaceutical and Drug, National Research Centre, Dokki, Cairo, Egypt
| | - Ghada M Taha
- Pre-treatment, and Finishing of Cellulose-based Textiles Department, 33 El-Behouth St. (former El-Tahrir str.), Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
25
|
Joshy KS, Augustine R, Hasan A, Ali Zahid A, Alex SM, Dalvi YB, Mraiche F, Thomas S, Kalarikkal N, Chi H. Cisplatin encapsulated nanoparticles from polymer blends for anti-cancer drug delivery. NEW J CHEM 2022. [DOI: 10.1039/d1nj04311k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Synthesis of cubic nanostructure for cisplatin encapsulation.
Collapse
Affiliation(s)
- K. S. Joshy
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | | | - Yogesh B. Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences, Tiruvalla, Kerala 689 101, India
| | | | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam – 686 560, Kerala, India
| | - Nandakumar Kalarikkal
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam – 686 560, Kerala, India
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
26
|
Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
28
|
Nwabuife JC, Pant AM, Govender T. Liposomal delivery systems and their applications against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Adv Drug Deliv Rev 2021; 178:113861. [PMID: 34242712 DOI: 10.1016/j.addr.2021.113861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Liposomal delivery systems have been widely explored for targeting superbugs such as S. aureus and MRSA, overcoming antimicrobial resistance associated with conventional dosage forms. They have the significant advantage of delivering hydrophilic and lipophilic antimicrobial agents, either singularly as monotherapy or in combination as combination therapy, due to their bilayers with action-site-specificity, resulting in improved targeting compared to conventional dosage forms. Herein, we present an extensive and critical review of the different liposomal delivery systems employed in the past two decades for the delivery of both antibiotics of different classes and non-antibiotic antibacterial agents, as monotherapy and combination therapy to eradicate infections caused by S. aureus and MRSA. The review also identifies future research and strategies potentiating the applications of liposomal delivery systems against S. aureus and MRSA. This review confirms the potential application of liposomal delivery systems for effective delivery and specific targeting of S. aureus and MRSA infections.
Collapse
|
29
|
Bharatiya D, Patra S, Parhi B, Swain SK. A materials science approach towards bioinspired polymeric nanocomposites: a comprehensive review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1990057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Debasrita Bharatiya
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| | - Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| | - Biswajit Parhi
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| |
Collapse
|
30
|
Zeini D, Glover JC, Knudsen KD, Nyström B. Influence of Lysine and TRITC Conjugation on the Size and Structure of Dextran Nanoconjugates with Potential for Biomolecule Delivery to Neurons. ACS APPLIED BIO MATERIALS 2021; 4:6832-6842. [DOI: 10.1021/acsabm.1c00544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Darya Zeini
- Department of Chemistry, University of Oslo, Blindern, P.O.
Box 1033, Oslo N-0315, Norway
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.
Box 1103, Oslo N-0317, Norway
| | - Joel C. Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.
Box 1103, Oslo N-0317, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo N-0317, Norway
| | | | - Bo Nyström
- Department of Chemistry, University of Oslo, Blindern, P.O.
Box 1033, Oslo N-0315, Norway
| |
Collapse
|
31
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
32
|
Sharma A, Ghosh KS. Studies on Molecular Interactions between Bovine β-Lactoglobulin and Silver Nanoparticles. Protein Pept Lett 2021; 27:793-800. [PMID: 32003652 DOI: 10.2174/0929866527666200129123018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Silver Nanoparticles (AgNPs) were found to modulate the fibrillation of Bovine Β-Lactoglobulin (BLG). OBJECTIVE To gain an insight regarding the mechanism of BLG aggregation modulation by AgNPs at molecular level, studies on the interactions between BLG and AgNPs were carried out. METHODS Protein-ligand interactions were studied based on Trp fluorescence quenching (at four different temperatures), synchronous and three-dimensional fluorescence and circular dichroism spectroscopy (far-UV and near-UV). RESULTS Protein-nanoparticles association constant was in the range of 106 -1010 M-1 and the quenching constant was determined as ~107 M-1. Ground state complexation between the protein and nanoparticles was predicted. Change in polarity surrounding the Trp residue was not detected by synchronous and three-dimensional fluorescence spectroscopy. AgNPs caused a global change in the secondary and tertiary structure of the protein as revealed from far-UV and near-UV CD spectroscopy. Enthalpy driven complexation between the protein and nanoparticles indicates the involvement of hydrogen bonding and/or van der Waals interactions. CONCLUSION Modulation of BLG aggregation by AgNPs is due to strong binding of the nanoparticles with BLG, which also causes structural perturbations of the protein.
Collapse
Affiliation(s)
- Anchal Sharma
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh 177005, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh 177005, India
| |
Collapse
|
33
|
Ahmad R, Srivastava S, Ghosh S, Khare SK. Phytochemical delivery through nanocarriers: a review. Colloids Surf B Biointerfaces 2021; 197:111389. [PMID: 33075659 DOI: 10.1016/j.colsurfb.2020.111389] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
In recent times, phytochemicals encapsulated or conjugated with nanocarriers for delivery to the specific sites have gained considerable research interest. Phytochemicals are mostly plant secondary metabolites which reported to be beneficial for human health and in disease theraphy. However, these compound are large size and polar nature of these compounds, make it difficult to cross the blood-brain barrier (BBB), endothelial lining of blood vessels, gastrointestinal tract and mucosa. Moreover, they are enzymatically degraded in the gastrointestinal tract. Therefore, encapsulation or conjugation of these compounds with nanocrriers could be an alternate way to enhance their bioefficacy by influencing their gastrointestinal stability, rate of absorption and dispersion. This review presents an overview of nanocarriers alternatives which improves therapeutic value and avoid toxicity, by releasing bioactive compounds specifically at target tissues with enhanced stability and bioavailability. Future investigations may emphasize on deciphering the structural changes in nanocarriers during digestion and absorption, the difference between in-vitro and in-vivo digestion simulations, and impact of nanocarriers on the metabolism of phytochemicals.
Collapse
Affiliation(s)
- Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shubhrima Ghosh
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
34
|
Harnessing the nano-bio interface: Application of membrane coating to long acting silica particles. Eur J Pharm Biopharm 2020; 158:382-389. [PMID: 33309845 DOI: 10.1016/j.ejpb.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 01/15/2023]
Abstract
Interaction of conventional drug delivery systems such as polymeric or lipid based nano- and microparticles with the in vivo milieu has garnered significant interest, primarily to orchestrate immune escape and/or improve targeting. Surface modification with targeting ligands has been heavily relied upon for the mentioned purpose in the recent years. However, the surface modified particles can also activate the immune system. Large-scale manufacturing can also be a challenge, as surface modification needs to be reproducible. Furthermore, in vivo, the targeting is dependent on the receptor expression density and number of target sites, which adds to the pharmacokinetic variability of the constructs. An evolving paradigm to overcome complications of surface functionalization is the incorporation of bio-inspired topographies into these conventional delivery systems to enable them to better interact with biological systems. Biomimetic delivery systems combine the unique surface composition of cells or cell membranes, and versatility of synthetic nanoparticles. In this review, we focus on one such delivery system, silica particles, and explore their interaction with different biological membranes.
Collapse
|
35
|
Parhi B, Bharatiya D, Swain SK. Application of quercetin flavonoid based hybrid nanocomposites: A review. Saudi Pharm J 2020; 28:1719-1732. [PMID: 33424263 PMCID: PMC7783214 DOI: 10.1016/j.jsps.2020.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Natural bioflavonoids are an essential component of dietary supplements possessing antimicrobial properties. Many of the bioflavonoids have resulted in positive antitumor, anticancer, antibacterial, antifungal, anti-inflammatory properties, but the efficacy remains low due to toxicity at the molecular level whereas antiviral property limits to negative. The synergistic link between nanoscience and flavonoid chemistry enhances the epidemiological properties of flavonoid and also diminish the antimicrobial resistivity (AMR) by forming their hybrid nanocomposites. Nanochemistry uses various nanocomposite and nanomaterials for biosensing the flavonoids and their delivery as a drug. The quercetin flavonoid and its derivatives such as rutin, and myricetin are used for sensing and drug delivery. Quercetin with 15Carbon-5Hydroxyl chemical scaffold has been explored for a few decades for the development of hybrid nanocomposite and nanomaterial with metallic as well as organic nano co-composites. This quercetin flavonoid based hybrid nanocomposites seemed to show a significant effect on In vitro and some animal model processes along with attenuating lipid peroxidation, platelet aggregation, and capillary permeability actions. This review mainly focused on the hybrid nanoscience of quercetin bioflavonoid and its application in numerous biological, material fields with a future perspective.
Collapse
Affiliation(s)
- Biswajit Parhi
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, India
| | - Debasrita Bharatiya
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, India
| |
Collapse
|
36
|
Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, Shrivastava G, Gupta G, Negi P, Dua K, Zacconi FC. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 2020; 10:2075-2109. [PMID: 33304780 PMCID: PMC7714980 DOI: 10.1016/j.apsb.2020.10.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.
Collapse
Key Words
- 1,3-propanediol, PEG-b-PDMAEMA-b-Ppy
- 2-propylacrylicacid, PAH-b-PDMAPMA-b-PAH
- APOB, apolipoprotein B
- AQP-5, aquaporin-5
- AZEMA, azidoethyl methacrylate
- Atufect01, β-l-arginyl-2,3-l-diaminopropionicacid-N-palmityl-N-oleyl-amide trihydrochloride
- AuNPs, gold nanoparticles
- B-PEI, branched polyethlenimine
- BMA, butyl methacrylate
- CFTR, cystic fibrosis transmembrane conductance regulator gene
- CHEMS, cholesteryl hemisuccinate
- CHOL, cholesterol
- CMC, critical micelles concentration
- Cancer
- DC-Chol, 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol
- DMAEMA, 2-dimethylaminoethyl methacrylate
- DNA, deoxyribonucleic acid
- DOPC, dioleylphosphatidyl choline
- DOPE, dioleylphosphatidyl ethanolamine
- DOTAP, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate
- DOTMA, N-[1-(2,3-dioleyloxy)propy]-N,N,N-trimethylammoniumchloride
- DOX, doxorubicin
- DSGLA, N,N-dis-tearyl-N-methyl-N-2[N′-(N2-guanidino-l-lysinyl)] aminoethylammonium chloride
- DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine
- DSPE, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine
- DSPE-MPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)
- DSPE-PEG-Mal: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (mmmonium salt), EPR
- Liposomes
- Micelles
- N-acetylgalactosamine, HIF-1α
- Nanomedicine
- PE-PCL-b-PNVCL, pentaerythritol polycaprolactone-block-poly(N-vinylcaprolactam)
- PLA, poly-l-arginine
- PLGA, poly lactic-co-glycolic acid
- PLK-1, polo-like kinase 1
- PLL, poly-l-lysine
- PPES-b-PEO-b-PPES, poly(4-(phenylethynyl)styrene)-block-PEO-block-poly(4-(phenylethynyl)styrene)
- PTX, paclitaxel
- PiRNA, piwi-interacting RNA
- Polymer
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp peptide
- RISC, RNA-induced silencing complex
- RNA, ribonucleic acid
- RNAi, RNA interference
- RNAse III, ribonuclease III enzyme
- SEM, scanning electron microscope
- SNALP, stable nucleic acid-lipid particles
- SiRNA, short interfering rNA
- Small interfering RNA (siRNA)
- S–Au, thio‒gold
- TCC, transitional cell carcinoma
- TEM, transmission electron microscopy
- Tf, transferrin
- Trka, tropomyosin receptor kinase A
- USPIO, ultra-small superparamagnetic iron oxide nanoparticles
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- ZEBOV, Zaire ebola virus
- enhanced permeability and retention, Galnac
- hypoxia-inducible factor-1α, KSP
- kinesin spindle protein, LDI
- lipid-protamine-DNA/hyaluronic acid, MDR
- lysine ethyl ester diisocyanate, LPD/LPH
- messenger RNA, MTX
- methotrexate, NIR
- methoxy polyethylene glycol-polycaprolactone, mRNA
- methoxypoly(ethylene glycol), MPEG-PCL
- micro RNA, MPEG
- multiple drug resistance, MiRNA
- nanoparticle, NRP-1
- near-infrared, NP
- neuropilin-1, PAA
- poly(N,N-dimethylacrylamide), PDO
- poly(N-isopropyl acrylamide), pentaerythritol polycaprolactone-block-poly(N-isopropylacrylamide)
- poly(acrylhydrazine)-block-poly(3-dimethylaminopropyl methacrylamide)-block-poly(acrylhydrazine), PCL
- poly(ethylene glycol)-block-poly(2-dimethylaminoethyl methacrylate)-block poly(pyrenylmethyl methacrylate), PEG-b-PLL
- poly(ethylene glycol)-block-poly(l-lysine), PEI
- poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate)-stat-poly(methoxyethyl methacrylate), PEO-b-PCL
- poly(ethylene oxide)-block-poly(Ε-caprolactone), PE-PCL-b-PNIPAM
- poly(Ε-caprolactone), PCL-PEG
- poly(Ε-caprolactone)-polyethyleneglycol-poly(l-histidine), PCL-PEI
- polycaprolactone-polyethyleneglycol, PCL-PEG-PHIS
- polycaprolactone-polyethylenimine, PDMA
- polyethylenimine, PEO-b-P(DEA-Stat-MEMA
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Nikhil D. Amnerkar
- Adv V. R. Manohar Institute of Diploma in Pharmacy, Nagpur, Maharashtra 441110, India
| | - B. Ramesh
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Saurabh C. Khadse
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Maharashtra 425 405, India
| | - Rajendran Satheeshkumar
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Meenu Metha
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Flavia C. Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 4860, Chile
| |
Collapse
|
37
|
Green and facile fabrication of silver nanoparticles using Konjac Glucomannan by photocatalytic strategy. Carbohydr Polym 2020; 245:116576. [DOI: 10.1016/j.carbpol.2020.116576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
|
38
|
Prusty K, Swain SK. Polypropylene oxide/polyethylene oxide‐cellulose hybrid nanocomposite hydrogels as drug delivery vehicle. J Appl Polym Sci 2020. [DOI: 10.1002/app.49921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kalyani Prusty
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur Odisha India
| | - Sarat K. Swain
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur Odisha India
| |
Collapse
|
39
|
Devnarain N, Osman N, Fasiku VO, Makhathini S, Salih M, Ibrahim UH, Govender T. Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents-An in-depth review of the last two decades. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1664. [PMID: 32808486 DOI: 10.1002/wnan.1664] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance due to suboptimal targeting and inconsistent antibiotic release at bacterial infection sites has driven the formulation of stimuli-responsive nanocarriers for antibacterial therapy. Unlike conventional nanocarriers, stimuli-responsive nanocarriers have the ability to specifically enhance targeting and drug release profiles. There has been a significant escalation in the design and development of novel nanomaterials worldwide; in particular, intrinsic stimuli-responsive antibiotic nanocarriers, due to their enhanced activity, improved targeted delivery, and superior potential for bacterial penetration and eradication. Herein, we provide an extensive and critical review of pH-, enzyme-, redox-, and ionic microenvironment-responsive nanocarriers that have been reported in literature to date, with an emphasis on the mechanisms of drug release, the nanomaterials used, the nanosystems constructed and the antibacterial efficacy of the nanocarriers. The review also highlights further avenues of research for optimizing their potential and commercialization. This review confirms the potential of intrinsic stimuli-responsive nanocarriers for enhanced drug delivery and antibacterial killing. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nawras Osman
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sifiso Makhathini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
40
|
Mirsafaei R, Varshosaz J. Polyacrylamide-punicic acid conjugate-based micelles for flutamide delivery in PC3 cells of prostate cancer: synthesis, characterisation and cytotoxicity studies. IET Nanobiotechnol 2020; 14:417-422. [PMID: 32691745 PMCID: PMC8676636 DOI: 10.1049/iet-nbt.2020.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/26/2023] Open
Abstract
The aim of the present study was to synthesize a novel biopolymeric micelle based on punicic acid (PA) and polyacrylamide (PAM) for carrying chemotherapeutic drugs used in prostate cancer treatment. A polymer composite micelle was prepared by chemical conjugation between PAM and PA. The micelles were prepared by self-assembly via film casting followed by ultrasonication method. The successful production of PAMPA copolymeric micelles was confirmed using FTIR, 1H-NMR, and TEM. Then, flutamide was loaded in the designed nanomicelles and they were characterized. The cell cytotoxicity of the micelles was studied on PC3 cells of prostate cancer. The prepared nanomicelles showed the particle size of 88 nm, PDI of 0.246, zeta potential of -9 mV, drug loading efficiency of 94.5%, drug release of 85.6% until 10 hours in pH 7.4 and CMC of 74.13 μg/ml. The cell viability in blank nanocarriers was about 70% in PC3 cells at concentration of 25 μM. More significant cytotoxic effects were seen for flutamide loaded micelles at this concentration compared to the free drug. The results suggest that the PAMPA co-polymeric nanomicelles can be utilized as an effective carrier to enhance the cytotoxic effects of flutamide in prostate cancer.
Collapse
Affiliation(s)
- Razieh Mirsafaei
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
41
|
Sarkar N, Sahoo G, Swain SK. Nanoclay sandwiched reduced graphene oxide filled macroporous polyacrylamide-agar hybrid hydrogel as an adsorbent for dye decontamination. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Pan J, Zhang Z, Zhan Z, Xiong Y, Wang Y, Cao K, Chen Y. In situ generation of silver nanoparticles and nanocomposite films based on electrodeposition of carboxylated chitosan. Carbohydr Polym 2020; 242:116391. [PMID: 32564861 DOI: 10.1016/j.carbpol.2020.116391] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022]
Abstract
Herein, for the first time the electrodeposition of carboxylated chitosan is studied and utilized for the synthesis of silver nanoparticles (AgNPs) and generation of AgNPs/carboxylated chitosan nanocomposite films. Particularly, AgNPs are in situ synthesized on electrodes or substrates during the electrodeposition. Carboxylated chitosan not only acts as the green reducing agent and stabilizing agent for preparing AgNPs, but also serves as the main component in the electrodeposited nanocomposite film. The experimental results indicate that a smooth and homogeneous film is formed on the silver plate after electrodeposition, and the electrodeposited film can be detached from the silver plate as an independent film. The TEM observation and spectroscopic analysis results confirm the existence of AgNPs (the average size of 10 nm) in the nanocomposite film. The nanocomposite films with various shapes can be fabricated by the spatial selectivity of electrodeposition. In addition, the nanocomposite film containing AgNPs shows favorable antibacterial properties.
Collapse
Affiliation(s)
- Jie Pan
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Zheng Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Ziyao Zhan
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yanfei Xiong
- Department of Biological Science and Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yifeng Wang
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Kaiyuan Cao
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yanjun Chen
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
43
|
Muhammad Tahir H, Saleem F, Ali S, Ain QU, Fazal A, Summer M, Mushtaq R, Tariq Zahid M, Liaqat I, Murtaza G. Synthesis of sericin-conjugated silver nanoparticles and their potential antimicrobial activity. J Basic Microbiol 2020; 60:458-467. [PMID: 32115731 DOI: 10.1002/jobm.201900567] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NPs) are being recognized as antibacterial agents due to their rapidly increasing multidrug resistance in bacterial pathogens. Hence, there is an unmet need to identify the natural antibacterial agent. The present study aimed to evaluate the antibacterial activity of sericin-conjugated silver NPs synthesized by using sericin as a reducing and capping agent. Synthesized NPs were characterized by scanning electron microscope, nanolaser particle size analyzer (BT-90), Fourier-transform infrared analysis, and energy-dispersive X-ray. The biogenic NPs significantly inhibited the growth of Escherichia coli (12-15 mm zone of inhibition), Staphylococcus aureus (14.6-15.4 mm zone of inhibition), and Klebsiella pneumoniae (12.5-18 mm zone of inhibition). The stability of naturally synthesized NPs was examined at various temperatures (i.e., 4°C, 37°C, and 55°C) and pH (i.e., 3, 7, and 11). Temperature variability did not significantly affect the efficacy of NPs. However, NPs performed better at higher pH levels. This study suggested that the sericin-based silver NPs are not only effective against bacteria, but they also maintain the stability at different ranges of temperature and pH. We concluded that the sericin-conjugated silver NPs possess the remarkable antibacterial potential, which suggests their large-scale use as a cheap and stable antimicrobial agent in the future.
Collapse
Affiliation(s)
- Hafiz Muhammad Tahir
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Fatima Saleem
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Qurat Ul Ain
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Amna Fazal
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Summer
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Rabia Mushtaq
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Tariq Zahid
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Iram Liaqat
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Ghulam Murtaza
- The Centre for Advanced Studies in Physics (CASP), Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
44
|
Hafezi Moghaddam R, Dadfarnia S, Shabani AMH, Amraei R, Hafezi Moghaddam Z. Doxycycline drug delivery using hydrogels of O-carboxymethyl chitosan conjugated with caffeic acid and its composite with polyacrylamide synthesized by electron beam irradiation. Int J Biol Macromol 2020; 154:962-973. [PMID: 32205109 DOI: 10.1016/j.ijbiomac.2020.03.165] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022]
Abstract
Two hydrogels of O-carboxymethyl chitosan conjugated with caffeic acid and its composite with polyacrylamide were synthesized using electron beam irradiation. The synthesized hydrogels were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and mechanical properties studies. The hydrogels were loaded with doxycycline by swelling and its release was investigated in various media. The effect of the dose of electron beam irradiation and PAAm amount on the properties of hydrogels including swelling, drug loading, drug release, mechanical properties, and gel content were studied. The release of doxycycline form hydrogels in different media obeyed the mechanism of non-Fickian diffusion and best fitted to the Higuchi model and Korsmeyer-Peppas. In-vitro doxycycline release consideration indicated that the drug's release from composite hydrogel occurs with higher amounts than the other one. The cytotoxic study confirmed the non-toxicity of the prepared hydrogels dressing. Moreover, the growth inhibition of permissive bacteria against Staphylococcus aureus and Escherichia coli were observed for doxycycline-loaded hydrogels. So, the synthesized hydrogels are appropriate for practical application as a new antibacterial wound dressing.
Collapse
Affiliation(s)
- Reza Hafezi Moghaddam
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran; Central Iran Research Complex, Nuclear Science and Technology Research Institute, Yazd, Iran
| | | | | | - Raza Amraei
- Central Iran Research Complex, Nuclear Science and Technology Research Institute, Yazd, Iran
| | - Zahra Hafezi Moghaddam
- Department of Pharmacology, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
45
|
Shah A, Ashames AA, Buabeid MA, Murtaza G. Synthesis, in vitro characterization and antibacterial efficacy of moxifloxacin-loaded chitosan-pullulan-silver-nanocomposite films. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101366] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Jiang Y, Huang J, Wu X, Ren Y, Li Z, Ren J. Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds. Int J Biol Macromol 2020; 149:148-157. [PMID: 31982523 DOI: 10.1016/j.ijbiomac.2020.01.221] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/20/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Konjac glucomannan is a biocompatible polysaccharide with high medicinal potential. In this study, we prepared a hydrogel using an optimized crosslinking konjac glucomannan and chitosan. Silver nanoparticles (AgNPs) were incorporated into the hydrogel to enhance its antimicrobial property. This nanocomposite hydrogel could absorb wound exudates due to its swelling ability, and showed self-healing property that enabled structure stability. Moreover, as a carrier, the hydrogel could modulate the release of silver ions burst, thereby reducing AgNPs cytotoxicity. Rats models with infected skin defects were used to assess wound healing. The results indicated that AgNPs hydrogels dressing could promote wound healing and reduce inflammatory response, exhibiting great clinical application potentials.
Collapse
Affiliation(s)
- Yungang Jiang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiuwen Wu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago 60064, USA
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago 60064, USA
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, School of NARI Electric and Automation, Nanjing Normal University, Nanjing 210034, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
47
|
Akbari M, Morad R, Maaza M. First principle study of silver nanoparticle interactions with antimalarial drugs extracted from Artemisia annua plant. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2020; 22:331. [PMID: 33132747 PMCID: PMC7588957 DOI: 10.1007/s11051-020-05058-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 05/21/2023]
Abstract
Silver nanoparticles have a great potential in a broad range of applications such as drug-delivery carriers because of their antiviral and antibacterial properties. In this study, the coating properties of silver nanoparticle (size range of 1.6 nm) with three common anti-malarial drugs, Artemisinin, Artemether, and Artesunate have been studied by using the quantum mechanical and classical atomistic molecular dynamics simulation in order to use as the drug delivery to treat malaria and COVID-19 diseases. The optimized structure, frequencies, charge distribution, and the electrostatic potential maps of the three drug molecules were simulated by using the density functional theory (DFT) at the B3LYP/6-311++g(d,p) level of theory. Then, molecular dynamics simulation was used to study the coating of AgNP with each of these drugs. The affinity of interaction was obtained as Artesunate > Artemether > Artemisinin which is in agreement with the DFT results on the adsorption of drugs on the Ag(111) slab.
Collapse
Affiliation(s)
- Mahmood Akbari
- UNESCO-UNISA Africa Chair in Nanoscience & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Material Research Division, iThemba LABS-National Research Foundation, Somerset West, 7129 South Africa
| | - Razieh Morad
- UNESCO-UNISA Africa Chair in Nanoscience & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Material Research Division, iThemba LABS-National Research Foundation, Somerset West, 7129 South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Material Research Division, iThemba LABS-National Research Foundation, Somerset West, 7129 South Africa
| |
Collapse
|
48
|
Prusty K, Swain SK. Nanostructured gold dispersed polyethylmethaacrylate/dextran hybrid composites for packaging applications. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1602140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kalyani Prusty
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, Odisha, India
| |
Collapse
|
49
|
Chen F, Huang G, Huang H. Preparation and application of dextran and its derivatives as carriers. Int J Biol Macromol 2019; 145:827-834. [PMID: 31756474 DOI: 10.1016/j.ijbiomac.2019.11.151] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
As a natural and renewable biological macromolecule, dextran not only has excellent biodegradability, but also has good biocompatibility. Dextran and its derivatives are functional polymers for the construction of targeted drug delivery systems. Herein, the application of dextran as prodrug and nanoparticle/nanogel/microsphere/micelle carrier for targeting drug delivery system was summarized. It is clarified that dextran is an important biomaterial with application value.
Collapse
Affiliation(s)
- Fang Chen
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| |
Collapse
|
50
|
Electron beam irradiation synthesis of porous and non-porous pectin based hydrogels for a tetracycline drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:391-404. [DOI: 10.1016/j.msec.2019.04.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
|