1
|
Wang J, Dai D, Xie H, Li D, Xiong G, Zhang C. Biological Effects, Applications and Design Strategies of Medical Polyurethanes Modified by Nanomaterials. Int J Nanomedicine 2022; 17:6791-6819. [PMID: 36600880 PMCID: PMC9807071 DOI: 10.2147/ijn.s393207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Polyurethane (PU) has wide application and popularity as medical apparatus due to its unique structural properties relationship. However, there are still some problems with medical PUs, such as a lack of functionality, insufficient long-term implantation safety, undesired stability, etc. With the rapid development of nanotechnology, the nanomodification of medical PU provides new solutions to these clinical problems. The introduction of nanomaterials could optimize the biocompatibility, antibacterial effect, mechanical strength, and degradation of PUs via blending or surface modification, therefore expanding the application range of medical PUs. This review summarizes the current applications of nano-modified medical PUs in diverse fields. Furthermore, the underlying mechanisms in efficiency optimization are analyzed in terms of the enhanced biological and mechanical properties critical for medical use. We also conclude the preparation schemes and related parameters of nano-modified medical PUs, with discussions about the limitations and prospects. This review indicates the current status of nano-modified medical PUs and contributes to inspiring novel and appropriate designing of PUs for desired clinical requirements.
Collapse
Affiliation(s)
- Jianrong Wang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Hanshu Xie
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Dan Li
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Gege Xiong
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| |
Collapse
|
2
|
Lott DG, Shah M, Myers C, McPhail M, Neubauer J, Struthers J, Madsen CS, Grandjean D, Zacharias SRC, Tchoukalova YD. A Tissue Engineered Construct for Laryngeal Regeneration: A Proof-of-Concept Device Design Study. Laryngoscope 2022; 132 Suppl 9:S1-S11. [PMID: 35084750 DOI: 10.1002/lary.30029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS Develop a patient-specific tissue engineered construct for laryngeal reconstruction following a partial laryngectomy. STUDY DESIGN Bench and animal research. METHODS A construct made from a porous polyethylene scaffold shaped in a canine-specific configuration and seeded with autologous canine adipose-derived stem cells in fibrin glue was implanted in a canine following a partial laryngectomy. After 1 year, the construct was first evaluated in vivo with high-speed imaging and acoustic-aerodynamic measures. It was then explanted and evaluated histologically. RESULTS The canine study at 1 year revealed the construct provided voicing (barking) with acoustic and aerodynamic measures within normal ranges. The canine was able to eat and breathe normally without long-term support. The construct was integrated with epithelialization of all areas except the medial portion of the vocal fold structure. No anti-infective agents were needed after the standard perioperative medications were completed. CONCLUSION This study provided a successful first step toward developing a patient-specific composite construct for patients undergoing partial laryngectomies. LEVEL OF EVIDENCE Not Applicable Laryngoscope, 2022.
Collapse
Affiliation(s)
- David G Lott
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A.,Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic Arizona, Phoenix, Arizona, U.S.A
| | - Manisha Shah
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| | - Cheryl Myers
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| | - Michael McPhail
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| | - Juergen Neubauer
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| | - Jason Struthers
- Department of Pathology and Population Medicine of Midwestern University's College of Veterinary Medicine, Glendale, Arizona, U.S.A
| | - Cathy S Madsen
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| | - Danielle Grandjean
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| | - Stephanie R C Zacharias
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A.,Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic Arizona, Phoenix, Arizona, U.S.A
| | - Yourka D Tchoukalova
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| |
Collapse
|
3
|
Mehrban N, Cardinale D, Gallo SC, Lee DDH, Arne Scott D, Dong H, Bowen J, Woolfson DN, Birchall MA, O'Callaghan C. α-Helical peptides on plasma-treated polymers promote ciliation of airway epithelial cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111935. [PMID: 33641925 DOI: 10.1016/j.msec.2021.111935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 11/30/2022]
Abstract
Airway respiratory epithelium forms a physical barrier through intercellular tight junctions, which prevents debris from passing through to the internal environment while ciliated epithelial cells expel particulate-trapping mucus up the airway. Polymeric solutions to loss of airway structure and integrity have been unable to fully restore functional epithelium. We hypothesised that plasma treatment of polymers would permit adsorption of α-helical peptides and that this would promote functional differentiation of airway epithelial cells. Five candidate plasma compositions are compared; Air, N2, H2, H2:N2 and Air:N2. X-ray photoelectron spectroscopy shows changes in at% N and C 1s peaks after plasma treatment while electron microscopy indicates successful adsorption of hydrogelating self-assembling fibres (hSAF) on all samples. Subsequently, adsorbed hSAFs support human nasal epithelial cell attachment and proliferation and induce differentiation at an air-liquid interface. Transepithelial measurements show that the cells form tight junctions and produce cilia beating at the normal expected frequency of 10-11 Hz after 28 days in culture. The synthetic peptide system described in this study offers potential superiority as an epithelial regeneration substrate over present "gold-standard" materials, such as collagen, as they are controllable and can be chemically functionalised to support a variety of in vivo environments. Using the hSAF peptides described here in combination with plasma-treated polymeric surfaces could offer a way of improving the functionality and integration of implantable polymers for aerodigestive tract reconstruction and regeneration.
Collapse
Affiliation(s)
- Nazia Mehrban
- UCL Ear Institute, University College London, 332 Grays Inn Rd, London WC1X 8EE, UK.
| | - Daniela Cardinale
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford St, London WC1N 1EH, UK
| | - Santiago C Gallo
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Victoria, VIC 3216, Australia
| | - Dani D H Lee
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford St, London WC1N 1EH, UK
| | - D Arne Scott
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Hanshan Dong
- School of Metallurgy and Materials, University of Birmingham, Elms Rd, Birmingham B15 2SE, UK
| | - James Bowen
- School of Engineering & Innovation, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin A Birchall
- UCL Ear Institute, University College London, 332 Grays Inn Rd, London WC1X 8EE, UK
| | - Christopher O'Callaghan
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford St, London WC1N 1EH, UK
| |
Collapse
|
4
|
Francis A. Biological evaluation of preceramic organosilicon polymers for various healthcare and biomedical engineering applications: A review. J Biomed Mater Res B Appl Biomater 2020; 109:744-764. [PMID: 33075186 DOI: 10.1002/jbm.b.34740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 01/17/2023]
Abstract
Preceramic organosilicon materials combining the properties of a polymer and an inorganic ceramic phase are of great interest to scientists working in biomedical sciences. The interdisciplinary nature of organosilicon polymers and their molecular structures, as well as their diversity of applications have resulted in an unprecedented range of devices and synergies cutting across unrelated fields in medicine and engineering. Organosilicon materials, especially the polysiloxanes, have a long history of industrial and medical uses in many versatile aspects as they can be easily fabricated into complex-shaped products using a wide variety of computer-aided or polymer manufacturing techniques. Thus far, intensive research activities have been mainly devoted to the processing of preceramic organosilicon polymers toward magnetic, electronic, structural, optical, and not biological applications. Herein we present innovative research studies and recent developments of preceramic organosilicon polymers at the interface with biological systems, displaying the versatility and multi-functionality of these materials. This article reviews recent research on preceramic organosilicon polymers and corresponding composites for bone tissue regeneration and medical engineering implants, focusing on three particular topics: (a) surface modifications to create tailorable and bioactive surfaces with high corrosion resistance and improved biological properties; (b) biological evaluations for specific applications, such as in glaucoma drainage devices, orthopedic implants, bone tissue regeneration, wound dressing, drug delivery systems, and antibacterial activity; and (c) in vitro and in vivo studies for cytotoxicity, genotoxicity, and cell viability. The interest in organosilicon materials stems from the fact that a vast array of these materials have complementary attributes that, when integrated appropriately with functional fillers and carefully controlled conditions, could be exploited either as polymeric Si-based composites or as organosilicon polymer-derived Si-based ceramic composites to tailor and optimize properties of the Si-based materials for various proposed applications.
Collapse
Affiliation(s)
- Adel Francis
- Department of Advanced Materials, Central Metallurgical R & D Institute (CMRDI), Helwan, Cairo, Egypt
| |
Collapse
|
5
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
6
|
Rusu LC, Ardelean LC, Jitariu AA, Miu CA, Streian CG. An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine. Polymers (Basel) 2020; 12:E1197. [PMID: 32456335 PMCID: PMC7285236 DOI: 10.3390/polym12051197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 01/16/2023] Open
Abstract
Due to their mechanical properties, ranging from flexible to hard materials, polyurethanes (PUs) have been widely used in many industrial and biomedical applications. PUs' characteristics, along with their biocompatibility, make them successful biomaterials for short and medium-duration applications. The morphology of PUs includes two structural phases: hard and soft segments. Their high mechanical resistance featuresare determined by the hard segment, while the elastomeric behaviour is established by the soft segment. The most important biomedical applications of PUs include antibacterial surfaces and catheters, blood oxygenators, dialysis devices, stents, cardiac valves, vascular prostheses, bioadhesives/surgical dressings/pressure-sensitive adhesives, drug delivery systems, tissue engineering scaffolds and electrospinning, nerve generation, pacemaker lead insulation and coatings for breast implants. The diversity of polyurethane properties, due to the ease of bulk and surface modification, plays a vital role in their applications.
Collapse
Affiliation(s)
- Laura-Cristina Rusu
- Department of Oral Pathology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania
| | - Adriana-Andreea Jitariu
- Department of Microscopic Morphology/Histology and Angiogenesis Research Center Timisoara, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Catalin Adrian Miu
- 3rd Department of Orthopaedics-Traumatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Caius Glad Streian
- Department of Cardiac Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| |
Collapse
|
7
|
Ryan AL, Ikonomou L, Atarod S, Bölükbas DA, Collins J, Freishtat R, Hawkins F, Gilpin SE, Uhl FE, Uriarte JJ, Weiss DJ, Wagner DE. Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases 2017. An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2020; 61:429-439. [PMID: 31573338 PMCID: PMC6775946 DOI: 10.1165/rcmb.2019-0286st] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The University of Vermont Larner College of Medicine, in collaboration with the National Heart, Lung, and Blood Institute (NHLBI), the Alpha-1 Foundation, the American Thoracic Society, the Cystic Fibrosis Foundation, the European Respiratory Society, the International Society for Cell & Gene Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" from July 24 through 27, 2017, at the University of Vermont, Burlington, Vermont. The conference objectives were to review and discuss current understanding of the following topics: 1) stem and progenitor cell biology and the role that they play in endogenous repair or as cell therapies after lung injury, 2) the emerging role of extracellular vesicles as potential therapies, 3) ex vivo bioengineering of lung and airway tissue, and 4) progress in induced pluripotent stem cell protocols for deriving lung cell types and applications in disease modeling. All of these topics are research areas in which significant and exciting progress has been made over the past few years. In addition, issues surrounding the ethics and regulation of cell therapies worldwide were discussed, with a special emphasis on combating the growing problem of unproven cell interventions being administered to patients with lung diseases. Finally, future research directions were discussed, and opportunities for both basic and translational research were identified.
Collapse
|