1
|
Kwon TY, Lee GH, Lee H, Lee KB. In Vivo Study of Organ and Tissue Stability According to the Types of Bioresorbable Bone Screws. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5632. [PMID: 39597455 PMCID: PMC11595555 DOI: 10.3390/ma17225632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Biodegradable material, such as magnesium alloy or polylactic acid (PLA), is a promising candidate for orthopedic surgery. The alloying of metals and the addition of rare earths to increase mechanical strength are still questionable in terms of biosafety as absorbent materials. Therefore, the purpose of this study is to understand the effect of substances due to the degradation of various biodegradable substances on organs in the body or surrounding tissues. A total of eighty male Sprague-Dawley rats were selected for this study, and the animals were divided into four groups. Each of the three experimental groups was implanted with magnesium alloy, polymer, and titanium implants; the control group only drilled into the cortical bone. Serum assay, micro-CT, hematoxylin and eosin staining, immunoblotting, and real-time PCR were evaluated. There was no significant difference between the two groups of magnesium alloy and polymer in serum assay, but micro-CT analysis confirmed that magnesium alloy degrades faster than polymer, and histological examination showed a strong inflammatory response in the early stages, which was similarly observed in immunoblotting and real-time PCR. Our findings show that there was no toxicity due to the degradation of the biodegradable material, and the difference in each inflammatory response is thought to be determined by the rate of degradation in the body.
Collapse
Affiliation(s)
- Tae-Young Kwon
- Department of Orthopedics Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (T.-Y.K.); (H.L.)
- Research Institute of Clinical Medicine, Biomedical Research Institute, Jeonbuk National University, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Geum-Hwa Lee
- Research Institute of Clinical Medicine, Biomedical Research Institute, Jeonbuk National University, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Hyuk Lee
- Department of Orthopedics Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (T.-Y.K.); (H.L.)
| | - Kwang-Bok Lee
- Department of Orthopedics Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (T.-Y.K.); (H.L.)
- Research Institute of Clinical Medicine, Biomedical Research Institute, Jeonbuk National University, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| |
Collapse
|
2
|
Zhang L, Zhang X, Chen J, Dai J, Bai J, Huang Z, Guo C, Xue F, Han L, Chu C. Effects of Different Concentrations of BSA on In Vitro Corrosion Behavior of Pure Zinc in Artificial Plasma. ACS Biomater Sci Eng 2022; 8:4365-4376. [PMID: 36129237 DOI: 10.1021/acsbiomaterials.2c00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When medical metallic materials are implanted in the body and come into contact with the body fluid environment, proteins will be rapidly adsorbed on the surface and affect the corrosion process of the material. Currently, there is no uniform understanding of the effect of protein adsorption on the corrosion behavior of materials due to the limitations of the nature of metal materials, protein concentrations, and different media environments. The effect of various bovine serum albumin (BSA) concentrations in artificial plasma (AP) on the corrosion behavior of pure Zn during 14 days of immersion was investigated in this research. The corrosion rate of pure Zn was slowed down by the addition of BSA, and the decelerating effect of lower protein concentration on the corrosion rate of Zn was more significant in the initial stage of immersion. With prolonging the immersion time, the corrosion rate of pure Zn in different media slowed down and stabilized, and the corrosion rates of pure Zn showed a decreasing trend with an increase of BSA concentration. Furthermore, the Langmuir adsorption isotherm model was utilized to study the relationship between the BSA concentration and corrosion behavior of pure Zn and to analyze the role of proteins in the degradation mechanism of pure Zn. This work could be useful for further exploration of potential clinical applications of zinc alloys.
Collapse
Affiliation(s)
- Lu Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Xin Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Jiaer Chen
- Chemistry Department, University College London, London WC1E 6BT, U.K
| | - Jianwei Dai
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Zhihai Huang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Chao Guo
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Linyuan Han
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China.,Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211189, China
| |
Collapse
|
3
|
Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review. Polymers (Basel) 2022; 14:polym14163430. [PMID: 36015686 PMCID: PMC9416295 DOI: 10.3390/polym14163430] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Natural bone tissue is composed of calcium-deficient carbonated hydroxyapatite as the inorganic phase and collagen type I as the main organic phase. The biomimetic approach of scaffold development for bone tissue engineering application is focused on mimicking complex bone characteristics. Calcium phosphates are used in numerous studies as bioactive phases to mimic natural bone mineral. In order to mimic the organic phase, synthetic (e.g., poly(ε-caprolactone), polylactic acid, poly(lactide-co-glycolide acid)) and natural (e.g., alginate, chitosan, collagen, gelatin, silk) biodegradable polymers are used. However, as materials obtained from natural sources are accepted better by the human organism, natural polymers have attracted increasing attention. Over the last three decades, chitosan was extensively studied as a natural polymer suitable for biomimetic scaffold development for bone tissue engineering applications. Different types of chitosan-based biomaterials (e.g., molded macroporous, fiber-based, hydrogel, microspheres and 3D-printed) with specific properties for different regenerative applications were developed due to chitosan's unique properties. This review summarizes the state-of-the-art of biomaterials for bone regeneration and relevant studies on chitosan-based materials and composites.
Collapse
|
4
|
Zheng Q, Wang Z, Sun Z, Wen J, Duan T, Zhang B. In vivo and in vitro performances of chitosan-coated Mg-Zn-Zr-Gd-Ca alloys as bone biodegradable materials in rat models. J Biomater Appl 2022; 36:1786-1799. [PMID: 35276054 DOI: 10.1177/08853282211052385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mg alloys have attracted significant attention as promising biomedical materials, specifically as fixation materials for promoting fracture healing. However, their unsatisfactory corrosion resistances hinder further clinical applications and thus require attention. This study aims to determine the performance of novel chitosan-coated Mg-1Zn-0.3Zr-2Gd-1Ca alloy and its ability to promote the healing of osteoporotic fractures. Moreover, its corrosion resistance and biocompatibility were assessed. Performance degradations of the samples were measured via electrochemical tests, weight loss test and morphological analysis, and the uncoated and chitosan-coated fixations were compared based on their effects on biocompatibility via the cytotoxicity test, X-rays, and hematoxylin and eosin staining. The effect of bone growth and healing was investigated via immunohistochemical test. Results of the electrochemical tests indicated that compared with the bare body, chitosan-coated Mg-Zn-Ca-Zr-Gd alloys improved by one order of magnitude. Additionally, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and weight loss test demonstrated that the corrosion resistance of the chitosan-coated Mg alloy is better than that of the uncoated alloy. In addition, cytotoxicity analysis indicated that the viability and morphology of the chitosan-coated alloy groups were superior to the uncoated groups in vitro. During in vivo analysis, chitosan-coated and uncoated Mg-1Zn-0.3Zr-2Gd-1Ca alloys were implanted into ovariectomized SD female rats with osteoporotic fractures for 1, 2, and 3 weeks. No displacement and shedding were observed through X-rays, and pathological analyses proved that the material was not harmful for liver and kidney tissues. Immunohistochemistry revealed that the chitosan-coated Mg-Zn-Ca-Zr-Gd alloy material contributed to the healing of osteoporotic fractures in the SD rat models. In conclusion, this study demonstrated the chitosan-coated Mg-Zn-Ca-Zr-Gd alloys have improved corrosion resistance and biocompatibility. Moreover, the alloy was found to accelerate the healing of osteoporotic fractures in SD rat models. Therefore, it has significant potential as a fixation material for osteoporotic fractures.
Collapse
Affiliation(s)
- Qiuxia Zheng
- Department of surgery, Central Laboratory of Luoyang Central Hospital, 74623The Luoyang Central Hospital affiliated of Zhengzhou University, Luoyang, China
| | - Zhanhui Wang
- Department of surgery, Central Laboratory of Luoyang Central Hospital, 74623The Luoyang Central Hospital affiliated of Zhengzhou University, Luoyang, China
| | - Zongbin Sun
- Department of surgery, Central Laboratory of Luoyang Central Hospital, 74623The Luoyang Central Hospital affiliated of Zhengzhou University, Luoyang, China
| | - Jiuba Wen
- School of Material Science and Engine, 74623Henan University of science and technology, Luoyang, China
| | - Tinghe Duan
- Department of surgery, Central Laboratory of Luoyang Central Hospital, 74623The Luoyang Central Hospital affiliated of Zhengzhou University, Luoyang, China
| | - Bingbing Zhang
- Key Laboratory of Molecular Medicine for Liver Injury and Repair, 74623Henan University of science and technology, Luoyang, China
| |
Collapse
|
5
|
|
6
|
Corrosion Resistance of MgZn Alloy Covered by Chitosan-Based Coatings. Int J Mol Sci 2021; 22:ijms22158301. [PMID: 34361065 PMCID: PMC8348728 DOI: 10.3390/ijms22158301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chitosan coatings are deposited on the surface of Mg20Zn magnesium alloy by means of the spin coating technique. Their structure was investigated using Fourier Transform Infrared Spectroscopy (FTIR) an X-ray photoelectron spectroscopy (XPS). The surface morphology of the magnesium alloy substrate and chitosan coatings was determined using Scanning Electron Microscope (FE-SEM) analysis. Corrosion tests (linear sweep voltamperometry and chronoamperometry) were performed on uncoated and coated magnesium alloy in the Hank's solution. In both cases, the hydrogen evolution method was used to calculate the corrosion rate after 7-days immersion in the Hank's solution at 37 °C. It was found that the corrosion rate is 3.2 mm/year and 1.2 mm/year for uncoated and coated substrates, respectively. High corrosion resistance of Mg20Zn alloy covered by multilayer coating (CaP coating + chitosan water glass) is caused by formation of CaSiO3 and Ca3(PO4)2 compounds on its surface.
Collapse
|
7
|
A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. COATINGS 2021. [DOI: 10.3390/coatings11070747] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of biodegradable implants is certainly intriguing, and magnesium and its alloys are considered significant among the various biodegradable materials. Nevertheless, the fast degradation, the generation of a significant amount of hydrogen gas, and the escalation in the pH value of the body solution are significant barriers to their use as an implant material. The appropriate approach is able to solve this issue, resulting in a decrease the rate of Mg degradation, which can be accomplished by alloying, surface adjustment, and mechanical treatment. Surface modification is a practical option because it not only improves corrosion resistance but also prepares a treated surface to improve bone regeneration and cell attachment. Metal coatings, ceramic coatings, and permanent polymers were shown to minimize degradation rates, but inflammation and foreign body responses were also suggested. In contrast to permanent materials, the bioabsorbable polymers normally show the desired biocompatibility. In order to improve the performance of drugs, they are generally encapsulated in biodegradable polymers. This study summarized the most recent advancements in manufacturing polymeric coatings on Mg alloys. The related corrosion resistance enhancement strategies and future potentials are discussed. Ultimately, the major challenges and difficulties are presented with aim of the development of polymer-coated Mg-based implant materials.
Collapse
|
8
|
Husak Y, Michalska J, Oleshko O, Korniienko V, Grundsteins K, Dryhval B, Altundal S, Mishchenko O, Viter R, Pogorielov M, Simka W. Bioactivity Performance of Pure Mg after Plasma Electrolytic Oxidation in Silicate-Based Solutions. Molecules 2021; 26:molecules26072094. [PMID: 33917454 PMCID: PMC8038674 DOI: 10.3390/molecules26072094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/04/2023] Open
Abstract
The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the gram-positive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2-containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants.
Collapse
Affiliation(s)
- Yevheniia Husak
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (Y.H.); (O.O.); (V.K.); (B.D.)
| | - Joanna Michalska
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Oleksandr Oleshko
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (Y.H.); (O.O.); (V.K.); (B.D.)
| | - Viktoriia Korniienko
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (Y.H.); (O.O.); (V.K.); (B.D.)
| | - Karlis Grundsteins
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1586 Riga, Latvia; (K.G.); (S.A.)
| | - Bohdan Dryhval
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (Y.H.); (O.O.); (V.K.); (B.D.)
| | - Sahin Altundal
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1586 Riga, Latvia; (K.G.); (S.A.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Oleg Mishchenko
- NanoPrime, 39-200 Dębica, Poland;
- Zaporizhzhia State Medical University, 26 Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1586 Riga, Latvia; (K.G.); (S.A.)
- Correspondence: (R.V.); (M.P.); (W.S.)
| | - Maksym Pogorielov
- Medical Institute, Sumy State University, 40018 Sumy, Ukraine; (Y.H.); (O.O.); (V.K.); (B.D.)
- NanoPrime, 39-200 Dębica, Poland;
- Correspondence: (R.V.); (M.P.); (W.S.)
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
- Correspondence: (R.V.); (M.P.); (W.S.)
| |
Collapse
|
9
|
Yadav V, Sankar M, Pandey L. Coating of bioactive glass on magnesium alloys to improve its degradation behavior: Interfacial aspects. JOURNAL OF MAGNESIUM AND ALLOYS 2020; 8:999-1015. [DOI: 10.1016/j.jma.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
10
|
Zhang C, He L, Chen Y, Dai D, Su Y, Shao L. Corrosion Behavior and In Vitro Cytotoxicity of Ni-Ti and Stainless Steel Arch Wires Exposed to Lysozyme, Ovalbumin, and Bovine Serum Albumin. ACS OMEGA 2020; 5:18995-19003. [PMID: 32775901 PMCID: PMC7408227 DOI: 10.1021/acsomega.0c02312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
In this study, the tendency and mechanisms by which protein and mechanical loads contribute to corrosion were determined by exposing Ni-Ti and stainless steel arch wires under varying mechanical loads to artificial saliva containing different types of protein (lysozyme, ovalbumin, and bovine serum albumin). The corrosion behavior and in vitro cytotoxicity results show that exposure to both protein and mechanical stress significantly decreased the corrosion resistance of stainless steel and increased the release of toxic corrosion products. Adding protein inhibited the corrosion of Ni-Ti, but the mechanical loads counteracted this effect. Even proteins containing the same types of amino acids had different effects on the corrosion resistance of the same alloy. The effect of protein or stress, or their combination, should be considered in the application of metal medical materials.
Collapse
Affiliation(s)
- Chao Zhang
- Stomatology
Center, Shunde Hospital, Southern Medical
University (The First People’s Hospital of Shunde), Foshan 528300, China
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longwen He
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuming Chen
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Danni Dai
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatology
Center, Shunde Hospital, Southern Medical
University (The First People’s Hospital of Shunde), Foshan 528300, China
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong
Provincial Key Laboratory of Construction and Detection in Tissue
Engineering, Guangzhou 510515, China
| |
Collapse
|
11
|
He L, Cui Y, Zhang C. Effect of Protein and Mechanical Strain on the Corrosion Resistance and Cytotoxicity of the Orthodontic Composite Arch Wire. ACS OMEGA 2020; 5:8992-8998. [PMID: 32337463 PMCID: PMC7178770 DOI: 10.1021/acsomega.0c00803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In this study, the effects of the exposure to different types of salivary proteins (fibrinogen, IgG, and mucin) and application of an in vitro bending strain on the laser welding orthodontic composite arch wire (CAW) were investigated, and the resultant corrosion behavior and cytotoxicity were studied in vitro. The purpose was to determine the mechanisms by which protein exposure and bending loads contribute to the corrosion of the CAW either alone or in combination by mimicking the clinical application. The results showed that the application of a mechanical strain significantly decreased the corrosion resistance of the CAW and increased the release of toxic corrosion products. The addition of the proteins inhibited the corrosion of the CAW, but the mechanical loads counteracted this effect. Mucin enhanced the corrosion resistance of the CAW. The effects of the proteins or strain, either alone or in combination, should be considered in the application of medical materials of heterogenetic alloys.
Collapse
|
12
|
Bakhsheshi-Rad HR, Ismail AF, Aziz M, Akbari M, Hadisi Z, Khoshnava SM, Pagan E, Chen X. Co-incorporation of graphene oxide/silver nanoparticle into poly-L-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110812. [PMID: 32279830 DOI: 10.1016/j.msec.2020.110812] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Magnesium (Mg) alloys present great potential for the development of orthopedic implants, whereas, their high degradation rate and poor antibacterial performance have restricted orthopedic applications. In this work, PLLA/GO-AgNP (poly-L-lactic acid/graphene oxide- silver nanoparticle) with different concentration of GO-AgNPs were deposited on Mg alloy via electrospinning method for enhancement of corrosion resistance and antibacterial performance. The result revealed that incorporation of GO into PLLA fibrous considerably slowed down the degradation rate of Mg alloy substrate and reduced the H2 release rate from the substrate. Also, co-incorporation of GO and AgNPs into PLLA fibrous resulted in substantial escalate in compressive strength after immersion in simulated body fluid (SBF). Antibacterial activity test exhibited that Mg alloy and neat PLLA fibrous presented minimal inhibition area toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In contrast, using PLLA/GO-AgNPs fibrous improved antibacterial performance against both bacteria. Cytocompatibility results indicated that PLLA/GO-AgNPs fibrous with a low amount of GO-AgNPs enhanced cell proliferation and growth while high co-incorporation of GO-AgNPs showed a negative effect on cell proliferation. Taken together, PLLA/1GO-AgNPs fibrous coating shows suitable corrosion resistance, cytocompatibility, and antibacterial function for use in orthopedic applications.
Collapse
Affiliation(s)
- Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia
| | - Madzlan Aziz
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Zhina Hadisi
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Seyed Meysam Khoshnava
- Faculty of Civil Engineering, Universiti Teknologi of Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Erik Pagan
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Oliver JAN, Su Y, Lu X, Kuo PH, Du J, Zhu D. Bioactive glass coatings on metallic implants for biomedical applications. Bioact Mater 2019; 4:261-270. [PMID: 31667443 PMCID: PMC6812334 DOI: 10.1016/j.bioactmat.2019.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
Metallic implant materials possess adequate mechanical properties such as strength, elastic modulus, and ductility for long term support and stability in vivo. Traditional metallic biomaterials, including stainless steels, cobalt-chromium alloys, and titanium and its alloys, have been the gold standards for load-bearing implant materials in hard tissue applications in the past decades. Biodegradable metals including iron, magnesium, and zinc have also emerged as novel biodegradable implant materials with different in vivo degradation rates. However, they do not possess good bioactivity and other biological functions. Bioactive glasses have been widely used as coating materials on the metallic implants to improve their integration with the host tissue and overall biological performances. The present review provides a detailed overview of the benefits and issues of metal alloys when used as biomedical implants and how they are improved by bioactive glass-based coatings for biomedical applications.
Collapse
Affiliation(s)
- Joy-anne N. Oliver
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, 76203, USA
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76203, USA
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Xiaonan Lu
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, 76203, USA
| | - Po-Hsuen Kuo
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, 76203, USA
| | - Jincheng Du
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, 76203, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|