1
|
Lin Y, Zhao L, Jin H, Gu Q, Lei L, Fang C, Pan X. Multifunctional applications of silk fibroin in biomedical engineering: A comprehensive review on innovations and impact. Int J Biol Macromol 2025; 309:143067. [PMID: 40222531 DOI: 10.1016/j.ijbiomac.2025.143067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Silk fibroin (SF) is a biomaterial naturally produced by certain insects (notably silkworms), animals such as spiders, or through recombinant methods in genetically modified organisms. Its exceptional mechanical properties, biocompatibility, degradability, and bioactivity have inspired extensive research. In biomedicine, SF has been utilized in various forms, including gels, membranes, microspheres, and more. It also demonstrates versatility for applications across medical devices, regenerative medicine, tissue engineering, and related fields. This review explores the current research status, advantages, limitations, and potential application pathways of SF in biomedical engineering. The objective is to stimulate innovative ideas and perspectives for research and applications involving silk.
Collapse
Affiliation(s)
- Yinglan Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Lifen Zhao
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Qiancheng Gu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China..
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Xiaoyi Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China..
| |
Collapse
|
2
|
Choi J, Lee SH, Kim T, Min K, Lee SN. Enhanced Resistive Switching and Conduction Mechanisms in Silk Fibroin-Based Memristors with Ag Nanoparticles for Bio-Neuromorphic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:517. [PMID: 40214562 PMCID: PMC11990201 DOI: 10.3390/nano15070517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
This study explores the resistive switching (RS) behavior and conduction mechanisms of Ag/SF-Ag NP/Si memristors with varying Ag NP concentrations. I-V measurements confirm stable RS characteristics across 100 cycles, with consistent set and reset voltages. Increasing Ag NP concentration enhances conductive filament formation, leading to sharper switching transitions and a higher HRS/LRS ratio, w-hich increases from 43 (0 wt% Ag NP) to 4.6 × 104 (10 wt% Ag NP). Log(I)-log(V) analysis reveals a conduction transition from Ohmic to Poole-Frenkel mechanisms, indicating improved charge percolation. Reliability tests show stable LRS values, while HRS exhibits greater variation at higher Ag NP concentrations. These results demonstrate that Ag NPs play a crucial role in optimizing memristor performance, improving switching characteristics, and enhancing reliability. The findings suggest that Ag/SF-Ag NP/Si memristors are promising for high-performance resistive memory and neuromorphic computing applications.
Collapse
Affiliation(s)
- Jongyun Choi
- Department of IT Semiconductor Convergence Engineering, Tech University of Korea, Siheung 15073, Republic of Korea
| | - Seung Hun Lee
- Department of IT Semiconductor Convergence Engineering, Tech University of Korea, Siheung 15073, Republic of Korea
| | - Taehun Kim
- Department of IT Semiconductor Convergence Engineering, Tech University of Korea, Siheung 15073, Republic of Korea
| | - Kyungtaek Min
- Department of IT Semiconductor Convergence Engineering, Tech University of Korea, Siheung 15073, Republic of Korea
- Department of Semiconductor Engineering, Tech University of Korea, Siheung 15073, Republic of Korea
| | - Sung-Nam Lee
- Department of IT Semiconductor Convergence Engineering, Tech University of Korea, Siheung 15073, Republic of Korea
- Department of Semiconductor Engineering, Tech University of Korea, Siheung 15073, Republic of Korea
| |
Collapse
|
3
|
Maia MV, do Egito EST, Sapin-Minet A, Viana DB, Kakkar A, Soares DCF. Fibroin-Hybrid Systems: Current Advances in Biomedical Applications. Molecules 2025; 30:328. [PMID: 39860198 PMCID: PMC11767523 DOI: 10.3390/molecules30020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Fibroin, a protein extracted from silk, offers advantageous properties such as non-immunogenicity, biocompatibility, and ease of surface modification, which have been widely utilized for a variety of biomedical applications. However, in vivo studies have revealed critical challenges, including rapid enzymatic degradation and limited stability. To widen the scope of this natural biomacromolecule, the grafting of polymers onto the protein surface has been advanced as a platform to enhance protein stability and develop smart conjugates. This review article brings into focus applications of fibroin-hybrid systems prepared using chemical modification of the protein with polymers and inorganic compounds. A selection of recent preclinical evaluations of these hybrids is included to highlight the significance of this approach.
Collapse
Affiliation(s)
- Matheus Valentin Maia
- Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil; (D.B.V.)
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Eryvaldo Sócrates Tabosa do Egito
- Laboratório de Sistemas Dispersos LaSiD, Faculdade de Farmácia, Universidade Federal do Rio Grande no Norte, Natal 59012-570, Rio Grande do Norte, Brazil;
| | - Anne Sapin-Minet
- Faculté de Pharmacie, Université de Lorraine, CITHEFOR, F-54000 Nancy, France;
| | - Daniel Bragança Viana
- Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil; (D.B.V.)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | | |
Collapse
|
4
|
Fernández-González A, de Lorenzo González C, Rodríguez-Varillas S, Badía-Laíño R. Bioactive silk fibroin hydrogels: Unraveling the potential for biomedical engineering. Int J Biol Macromol 2024; 278:134834. [PMID: 39154674 DOI: 10.1016/j.ijbiomac.2024.134834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silk fibroin (SF) has received special attention from the scientific community due to its noteworthy properties. Its unique chemical structure results in an uncommon combination of macroscopically useful properties, yielding a strong, fine and flexible material which, in addition, presents good biodegradability and better biocompatibility. Therefore, silk fibroin in various formats, appears as an ideal candidate for supporting biomedical applications. In this review, we will focus on the hydrogels obtained from silk fibroin or in combination with it, paying special attention to the synthesis procedures, characterization methodologies and biomedical applications. Tissue engineering and drug-delivery systems are, undoubtedly, the two main areas where silk fibroin hydrogels find their place.
Collapse
Affiliation(s)
- Alfonso Fernández-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain
| | - Clara de Lorenzo González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain
| | - Sandra Rodríguez-Varillas
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain
| | - Rosana Badía-Laíño
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain.
| |
Collapse
|
5
|
Waidi YO, Debnath S, Datta S, Chatterjee K. 3D-Printed Silk Proteins for Bone Tissue Regeneration and Associated Immunomodulation. Biomacromolecules 2024; 25:5512-5540. [PMID: 39133748 DOI: 10.1021/acs.biomac.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Current bone repair methods have limitations, prompting the exploration of innovative approaches. Tissue engineering emerges as a promising solution, leveraging biomaterials to craft scaffolds replicating the natural bone environment, facilitating cell growth and differentiation. Among fabrication techniques, three-dimensional (3D) printing stands out for its ability to tailor intricate scaffolds. Silk proteins (SPs), known for their mechanical strength and biocompatibility, are an excellent choice for engineering 3D-printed bone tissue engineering (BTE) scaffolds. This article comprehensively reviews bone biology, 3D printing, and the unique attributes of SPs, specifically detailing criteria for scaffold fabrication such as composition, structure, mechanics, and cellular responses. It examines the structural, mechanical, and biological attributes of SPs, emphasizing their suitability for BTE. Recent studies on diverse 3D printing approaches using SPs-based for BTE are highlighted, alongside advancements in their 3D and four-dimensional (4D) printing and their role in osteo-immunomodulation. Future directions in the use of SPs for 3D printing in BTE are outlined.
Collapse
Affiliation(s)
- Yusuf Olatunji Waidi
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Sudipto Datta
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
6
|
Hassan MA, Basha AA, Eraky M, Abbas E, El-Samad LM. Advancements in silk fibroin and silk sericin-based biomaterial applications for cancer therapy and wound dressing formulation: A comprehensive review. Int J Pharm 2024; 662:124494. [PMID: 39038721 DOI: 10.1016/j.ijpharm.2024.124494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Silks are a class of proteins generated naturally by different arthropods, including silkworms, spiders, scorpions, mites, wasps, and bees. This review discusses the silk fibroin and silk sericin fabricated by Bombyx mori silkworm as versatile fibers. This silk fiber is predominantly composed of hydrophobic silk fibroin and hydrophilic silk sericin. Fibroin is defined as a structural protein that bestows silk with strength, while sericin is characterized as a gum-like protein, tying the two fibrous proteins together and endowing silk proteins with elasticity. Due to their versatile structures, biocompatibility, and biodegradability, they could be tailored into intricate structures to warrant particular demands. The intrinsic functional groups of both proteins enable their functionalization and cross-linking with various biomaterials to endow the matrix with favorable antioxidant and antibacterial properties. Depending on the target applications, they can be integrated with other materials to formulate nanofibrous, hydrogels, films, and micro-nanoparticles. Given the outstanding biological and controllable physicochemical features of fibroin and sericin, they could be exploited in pharmaceutical applications involving tissue engineering, wound repair, drug delivery, and cancer therapy. This review comprehensively discusses the advancements in the implementation of different formulations of silk fibroin and sericin in wound healing and drug delivery systems, particularly for cancer treatment.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt; University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany.
| | - Amal A Basha
- Zoology Department, Faculty of Science, Damanhour University, Egypt
| | - Mohamed Eraky
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| | - Lamia M El-Samad
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
7
|
Pilley S, Kularkar A, Hippargi G, Dhargave L, Shende N, Krupadam RJ, Rayalu S. Powdered silk: A promising biopolymer for the treatment of dye contaminated water. CHEMOSPHERE 2024; 352:141213. [PMID: 38336040 DOI: 10.1016/j.chemosphere.2024.141213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Discharge of textile dye effluents into water bodies is creating stress to aquatic life and contaminating water resources. In this study, a new biopolymer adsorbent silk fibroin (SF) was prepared from Bombyx mori silk fibroin (SF) and used for removal of Solochrome Black-T (SB-T) from water. This innovative adsorbent exhibits an exceptional adsorption capacity of 20.08 mg/g, achieving a removal efficiency of approximately 98.6 % within 60 min. Notably, the powdered SF adsorbent demonstrates rapid kinetics, surpassing the performance of previously reported similar adsorbents in adsorption capacity and reaction speed. The molecular weight and particle diameter of the material were observed to be > 1.243 kDa and 3 μm, respectively. The experimental investigations were performed on different parameters, viz., adsorbent dosage, contact time, repeatability, and desorption-adsorption study. The experimental data well fit for the Langmuir model (R2 = 0.937, qmax = 20.08 mg/g) and the pseudo-second-order kinetics (R2 = 0.921 and qe = 1.496 mg/g). Compared to the adsorbents reported in the literature, the newly prepared SF showed high adsorption capacity and faster kinetics to address real-life situations. The novelty of this work extends beyond its remarkable adsorption capabilities. The SF adsorbent offers a cost-effective, sustainable solution and regenerable adsorption material with minimal negative environmental impacts. This regenerability, with its versatility and broad applicability, positions powdered SF fibroin as a transformative technology in water treatment and environmental protection.
Collapse
Affiliation(s)
- Sonali Pilley
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Ankush Kularkar
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Girivyankatesh Hippargi
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
| | - Layashree Dhargave
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Nandini Shende
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Reddithota J Krupadam
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Sadhana Rayalu
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| |
Collapse
|
8
|
Luo P, Ren C, Lu C, Pan X, Huang Z. Research progress of silk fibroin biomaterials: A bibliometric analysis from 2012 to 2022. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2024; 3. [DOI: 10.1002/mba2.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/27/2023] [Indexed: 06/25/2024]
Affiliation(s)
- Peili Luo
- College of Pharmacy Jinan University Guangzhou China
| | - Chuanyu Ren
- College of Pharmacy Jinan University Guangzhou China
| | - Chao Lu
- College of Pharmacy Jinan University Guangzhou China
| | - Xin Pan
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou China
| | | |
Collapse
|
9
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
10
|
Chung TW, Cheng CL, Liu YH, Huang YC, Chen WP, Panda AK, Chen WL. Dopamine-dependent functions of hyaluronic acid/dopamine/silk fibroin hydrogels that highly enhance N-acetyl-L-cysteine (NAC) delivered from nasal cavity to brain tissue through a near-infrared photothermal effect on the NAC-loaded hydrogels. BIOMATERIALS ADVANCES 2023; 154:213615. [PMID: 37716334 DOI: 10.1016/j.bioadv.2023.213615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Hyaluronic acid/silk fibroin (HA/SF or HS) hydrogels with remarkable mechanical characteristics have been reported as tissue engineering biomaterials. Herein, the addition of dopamine/polydopamine (DA/PDA) to HS hydrogels to develop multifunctional HA/PDA/SF (or HDS) hydrogels for the delivery of drugs such as N-acetyl-L-cysteine (NAC) from nasal to brain tissue is examined. Herein, DA-dependent functions of HDS hydrogels with highly adhesive forces, photothermal response (PTR) effects generated by near infrared (NIR) irradiation, and anti-oxidative effects were demonstrated. An in-vitro study shows that the HDS/NAC hydrogels could open tight junctions in the RPMI 2650 cell line, a model cell of the nasal mucosa, as demonstrated by the decreased values of transepithelial electrical resistance (TEER) and more discrete ZO-1 staining than those for the control group. This effect was markedly enhanced by NIR irradiation of the HDS/NAC-NIR hydrogels. Compared to the results obtained using NAC solution, an in-vivo imaging study (IVIS) in rats showed an approximately nine-fold increase in the quantity of NAC delivered from the nasal cavity to the brain tissue in the span of 2 h through the PTR effect generated by the NIR irradiation of the nasal tissue and administration of the HDS/NAC hydrogels. Herein, dopamine-dependent multifunctional HDS hydrogels were studied, and the nasal administration of HDS/NAC-NIR hydrogels with PTR effects generated by NIR irradiation was found to have significantly enhanced NAC delivery to brain tissues.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan.
| | - Ching-Lin Cheng
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yun-Huan Liu
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan.
| | - Weng-Pin Chen
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Asit Kumar Panda
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Wei-Ling Chen
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| |
Collapse
|
11
|
Li W, Wu Z, Zhao J, Jiang M, Yuan L, Guo Y, Li S, Hu L, Xie X, Zhang Y, Tao G, Cai R. Fabrication of dual physically cross-linked polyvinyl alcohol/agar hydrogels with mechanical stability and antibacterial activity for wound healing. Int J Biol Macromol 2023; 247:125652. [PMID: 37399875 DOI: 10.1016/j.ijbiomac.2023.125652] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Bacterial infection is one of the most critical obstacles in wound healing, and severe bacterial infections can lead to inflammatory conditions and delay the healing process. Herein, a novel hydrogel based on polyvinyl alcohol (PVA), agar, and silk-AgNPs was prepared using a straightforward one-pot physical cross-linking method. The in situ synthesis of AgNPs in hydrogels exploited the reducibility of tyrosine (Tyr tyrosine) in silk fibroin, which endowed the hydrogels with outstanding antibacterial qualities. In addition, the strong hydrogen bond cross-linked networks of agar and the crystallites formed by PVA as the physical cross-linked double network of the hydrogel gave it excellent mechanical stability. The PVA/agar/SF-AgNPs (PASA) hydrogels exhibited excellent water absorption, porosity, and significant antibacterial effects against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Furthermore, in vivo experimental results confirmed that the PASA hydrogel significantly promoted wound repair and skin tissue reconstruction by reducing inflammation and promoting collagen deposition. Immunofluorescence staining showed that the PASA hydrogel enhanced CD31 expression to promote angiogenesis while decreasing CD68 expression to reduce inflammation. Overall, the novel PASA hydrogel showed great potential for bacterial infection wound management.
Collapse
Affiliation(s)
- Weili Li
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Zhaodan Wu
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Jiayu Zhao
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Min Jiang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lingling Yuan
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ye Guo
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Silei Li
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Liyu Hu
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Xinyu Xie
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Yi Zhang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Gang Tao
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China.
| | - Rui Cai
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
12
|
Lin X, Cai L, Cao X, Zhao Y. Stimuli-responsive silk fibroin for on-demand drug delivery. SMART MEDICINE 2023; 2:e20220019. [PMID: 39188280 PMCID: PMC11235688 DOI: 10.1002/smmd.20220019] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 08/28/2024]
Abstract
Stimuli-responsive "smart" hydrogel biomaterials have attracted great attention in the biomedical field, especially in designing novel on-demand drug delivery systems. As a handful natural biomaterial approved by US Food and Drug Administration, silk fibroin (SF) has unique high temperature resistance as well as tunable structural composition. These properties make it one of the most ideal candidates for on-demand drug delivery. Meanwhile, recent advances in polymer modification and nanomaterials have fostered the development of various stimuli-responsive delivery systems. Here, we first review the recent advance in designing responsive SF-based delivery systems in different stimulus sources. These systems are able to release mediators in a desired manner in response to specific stimuli in active or passive manners. We then describe applications of these specially designed responsive delivery systems in wound healing, tumor therapy, as well as immunomodulation. We also discuss the future challenges and prospects of stimuli-responsive SF-based delivery systems.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Lijun Cai
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Xinyue Cao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| |
Collapse
|
13
|
Fu F, Liu D, Wu Y. Silk-based conductive materials for smart biointerfaces. SMART MEDICINE 2023; 2:e20230004. [PMID: 39188283 PMCID: PMC11236014 DOI: 10.1002/smmd.20230004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 08/28/2024]
Abstract
Silk-based conductive materials are widely used in biointerface applications, such as artificial epidermal sensors, soft and implantable bioelectronics, and tissue/cell scaffolds. Such biointerface materials require coordinated physicochemical, biological, and mechanical properties to meet current practical needs and future sophisticated demands. However, it remains a challenge to formulate silk-based advanced materials with high electrical conductivity, good biocompatibility, mechanical robustness, and in some cases, tissue adhesion ability without compromising other physicochemical properties. In this review, we highlight recent progress in the development of functional conductive silk-based advanced materials with different morphologies. Then, we reviewed the advanced paradigms of these silk materials applied as wearable flexible sensors, implantable electronics, and tissue/cell engineering with perspectives on the application challenges. Silk-based conductive materials can serve as promising building blocks for biomedical devices in personalized healthcare and other fields of bioengineering.
Collapse
Affiliation(s)
- Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Dongmei Liu
- School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yilun Wu
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
14
|
Ramezanpour A, Ansari L, Rahimkhoei V, Sharifi S, Bigham A, Lighvan ZM, Rezaie J, Szafert S, Mahdavinia G, Akbari A, Jabbari E. Recent advances in carbohydrate-based paclitaxel delivery systems. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Sreena R, Nathanael AJ. Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062364. [PMID: 36984244 PMCID: PMC10058375 DOI: 10.3390/ma16062364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
Biopolymers are polymers obtained from either renewable or non-renewable sources and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility, biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have been gaining wide interest in biomedical applications such as tissue engineering, drug delivery, imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles employed for medical applications; this review is an attempt to explore the possibilities of using these materials for various biomedical applications. This review highlights protein based (albumin, gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic (Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many applications. The fabrication strategies of different BPn are also being highlighted. The future perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
16
|
Hasan Shahriari M, Abdouss M, Hadjizadeh A. Synthesis of dual physical self‐healing starch‐based hydrogels for repairing tissue defects. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | - Majid Abdouss
- Department of Chemistry Amirkabir University of Technology Tehran Iran
| | - Afra Hadjizadeh
- Faculty of Biomedical Engineering Amirkabir University of Technology Tehran Iran
| |
Collapse
|
17
|
Jeshvaghani PA, Pourmadadi M, Yazdian F, Rashedi H, Khoshmaram K, Nigjeh MN. Synthesis and characterization of a novel, pH-responsive sustained release nanocarrier using polyethylene glycol, graphene oxide, and natural silk fibroin protein by a green nano emulsification method to enhance cancer treatment. Int J Biol Macromol 2023; 226:1100-1115. [PMID: 36435465 DOI: 10.1016/j.ijbiomac.2022.11.226] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
In this study, for the first time, by employing a simple and efficient double nano-emulsification method and using sweet almond oil as the organic phase, polyethylene glycol (PEG)/graphene oxide (GO)/silk fibroin (SF) hydrogel-nanocomposite was synthesized. The aim of the research was to fabricate a biocompatible targeted pH-sensitive sustained release carrier, improve the drug loading capacity and enhance the anticancer effect of doxorubicin (DOX) drug. The obtained values for the entrapment (%EE) and loading efficacy (%LE) were 87.75 ± 0.7 % and 46 ± 1 %, respectively, and these high values were due to the use of GO with a large specific surface area and the electrostatic interaction between the drug and SF. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses confirmed the presence of all the components in the nanocomposite and the suitable interaction between them. Based on the results of dynamic light scattering analysis (DLS) and zeta potential analysis, the mean size of the carrier particles and its surface charge were 293.7 nm and -102.9 mV, respectively. The high negative charge was caused by the presence of hydroxyl groups in GO and SF and it caused proper stability of the nanocomposite. The spherical core-shell structure with its homogeneous surface was also observed in the field emission scanning electron microscopy (FE-SEM) image. The cumulative release percentage of the nanocarrier reached 95.75 after 96 h and it is higher in the acidic environment at all times. The results of fitting the release data to the kinetic models suggested that the mechanism of release was dissolution-controlled anomalous at pH 7.4 and diffusion-controlled anomalous at pH 5.4. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry showed an increase in toxicity on MCF-7 cells and improved apoptotic cell death compared to the free drug. Consequently, the findings of this research introduced and confirmed PEG/GO/SF nanocomposite as an attractive novel drug delivery system for pH-sensitive and sustained delivery of chemotherapeutic agents in biomedicine.
Collapse
Affiliation(s)
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Keyvan Khoshmaram
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Mona Navaei Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
18
|
Bottagisio M, Palombella S, Lopa S, Sangalli F, Savadori P, Biagiotti M, Sideratou Z, Tsiourvas D, Lovati AB. Vancomycin-nanofunctionalized peptide-enriched silk fibroin to prevent methicillin-resistant Staphylococcus epidermidis-induced femoral nonunions in rats. Front Cell Infect Microbiol 2023; 12:1056912. [PMID: 36683682 PMCID: PMC9851397 DOI: 10.3389/fcimb.2022.1056912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Implant-related infections and infected fractures are significant burdens in orthopedics. Staphylococcus epidermidis is one of the main causes of bone infections related to biofilm formation upon implants. Current antibiotic prophylaxis/therapy is often inadequate to prevent biofilm formation and results in antibiotic resistance. The development of bioactive materials combining antimicrobial and osteoconductive properties offers great potential for the eradication of microorganisms and for the enhancement of bone deposition in the presence of infections. The purpose of this study is to prevent the development of methicillin-resistant S. epidermidis (MRSE)-infected nonunion in a rat model. Methods To this end, a recently developed in our laboratories bioactive material consisting of antibiotic-loaded nanoparticles based on carboxylic acid functionalized hyperbranched aliphatic polyester (CHAP) that are integrated into peptide-enriched silk fibroin sponges with osteoconductive properties (AFN-PSF) was employed, whose biocompatibility and microbiological tests provided proof of its potential for the treatment of both orthopedic and dental infections. In particular, non-critical femoral fractures fixed with plates and screws were performed in Wistar rats, which were then randomly divided into three groups: 1) the sham control (no infection, no treatment); 2) the control group, infected with MRSE and treated with peptide-enriched silk fibroin sponges incorporating non-drug-loaded functionalized nanoparticles (PSF); 3) the treated group, infected with MRSE and treated with peptide-enriched silk fibroin sponges incorporating vancomycin-loaded functionalized nanoparticles (AFN-PSF). After 8 weeks, bone healing and osteomyelitis were clinically assessed and evaluated by micro-CT, microbiological and histological analyses. Results The sham group showed no signs of infection and complete bone healing. The PSF group failed to repair the infected fracture, displaying 75% of altered bone healing and severe signs of osteomyelitis. The AFN-PSF treated group reached 70% of fracture healing in the absence of signs of osteomyelitis, such as abscesses in the cortical and intraosseous compartments and bone necrosis with sequestra. Discussion AFN-PSF sponges have proven effective in preventing the development of infected nonunion in vivo. The proposed nanotechnology for local administration of antibiotics can have a significant impact on patient health in the case of orthopedic infections.
Collapse
Affiliation(s)
- Marta Bottagisio
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | - Silvia Palombella
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Fabio Sangalli
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Laboratory of Renal Biophysics, Department of Biomedical Engineering, Bergamo, Italy
| | - Paolo Savadori
- IRCCS Istituto Ortopedico Galeazzi, Department of Endodontics, Milan, Italy
| | | | - Zili Sideratou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Aghia Paraskevi, Greece
| | - Dimitris Tsiourvas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Aghia Paraskevi, Greece
| | - Arianna B Lovati
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| |
Collapse
|
19
|
Yu B, Li Y, Lin Y, Zhu Y, Hao T, Wu Y, Sun Z, Yang X, Xu H. Research progress of natural silk fibroin and the appplication for drug delivery in chemotherapies. Front Pharmacol 2023; 13:1071868. [PMID: 36686706 PMCID: PMC9845586 DOI: 10.3389/fphar.2022.1071868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Silk fibroin has been widely used in biological fields due to its biocompatibility, mechanical properties, biodegradability, and safety. Recently, silk fibroin as a drug carrier was developed rapidly and achieved remarkable progress in cancer treatment. The silk fibroin-based delivery system could effectively kill tumor cells without significant side effects and drug resistance. However, few studies have been reported on silk fibroin delivery systems for antitumor therapy. The advancement of silk fibroin-based drug delivery systems research and its applications in cancer therapy are highlighted in this study. The properties, applications, private opinions, and future prospects of silk fibroin carriers are discussed to understand better the development of anti-cancer drug delivery systems, which may also contribute to advancing silk fibroin innovation.
Collapse
Affiliation(s)
- Bin Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China,Department of Pharmacy, Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Yuxian Lin
- Department of Pharmacy, Wenzhou People’s Hospital of The Third Affiliated Hospital of Shanghai University, The Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou, China
| | - Yuanying Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Teng Hao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Yan Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Zheng Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, China,*Correspondence: Xin Yang, ; Hui Xu,
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China,*Correspondence: Xin Yang, ; Hui Xu,
| |
Collapse
|
20
|
Li D, Xie J, Qiu Y, Zhang S, Chen J. Multifunctional Mesoporous Silica Nanoparticles Reinforced Silk Fibroin Composite with Antibacterial and Osteogenic Effects for Infectious Bone Rehabilitation. Int J Nanomedicine 2022; 17:5661-5678. [PMID: 36457548 PMCID: PMC9707390 DOI: 10.2147/ijn.s387347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Existing implant materials cannot meet the essential multifunctional requirements of repairing infected bone defects, such as antibacterial and osteogenesis abilities. A promising strategy to develop a versatile biomimicry composite of the natural bone structure may be accomplished by combining a multifunctional nanoparticle with an organic scaffold. METHODS In this study, a quaternary ammonium silane-modified mesoporous silica containing nano silver (Ag@QHMS) was successfully synthesized and further combined with silk fibroin (SF) to fabricate the multifunctional nano-reinforced scaffold (SF-Ag@QHMS) using the freeze-drying method. Furthermore, the antibacterial and osteogenic effects of this composite were evaluated in vitro and in vivo. RESULTS SF-Ag@QHMS inherited a three-dimensional porous structure (porosity rate: 91.90 ± 0.62%) and better mechanical characteristics (2.11 ± 0.06 kPa) than that of the SF scaffold (porosity rate: 91.62 ± 1.65%; mechanic strength: 2.02 ± 0.01 kPa). Simultaneously, the introduction of versatile nanoparticles has provided the composite with additional antibacterial ability against Porphyromonas gingivalis, which can be maintained for 15 days. Furthermore, the expression of osteogenic-associated factors was up-regulated due to the silver ions eluting from the composite scaffold. The in vivo micro-CT and histological results indicated that the new bone formation was not only localized around the border of the defect but also arose more in the center with the support of the composite. CONCLUSION The multifunctional silver-loaded mesoporous silica enhanced the mechanical strength of the composite while also ensuring greater and sustained antibacterial and osteogenic properties, allowing the SF-Ag@QHMS composite to be used to repair infected bone defects.
Collapse
Affiliation(s)
- Dexiong Li
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jing Xie
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yubei Qiu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Fujian College and University, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Sihui Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
21
|
Atrian M, Kharaziha M, Javidan H, Alihosseini F, Emadi R. Zwitterionic keratin coating on silk-Laponite fibrous membranes for guided bone regeneration. J Tissue Eng Regen Med 2022; 16:1019-1031. [PMID: 36094876 DOI: 10.1002/term.3350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/15/2022] [Accepted: 08/28/2022] [Indexed: 12/15/2022]
Abstract
Implant-related infection is one of the main challenges in periodontal diseases. According to the zwitterionic properties of keratin, we aim to develop guided bone regeneration (GBR) membrane with antibacterial and bioactivity properties using a keratin coating. In this study, electrospun silk fibroin (SF)-Laponite (LAP) fibrous membranes were developed as GBR membranes, and keratin extracted from sheep wool was electrosprayed on them. Here, the role of electrospraying time (2, 3, and 4h) on the properties of the GBR membranes was investigated. After physicochemical characterization of the keratin-modified membranes, in vitro bioactivity and degradation rate of the membranes were studied in simulated body fluid and phosphate buffer saline, respectively. Moreover, proliferation and differentiation of mesenchymal stem cells were evaluated in contact with the keratin-modified SF-LAP membrane. Finally, the antibacterial activity of membranes against gram-positive bacteria (Staphylococcus aureus) was investigated. Results demonstrated the successful formation of homogeneous wool keratin coating on SF-LAP fibrous membranes using a simple electrospray process. While wool keratin coating significantly enhanced the elongation and hydrophilicity of the SF-LAP membrane, the mechanical strength was not changed. In addition, keratin coating significantly improved the bioactivity and degradation rate of SF-LAP membranes, owing to the carboxyl groups of amino acids in keratin coating. In addition, the synergic role of LAP nanoparticles and keratin coating drastically improved osteoblast proliferation and differentiation. Finally, the zwitterionic property of wool keratin coating originating from their equal positive (NH3 + ) and negative (COO- ) charges considerably improved the antibacterial activity of the SF-LAP membrane. Overall, keratin-coated SF-LAP fibrous membranes with significant mechanical and biological properties could have the potential for GBR membranes.
Collapse
Affiliation(s)
- Matineh Atrian
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Hanieh Javidan
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Farzaneh Alihosseini
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Rahmatallah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
22
|
Zhou Z, Cui J, Wu S, Geng Z, Su J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Am J Cancer Res 2022; 12:5103-5124. [PMID: 35836802 PMCID: PMC9274741 DOI: 10.7150/thno.74548] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/18/2022] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease with a high disability rate. In addition, OA not only causes great physiological and psychological harm to patients, but also puts great pressure on the social healthcare system. Pathologically, the disintegration of cartilage and the lesions of subchondral bone are related to OA. Currently, tissue engineering, which is expected to overcome the defects of existing treatment methods, had a lot of research in the field of cartilage/osteochondral repair. Silk fibroin (SF), as a natural macromolecular material with good biocompatibility, unique mechanical properties, excellent processability and degradability, holds great potential in the field of tissue engineering. Nowadays, SF had been prepared into various materials to adapt to the demands of cartilage/osteochondral repair. SF-based biomaterials can also be functionally modified to enhance repair performance further. In this review, the preparation methods, types, structures, mechanical properties, and functional modifications of SF-based biomaterials used for cartilage/osteochondral repair are summarized and discussed. We hope that this review will provide a reference for the design and development of SF-based biomaterials in cartilage/osteochondral repair field.
Collapse
Affiliation(s)
- Ziyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,School of Medicine, Shanghai University, Shanghai 200444, China,School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jin Cui
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,Department of Orthopedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Shunli Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,School of Medicine, Shanghai University, Shanghai 200444, China,School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,✉ Corresponding authors: Zhen Geng, ; Jiacan Su,
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,✉ Corresponding authors: Zhen Geng, ; Jiacan Su,
| |
Collapse
|
23
|
Silk Fibroin-Induced Gadolinium-Functionalized Gold Nanoparticles for MR/CT Dual-Modal Imaging-Guided Photothermal Therapy. J Funct Biomater 2022; 13:jfb13030087. [PMID: 35893455 PMCID: PMC9326592 DOI: 10.3390/jfb13030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
The development of multifunction nanoplatforms integrating accurate diagnosis and efficient therapy is of great significance for the precise treatment of tumors. Gold nanoparticles (AuNPs) possessing hallmark features of computed tomography (CT) imaging and photothermal conversion capability hold great potential in tumor theranostics. In this study, taking the advantages of outstanding biocompatibility, interesting anti-inflammatory and immunomodulatory properties, and abundant amino acid residues of silk fibroin (SF), a multifunctional Gd-hybridized AuNP nanoplatform was constructed using SF as a stabilizer and reductant via a facile one-pot biomimetic method, denoted as Gd:AuNPs@SF. The obtained Gd:AuNPs@SF possessed fascinating biocompatibility and excellent photothermal conversion efficiency. Functionalized with Gd, Gd:AuNPs@SF exhibited super tumor-contrasted imaging performance in magnetic resonance (MR) and CT imaging modalities. Moreover, Gd:AuNPs@SF, with strong NIR absorbance, demonstrated that it could effectively kill tumor cells in vitro, and was also proved to successfully ablate tumor tissues through MR/CT imaging-guided photothermal therapy (PTT) without systemic toxicity in Pan02 xenograft C57BL/6 mouse models. We successfully synthesized Gd:AuNPs@SF for MR/CT dual-mode imaging-guided PTT via a facile one-pot biomimetic method, and this biomimetic strategy can also be used for the construction of other multifunction nanoplatforms, which is promising for precise tumor theranostics.
Collapse
|
24
|
Zhang S, Shah SAUM, Basharat K, Qamar SA, Raza A, Mohamed A, Bilal M, Iqbal HM. Silk-based nano-hydrogels for futuristic biomedical applications. J Drug Deliv Sci Technol 2022; 72:103385. [DOI: 10.1016/j.jddst.2022.103385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Aljabali AA, Rezigue M, Alsharedeh RH, Obeid MA, Mishra V, Serrano-Aroca Á, El-Tanani M, Tambuwala MM. Protein-based nanomaterials: a new tool for targeted drug delivery. Ther Deliv 2022; 13:321-338. [PMID: 35924586 DOI: 10.4155/tde-2021-0091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Protein nanomaterials are well-defined, hollow protein nanoparticles comprised of virus capsids, virus-like particles, ferritin, heat shock proteins, chaperonins and many more. Protein-based nanomaterials are formed by the self-assembly of protein subunits and have numerous desired properties as drug-delivery vehicles, including being optimally sized for endocytosis, nontoxic, biocompatible, biodegradable and functionalized at three separate interfaces (external, internal and intersubunit). As a result, protein nanomaterials have been intensively investigated as functional entities in bionanotechnology, including drug delivery, nanoreactors and templates for organic and inorganic nanomaterials. Several variables influence efficient administration, particularly active targeting, cellular uptake, the kinetics of the release and systemic elimination. This review examines the wide range of medicines, loading/release processes, targeted therapies and treatment effectiveness.
Collapse
Affiliation(s)
- Alaa Aa Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology,Faculty of Pharmacy, Yarmouk University, PO Box 566, Irbid, 21163, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics & Pharmaceutical Technology,Faculty of Pharmacy, Yarmouk University, PO Box 566, Irbid, 21163, Jordan
| | - Rawan H Alsharedeh
- Department of Pharmaceutics & Pharmaceutical Technology,Faculty of Pharmacy, Yarmouk University, PO Box 566, Irbid, 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics & Pharmaceutical Technology,Faculty of Pharmacy, Yarmouk University, PO Box 566, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia, 46001, Spain
| | - Mohamed El-Tanani
- Pharmacological & Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
26
|
Low JT, Yusoff NISM, Othman N, Wong T, Wahit MU. Silk fibroin‐based films in food packaging applications: A review. Compr Rev Food Sci Food Saf 2022; 21:2253-2273. [DOI: 10.1111/1541-4337.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Jia Tee Low
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | | | - Norhayani Othman
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | - Tuck‐Whye Wong
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | - Mat Uzir Wahit
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| |
Collapse
|
27
|
Abstract
Natural biological materials provide a rich source of inspiration for building high-performance materials with extensive applications. By mimicking their chemical compositions and hierarchical architectures, the past decades have witnessed the rapid development of bioinspired materials. As a very promising biosourced raw material, silk is drawing increasing attention due to excellent mechanical properties, favorable versatility, and good biocompatibility. In this review, we provide an overview of the recent progress in silk-based bioinspired structural and functional materials. We first give a brief introduction of silk, covering its sources, features, extraction, and forms. We then summarize the preparation and application of silk-based materials mimicking four typical biological materials including bone, nacre, skin, and polar bear hair. Finally, we discuss the current challenges and future prospects of this field.
Collapse
Affiliation(s)
- Zongpu Xu
- Institute of Applied Bioresources, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| |
Collapse
|
28
|
Enzymatically Crosslinked In Situ Synthesized Silk/Gelatin/Calcium Phosphate Hydrogels for Drug Delivery. MATERIALS 2021; 14:ma14237191. [PMID: 34885345 PMCID: PMC8658330 DOI: 10.3390/ma14237191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Our research focuses on combining the valuable properties of silk fibroin (SF) and calcium phosphate (CaP). SF is a natural protein with an easily modifiable structure; CaP is a mineral found in the human body. Most of the new age biocomposites lack interaction between organic/inorganic phase, thus SF/CaP composite could not only mimic the natural bone, but could also be used to make drug delivery systems as well, which can ensure both healing and regeneration. CaP was synthesized in situ in SF at different pH values, and then crosslinked with gelatin (G), horseradish peroxide (HRP), and hydrogen peroxide (H2O2). In addition, dexamethasone phosphate (DEX) was incorporated in the hydrogel and drug delivery kinetics was studied. Hydrogel made at pH 10.0 was found to have the highest gel fraction 110.24%, swelling degree 956.32%, and sustained drug delivery for 72 h. The highest cell viability was observed for the hydrogel, which contained brushite (pH 6)-512.43%.
Collapse
|
29
|
Zhang L, Yang R, Yu H, Xu Z, Kang Y, Cui H, Xue P. MnO 2-capped silk fibroin (SF) nanoparticles with chlorin e6 (Ce6) encapsulation for augmented photo-driven therapy by modulating the tumor microenvironment. J Mater Chem B 2021; 9:3677-3688. [PMID: 33949613 DOI: 10.1039/d1tb00296a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Silk fibroin (SF), derived from Bombyx mori, is a category of fibrous protein with outstanding potential for applications in the biomedical and biotechnological fields. In spite of its many advantageous properties, the exploration of SF as a versatile nanodrug precursor for tumor therapy has still been restricted in recent years. Herein, a multifunctional SF-derived nanoplatform was facilely developed via encapsulating the photosensitizer chlorin e6 (Ce6) into MnO2-capped SF nanoparticles (NPs). SF@MnO2 nanocarriers were synthesized through a surface crystallization technique, using SF as a reductant and sacrificial template. Afterwards, Ce6 was covalently incorporated into the loose structure of the SF@MnO2 nanocarrier on the basis of adsorption to abundant peptide-binding sites. To modulate the tumor microenvironment (TME), SF@MnO2/Ce6 (SMC) NPs were capable of catalyzing the decomposition of H2O2 into O2, which can be converted into cytotoxic reactive oxygen species (ROS) during photodynamic therapy (PDT). Moreover, the MnO2 component was able to oxidize intracellular glutathione (GSH) into non-reducing glutathione disulfide (GSSG), and the consumption of GSH could significantly protect the local ROS from being reduced, which further augmented the therapeutic outcome of PDT. Via another angle, SMC NPs can produce strong hyperthermia under near-infrared (NIR) light activation, which was highly desirable for efficient photothermal therapy (PTT). Both in vitro and in vivo studies demonstrated the intense tumor inhibitory effects as a result of augmented PTT/PDT mediated by SMC NPs. We believe that this study may provide useful insights for employing SF-based nanocomposites for more medical applications in the near future.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing 400715, China. and Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Ruihao Yang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Honglian Yu
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Zhigang Xu
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Yuejun Kang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing 400715, China. and Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Peng Xue
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
30
|
Chen ZJ, Shi HH, Zheng L, Zhang H, Cha YY, Ruan HX, Zhang Y, Zhang XC. A new cancellous bone material of silk fibroin/cellulose dual network composite aerogel reinforced by nano-hydroxyapatite filler. Int J Biol Macromol 2021; 182:286-297. [PMID: 33838188 DOI: 10.1016/j.ijbiomac.2021.03.204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/15/2022]
Abstract
Composites materials comprised of biopolymeric aerogel matrices and inorganic nano-hydroxyapatite (n-HA) fillers have received considerable attention in bone engineering. Although with significant progress in aerogel-based biomaterials, the brittleness and low strengths limit the application. The improvements in toughness and mechanical strength of aerogel-based biomaterials are in great need. In this work, an alkali urea system was used to dissolve, regenerate and gelate cellulose and silk fibroin (SF) to prepare composite aerosol. A dual network structure was shaped in the composite aerosol materials interlaced by sheet-like SF and reticular cellulose wrapping n-HA on the surface. Through uniaxial compression, the density of the composite aerogel material was close to the one of natural bone, and mechanical strength and toughness were high. Our work indicates that the composite aerogel has the same mechanical strength range as cancellous bone when the ratio of cellulose, n-HA and SF being 8:1:1. In vitro cell culture showed HEK-293T cells cultured on composite aerogels had high ability of adhesion, proliferation and differentiation. Totally, the presented biodegradable composite aerogel has application potential in bone tissue engineering.
Collapse
Affiliation(s)
- Zong-Ju Chen
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Hui-Hong Shi
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Liang Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing, China
| | - Hua Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing, China
| | - Yu-Ying Cha
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Hui-Xian Ruan
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Yi Zhang
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Xiu-Cheng Zhang
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China.
| |
Collapse
|
31
|
Li Y, Liu Y, Guo Q. Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF-β1 and BMP-2. Arthritis Res Ther 2021; 23:50. [PMID: 33531052 PMCID: PMC7856775 DOI: 10.1186/s13075-020-02382-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022] Open
Abstract
Cartilage defects frequently occur around the knee joint yet cartilage has limited self-repair abilities. Hydrogel scaffolds have excellent potential for use in tissue engineering. Therefore, the aim of the present study was to assess the ability of silk fibroin (SF) hydrogel scaffolds incorporated with chitosan (CS) nanoparticles (NPs) to repair knee joint cartilage defects. In the present study, composite systems of CS NPs incorporated with transforming growth factor-β1 (TGF-β1; TGF-β1@CS) and SF incorporated with bone morphogenetic protein-2 (BMP-2; TGF-β1@CS/BMP-2@SF) were developed and characterized with respect to their size distribution, zeta potential, morphology, and release of TGF-β1 and BMP-2. Bone marrow stromal cells (BMSCs) were co-cultured with TGF-β1@CS/BMP-2@SF extracts to assess chondrogenesis in vitro using a cell counting kit-8 assay, which was followed by in vivo evaluations in a rabbit model of knee joint cartilage defects. The constructed TGF-β1@CS/BMP-2@SF composite system was successfully characterized and showed favorable biocompatibility. In the presence of TGF-β1@CS/BMP-2@SF extracts, BMSCs exhibited normal cell morphology and enhanced chondrogenic ability both in vitro and in vivo, as evidenced by the promotion of cell viability and the alleviation of cartilage defects. Thus, the TGF-β1@CS/BMP-2@SF hydrogel developed in the present study promoted chondrogenic ability of BMSCs both in vivo and in vitro by releasing TGF-β1 and BMP-2, thereby offering a novel therapeutic strategy for repairing articular cartilage defects in knee joints.
Collapse
Affiliation(s)
- Yuan Li
- Department of Joint Surgery, Linyi People's Hospital, Linyi, 276000, People's Republic of China
| | - Yanping Liu
- Department of Orthopaedics of Integrated traditional and Western Medicine, Linyi People's Hospital, Linyi, 276000, People's Republic of China
| | - Qiang Guo
- Department of Hand and Foot Surgery, Linyi People's Hospital, Linyi, 276000, People's Republic of China.
| |
Collapse
|
32
|
Yang R, Fu S, Li R, Zhang L, Xu Z, Cao Y, Cui H, Kang Y, Xue P. Facile engineering of silk fibroin capped AuPt bimetallic nanozyme responsive to tumor microenvironmental factors for enhanced nanocatalytic therapy. Theranostics 2021; 11:107-116. [PMID: 33391464 PMCID: PMC7681078 DOI: 10.7150/thno.50486] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Reactive oxygen species (ROS), as a category of highly reactive molecules, are attractive for eliminating tumor cells in situ. However, the intrinsic tumor microenvironment (TME) always compromises treatment efficacy. In another aspect, silk fibroin (SF), as a category of natural biomacromolecules, is highly promising for synthesis of metallic nanocrystals via biomineralization. Methods: As a proof-of-concept study, AuPt bimetallic nanozyme derived from bioinspired crystallization of chloroauric acid and chloroplatinic acid was facilely developed in the presence of silk fibroin (SF). Antitumor effects caused by the as-synthesized AuPt@SF (APS) nanozyme were demonstrated in 4T1 tumor cells in vitro and xenograft tumor models in vivo. Results: APS nanozyme can decompose glucose to constantly supply H2O2 and deplete intracellular glutathione (GSH). APS nanozyme can simultaneously convert adsorbed O2 and endogenic H2O2 into superoxide radicals (•O2-) and hydroxyl radical (•OH), respectively, upon highly efficient catalytic reaction. Subsequently, these cytotoxic ROS cause irreversible damage to the cell membrane, nucleic acid and mitochondria of tumors. Upon fluorescence/photoacoustic (FL/PA)-imaging guidance, remarkable tumor damage based on the current nanoplatform was confirmed in vivo. Conclusion: The objective of our investigation is to supply more useful insights on the development of SF-based nanocatalysts, which are specifically responsive to TME for extremely efficient tumor theranostics.
Collapse
|
33
|
Matthew SAL, Totten JD, Phuagkhaopong S, Egan G, Witte K, Perrie Y, Seib FP. Silk Nanoparticle Manufacture in Semi-Batch Format. ACS Biomater Sci Eng 2020; 6:6748-6759. [PMID: 33320640 DOI: 10.1021/acsbiomaterials.0c01028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silk nanoparticles have demonstrated utility across a range of biomedical applications, especially as drug delivery vehicles. Their fabrication by bottom-up methods such as nanoprecipitation, rather than top-down manufacture, can improve critical nanoparticle quality attributes. Here, we establish a simple semi-batch method using drop-by-drop nanoprecipitation at the lab scale that reduces special-cause variation and improves mixing efficiency. The stirring rate was an important parameter affecting nanoparticle size and yield (400 < 200 < 0 rpm), while the initial dropping height (5.5 vs 7.5 cm) directly affected nanoparticle yield. Varying the nanoparticle standing time in the mother liquor between 0 and 24 h did not significantly affect nanoparticle physicochemical properties, indicating that steric and charge stabilizations result in high-energy barriers for nanoparticle growth. Manufacture across all tested formulations achieved nanoparticles between 104 and 134 nm in size with high β-sheet content, spherical morphology, and stability in aqueous media for over 1 month at 4 °C. This semi-automated drop-by-drop, semi-batch silk desolvation offers an accessible, higher-throughput platform for standardization of parameters that are difficult to control using manual methodologies.
Collapse
Affiliation(s)
- Saphia A L Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - John D Totten
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.,EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Suttinee Phuagkhaopong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Gemma Egan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Kimia Witte
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.,EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
34
|
Zeng G, Chen Y. Surface modification of black phosphorus-based nanomaterials in biomedical applications: Strategies and recent advances. Acta Biomater 2020; 118:1-17. [PMID: 33038527 DOI: 10.1016/j.actbio.2020.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
Black phosphorus-based nanomaterials (BPNMs), an emerging member of two-dimensional (2D) nanomaterials, possess excellent physicochemical properties and hold great potential for application in advanced nanomedicines. However, the bare BPNMs easily decrease their biomedical activities due to their degradability and in vivo interactions with biological macromolecules such as plasma proteins, largely restricting their biomedical application. A variety of surface modifications, via chemical, physical or biological approaches, have been developed for BPNMs to avoid these limitations and achieve stable, long-lasting and safe therapeutic effects, thus enlighten the development of the multifunctional BPNMs for more practical application in the field of biomedicine. The present review summarizes the recent advances in the surface modification of BPNMs and the resultant expansion of their biomedical applications. Focus is put on the strategy and method of modification while the effects incurred on the behavior and potential toxicity of BPNMs are also included. The future and challenge of the surface modification of the therapeutic BPNMs are finally discussed.
Collapse
Affiliation(s)
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
35
|
Belda Marín C, Fitzpatrick V, Kaplan DL, Landoulsi J, Guénin E, Egles C. Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Front Chem 2020; 8:604398. [PMID: 33335889 PMCID: PMC7736416 DOI: 10.3389/fchem.2020.604398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.
Collapse
Affiliation(s)
- Cristina Belda Marín
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Jessem Landoulsi
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Erwann Guénin
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
| | - Christophe Egles
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
36
|
Parushuram N, Ranjana R, Harisha KS, Shilpa M, Narayana B, Neelakandan R, Sangappa Y. Silk fibroin and silk fibroin-gold nanoparticles nanocomposite films: sustainable adsorbents for methylene blue dye. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1848578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- N. Parushuram
- Department of Studies in Physics, Mangalore University, Mangalagangotri, India
| | - R. Ranjana
- Department of Studies in Physics, Mangalore University, Mangalagangotri, India
| | - K. S. Harisha
- Department of Studies in Physics, Mangalore University, Mangalagangotri, India
| | - M. Shilpa
- Department of Studies in Physics, Mangalore University, Mangalagangotri, India
| | - B. Narayana
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore, India
| | - R. Neelakandan
- Department of Textile Technology, Anna University, Chennai, India
| | - Y. Sangappa
- Department of Studies in Physics, Mangalore University, Mangalagangotri, India
| |
Collapse
|
37
|
Gangrade A, Mandal BB. Drug Delivery of Anticancer Drugs from Injectable 3D Porous Silk Scaffold for Prevention of Gastric Cancer Growth and Recurrence. ACS Biomater Sci Eng 2020; 6:6195-6206. [DOI: 10.1021/acsbiomaterials.0c01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ankit Gangrade
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
38
|
Dorishetty P, Dutta NK, Choudhury NR. Silk fibroins in multiscale dimensions for diverse applications. RSC Adv 2020; 10:33227-33247. [PMID: 35515035 PMCID: PMC9056751 DOI: 10.1039/d0ra03964k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
Silk biomaterials in different forms such as particles, coatings and their assemblies, represent unique type of materials in multiple scales and dimensions. Herein, we provide an overview of multi-scale silk fibroin materials including silk particles, silk coatings and silk assemblies, each of which represents a unique type of material with wide range of applications. They feature tunable structures and mechanical properties with excellent biocompatibility, which are essentially required for various biomedical and drug delivery applications. The review focuses on bringing a new perspective on the utilization of regenerated silk fibroins in modern biomedicine by beginning with the fabrication of silk in multiscale dimensions and their state-of-the-art applications in various biomedical and bioelectronic fields. It covers the fundamentals of processing silk fibroins in multi-dimensions (sizes and shapes) with a specific emphasis on its structural tunability at various length scales (nano-micro) by using the latest fabrication methods/mechanisms and advanced fabrication technologies, followed by their recent applications in diverse fields of biomedicine.
Collapse
Affiliation(s)
- Pramod Dorishetty
- School of Engineering, RMIT University Melbourne Victoria 3000 Australia
| | - Naba K Dutta
- School of Engineering, RMIT University Melbourne Victoria 3000 Australia
| | | |
Collapse
|
39
|
Ma XY, Ma TC, Feng YF, Xiang G, Lei W, Zhou DP, Yu HL, Xiang LB, Wang L. Promotion of osteointegration by silk fibroin coating under diabetic conditions on 3D printed porous titanium implants via ROS-mediated NF-κB pathway. Biomed Mater 2020; 16. [PMID: 32726758 DOI: 10.1088/1748-605x/abaaa1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/29/2020] [Indexed: 01/29/2023]
Abstract
The clinical evidence indicates the compromised application of titanium implants (TI) in diabetics, associated with reactive oxygen species (ROS) overproduction at the bone-implant interface. Silk fibroin has exerted impressive biocompatibility in application of biomedical material and optimal anti-diabetic effect as oriental medicine. We proposed that SF coated titanium implant (STI) could alleviate diabetes-induced compromised osteointegration, which had been rarely reported before. To confirm the hypothesis and explore the underlying mechanisms, rat osteoblasts cultured on 3-dimensional (3D) printed TI and STI were subjected to normal serum (NS), diabetic serum (DS), DS with NAC (a ROS inhibitor) or SN50 (a NF-κB inhibitor). In vivo study was performed on diabetic sheep implanted with TI or STI into the bone defect on crista iliaca. Results demonstrated that ROS overproduction induced by diabetes lead to osteoblast dysfunctions and cellular apoptosis on TI substrate, associated with activation of NF-κB signaling pathway in osteoblasts. Importantly, STI substrate significantly attenuated ROS production and NF-κBp65 phosphorylation, through which the osteoblast biological dysfunctions were ameliorated. These results were further confirmed in vivo by the improved osteointegration of STI evidenced by Micro-CT and histological examinations compared with TI. These results demonstrated that ROS-mediated NF-κB signaling pathway played a crucial role in diabetes-induced implant destabilization. Importantly, SF coating as a promising material for biomaterial-engineering markedly improved clinical treatment effect of TI under diabetic conditions, possibly associated with the suppression of NF-κB pathway.
Collapse
Affiliation(s)
- Xiang-Yu Ma
- General Hospital of Northern Theater Command of PLA, Shenyang, CHINA
| | - Tian-Cheng Ma
- The First Affiliated Hospital of Air Force Medical University, Xi'an, CHINA
| | - Ya-Fei Feng
- The First Affiliated Hospital of Air Force Medical University, Xi'an, CHINA
| | - Geng Xiang
- The First Affiliated Hospital of Air Force Medical University, Xi'an, CHINA
| | - Wei Lei
- The First Affiliated Hospital of Air Force Medical University, Xi'an, CHINA
| | - Da-Peng Zhou
- General Hospital of Northern Theater Command of PLA, Shenyang, CHINA
| | - Hai-Long Yu
- General Hospital of Northern Theater Command of PLA, Shenyang, CHINA
| | - Liang-Bi Xiang
- Department of Orthopedics, General Hospital of Northern Theater Command of PLA, Shenyang, Liaoning, CHINA
| | - Lin Wang
- The First Affiliated Hospital of Air Force Medical University, Xi'an, CHINA
| |
Collapse
|
40
|
Leem JW, Fraser MJ, Kim YL. Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective. Annu Rev Biomed Eng 2020; 22:79-102. [PMID: 32160010 DOI: 10.1146/annurev-bioeng-082719-032747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Silk fibers, which are protein-based biopolymers produced by spiders and silkworms, are fascinating biomaterials that have been extensively studied for numerous biomedical applications. Silk fibers often have remarkable physical and biological properties that typical synthetic materials do not exhibit. These attributes have prompted a wide variety of silk research, including genetic engineering, biotechnological synthesis, and bioinspired fiber spinning, to produce silk proteins on a large scale and to further enhance their properties. In this review, we describe the basic properties of spider silk and silkworm silk and the important production methods for silk proteins. We discuss recent advances in reinforced silk using silkworm transgenesis and functional additive diets with a focus on biomedical applications. We also explain that reinforced silk has an analogy with metamaterials such that user-designed atypical responses can be engineered beyond what naturally occurring materials offer. These insights into reinforced silk can guide better engineering of superior synthetic biomaterials and lead to discoveries of unexplored biological and medical applications of silk.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Malcolm J Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Purdue University Center for Cancer Research, Regenstrief Center for Healthcare Engineering, and Purdue Quantum Science and Engineering Institute, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
41
|
Jiang S, Liu X, Liu Y, Liu J, He W, Dong Y. Synthesis of silver @hydroxyapatite nanoparticles based biocomposite and their assessment for viability of Osseointegration for rabbit knee joint anterior cruciate ligament rehabilitation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111677. [PMID: 31810037 DOI: 10.1016/j.jphotobiol.2019.111677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Abstract
In this examination, chitosan-silk fibroin/polyethylene terephthalate (CTS-SF/PET), chitosan-silk fibroin/polyethylene terephthalate/hydroxyapatite (CTS-SF/PET/HAP) and chitosan-silk fibroin/polyethylene terephthalate/Silver @hydroxyapatite (CTS-SF/PET/Ag@HAP) scaffolds were prepared by utilizing the plasma splashing procedure. Field emission scanning electron microscopy (FESEM) results demonstrated that the outside of the PET covered with HAP nanoparticles. The cell viability results demonstrated that the number of Mesenchymal stem cells (MSCs) primarily spread out on CTS-SF/PET/Ag@HAP. RT-PCR results demonstrated that there was an upregulated mRNA articulation of osseous development-related properties in the CTS-SF/PET/Ag@HAP composite. The in vivo rabbit animal assessment scores of the CTS-SF/PET/Ag@HAP composite were significantly better than those of the CTS-SF/PET at 1 to 3 months. Both in-vivo and in-vitro results exhibited in this investigation recommend that the cytocompatibility and osseointegration of CTS-SF/PET/Ag@HAP tendon were fundamentally improved by expanding the multiplication of cells and up-regulating the outflow of tendon development-related properties. In conclusion, the CTS-SF/PET/Ag@HAP tendon is a promising candidate for Anterior Cruciate Ligament (ACL) replacement in the future.
Collapse
Affiliation(s)
- Shengbo Jiang
- Department of Joint Surgery, The First People's Hospital of Lianyungang, China
| | - Xudong Liu
- Department of Joint Surgery, The First People's Hospital of Lianyungang, China
| | - Yan Liu
- Department of B-Ultrasonic, The First People's Hospital of Lianyungang, China
| | - Jian Liu
- Department of Joint Surgery, The First People's Hospital of Lianyungang, China
| | - Weidong He
- Department of Joint Surgery, The First People's Hospital of Lianyungang, China
| | - Yuefu Dong
- Department of Joint Surgery, The First People's Hospital of Lianyungang, China.
| |
Collapse
|