1
|
Xu Y, Shen D, Zhou Z, Sun Y, Pan X, Liu W, Chu CH, Zhang L, Hannig M, Fu B. Polyelectrolyte-Cation Complexes Using PAsp-Sr Complexes Induce Biomimetic Mineralization with Antibacterial Ability. Adv Healthc Mater 2024; 13:e2303002. [PMID: 38018309 DOI: 10.1002/adhm.202303002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/26/2023] [Indexed: 11/30/2023]
Abstract
Remineralized dentin with an antibacterial ability is still a significant challenge in dentistry. Previously, a polyelectrolyte-calcium complexes pre-precursor (PCCP) process is proposed for rapid collagen mineralization. In the present study, the expansion concept of the PCCP process is explored by replacing the calcium with other cations, such as strontium. The results of transmission electron microscopy (TEM), 3D stochastic optical reconstruction microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and high-resolution TEM with selected area electron diffraction demonstrate that biomimetic mineralization of collagen fibrils and demineralized dentin could be fulfilled with Sr&F-codoped hydroxyapatite (HAp) after they are treated with poly-aspartic acid-strontium (PAsp-Sr) suspension followed by a phosphate&fluoride solution. Moreover, dentin remineralized with Sr&F-codoped HAp exhibits in vitro and in vivo antibacterial ability against Streptococcus mutans. The cytotoxicity and oral mucosa irritation tests reveal excellent biocompatibility of mineralization mediums (PAsp-Sr suspension and phosphate&fluoride solution). The demineralized dentin's mechanical properties (elastic modulus and microhardness) could be restored almost to that of the intact dentin. Hence, the expansion concept of the PCCP process that replaces calcium ions with some cationic ions along with fluorine opens up new horizons for generating antibacterial remineralized dentin containing ions-doped HAp with excellent biocompatibility via biomimetic mineralization technology.
Collapse
Affiliation(s)
- Yuedan Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Dongni Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yi Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xinni Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Wei Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Ling Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424, Homburg, Saarland, Germany
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
2
|
Bussola Tovani C, Divoux T, Manneville S, Azaïs T, Laurent G, de Frutos M, Gloter A, Ciancaglini P, Ramos AP, Nassif N. Strontium-driven physiological to pathological transition of bone-like architecture: A dose-dependent investigation. Acta Biomater 2023; 169:579-588. [PMID: 37516416 DOI: 10.1016/j.actbio.2023.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Whilst strontium (Sr2+) is widely investigated for treating osteoporosis, it is also related to mineralization disorders such as rickets and osteomalacia. In order to clarify the physiological and pathological effects of Sr2+ on bone biomineralization , we performed a dose-dependent investigation in bone components using a 3D scaffold that displays the hallmark features of bone tissue in terms of composition (osteoblast, collagen, carbonated apatite) and architecture (mineralized collagen fibrils hierarchically assembled into a twisted plywood geometry). As the level of Sr2+ is increased from physiological-like to excess, both the mineral and the collagen fibrils assembly are destabilized, leading to a drop in the Young modulus, with strong implications on pre-osteoblastic cell proliferation. Furthermore, the microstructural and mechanical changes reported here correlate with that observed in bone-weakening disorders induced by Sr2+ accumulation, which may clarify the paradoxical effects of Sr2+ in bone mineralization. More generally, our results provide physicochemical insights into the possible effects of inorganic ions on the assembly of bone extracellular matrix and may contribute to the design of safer therapies for treating osteoporosis. STATEMENT OF SIGNIFICANCE: Physiological-like (10% Sr2+) and excess accumulation-like (50% Sr2+) doses of Sr2+ are investigated in 3D biomimetic assemblies possessing the high degree of organization found in the extracellular of bone. Above the physiological dose, the organic and inorganic components of the bone-like scaffold are destabilized, resulting in impaired cellular activity, which correlates with bone-weakening disorders induced by Sr2+.
Collapse
Affiliation(s)
- Camila Bussola Tovani
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Thibaut Divoux
- Laboratoire de Physique, ENSL, CNRS, F-69342 Lyon, France
| | | | - Thierry Azaïs
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France
| | - Guillaume Laurent
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France
| | - Marta de Frutos
- Laboratoire de Physique des Solides (LPS), CNRS, Université Paris Saclay, F-91405 Orsay, France
| | - Alexandre Gloter
- Laboratoire de Physique des Solides (LPS), CNRS, Université Paris Saclay, F-91405 Orsay, France
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana P Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Nadine Nassif
- Laboratoire Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, Collège de France, LCMCP, F-75005 Paris, France.
| |
Collapse
|
3
|
Zhu X, Wang C, Bai H, Zhang J, Wang Z, Li Z, Zhao X, Wang J, Liu H. Functionalization of biomimetic mineralized collagen for bone tissue engineering. Mater Today Bio 2023; 20:100660. [PMID: 37214545 PMCID: PMC10199226 DOI: 10.1016/j.mtbio.2023.100660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Mineralized collagen (MC) is the basic unit of bone structure and function and is the main component of the extracellular matrix (ECM) in bone tissue. In the biomimetic method, MC with different nanostructures of neo-bone have been constructed. Among these, extra-fibrous MC has been approved by regulatory agencies and applied in clinical practice to play an active role in bone defect repair. However, in the complex microenvironment of bone defects, such as in blood supply disorders and infections, MC is unable to effectively perform its pro-osteogenic activities and needs to be functionalized to include osteogenesis and the enhancement of angiogenesis, anti-infection, and immunomodulation. This article aimed to discuss the preparation and biological performance of MC with different nanostructures in detail, and summarize its functionalization strategy. Then we describe the recent advances in the osteo-inductive properties and multifunctional coordination of MC. Finally, the latest research progress of functionalized biomimetic MC, along with the development challenges and future trends, are discussed. This paper provides a theoretical basis and advanced design philosophy for bone tissue engineering in different bone microenvironments.
Collapse
Affiliation(s)
- Xiujie Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Haotian Bai
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Xin Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| |
Collapse
|
4
|
Lei C, Song JH, Li S, Zhu YN, Liu MY, Wan MC, Mu Z, Tay FR, Niu LN. Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials 2023; 296:122066. [PMID: 36842238 DOI: 10.1016/j.biomaterials.2023.122066] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Osteoporosis is caused by the disruption in homeostasis between bone formation and bone resorption. Conventional management of osteoporosis involves systematic drug administration and hormonal therapy. These treatment strategies have limited curative efficacy and multiple adverse effects. Biomaterials-based therapeutic strategies have recently emerged as promising alternatives for the treatment of osteoporosis. The present review summarizes the current status of biomaterials designed for managing osteoporosis. The advantages of biomaterials-based strategies over conventional systematic drug treatment are presented. Different anti-osteoporotic delivery systems are concisely addressed. These materials include injectable hydrogels and nanoparticles, as well as anti-osteoporotic bone tissue engineering materials. Fabrication techniques such as 3D printing, electrostatic spinning and artificial intelligence are appraised in the context of how the use of these adjunctive techniques may improve treatment efficacy. The limitations of existing biomaterials are critically analyzed, together with deliberation of the future directions in biomaterials-based therapies. The latter include discussion on the use of combination strategies to enhance therapeutic efficacy in the osteoporosis niche.
Collapse
Affiliation(s)
- Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing-Han Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Song Li
- School of Stomatology, Xinjiang Medical University. Urumqi 830011, China
| | - Yi-Na Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming-Yi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
5
|
Zhu W, Li C, Yao M, Wang X, Wang J, Zhang W, Chen W, Lv H. Advances in osseointegration of biomimetic mineralized collagen and inorganic metal elements of natural bone for bone repair. Regen Biomater 2023; 10:rbad030. [PMID: 37181680 PMCID: PMC10172150 DOI: 10.1093/rb/rbad030] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 05/16/2023] Open
Abstract
At this stage, bone defects caused by trauma, infection, tumor, or congenital diseases are generally filled with autologous bone or allogeneic bone transplantation, but this treatment method has limited sources, potential disease transmission and other problems. Ideal bone-graft materials remain continuously explored, and bone defect reconstruction remains a significant challenge. Mineralized collagen prepared by bionic mineralization combining organic polymer collagen with inorganic mineral calcium phosphate can effectively imitate the composition and hierarchical structure of natural bone and has good application value in bone repair materials. Magnesium, strontium, zinc and other inorganic components not only can activate relevant signaling pathways to induce differentiation of osteogenic precursor cells but also stimulate other core biological processes of bone tissue growth and play an important role in natural bone growth, and bone repair and reconstruction. This study reviewed the advances in hydroxyapatite/collagen composite scaffolds and osseointegration with natural bone inorganic components, such as magnesium, strontium and zinc.
Collapse
Affiliation(s)
| | | | - Mengxuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang 050051, P.R. China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang 050051, P.R. China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, P.R. China
| | - Wei Zhang
- Correspondence address. E-mail: (W.Z.); (W.C.); (H.L.)
| | - Wei Chen
- Correspondence address. E-mail: (W.Z.); (W.C.); (H.L.)
| | - Hongzhi Lv
- Correspondence address. E-mail: (W.Z.); (W.C.); (H.L.)
| |
Collapse
|
6
|
Azril, Huang KY, Hobley J, Rouhani M, Liu WL, Jeng YR. A methodology to evaluate different histological preparations of soft tissues: Intervertebral disc tissues study. J Appl Biomater Funct Mater 2023; 21:22808000231155634. [PMID: 36799405 DOI: 10.1177/22808000231155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
A tissue preparation method will inevitably alter the tissue content. This study aims to evaluate how different common sample preparation methods will affect the tissue morphology, biomechanical properties, and chemical composition of samples. The study focuses on intervertebral disc (IVD) tissue; however, it can be applied to other soft tissues. Raman spectroscopy synchronized with nanoindentation instrumentation was employed to investigate the compositional changes of IVD, specifically, nucleus pulposus (NP) and annulus fibrosus (AF), together with their biomechanical properties of IVD. These properties were examined through the following histological specimen types: fresh cryosection (control), fixed cryosection, and paraffin-embedded. The IVD tissue could be located using an optical microscope under three different preparation methods. Paraffin-embedded samples showed the most explicit details where the lamellae structure of AF could be identified. In terms of biomechanical properties, there was no significant difference between the fresh and fixed cryosection (p > 0.05). In contrast, the fresh cryosection and paraffin-embedded samples showed a significant difference (p < 0.05). It was also found that the tissue preparations affected the chemical content of the tissues and structure of the tissue, which are expected to contribute to biomechanical properties changes. Fresh cryosection and fixed cryosection samples are more promising to work with for biomechanical assessment in histological tissues. The findings fill essential gaps in the literature by providing valuable insight into the characteristics of IVD at the microscale. This study can also become a reference for a better approach to assessing the mechanical properties and chemical content of soft tissues at the microscale.
Collapse
Affiliation(s)
- Azril
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City
| | - Kuo-Yuan Huang
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, Tainan City
| | - Jonathan Hobley
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City
| | - Mehdi Rouhani
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City
| | - Wen-Lung Liu
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, Tainan City
| | - Yeau-Ren Jeng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City.,Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan City.,Medical Device Innovation Center, National Cheng Kung University, Tainan City
| |
Collapse
|
7
|
Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration. Bone Res 2022; 10:55. [PMID: 35999199 PMCID: PMC9399250 DOI: 10.1038/s41413-022-00224-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/15/2022] [Accepted: 05/29/2022] [Indexed: 11/23/2022] Open
Abstract
The restoration of bone defects caused by osteoporosis remains a challenge for surgeons. Strontium ranelate has been applied in preventative treatment approaches due to the biological functions of the trace element strontium (Sr). In this study, we aimed to fabricate bioactive scaffolds through Sr incorporation based on our previously developed modified amino-functional mesoporous bioactive glass (MBG) and to systematically investigate the bioactivity of the resulting scaffold in vitro and in vivo in an osteoporotic rat model. The results suggested that Sr-incorporated amino-functional MBG scaffolds possessed favorable biocompatibility. Moreover, with the incorporation of Sr, osteogenic and angiogenic capacities were upregulated in vitro. The in vivo results showed that the Sr-incorporated amino-functional MBG scaffolds achieved better bone regeneration and vessel formation. Furthermore, bioinformatics analysis indicated that the Sr-incorporated amino-functional MBG scaffolds could reduce reactive oxygen species levels in bone marrow mesenchymal stem cells in the osteoporotic model by activating the cAMP/PKA signaling pathway, thus playing an anti-osteoporosis role while promoting osteogenesis. This study demonstrated the feasibility of incorporating trace elements into scaffolds and provided new insights into biomaterial design for facilitating bone regeneration in the treatment of osteoporosis.
Collapse
|
8
|
Becerra J, Rodriguez M, Leal D, Noris-Suarez K, Gonzalez G. Chitosan-collagen-hydroxyapatite membranes for tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:18. [PMID: 35072812 PMCID: PMC8786760 DOI: 10.1007/s10856-022-06643-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/05/2022] [Indexed: 05/17/2023]
Abstract
Tissue engineering is growing in developing new technologies focused on providing effective solutions to degenerative pathologies that affect different types of connective tissues. The search for biocompatible, bioactive, biodegradable, and multifunctional materials has grown significantly in recent years. Chitosan, calcium phosphates collagen, and their combination as composite materials fulfill the required properties and could result in biostimulation for tissue regeneration. In the present work, the chitosan/collagen/hydroxyapatite membranes were prepared with different concentrations of collagen and hydroxyapatite. Cell adhesion was evaluated by MTS assay for two in vitro models. Additionally, cytotoxicity of the different membranes employing hemolysis of erythrocytes isolated from human blood was carried out. The structure of the membranes was analyzed by X-rays diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermal stability properties by thermogravimetric methods (TGA). The highest cell adhesion after 48 h was obtained for chitosan membranes with the highest hydroxyapatite and collagen content. All composite membranes showed good cell adhesion and low cytotoxicity, suggesting that these materials have a significant potential to be used as biomaterials for tissue engineering. Graphical abstract.
Collapse
Affiliation(s)
- José Becerra
- Instituto de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo, Ecuador
- Lab. de Materiales, Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela
| | | | - Dayana Leal
- Instituto de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | | | - Gema Gonzalez
- Lab. de Materiales, Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela.
- Yachay Tech University, School of Physical Sciences and Nanotechnology, Urcuqui, 100119, Ecuador.
| |
Collapse
|
9
|
Alcala-Orozco CR, Mutreja I, Cui X, Hooper GJ, Lim KS, Woodfield TBF. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair. Bone 2022; 154:116198. [PMID: 34534709 DOI: 10.1016/j.bone.2021.116198] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/02/2022]
Abstract
Tissue engineering approaches for bone repair have rapidly evolved due to the development of novel biofabrication technologies, providing an opportunity to fabricate anatomically-accurate living implants with precise placement of specific cell types. However, limited availability of biomaterial inks, that can be 3D-printed with high resolution, while providing high structural support and the potential to direct cell differentiation and maturation towards the osteogenic phenotype, remains an ongoing challenge. Aiming towards a multifunctional biomaterial ink with high physical stability and biological functionality, this work describes the development of a nanocomposite biomaterial ink (Mg-PCL) comprising of magnesium hydroxide nanoparticles (Mg) and polycaprolactone (PCL) thermoplastic for 3D printing of strong and bioactive bone regenerative scaffolds. We characterised the Mg nanoparticle system and systematically investigated the cytotoxic and osteogenic effects of Mg supplementation to human mesenchymal stromal cells (hMSCs) 2D-cultures. Next, we prepared Mg-PCL biomaterial ink using a solvent casting method, and studied the effect of Mg over mechanical properties, printability and scaffold degradation. Furthermore, we delivered MSCs within Mg-PCL scaffolds using a gelatin-methacryloyl (GelMA) matrix, and evaluated the effect of Mg over cell viability and osteogenic differentiation. Nanocomposite Mg-PCL could be printed with high fidelity at 20 wt% of Mg content, and generated a mechanical reinforcement between 30%-400% depending on the construct internal geometry. We show that Mg-PCL degrades faster than standard PCL in an accelerated-degradation assay, which has positive implications towards in vivo implant degradation and bone regeneration. Mg-PCL did not affect MSCs viability, but enhanced osteogenic differentiation and bone-specific matrix deposition, as demonstrated by higher ALP/DNA levels and Alizarin Red calcium staining. Finally, we present proof of concept of Mg-PCL being utilised in combination with a bone-specific bioink (Sr-GelMA) in a coordinated-extrusion bioprinting strategy for fabrication of hybrid constructs with high stability and synergistic biological functionality. Mg-PCL further enhanced the osteogenic differentiation of encapsulated MSCs and supported bone ECM deposition within the bioink component of the hybrid construct, evidenced by mineralised nodule formation, osteocalcin (OCN) and collagen type-I (Col I) expression within the bioink filaments. This study demonstrated that magnesium-based nanocomposite bioink material optimised for extrusion-based 3D printing of bone regenerative scaffolds provide enhanced mechanical stability and bone-related bioactivity with promising potential for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Cesar R Alcala-Orozco
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Light-Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Isha Mutreja
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Gary J Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Centre of Research Excellence in Medical Technologies (MedTech CoRE), Auckland, New Zealand
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Light-Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Centre of Research Excellence in Medical Technologies (MedTech CoRE), Auckland, New Zealand.
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Centre of Research Excellence in Medical Technologies (MedTech CoRE), Auckland, New Zealand.
| |
Collapse
|
10
|
The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment. Int J Mol Sci 2021; 22:ijms22126564. [PMID: 34207344 PMCID: PMC8235140 DOI: 10.3390/ijms22126564] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a chronic disease characterized by low bone mass caused by increased bone turnover and impaired bone microarchitecture. In treatment, we use antiresorptive or anabolic drugs, which usually have a unidirectional effect, i.e., they inhibit the activity of osteoclasts or stimulate the effect of osteoblasts. Strontium ranelate is an anti-osteoporosis drug with a unique mechanism of action (used primarily in postmenopausal women). Unlike other medicines, it has a multidirectional effect on bone tissue, intensifying osteoblastogenesis while inhibiting osteoclastogenesis. It turns out that this effect is demonstrated by strontium ions, an element showing physical and chemical similarity to calcium, the basic element that builds the mineral fraction of bone. As a result, strontium acts through the calcium-sensing receptor (CaSR) receptor in bone tissue cells. In recent years, there has been a significant increase in interest in the introduction of strontium ions in place of calcium ions in ceramics used as bone replacement materials for the treatment of bone fractures and defects caused by osteoporosis. The aim of this study was to summarize current knowledge about the role of strontium in the treatment of osteoporosis, its effects (in various forms), and the ways in which it is administered.
Collapse
|
11
|
Li Y, Wu R, Yu L, Shen M, Ding X, Lu F, Liu M, Yang X, Gou Z, Xu S. Rational design of nonstoichiometric bioceramic scaffolds via digital light processing: tuning chemical composition and pore geometry evaluation. J Biol Eng 2021; 15:1. [PMID: 33407741 PMCID: PMC7789156 DOI: 10.1186/s13036-020-00252-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/03/2020] [Indexed: 11/26/2022] Open
Abstract
Bioactive ceramics are promising candidates as 3D porous substrates for bone repair in bone regenerative medicine. However, they are often inefficient in clinical applications due to mismatching mechanical properties and compromised biological performances. Herein, the additional Sr dopant is hypothesized to readily adjust the mechanical and biodegradable properties of the dilute Mg-doped wollastonite bioceramic scaffolds with different pore geometries (cylindrical-, cubic-, gyroid-) by ceramic stereolithography. The results indicate that the compressive strength of Mg/Sr co-doped bioceramic scaffolds could be tuned simultaneously by the Sr dopant and pore geometry. The cylindrical-pore scaffolds exhibit strength decay with increasing Sr content, whereas the gyroid-pore scaffolds show increasing strength and Young's modulus as the Sr concentration is increased from 0 to 5%. The ion release could also be adjusted by pore geometry in Tris buffer, and the high Sr content may trigger a faster scaffold bio-dissolution. These results demonstrate that the mechanical strengths of the bioceramic scaffolds can be controlled from the point at which their porous structures are designed. Moreover, scaffold bio-dissolution can be tuned by pore geometry and doping foreign ions. It is reasonable to consider the nonstoichiometric bioceramic scaffolds are promising for bone regeneration, especially when dealing with pathological bone defects.
Collapse
Affiliation(s)
- Yifan Li
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003 P. R. China
| | - Ronghuan Wu
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003 P. R. China
| | - Li Yu
- Operation Room, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, 310003 Zhejiang Province P. R. China
| | - Miaoda Shen
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003 P. R. China
| | - Xiaoquan Ding
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003 P. R. China
| | - Fengling Lu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058 P. R. China
| | - Mengtao Liu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058 P. R. China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058 P. R. China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, #866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058 P. R. China
| | - Sanzhong Xu
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province 310003 P. R. China
| |
Collapse
|
12
|
Liu H, Lin M, Liu X, Zhang Y, Luo Y, Pang Y, Chen H, Zhu D, Zhong X, Ma S, Zhao Y, Yang Q, Zhang X. Doping bioactive elements into a collagen scaffold based on synchronous self-assembly/mineralization for bone tissue engineering. Bioact Mater 2020; 5:844-858. [PMID: 32637748 PMCID: PMC7327760 DOI: 10.1016/j.bioactmat.2020.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
Pure collagen is biocompatible but lacks inherent osteoinductive, osteoimmunomodulatory and antibacterial activities. To obtain collagen with these characteristics, we developed a novel methodology of doping bioactive elements into collagen through the synchronous self-assembly/mineralization (SSM) of collagen. In the SSM model, amorphous mineral nanoparticles (AMN) (amorphous SrCO3, amorphous Ag3PO4, etc.) stabilized by the polyampholyte, carboxymethyl chitosan (CMC), and collagen molecules were the primary components under acidic conditions. As the pH gradually increased, intrafibrillar mineralization occurred via the self-adaptive interaction between the AMNs and the collagen microfibrils, which were self-assembling; the AMNs wrapped around the microfibrils became situated in the gap zones of collagen and finally transformed into crystals. Sr-doped collagen scaffolds (Sr-CS) promoted in vitro cell proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells (rBMSCs) and synergistically improved osteogenesis of rBMSCs by altering the macrophage response. Ag-doped collagen scaffolds (Ag-CS) exhibited in vitro antibacterial effects on S. aureus, as well as cell/tissue compatibility. Moreover, Sr-CS implanted into the calvarial defect of a rat resulted in improved bone regeneration. Therefore, the SSM model is a de novo synthetic strategy for doping bioactive elements into collagen, and can be used to fabricate multifunctional collagen scaffolds to meet the clinical challenges of encouraging osteogenesis, boosting the immune response and fighting severe infection in bone defects.
Collapse
Affiliation(s)
- Huanhuan Liu
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Mingli Lin
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Xue Liu
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Ye Zhang
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Yuyu Luo
- The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
| | - Yanyun Pang
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Haitao Chen
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Dongwang Zhu
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Xue Zhong
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Shiqing Ma
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanhong Zhao
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin, 300211, China
| | - Xu Zhang
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
- Institute of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
13
|
Wang X, Meng J, Zhang T, Weijia Lv W, Liang Z, Shi Q, Li Z, Zhang T. Identifying compositional and structural changes in the nucleus pulposus from patients with lumbar disc herniation using Raman spectroscopy. Exp Ther Med 2020; 20:447-453. [PMID: 32537009 PMCID: PMC7281961 DOI: 10.3892/etm.2020.8729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/10/2020] [Indexed: 12/03/2022] Open
Abstract
Lower back pain (LBP) is one of the most common musculoskeletal complaints worldwide. Intervertebral disc degeneration (IDD) is considered to be a significant contributor to LBP; however, the mechanisms underlying IDD remain to be fully elucidated. One of the major features of IDD is the decreased content of type II collagen and proteoglycans in the nucleus pulposus (NP). The present study aimed to investigate the biochemical mechanisms of IDD at the microscopic level using Raman spectroscopy. Raman spectroscopy, based on inelastic scattering of light, is an emerging optical technique that may measure the chemical composition of complex biological samples, including biofluids, cells and tissues. In the present study, 30 NP tissue samples from 30 patients who were diagnosed with lumbar disc herniation and received spinal fusion surgery to relieve LBP were obtained and analyzed. Routine pre-operative 3.0T, T2-weighed MRI was used to classify the cases according to Pfirrmann grades and the T2 signal intensity value of the NP was measured. Subsequently, all NP samples were scanned and analyzed using a Laser MicroRaman Spectrometer at room temperature. The Raman spectral results demonstrated that the relative content of proteoglycans, expressed as the relative intensity ratio of two peaks (I1064/I1004), was significantly inversely correlated with the Pfirrmann grade (ρ=-0.6462; P<0.0001), whereas the content of collagen (amide I) was significantly positively correlated with the Pfirrmann grade (ρ=0.5141; P<0.01). In conclusion, the higher relative intensity of the ratio of two peaks (I1670/I1640; Amide I) represented a higher fractional content of disordered collagen, which suggested that the defective collagen structure may lead to NP abnormalities.
Collapse
Affiliation(s)
- Xuehui Wang
- First Central Clinical College, Tianjin Medical University, Tianjin 300070, P.R. China.,Department of Orthopaedics, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Jianfang Meng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Tongxing Zhang
- Department of Orthopaedics, Tianjin Hospital, Tianjin Medical University, Tianjin 300211, P.R. China
| | - William Weijia Lv
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Zhao Liang
- Biobank, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Qian Shi
- First Central Clinical College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Tao Zhang
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
14
|
Alcala-Orozco CR, Mutreja I, Cui X, Kumar D, Hooper GJ, Lim KS, Woodfield TB. Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2019.e00073] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
De Bonis A, Uskoković V, Barbaro K, Fadeeva I, Curcio M, Imperatori L, Teghil R, Rau JV. Pulsed laser deposition temperature effects on strontium-substituted hydroxyapatite thin films for biomedical implants. Cell Biol Toxicol 2020; 36:537-551. [PMID: 32377851 DOI: 10.1007/s10565-020-09527-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/14/2020] [Indexed: 02/08/2023]
Abstract
Substituting small molecule drugs with abundant and easily affordable ions may have positive effects on the way countless disease treatments are approached. The interest in strontium cation in bone therapies soared in the wake of the success of strontium ranelate in the treatment of osteoporosis. A new method for producing thin strontium-containing hydroxyapatite (Sr-HA, Ca9Sr(PO4)6(OH)2) films as coatings that render bioinert titanium implant bioactive is reported here. The method is based on the combination of a mechanochemical synthesis of Sr-HA targets and their deposition in form of thin films on top of titanium with the use of laser ablation at low pressure. The films were 1-2 μm in thickness and their formation was studied at different temperatures, including 25, 300, and 500 °C. Highly crystalline Sr-HA target transformed during pulsed laser deposition to a fully amorphous film, whose degree of long-range order recovered with temperature. Particle edges became somewhat sharper and surface roughness moderately increased with temperature, but the (Ca+Sr)/P atomic ratio, which increased 1.5 times during the film formation, remained approximately constant at different temperatures. Despite the mostly amorphous structure of the coatings, their affinity for capturing atmospheric carbon dioxide and accommodating it as carbonate ions that replace both phosphates and hydroxyls of HA was confirmed in an X-ray photoelectron spectroscopic analysis. As the film deposition temperature increased, the lattice voids got reduced in concentration and the structure gradually "closed," becoming more compact and entailing a linear increase in microhardness with temperature, by 0.03 GPa/°C for the entire 25-500 °C range. Biocompatibility and bioactivity of Sr-HA thin films deposited on titanium were confirmed in an interaction with dental pulp stem cells, suggesting that these coatings, regardless of the processing temperature, may be viable candidates for the surface components of metallic bone implants.
Collapse
Affiliation(s)
- Angela De Bonis
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, CA, 92697, USA
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale Lazio e Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178, Rome, Italy
| | - Inna Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky prospect 49, Moscow, Russia, 119991
| | - Mariangela Curcio
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Luca Imperatori
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Roberto Teghil
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
16
|
Effects of Strontium-Doped β-Tricalcium Scaffold on Longitudinal Nuclear Factor-Kappa Beta and Vascular Endothelial Growth Factor Receptor-2 Promoter Activities during Healing in a Murine Critical-Size Bone Defect Model. Int J Mol Sci 2020; 21:ijms21093208. [PMID: 32370039 PMCID: PMC7246816 DOI: 10.3390/ijms21093208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
It was hypothesized that strontium (Sr)-doped β-tricalcium phosphate (TCP)-based scaffolds have a positive effect on the regeneration of large bone defects (LBD). Readouts in our mice models were nuclear factor-kappa beta (NF-κB) activity and vascular endothelial growth factor receptor-2 (VEGFR-2) promoter activity during the healing process. A 2-mm critical-size femoral fracture was performed in transgenic NF-κB- and VEGFR-2-luciferase reporter mice. The fracture was filled with a 3D-printed β-TCP scaffold with or without Sr. A bioluminescence in-vivo imaging system was used to sequentially investigate NF-κB and VEGFR-2 expression for two months. After sacrifice, soft and osseous tissue formation in the fracture sites was histologically examined. NF-κB activity increased in the β-TCP + Sr group in the latter stage (day 40–60). VEGFR-2 activity increased in the + Sr group from days 0–15 but decreased and showed significantly less activity than the β-TCP and non-scaffold groups from days 40–60. The new bone formation and soft tissue formation in the + Sr group were significantly higher than in the β-TCP group, whereas the percentage of osseous tissue formation in the β-TCP group was significantly higher than in the β-TCP + Sr group. We analyzed longitudinal VEGFR-2 promoter activity and NF-κB activity profiles, as respective agents of angiogenesis and inflammation, during LBD healing. The extended inflammation phase and eventually more rapid resorption of scaffold caused by the addition of strontium accelerates temporary bridging of the fracture gaps. This finding has the potential to inform an improved treatment strategy for patients who suffer from osteoporosis.
Collapse
|
17
|
Wang J, Li B, Pu X, Wang X, Cooper RC, Gui Q, Yang H. Injectable Multicomponent Biomimetic Gel Composed of Inter-Crosslinked Dendrimeric and Mesoporous Silica Nanoparticles Exhibits Highly Tunable Elasticity and Dual Drug Release Capacity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10202-10210. [PMID: 32023033 PMCID: PMC10983814 DOI: 10.1021/acsami.0c01395] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a growing need for cartilage defect grafts that are structurally adaptable to possess multifaceted functions to promote bone regeneration, sustain medication efficacy, and preferably remain injectable but solidify quickly upon injection. In this work, we developed an injectable multicomponent biomimetic gel (MBG) by integrating polyamidoamine dendrimer G3 (G3), mesoporous silica nanoparticles (MSNs), and dendrimer-templated silver nanoparticles (G3-Ag) into a well-defined cross-linked network. MBGs composed of one particulate component (G3 alone), i.e., MBG-1, two particulate components (G3 and MSN-NH2), i.e., MBG-2, and three particulate components (G3, MSN-NH2, and G3-Ag), i.e., MBG-3, were prepared by inter-cross-linking dendrimeric and mesoporous silica nanoparticles with poly(ethylene glycol) diglycidyl ether (PEG-DGE, Mn = 2000 g/mol) via the facile amine-epoxy click reaction. The water-soluble antibiotic isoniazid was loaded to the cross-linked PEG network, whereas the hydrophobic antibiotic rifampicin was encapsulated into mesoporous MSNs. Our studies revealed that elasticity and mechanical strengths could be modulated and enhanced significantly with the inclusion of MSNs and silver nanoparticles. Isoniazid was released rapidly while rifampicin was released over an extended period of time. In addition, MBGs showed injectability, high swelling capacity, structural stability, and cytocompatibility. Taken together, MBGs have shown structural features that allow for the development of injectable gel grafts with the ability to promote cartilage defect repair and offer antibiotic medication benefits.
Collapse
Affiliation(s)
- Juan Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Boxuan Li
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xingming Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Remy C Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Qin Gui
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
18
|
The Calcium Channel Affect Osteogenic Differentiation of Mesenchymal Stem Cells on Strontium-Substituted Calcium Silicate/Poly-ε-Caprolactone Scaffold. Processes (Basel) 2020. [DOI: 10.3390/pr8020198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There had been a paradigm shift in tissue engineering studies over the past decades. Of which, part of the hype in such studies was based on exploring for novel biomaterials to enhance regeneration. Strontium ions have been reported by others to have a unique effect on osteogenesis. Both in vitro and in vivo studies had demonstrated that strontium ions were able to promote osteoblast growth, and yet at the same time, inhibit the formation of osteoclasts. Strontium is thus considered an important biomaterial in the field of bone tissue engineering. In this study, we developed a Strontium-calcium silicate scaffold using 3D printing technology and evaluated for its cellular proliferation capabilities by assessing for protein quantification and mineralization of Wharton’s Jelly mesenchymal stem cells. In addition, verapamil (an L-type of calcium channel blocker, CCB) was used to determine the mechanism of action of strontium ions. The results found that the relative cell proliferation rate on the scaffold was increased between 20% to 60% within 7 days of culture, while the CCB group only had up to approximately 10% proliferation as compared with the control specimen. Besides, the CCB group had downregulation and down expressions of all downstream cell signaling proteins (ERK and P38) and osteogenic-related protein (Col I, OPN, and OC). Furthermore, CCB was found to have 3–4 times lesser calcium deposition and quantification after 7 and 14 days of culture. These results effectively show that the 3D printed strontium-contained scaffold could effectively stimulate stem cells to undergo bone differentiation via activation of L-type calcium channels. Such results showed that strontium-calcium silicate scaffolds have high development potential for bone tissue engineering.
Collapse
|
19
|
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110698. [PMID: 32204012 DOI: 10.1016/j.msec.2020.110698] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/02/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
The goal of a biomaterial is to support the bone tissue regeneration process at the defect site and eventually degrade in situ and get replaced with the newly generated bone tissue. Nanocomposite biomaterials are a relatively new class of materials that incorporate a biopolymeric and biodegradable matrix structure with bioactive and easily resorbable fillers which are nano-sized. This article is a review of a few polymeric nanocomposite biomaterials which are potential candidates for bone tissue regeneration. These nanocomposites have been broadly classified into two groups viz. natural and synthetic polymer based. Natural polymer-based nanocomposites include materials fabricated through reinforcement of nanoparticles and/or nanofibers in a natural polymer matrix. Several widely used natural biopolymers, such as chitosan (CS), collagen (Col), cellulose, silk fibroin (SF), alginate, and fucoidan, have been reviewed regarding their present investigation on the incorporation of nanomaterial, biocompatibility, and tissue regeneration. Synthetic polymer-based nanocomposites that have been covered in this review include polycaprolactone (PCL), poly (lactic-co-glycolic) acid (PLGA), polyethylene glycol (PEG), poly (lactic acid) (PLA), and polyurethane (PU) based nanocomposites. An array of nanofillers, such as nano hydroxyapatite (nHA), nano zirconia (nZr), nano silica (nSi), silver nano particles (AgNPs), nano titanium dioxide (nTiO2), graphene oxide (GO), that is used widely across the bone tissue regeneration research platform are included in this review with respect to their incorporation into a natural and/or synthetic polymer matrix. The influence of nanofillers on cell viability, both in vitro and in vivo, along with cytocompatibility and new tissue generation has been encompassed in this review. Moreover, nanocomposite material characterization using some commonly used analytical techniques, such as electron microscopy, spectroscopy, diffraction patterns etc., has been highlighted in this review. Biomaterial physical properties, such as pore size, porosity, particle size, and mechanical strength which strongly influences cell attachment, proliferation, and subsequent tissue growth has been covered in this review. This review has been sculptured around a case by case basis of current research that is being undertaken in the field of bone regeneration engineering. The nanofillers induced into the polymeric matrix render important properties, such as large surface area, improved mechanical strength as well as stability, improved cell adhesion, proliferation, and cell differentiation. The selection of nanocomposites is thus crucial in the analysis of viable treatment strategies for bone tissue regeneration for specific bone defects such as craniofacial defects. The effects of growth factor incorporation on the nanocomposite for controlling new bone generation are also important during the biomaterial design phase.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
20
|
Li J, Zhang YJ, Lv ZY, Liu K, Meng CX, Zou B, Li KY, Liu FZ, Zhang B. The observed difference of macrophage phenotype on different surface roughness of mineralized collagen. Regen Biomater 2020; 7:203-211. [PMID: 32296539 PMCID: PMC7147371 DOI: 10.1093/rb/rbz053] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/19/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
Biomaterials regulate macrophages and promote regeneration function, which is a new hot pot in tissue engineering and regenerative medicine. The research based on macrophage materials biology has appeared happy future, but related research on regulating macrophages and promoting tissue regeneration is still in its infancy. The surface roughness of biomaterials is one of the important factors affecting macrophage behavior. Previous study also found that the surface roughness of many biomaterials regulating macrophage polarization, but not including mineralized collagen (MC). In this study, we designed and fabricated MC with different roughness and investigated the influence of MC with different roughness on macrophages. In the study, we found that on the rough surface of MC, macrophages exhibited M1 phenotype-amoeboid morphology and high-level secretory of inflammatory factor (tumor necrosis factor-α and interleukin-6), while smoother surface exhibited M2 phenotype. These data will be beneficial to understand the mechanism deeply and enrich biomaterials tissue regeneration theory, provide a new train of thought biomaterials inducing tissue regeneration and repair and guide the optimum design of new biomaterials, development and reasonable applications.
Collapse
Affiliation(s)
- Jun Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Yu-Jue Zhang
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Zhao-Yong Lv
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Kun Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Chun-Xiu Meng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Bo Zou
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Ke-Yi Li
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Feng-Zhen Liu
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China.,Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Bin Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| |
Collapse
|
21
|
Chandran S, John A. Osseointegration of osteoporotic bone implants: Role of stem cells, Silica and Strontium - A concise review. J Clin Orthop Trauma 2019; 10:S32-S36. [PMID: 31695257 PMCID: PMC6823697 DOI: 10.1016/j.jcot.2018.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 08/02/2018] [Indexed: 01/06/2023] Open
Abstract
Osteoporotic fracture treatment has become a skeletal reconstructive challenge due to accelerated bone turnover and impaired bone regeneration potential. Poor osseointegration ability of the osteoporotic bone usually results in implant pull out and failure. Adoption of conventional bone fracture treatment strategies like autografts and allografts have limited applications in such pathological conditions. Hence biomaterials functionalised with therapeutic ions or drugs may be adopted to aid the delivery of therapeutic factors at the defect site to promote bone healing and implant integration, towards functional restoration of the fractured bone. This concise review narrates on improving the osseointegration ability of biomaterials using functional ions like Silica and Strontium. Silica based bone substitutes are known to promote bone healing in non pathological conditions. Further, Strontium based drugs show significant effects in the prevention and treatment of osteoporotic bones. In addition, stem cell therapy has become the focus of orthopaedic research attributed to its ability to restore and accelerate the bone healing process, but the clinical application of stem cells in osteoporotic condition is scarce. Present review suggests a novel strategy of combining the therapeutic potential of functional ions like Silica, Strontium and stem cells within a single implant unit to facilitate osseointegration and osteogenesis, so as to reduce the chances of implant rejection/pull out and encourage osteoporotic bone re-union.
Collapse
|
22
|
|
23
|
Kalirajan C, Palanisamy T. A ZnO-curcumin nanocomposite embedded hybrid collagen scaffold for effective scarless skin regeneration in acute burn injury. J Mater Chem B 2019; 7:5873-5886. [PMID: 31512714 DOI: 10.1039/c9tb01097a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scar formation in severe burn injury is a major health concern. Herein, we developed a hybrid collagen scaffold with an incorporated ZnO-curcumin nanocomposite, which facilitates scarless wound healing. Biocompatibility and hemocompatibility studies unveiled that the hybrid scaffold is apt for in vivo wound healing studies. Histological and immunohistochemical analyses demonstrate that the hybrid scaffold accelerated scarless burn wound healing in albino rats owing to the ZnO-curcumin nanocomposite induced up-regulation of angiogenesis and TGF-β3 expression. The semi-quantitatively measured scar elevation index of the hybrid scaffold-treated animals is on a par with that of the unwounded or normal skin. The studies suggest that the prepared hybrid biomaterial could be a potential candidate for scarless healing in severe burn injuries.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Advanced Materials Laboratory, Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020, India. and University of Madras, Chepauk, Chennai 600005, India
| | - Thanikaivelan Palanisamy
- Advanced Materials Laboratory, Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020, India. and University of Madras, Chepauk, Chennai 600005, India
| |
Collapse
|
24
|
Chiu YC, Shie MY, Lin YH, Lee AKX, Chen YW. Effect of Strontium Substitution on the Physicochemical Properties and Bone Regeneration Potential of 3D Printed Calcium Silicate Scaffolds. Int J Mol Sci 2019; 20:E2729. [PMID: 31163656 PMCID: PMC6600364 DOI: 10.3390/ijms20112729] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 12/18/2022] Open
Abstract
In this study, we synthesized strontium-contained calcium silicate (SrCS) powder and fabricated SrCS scaffolds with controlled precise structures using 3D printing techniques. SrCS scaffolds were shown to possess increased mechanical properties as compared to calcium silicate (CS) scaffolds. Our results showed that SrCS scaffolds had uniform interconnected macropores (~500 µm) with a compressive strength 2-times higher than that of CS scaffolds. The biological behaviors of SrCS scaffolds were assessed using the following characteristics: apatite-precipitating ability, cytocompatibility, proliferation, and osteogenic differentiation of human mesenchymal stem cells (MSCs). With CS scaffolds as controls, our results indicated that SrCS scaffolds demonstrated good apatite-forming bioactivity with sustained release of Si and Sr ions. The in vitro tests demonstrated that SrCS scaffolds possessed excellent biocompatibility which in turn stimulated adhesion, proliferation, and differentiation of MSCs. In addition, the SrCS scaffolds were able to enhance MSCs synthesis of osteoprotegerin (OPG) and suppress macrophage colony-stimulating factor (M-CSF) thus disrupting normal bone homeostasis which led to enhanced bone formation over bone resorption. Implanted SrCS scaffolds were able to promote new blood vessel growth and new bone regeneration within 4 weeks after implantation in critical-sized rabbit femur defects. Therefore, it was shown that 3D printed SrCS scaffolds with specific controllable structures can be fabricated and SrCS scaffolds had enhanced mechanical property and osteogenesis behavior which makes it a suitable potential candidate for bone regeneration.
Collapse
Affiliation(s)
- Yung-Cheng Chiu
- School of Medicine, China Medical University, Taichung 40447, Taiwan.
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung 40447, Taiwan.
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
| | - Yen-Hong Lin
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung 40447, Taiwan.
| | - Alvin Kai-Xing Lee
- School of Medicine, China Medical University, Taichung 40447, Taiwan.
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan.
- 3D Printing Medical Research Institute, Asia University, Taichung 40447, Taiwan.
| |
Collapse
|
25
|
Goodarzi H, Hashemi-Najafabadi S, Baheiraei N, Bagheri F. Preparation and Characterization of Nanocomposite Scaffolds (Collagen/β-TCP/SrO) for Bone Tissue Engineering. Tissue Eng Regen Med 2019; 16:237-251. [PMID: 31205853 PMCID: PMC6542929 DOI: 10.1007/s13770-019-00184-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Nowadays, production of nanocomposite scaffolds based on natural biopolymer, bioceramic, and metal ions is a growing field of research due to the potential for bone tissue engineering applications. Methods In this study, a nanocomposite scaffold for bone tissue engineering was successfully prepared using collagen (COL), beta-tricalcium phosphate (β-TCP) and strontium oxide (SrO). A composition of β-TCP (4.9 g) was prepared by doping with SrO (0.05 g). Biocompatible porous nanocomposite scaffolds were prepared by freeze-drying in different formulations [COL, COL/β-TCP (1:2 w/w), and COL/β-TCP-Sr (1:2 w/w)] to be used as a provisional matrix or scaffold for bone tissue engineering. The nanoparticles were characterized by X-ray diffraction, Fourier transforms infrared spectroscopy and energy dispersive spectroscopy. Moreover, the prepared scaffolds were characterized by physicochemical properties, such as porosity, swelling ratio, biodegradation, mechanical properties, and biomineralization. Results All the scaffolds had a microporous structure with high porosity (~ 95-99%) and appropriate pore size (100-200 μm). COL/β-TCP-Sr scaffolds had the compressive modulus (213.44 ± 0.47 kPa) higher than that of COL/β-TCP (33.14 ± 1.77 kPa). In vitro cytocompatibility, cell attachment and alkaline phosphatase (ALP) activity studies performed using rat bone marrow mesenchymal stem cells. Addition of β-TCP-Sr to collagen scaffolds increased ALP activity by 1.33-1.79 and 2.92-4.57 folds after 7 and 14 days of culture, respectively. Conclusion In summary, it was found that the incorporation of Sr into the collagen-β-TCP scaffolds has a great potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Hamid Goodarzi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Jalal ale Ahmad Highway, P.O. Box 14115-114, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Jalal ale Ahmad Highway, P.O. Box 14115-114, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal ale Ahmad Highway, P.O. Box 14115-331, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Jalal ale Ahmad Highway, P.O. Box 14115-114, Tehran, Iran
| |
Collapse
|
26
|
Quade M, Vater C, Schlootz S, Bolte J, Langanke R, Bretschneider H, Gelinsky M, Goodman SB, Zwingenberger S. Strontium enhances BMP-2 mediated bone regeneration in a femoral murine bone defect model. J Biomed Mater Res B Appl Biomater 2019; 108:174-182. [PMID: 30950569 DOI: 10.1002/jbm.b.34376] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 11/12/2022]
Abstract
The application of strontium is one option for the clinical treatment of osteoporosis-a disease characterized by reduced bone density and quality-in order to reduce the risk of vertebral and nonvertebral fractures. Unlike other drugs used in osteoporosis therapy, strontium shows a dual effect on bone metabolism by attenuating cellular resorption and simultaneously enhancing new bone tissue formation. Current concerns regarding the systemic application of highly dosed strontium ranelate led to the development of strontium-modified scaffolds based on mineralized collagen (MCM) capable to release biologically active Sr2+ ions directly at the fracture site. In this study, we investigated the regenerative potential of these scaffolds. For in vitro investigations, human mesenchymal stromal cells were cultivated on the scaffolds for 21 days (w/ and w/o osteogenic supplements). Biochemical analysis revealed a significant promoting effect on proliferation rate and osteogenic differentiation on strontium-modified scaffolds. In vivo, scaffolds were implanted in a murine segmental bone defect model-partly additionally functionalized with the osteogenic growth factor bone morphogenetic protein 2 (BMP-2). After 6 weeks, bridging calluses were obtained in BMP-2 functionalized scaffolds; the quality of the newly formed bone tissue by means of morphological scores was clearly enhanced in strontium-modified scaffolds. Histological analysis revealed increased numbers of osteoblasts and blood vessels, decreased numbers of osteoclasts, and significantly enhanced mechanical properties. These results indicate that the combined release of Sr2+ ions and BMP-2 from the biomimetic scaffolds is a promising strategy to enhance bone regeneration, especially in patients suffering from osteoporosis. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:174-182, 2020.
Collapse
Affiliation(s)
- Mandy Quade
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany
| | - Corina Vater
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany
| | - Saskia Schlootz
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany.,Center for Orthopaedics and Traumatology, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany
| | - Julia Bolte
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany.,Center for Orthopaedics and Traumatology, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany
| | - Robert Langanke
- Medical Clinic I, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany
| | - Henriette Bretschneider
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany.,Center for Orthopaedics and Traumatology, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany
| | - Michael Gelinsky
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Stefan Zwingenberger
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany.,Center for Orthopaedics and Traumatology, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307, Dresden, Germany
| |
Collapse
|
27
|
He W, Fan Y, Li X. [Recent research progress of bioactivity mechanism and application of bone repair materials]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1107-1115. [PMID: 30129343 PMCID: PMC8413994 DOI: 10.7507/1002-1892.201807039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/08/2018] [Indexed: 12/11/2022]
Abstract
Large bone defect repair is a difficult problem to be solved urgently in orthopaedic field, and the application of bone repair materials is a feasible method to solve this problem. Therefore, bone repair materials have been continuously developed, and have evolved from autogenous bone grafts, allograft bone grafts, and inert materials to highly active and multifunctional bone tissue engineering scaffold materials. In this paper, the related mechanism of bone repair materials, the application of bone repair materials, and the exploration of new bone repair materials are introduced to present the research status and advance of the bone repair materials, and the development direction is also prospected.
Collapse
Affiliation(s)
- Wei He
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, P.R.China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083,
| | - Xiaoming Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083,
| |
Collapse
|
28
|
Zarins J, Pilmane M, Sidhoma E, Salma I, Locs J. Immunohistochemical evaluation after Sr-enriched biphasic ceramic implantation in rabbits femoral neck: comparison of seven different bone conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:119. [PMID: 30030632 DOI: 10.1007/s10856-018-6124-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Strontium (Sr) has shown effectiveness for stimulating bone remodeling. Nevertheless, the exact therapeutic values are not established yet. Authors hypothesized that local application of Sr-enriched ceramics would enhance bone remodeling in constant osteoporosis of rabbits' femoral neck bone. Seven different bone conditions were analyzed: ten healthy rabbits composed a control group, while other twenty underwent ovariectomy and were divided into three groups. Bone defect was filled with hydroxyapatite 30% (HAP) and tricalcium phosphate 70% (TCP) granules in 7 rabbits, 5% of Sr-enriched HAP/TCP granules in 7, but sham defect was left unfilled in 6 rabbits. Bone samples were obtained from operated and non-operated legs 12 weeks after surgery and analyzed by histomorphometry and immunohistochemistry (IMH). Mean trabecular bone area in control group was 0.393 mm2, in HAP/TCP - 0.226 mm2, in HAP/TCP/Sr - 0.234 mm2 and after sham surgery - 0.242 mm2. IMH revealed that HAP/TCP/Sr induced most noticeable increase of nuclear factor kappa beta 105 (NFkB 105), osteoprotegerin (OPG), osteocalcin (OC), bone morphogenetic protein 2/4 (BMP 2/4), collagen type 1α (COL-1α), interleukin 1 (IL-1) with comparison to intact leg; NFkB 105 and OPG rather than pure HAP/TCP or sham bone. We concluded that Sr-enriched biomaterials induce higher potential to improve bone regeneration than pure bioceramics in constant osteoporosis of femoral neck bone. Further studies on bigger osteoporotic animals using Sr-substituted orthopedic implants for femoral neck fixation should be performed to confirm valuable role in local treatment of osteoporotic femoral neck fractures in humans.
Collapse
Affiliation(s)
- Janis Zarins
- Department of Hand and Plastic Surgery, Microsurgery Centre of Latvia, Brivibas Street 410, Riga, Latvia.
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia.
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia
| | - Elga Sidhoma
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia
| | - Ilze Salma
- Department of Oral and Maxillofacial Surgery, Riga Stradins University, Dzirciema Street 20, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of Riga Technical University, Pulka Street 3, Riga, Latvia
| |
Collapse
|