1
|
Shelly K, Kartik R, Dhamodharan R. Facile chemical modification of solid alkaline lignin and chitosan via nucleophilic substitution with organohalides in the vapor phase. Int J Biol Macromol 2025; 304:140696. [PMID: 39914523 DOI: 10.1016/j.ijbiomac.2025.140696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The reaction of solid alkaline lignin and chitosan with vapors of organohalides, namely allyl bromide and epichlorohydrin, is presented as a sustainable alternative to conventional solvent-based techniques for modifying these model nucleophilic biopolymers. This approach, which does not necessitate any catalysts or pre-treatments, exploits the inherent nucleophilicity of specific functional groups present in the biopolymers, such as sodium carboxylates, sodium phenolates, and amines, facilitating nucleophilic substitution reactions directly with the vapors of the modifying agents. Fuming with epichlorohydrin introduced 1,3-glyceryl bridges in both alkaline lignin and chitosan, resulting in their extensive crosslinking. Allyl bromide vapors, on the other hand, resulted in their O- or N-allylation. Allylated biopolymers showed promise as versatile starting materials for further reactions, while vapor-phase crosslinking with epichlorohydrin could effectively stabilize different biopolymer forms. This environmentally friendly, solvent-free approach offers several advantages over conventional solvent-based techniques, including reduced waste generation, simplified post-processing, and increased flexibility for recovering and reusing modifying agents, even in cases of contamination.
Collapse
Affiliation(s)
- Km Shelly
- Department of Chemistry, Indian Institute of Technology Madras (IIT Madras), Chennai 600 036, India
| | - Ravishankar Kartik
- Polymer Science and Technology Unit, Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Raghavachari Dhamodharan
- Department of Chemistry, Indian Institute of Technology Madras (IIT Madras), Chennai 600 036, India.
| |
Collapse
|
2
|
Wang E, Qi Z, Cao Y, Li R, Wu J, Tang R, Gao Y, Du R, Liu M. Gels as Promising Delivery Systems: Physicochemical Property Characterization and Recent Applications. Pharmaceutics 2025; 17:249. [PMID: 40006616 PMCID: PMC11858892 DOI: 10.3390/pharmaceutics17020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Gels constitute a versatile class of materials with considerable potential for applications in both technical and medical domains. Physicochemical property characterization is a critical evaluation method for gels. Common characterization techniques include pH measurement, structural analysis, mechanical property assessment, rheological analysis, and phase transition studies, among others. While numerous research articles report characterization results, few reviews comprehensively summarize the appropriate numerical ranges for these properties. This lack of standardization complicates harmonized evaluation methods and hinders direct comparisons between different gels. To address this gap, it is essential to systematically investigate characterization methods and analyze data from the extensive body of literature on gels. In this review, we provide a comprehensive summary of general characterization methods and present a detailed analysis of gel characterization data to support future research and promote standardized evaluation protocols.
Collapse
Affiliation(s)
- Enzhao Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaoying Qi
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuzhou Cao
- School of Science, National University of Singapore, Singapore 119077, Singapore;
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
| | - Jing Wu
- School of Pharmacy, Zhejiang Pharmaceutical University, Ningbo 315100, China;
| | - Rongshuang Tang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Ruofei Du
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minchen Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Atef B, Ishak RAH, Badawy SS, Osman R. Novel composite fatty acid vesicles-in-Pluronic lecithin organogels for enhanced magnolol delivery in skin cancer treatment. Eur J Pharm Biopharm 2024; 201:114379. [PMID: 38908488 DOI: 10.1016/j.ejpb.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
A novel composite carrier composed of Pluronic lecithin organogels and fatty acid vesicles was used to enhance the stability and facilitate the topical delivery of a natural bioactive drug, magnolol (Mag), for treatment of skin cancer. Jojoba oil was incorporated in the organogel (OG) base to provide a synergistic effect in treatment of skin cancer. The organoleptic properties, rheological behavior, morphology, and drug content of the OG formulations were investigated with emphasis on the impact of vesicle loading on the OG characteristics. The effect of OG on Mag release and ex-vivo permeation studies were evaluated and compared to free Mag in OG. The biological anti-tumor activity of the OG formulae was assessed using a skin cancer model in mice. All OG formulations exhibited uniform drug distribution with drug content ranging from 92.22 ± 0.91 to 100.45 ± 0.77 %. Rheological studies confirmed the OG shear-thinning flow behavior. Ex-vivo permeation studies demonstrated that the permeation of Mag from all OG formulations surpassed that obtained with free Mag in the OG. The anti-tumor activity studies revealed the superior efficacy of 10-hydroxy-decanoic acid (HDA)-based vesicles incorporated in OG formulations in mitigating 7,12- dimethylbenz(a)anthracene (DMBA)-induced skin cancer, thereby offering a promising platform for the local delivery of Mag.
Collapse
Affiliation(s)
- Bassant Atef
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Sabry S Badawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt.
| |
Collapse
|
4
|
Nikam AN, Roy A, Raychaudhuri R, Navti PD, Soman S, Kulkarni S, Shirur KS, Pandey A, Mutalik S. Organogels: "GelVolution" in Topical Drug Delivery - Present and Beyond. Curr Pharm Des 2024; 30:489-518. [PMID: 38757691 DOI: 10.2174/0113816128279479231231092905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 05/18/2024]
Abstract
Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.
Collapse
Affiliation(s)
- Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Amrita Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Prerana D Navti
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Krishnaraj Somayaji Shirur
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
5
|
Soleimani K, Beyranvand S, Souri Z, Ahmadian Z, Yari A, Faghani A, Shams A, Adeli M. Ferrocene/ β-cyclodextrin based supramolecular nanogels as theranostic systems. Biomed Pharmacother 2023; 166:115402. [PMID: 37660653 DOI: 10.1016/j.biopha.2023.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
A supramolecular redox responsive nanogel (NG) with the ability to sense cancer cells and loaded with a releasing therapeutic agent was synthesized using hostguest interactions between polyethylene glycol-grafted-β-cyclodextrin and ferrocene boronic acid. Cyclic voltammetry matched with other spectroscopy and microscopy methods provided strong indications regarding host-guest interactions and formation of the NG. Moreover, the biological properties of the NG were evaluated using fluorescence silencing, confocal laser scanning microscopy, and cell toxicity assays. Nanogel with spherical core-shell architecture and 100-200 nm sized nanoparticles showed high encapsulation efficiency for doxorubicin (DOX) and luminol (LU) as therapeutic and sensing agents. High therapeutic and sensing efficiencies were manifested by complete release of DOX and dramatic quenching of LU fluorescence triggered by 0.05 mM H2O2 (as an ROS component). The NGs showed high ROS sensitivity. Taking advantage of a high loading capacity, redox sensitivity, and biocompatibility, the NGs can be used as strong theranostic systems in inflammation-associated diseases.
Collapse
Affiliation(s)
- Khadijeh Soleimani
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zeinab Souri
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Abdollah Yari
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Abbas Faghani
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Azim Shams
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Mohsen Adeli
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran.
| |
Collapse
|
6
|
Pandya AK, Vora LK, Umeyor C, Surve D, Patel A, Biswas S, Patel K, Patravale VB. Polymeric in situ forming depots for long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 200:115003. [PMID: 37422267 DOI: 10.1016/j.addr.2023.115003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Polymeric in situ forming depots have emerged as highly promising drug delivery systems for long-acting applications. Their effectiveness is attributed to essential characteristics such as biocompatibility, biodegradability, and the ability to form a stable gel or solid upon injection. Moreover, they provide added versatility by complementing existing polymeric drug delivery systems like micro- and nanoparticles. The formulation's low viscosity facilitates manufacturing unit operations and enhances delivery efficiency, as it can be easily administered via hypodermic needles. The release mechanism of drugs from these systems can be predetermined using various functional polymers. To enable unique depot design, numerous strategies involving physiological and chemical stimuli have been explored. Important assessment criteria for in situ forming depots include biocompatibility, gel strength and syringeability, texture, biodegradation, release profile, and sterility. This review focuses on the fabrication approaches, key evaluation parameters, and pharmaceutical applications of in situ forming depots, considering perspectives from academia and industry. Additionally, insights about the future prospects of this technology are discussed.
Collapse
Affiliation(s)
- Anjali K Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Chukwuebuka Umeyor
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra State, Nigeria
| | - Dhanashree Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Ketankumar Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India.
| |
Collapse
|
7
|
Sepulveda AF, Kumpgdee-Vollrath M, Franco MK, Yokaichiya F, de Araujo DR. Supramolecular structure organization and rheological properties modulate the performance of hyaluronic acid-loaded thermosensitive hydrogels as drug-delivery systems. J Colloid Interface Sci 2023; 630:328-340. [DOI: 10.1016/j.jcis.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/15/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
8
|
Thermosensitive system formed by poloxamers containing carvacrol: An effective carrier system against Leishmania amazonensis. Acta Trop 2023; 237:106744. [DOI: 10.1016/j.actatropica.2022.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/15/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
|
9
|
Hassan ML, Abou-Elesoud WS, Safwat EM, Hassan EA, Fadel SM, Labeeb AM. Effect of cellulose nanocrystals on rheology, liquid crystal, and delivery behavior of metronidazole poloxamer-based in-situ dental medication. CELLULOSE 2022; 29:9511-9529. [DOI: 10.1007/s10570-022-04864-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2025]
|
10
|
de Siqueira VM, da Silva BGM, Passos JCDS, Pinto AP, da Rocha JBT, Alberto-Silva C, Costa MS. (MeOPhSe)2, a synthetic organic selenium compound, inhibits virulence factors of Candida krusei: Adherence to cervical epithelial cells and biofilm formation. J Trace Elem Med Biol 2022; 73:127019. [PMID: 35709560 DOI: 10.1016/j.jtemb.2022.127019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/26/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Systemic candidiasis is produced by Candida albicans or non-albicans Candida species, opportunistic fungi that produce both superficial and invasive infections. Despite the availability of a wide range of antifungal agents for the treatment of candidiasis, failure of therapy is observed frequently, which opens new avenues in the field of alternative therapeutic strategies. METHODS The effects of p,p'-methoxyl-diphenyl diselenide [(MeOPhSe)2], a synthetic organic selenium (organochalcogen) compound, were investigated on virulence factors of C. krusei and compared with its antifungal effects on the virulence factors related to adhesion to cervical epithelial cell surfaces with C. albicans. RESULTS (MeOPhSe)2, a compound non-toxic in epithelial (HeLa) and fibroblastic (Vero) cells, inhibited the growth in a dose-dependent manner and changed the kinetics parameters of C. krusei and, most importantly, extending the duration of lag phase of growth, inhibiting biofilm formation, and changing the structure of biofilm. Also, (MeOPhSe)2 reduced C. albicans and C. krusei adherence to cervical epithelial cells, an important factor for the early stage of the Candida-host interaction. The reduction was 37.24 ± 2.7 % in C. krusei (p = 0.00153) and 32.84 ± 3.2 % in C. albicans (p = 0.0072) at 20 µM (MeOPhSe)2, and the effect is in a concentration-dependent manner. Surprisingly, the antifungal potential on adhesion was similar between both species, indicating the potential of (MeOPhSe)2 as a promising antifungal drug against different Candida infections. CONCLUSION Overall, we demonstrated the potential of (MeOPhSe)2 as an effective antifungal drug against the virulence factors of Candida species.
Collapse
Affiliation(s)
- Victor Mendes de Siqueira
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, São José dos Campos, SP 2911, Brazil
| | - Bruna Graziele Marques da Silva
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, São José dos Campos, SP 2911, Brazil
| | - Juliene Cristina da Silva Passos
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, São José dos Campos, SP 2911, Brazil
| | - Ana Paula Pinto
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, São José dos Campos, SP 2911, Brazil
| | | | - Carlos Alberto-Silva
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), Rua Arcturus, no 03, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, São José dos Campos, SP 2911, Brazil.
| |
Collapse
|
11
|
Lin J, Zheng R, Huang L, Tu Y, Li X, Chen J. Folic acid-mediated MSNs@Ag@Geb multifunctional nanocomposite heterogeneous platform for combined therapy of non-small cell lung cancer. Colloids Surf B Biointerfaces 2022; 217:112639. [PMID: 35759894 DOI: 10.1016/j.colsurfb.2022.112639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022]
Abstract
Molecularly targeted drugs are flourishing in the clinical treatment of non-small cell lung cancer (NSCLC). However, the treatment of a single drug (such as Gefitinib (Geb)) had defects such as poor pharmacokinetics, insufficient drug delivery, and considerable toxic side effects, which greatly affect its therapeutic efficacy against NSCLC. To solve these issues, this study developed a new nanocomposite heterogeneous platform (MSNs@Ag@Geb-FA) that combined photothermal therapy and molecular targeted therapy. The high specific surface area empowered mesoporous silicon dioxide (SiO2) heterostructure the ability to efficiently load Ag photothermal agents and anti-tumor drug Geb. Meanwhile, a favorable pH response (degradation of residual MnO2) achieved the controlled release of Ag and Geb. Besides, the targeting and endocytosis properties of nano drugs were greatly improved through the modification of folic acid (FA). Both in vivo and in vitro experiments authenticated that this nanocomposite heterogeneous platform could effectively integrate the multiple tumor suppressor properties of Ag nanoparticles and cooperate with Geb to hasten A549 cell apoptosis, thereby achieving a favorable anti-tumor effect. This heterogeneous structure of the nanocomposite heterogeneous platform could provide an effective strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jianbo Lin
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, Fujian, China
| | - Rujie Zheng
- Department of Anesthesiology, First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, Fujian, China
| | - Liping Huang
- Pharmaceutical Department, First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, Fujian, China
| | - Yuanrong Tu
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, Fujian, China
| | - Xu Li
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, Fujian, China
| | - Jianfeng Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, Fujian, China.
| |
Collapse
|
12
|
da Silva BGM, Pinto AP, Passos JCDS, da Rocha JBT, Alberto-Silva C, Costa MS. Diphenyl diselenide suppresses key virulence factors of Candida krusei, a neglected fungal pathogen. BIOFOULING 2022; 38:427-440. [PMID: 35670068 DOI: 10.1080/08927014.2022.2084388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Candida krusei is a candidiasis etiological agent of relevance in the clinical setting because of its intrinsic resistance to fluconazole. Also, it has opened up new paths in the area of alternative therapeutic techniques. This project demonstrated the effects of diphenyl diselenide (PhSe)2 and p-cloro diphenyl diselenide (pCl-PhSe)2, two organochalcogen compounds, on relevant virulence factors for the early stage of the C. krusei host interaction and infection process. Both compounds inhibited adherence of C. krusei to both polystyrene surfaces and cervical epithelial cells and biofilm formation; the structure of the biofilm was also changed in a dose-dependent manner. In addition, both compounds inhibited C. krusei growth, but (PhSe)2 significantly increased the time duration of the lag phase and delayed the start of the exponential phase in growth kinetics. (PhSe)2 has more potential antifungal activity than (pCl-PhSe)2 in inhibiting the adherence to epithelial cells, biofilm formation, and growth of C. krusei.
Collapse
Affiliation(s)
| | - Ana Paula Pinto
- Instituto de Pesquisa e Desenvolvimento-IP&D, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | | | - João Batista Teixeira da Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, São Paulo, Brazil
| | - Carlos Alberto-Silva
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center (CCNH), Federal University of ABC-UFABC, São Paulo, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento-IP&D, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
13
|
Engineering drug delivery systems to overcome the vaginal mucosal barrier: Current understanding and research agenda of mucoadhesive formulations of vaginal delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Rogerio CB, Carvalho Abrantes D, de Oliveira JL, Ribeiro de Araújo D, Germano da Costa T, de Lima R, Fernandes Fraceto L. Cellulose Hydrogels Containing Geraniol and Icaridin Encapsulated in Zein Nanoparticles for Arbovirus Control. ACS APPLIED BIO MATERIALS 2022; 5:1273-1283. [PMID: 35167254 DOI: 10.1021/acsabm.1c01286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The most important arboviruses are those that cause dengue, yellow fever, chikungunya, and Zika, for which the main vector is the Aedes aegypti mosquito. The use of repellents is an important way to combat mosquito-borne pathogens. In this work, a safe method of protection employing a repellent was developed based on a slow release system composed of zein nanoparticles containing the active agents icaridin and geraniol incorporated in a cellulose gel matrix. Analyses were performed to characterize the nanoparticles and the gel formulation. The nanoparticles containing the repellents presented a hydrodynamic diameter of 229 ± 9 nm, polydispersity index of 0.38 ± 0.10, and zeta potential of +29.4 ± 0.8 mV. The efficiencies of encapsulation in the zein nanoparticles exceeded 85% for icaridin and 98% for geraniol. Rheological characterization of the gels containing nanoparticles and repellents showed that the viscoelastic characteristic of hydroxypropylmethylcellulose gel was preserved. Release tests demonstrated that the use of nanoparticles in combination with the gel matrix led to improved performance of the formulations. Atomic force microscopy analyses enabled visualization of the gel network containing the nanoparticles. Cytotoxicity assays using 3T3 and HaCaT cell cultures showed low toxicity profiles for the active agents and the nanoparticles. The results demonstrated the potential of these repellent systems to provide prolonged protection while decreasing toxicity.
Collapse
Affiliation(s)
- Carolina B Rogerio
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Daniele Carvalho Abrantes
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Jhones L de Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | | | - Tais Germano da Costa
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo 18023-000, Brazil
| | - Renata de Lima
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo 18023-000, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| |
Collapse
|
15
|
Monoketonic Curcuminoid-Lidocaine Co-Deliver Using Thermosensitive Organogels: From Drug Synthesis to Epidermis Structural Studies. Pharmaceutics 2022; 14:pharmaceutics14020293. [PMID: 35214026 PMCID: PMC8879257 DOI: 10.3390/pharmaceutics14020293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Organogels (ORGs) are remarkable matrices due to their versatile chemical composition and straightforward preparation. This study proposes the development of ORGs as dual drug-carrier systems, considering the application of synthetic monoketonic curcuminoid (m-CUR) and lidocaine (LDC) to treat topical inflammatory lesions. The monoketone curcuminoid (m-CUR) was synthesized by using an innovative method via a NbCl5–acid catalysis. ORGs were prepared by associating an aqueous phase composed of Pluronic F127 and LDC hydrochloride with an organic phase comprising isopropyl myristate (IPM), soy lecithin (LEC), and the synthesized m-CUR. Physicochemical characterization was performed to evaluate the influence of the organic phase on the ORGs supramolecular organization, permeation profiles, cytotoxicity, and epidermis structural characteristics. The physico-chemical properties of the ORGs were shown to be strongly dependent on the oil phase constitution. Results revealed that the incorporation of LEC and m-CUR shifted the sol-gel transition temperature, and that the addition of LDC enhanced the rheological G′/G″ ratio to higher values compared to original ORGs. Consequently, highly structured gels lead to gradual and controlled LDC permeation profiles from the ORG formulations. Porcine ear skin epidermis was treated with ORGs and evaluated by infrared spectroscopy (FTIR), where the stratum corneum lipids were shown to transition from a hexagonal to a liquid crystal phase. Quantitative optical coherence tomography (OCT) analysis revealed that LEC and m-CUR additives modify skin structuring. Data from this study pointed ORGs as promising formulations for skin-delivery.
Collapse
|
16
|
Bondre RM, Kanojiya PS, Wadetwar RN, Kangali PS. Sustained vaginal delivery of in situ gel containing Voriconazole nanostructured lipid carrier: formulation, in vitro and ex vivo evaluation. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2021.2022489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ruchika M. Bondre
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Pranita S. Kanojiya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Rita N. Wadetwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Priya S. Kangali
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
17
|
The Influence of Tea Tree Oil on Antifungal Activity and Pharmaceutical Characteristics of Pluronic ® F-127 Gel Formulations with Ketoconazole. Int J Mol Sci 2021; 22:ijms222111326. [PMID: 34768755 PMCID: PMC8582737 DOI: 10.3390/ijms222111326] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Fungal skin infections are currently a major clinical problem due to their increased occurrence and drug resistance. The treatment of fungal skin infections is based on monotherapy or polytherapy using the synergy of the therapeutic substances. Tea tree oil (TTO) may be a valuable addition to the traditional antifungal drugs due to its antifungal and anti-inflammatory activity. Ketoconazole (KTZ) is an imidazole antifungal agent commonly used as a treatment for dermatological fungal infections. The use of hydrogels and organogel-based formulations has been increasing for the past few years, due to the easy method of preparation and long-term stability of the product. Therefore, the purpose of this study was to design and characterize different types of Pluronic® F-127 gel formulations containing KTZ and TTO as local delivery systems that can be applied in cases of skin fungal infections. The influence of TTO addition on the textural, rheological, and bioadhesive properties of the designed formulations was examined. Moreover, the in vitro release of KTZ, its permeation through artificial skin, and antifungal activity by the agar diffusion method were performed. It was found that obtained gel formulations were non-Newtonian systems, showing a shear-thinning behaviour and thixotropic properties with adequate textural features such as hardness, compressibility, and adhesiveness. Furthermore, the designed preparations with TTO were characterized by beneficial bioadhesive properties. The presence of TTO improved the penetration and retention of KTZ through the artificial skin membrane and this effect was particularly visible in hydrogel formulation. The developed gels containing TTO can be considered as favourable formulations in terms of drug release and antifungal activity.
Collapse
|
18
|
Mariano KCF, Papini JZB, de Faria NC, Heluany DNC, Botega ALL, Cereda CMS, de Paula E, Tófoli GR, de Araujo DR. Ropivacaine-Loaded Poloxamer Binary Hydrogels for Prolonged Regional Anesthesia: Structural Aspects, Biocompatibility, and Pharmacological Evaluation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7300098. [PMID: 34568494 PMCID: PMC8460376 DOI: 10.1155/2021/7300098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/11/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022]
Abstract
This study reports the development of thermosensitive hydrogels for delivering ropivacaine (RVC), a wide clinically used local anesthetic. For this purpose, poloxamer- (PL-) based hydrogels were synthesized for evaluating the influence of polymer concentration, hydrophilic-lipophilic balances, and binary system formation on biopharmaceutical properties and pharmacological performance. Transition temperatures were shifted, and rheological analysis revealed a viscoelastic behavior with enhanced elastic/viscous modulus relationship (G'/G " = 1.8 to 22 times), according to hydrogel composition and RVC incorporation. The RVC release from PL407 and PL407/338 systems followed the Higuchi model (R 2 = 0.923-0.989), indicating the drug diffusion from hydrogels to the medium. RVC-PL hydrogels were potentially biocompatible evoking low cytotoxic effects (in fibroblasts and Schwann cells) and mild/moderate inflammation signs on sciatic nerve nearby histological evaluation. In vivo pharmacological assays demonstrated that PL407 and PL407/338 evoked differential analgesic effects, by prolonging the sensory blockade duration up to ~340 and 250 min., respectively. All those results highlighted PL407 and PL407/338 as promising new strategies for sustaining analgesic effects during the postoperative period.
Collapse
Affiliation(s)
| | | | | | | | | | - Cíntia Maria Saia Cereda
- São Leopoldo Mandic Faculty, São Leopoldo Mandic Research Institute, Campinas, São Paulo, Brazil
| | - Eneida de Paula
- Department of Biochemistry, State University of Campinas, Campinas, São Paulo, Brazil
| | - Giovana Radomille Tófoli
- São Leopoldo Mandic Faculty, São Leopoldo Mandic Research Institute, Campinas, São Paulo, Brazil
| | - Daniele Ribeiro de Araujo
- Human and Natural Sciences Center, Federal University of ABC, Santo André, SP, Brazil
- Drugs and Bioactives Delivery Systems Research Group–SISLIBIO, Federal University of ABC, Av. dos Estados, 5001 Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| |
Collapse
|
19
|
Kumar SR, Mehta CH, Nayak UY. Long-Acting Formulations: A Promising Approach for the Treatment of Chronic Diseases. Curr Pharm Des 2021; 27:876-889. [PMID: 32634073 DOI: 10.2174/1381612826666200707122012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/28/2020] [Indexed: 11/22/2022]
Abstract
Medication and patient adherence are the two main aspects of any successful treatment of chronic disease. Even though diseases and its treatment existed for several hundred years, the treatment optimization for a given patient is still a researcher question for scientists. There are differences in treatment duration, prognostic signs and symptoms between patient to patient. Hence, designing ideal formulation to suit individual patient is a challenging task. The conventional formulations like oral solids and liquids gives a partial or incomplete treatment because the patient needs to follow the daily pills for a longer time. In such cases, the long-acting formulations will have better patient compliances as drug will be released for a longer duration. Many such approaches are under the clinical investigation. The favorable pharmacokinetic and pharmacodynamic relationships, will be promising option for the treatment of chronic diseases. In this review, we have highlighted the importance of long-acting formulations in the treatment of chronic diseases and the advent of newer formulation technologies.
Collapse
Affiliation(s)
- Somaraju R Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
20
|
Chindamo G, Sapino S, Peira E, Chirio D, Gallarate M. Recent Advances in Nanosystems and Strategies for Vaginal Delivery of Antimicrobials. NANOMATERIALS 2021; 11:nano11020311. [PMID: 33530510 PMCID: PMC7912580 DOI: 10.3390/nano11020311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Vaginal infections such as bacterial vaginosis (BV), chlamydia, gonorrhea, genital herpes, candidiasis, and trichomoniasis affect millions of women each year. They are caused by an overgrowth of microorganisms, generally sexually transmitted, which in turn can be favored by alterations in the vaginal flora. Conventional treatments of these infections consist in systemic or local antimicrobial therapies. However, in the attempt to reduce adverse effects and to contrast microbial resistance and infection recurrences, many efforts have been devoted to the development of vaginal systems for the local delivery of antimicrobials. Several topical dosage forms such as aerosols, lotions, suppositories, tablets, gels, and creams have been proposed, although they are sometimes ineffective due to their poor penetration and rapid removal from the vaginal canal. For these reasons, the development of innovative drug delivery systems, able to remain in situ and release active agents for a prolonged period, is becoming more and more important. Among all, nanosystems such as liposomes, nanoparticles (NPs), and micelles with tunable surface properties, but also thermogelling nanocomposites, could be exploited to improve local drug delivery, biodistribution, retention, and uptake in vulvovaginal tissues. The aim of this review is to provide a survey of the variety of nanoplatforms developed for the vaginal delivery of antimicrobial agents. A concise summary of the most common vaginal infections and of the conventional therapies is also provided.
Collapse
|
21
|
Argenta DF, Bernardo BDC, Chamorro AF, Matos PR, Caon T. Thermosensitive hydrogels for vaginal delivery of secnidazole as an approach to overcome the systemic side-effects of oral preparations. Eur J Pharm Sci 2021; 159:105722. [PMID: 33482314 DOI: 10.1016/j.ejps.2021.105722] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/10/2023]
Abstract
Secnidazole (SEC) has been suggested as an alternative agent against Trichomonas vaginalis to overcome the adverse effects, antimicrobial resistance problems and poor adherence to the currently available therapy. Once no topical formulation may be found in the market until now, SEC was incorporated in thermosensitive bioadhesive systems to extend the contact time in the mucosa and to avoid a systemic drug disposition. Formulations containing 20% poloxamer 407, 1% poloxamer 188 and 1 or 2.5% chitosan showed suitable sol-gel transition temperature (> 30 °C), presenting a fast gelation time (100-115 s). Rheological, dynamic light scattering and infrared spectroscopy analysis suggested molecular interactions among polymers. Chitosan increased the mucoadhesion strength of the formulations. In addition, hydrogels showed a tendency to decrease the drug transport rate through mucosa when compared to the control. Mucin was also added onto mucosa for a more realistic simulation of permeability/retention. In the presence of this agent, hydrogels containing chitosan reduced the permeability/retention of the drug in approximately 2.0-fold when compared to the control. Therefore, the hydrogels presented suitable characteristics to remain in the vaginal environment, which would result in effective local treatment of trichomoniasis.
Collapse
Affiliation(s)
- Débora Fretes Argenta
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis - SC, 88040-900, Brazil
| | - Bianca da Costa Bernardo
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis - SC, 88040-900, Brazil
| | - Andrés Felipe Chamorro
- Department of Chemistry, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis - SC, 88040-900, Brazil
| | - Paulo Ricardo Matos
- Department of Civil Engineering, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis - SC, 88040-900, Brazil
| | - Thiago Caon
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis - SC, 88040-900, Brazil.
| |
Collapse
|
22
|
da Silva JB, Dos Santos RS, da Silva MB, Braga G, Cook MT, Bruschi ML. Interaction between mucoadhesive cellulose derivatives and Pluronic F127: Investigation on the micelle structure and mucoadhesive performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111643. [PMID: 33321681 DOI: 10.1016/j.msec.2020.111643] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023]
Abstract
Systems composed of bioadhesive and thermoresponsive polymers can combine in situ gelation with bio/mucoadhesion, enhancing retention of topically applied drugs. The effect of bioadhesive sodium carboxymethylcellulose (NaCMC) and hydroxypropyl methylcellulose cellulose (HPMC) on the properties of thermoresponsive Pluronic® F127 (F127) was explored, including micellization and the mucoadhesion. A computational analysis between these polymers and their molecular interactions were also studied, rationalising the design of improved binary polymeric systems for pharmaceutical and biomedical applications. The morphological characterization of polymeric systems was conducted by SEM. DSC analysis was used to investigate the crystallization and micellization enthalpy of F127 and the mixed systems. Micelle size measurements and TEM micrographs allowed for investigation into the interference of cellulose derivatives on F127 micellization. Both cellulose derivatives reduced the critical micellar concentration and enthalpy of micellization of F127, altering hydrodynamic diameters of the aggregates. Mucoadhesion performance was useful to select the best systems for mucosal application. The systems composed of 17.5% (w/w) F127 and 3% (w/w) HPMC or 1% (w/w) NaCMC are promising as topical drug delivery systems, mainly on mucosal surfaces. They were biocompatible when tested against Artemia salina, and also able to release a model of hydrophilic drug in a controlled manner.
Collapse
Affiliation(s)
- Jéssica Bassi da Silva
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Rafaela Said Dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | | | - Gustavo Braga
- Department of Chemistry, State University of Maringa, Maringa, Brazil
| | - Michael Thomas Cook
- Research Centre in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil.
| |
Collapse
|
23
|
N'Guessan Gnaman KC, Bouttier S, Yeo A, Aka Any-Grah AAS, Geiger S, Huang N, Nicolas V, Villebrun S, Faye-Kette H, Ponchel G, Koffi AA, Agnely F. Characterization and in vitro evaluation of a vaginal gel containing Lactobacillus crispatus for the prevention of gonorrhea. Int J Pharm 2020; 588:119733. [PMID: 32768529 DOI: 10.1016/j.ijpharm.2020.119733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 11/26/2022]
Abstract
The increasing resistance of Neisseria gonorrhoeae to any current antibiotic treatment and the difficulties associated with the use of prevention means such as condom urge the need for alternative methods to prevent this sexually transmitted infection. In this work, a prevention strategy based on the use of a vaginal gel containing Lactobacilli was assessed in vitro. A Lactobacillus crispatus strain (ATCC 33197) was selected based on the published data on its ability to inhibit Neisseria gonorrhoeae. Its probiotic properties were first characterized. Then, a thermo-sensitive hydrogel containing 21.5% of poloxamer 407, 1% of sodium alginate and 9log10 CFU of Lactobacillus crispatus per gel sample (5 g) was developed. The gelation temperature and the rheological characteristics of this formulation appeared suitable for a vaginal administration. Lactobacillus crispatus was viable in the gel for six months although a large amount of the bacteria was not culturable. The ability of Lactobacillus crispatus to inhibit Neisseria gonorrhoeae was still observed with the gel. Such system, thus, appeared promising for the prevention of gonorrhea.
Collapse
Affiliation(s)
- K C N'Guessan Gnaman
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France; Laboratoire de Pharmacie Galénique, Cosmétologie et Législation Pharmaceutique, UFR des Sciences Pharmaceutiques et Biologiques d'Abidjan, Université Félix Houphouet-Boigny, 01 BP V 34 Abidjan 01, Côte d'Ivoire
| | - S Bouttier
- INRAE, AgroParisTech, MIcalis Institute, Équipe Bactéries pathogènes et santé, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - A Yeo
- Institut Pasteur, Departement de microbiologie, Unité des agents du tractus génital, Abidjan, Côte d'Ivoire
| | - A A S Aka Any-Grah
- Laboratoire de Pharmacie Galénique, Cosmétologie et Législation Pharmaceutique, UFR des Sciences Pharmaceutiques et Biologiques d'Abidjan, Université Félix Houphouet-Boigny, 01 BP V 34 Abidjan 01, Côte d'Ivoire
| | - S Geiger
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - N Huang
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - V Nicolas
- Université Paris-Saclay, SFR-UMS-IPSIT, Plateforme d'imagerie cellulaire MIPSIT, 92290 Châtenay-Malabry, France
| | - S Villebrun
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - H Faye-Kette
- Institut Pasteur, Departement de microbiologie, Unité des agents du tractus génital, Abidjan, Côte d'Ivoire
| | - G Ponchel
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - A A Koffi
- Laboratoire de Pharmacie Galénique, Cosmétologie et Législation Pharmaceutique, UFR des Sciences Pharmaceutiques et Biologiques d'Abidjan, Université Félix Houphouet-Boigny, 01 BP V 34 Abidjan 01, Côte d'Ivoire
| | - F Agnely
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
24
|
Kiliona KPS, Zhou M, Zhu Y, Lan P, Lin N. Preparation and surface modification of crab nanochitin for organogels based on thiol-ene click cross-linking. Int J Biol Macromol 2020; 150:756-764. [PMID: 32061849 DOI: 10.1016/j.ijbiomac.2020.02.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 11/25/2022]
Abstract
Incompatibility of chitin nanomaterials with organic solvents is challenging in the design of the desirable organogels. The long hydrocarbon chains were covalently grafted on the surface of nanochitins, with the attachment of reactive allyl groups and improved dispersion in organic solvents. The reactive thiol groups of poly (ethylene glycol) were introduced into the allyl-nanochitin suspensions to produce the organogels by the thiol-ene click reaction. Attributed to the UV-induced cross-linking between the soft segments of thiolated-PEG and the allyl-nanochitin, the stable organogels with the storage modulus higher than the loss modulus by one order of magnitude were obtained, exhibiting the significant phase transition and mechanical enhancement on the rheological behavior. The combination of crystalline allyl-nanochitin and polymeric chains played a crucial role in the construction of the micro-network, attributing to the stability and mechanical strength of the organogels.
Collapse
Affiliation(s)
- Kulang Primo Sokiri Kiliona
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yan Zhu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ping Lan
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, Guangxi, PR China
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, Guangxi, PR China.
| |
Collapse
|
25
|
Xu N, Xu J, Zheng X, Hui J. Preparation of Injectable Composite Hydrogels by Blending Poloxamers with Calcium Carbonate-Crosslinked Sodium Alginate. ChemistryOpen 2020; 9:451-458. [PMID: 32269901 PMCID: PMC7136648 DOI: 10.1002/open.202000040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Indexed: 01/12/2023] Open
Abstract
The effects of calcium carbonate-crosslinked sodium alginate on poloxamer hydrogels have been investigated. The mechanical strength, degradability, and thermal stability of hydrogels were characterized. The chemical and physical crosslinking in the composite hydrogels has resulted in an improvement of the compressive strength and elasticity of the hydrogels. These mixed hydrogels showed improved mechanical properties, elasticity, and stability as well as environmental responsiveness and injectability.
Collapse
Affiliation(s)
- Ningxia Xu
- School of Medicine Xi'an International University Xi'an 710077, Shaanxi China
| | - Jing Xu
- School of Medicine Xi'an International University Xi'an 710077, Shaanxi China
| | - Xiaoyan Zheng
- School of Chemical Engineering Northwest University Xi'an 710069, Shaanxi China
| | - Junfeng Hui
- School of Chemical Engineering Northwest University Xi'an 710069, Shaanxi China
| |
Collapse
|
26
|
Thakur K, Mahajan A, Sharma G, Singh B, Raza K, Chhibber S, Katare OP. Implementation of Quality by Design (QbD) approach in development of silver sulphadiazine loaded egg oil organogel: An improved dermatokinetic profile and therapeutic efficacy in burn wounds. Int J Pharm 2020; 576:118977. [DOI: 10.1016/j.ijpharm.2019.118977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 01/02/2023]
|
27
|
Orasugh JT, Dutta S, Das D, Pal C, Zaman A, Das S, Dutta K, Banerjee R, Ghosh SK, Chattopadhyay D. Sustained release of ketorolac tromethamine from poloxamer 407/cellulose nanofibrils graft nanocollagen based ophthalmic formulations. Int J Biol Macromol 2019; 140:441-453. [DOI: 10.1016/j.ijbiomac.2019.08.143] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
|
28
|
Querobino SM, de Faria NC, Vigato AA, da Silva BGM, Machado IP, Costa MS, Costa FN, de Araujo DR, Alberto-Silva C. Physicochemical data of oleic acid-poloxamer organogel for intravaginal voriconazole delivery. Data Brief 2019; 25:104180. [PMID: 31321270 PMCID: PMC6614085 DOI: 10.1016/j.dib.2019.104180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/02/2019] [Accepted: 06/17/2019] [Indexed: 12/03/2022] Open
Abstract
Functional polymeric nanoparticles have attracted attention for different biomedical applications, including drug delivery. Poloxamers (PL), a synthetic copolymers of poly(ethyleneoxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), that exhibit thermoreversible behavior in aqueous solutions. Physicochemical properties of Oleic Acid-Poloxamer (OA-PL) organogel for intravaginal controlled Voriconazole (VRC) delivery were assessed using three different oils (isopropyl myristate - IPM, isopropyl palmitate - IPP, and oleic acid – OA, in order to select the most suitable oil phase for increasing the solubility of the drug and its dispersion in the final aqueous phase. Organogel structural organization was assessed by VRC partition coefficient, differential scanning calorimetry (DSC), rheological analysis, and drug release assay. These data are complementary to the research article entitled “Sodium alginate in oil-poloxamer organogels for intravaginal drug delivery: influence on structural parameters, drug release mechanisms, cytotoxicity and in vitro antifungal activity” - Materials Science and Engineering: C, 2019. 99: p. 1350–1361.
Collapse
Affiliation(s)
- Samyr M Querobino
- Universidade do Estado de Minas Gerais - UEMG, Av. Juca Stockler, 1130, Bairro Belo Horizonte, Passos, 37900-106, MG, Brazil
| | - Naially C de Faria
- Natural and Human Sciences Center, Federal University of ABC (UFABC), Av. dos Estados, n° 5001, Bloco A, Torre 3, Lab 503-3, Santo André, SP, Brazil
| | - Aryane A Vigato
- Natural and Human Sciences Center, Federal University of ABC (UFABC), Av. dos Estados, n° 5001, Bloco A, Torre 3, Lab 503-3, Santo André, SP, Brazil
| | - Bruna G M da Silva
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi, n° 2911, São José dos Campos, SP, Brazil
| | - Ian P Machado
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05588-000, SP, Brazil
| | - Maricilia S Costa
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi, n° 2911, São José dos Campos, SP, Brazil
| | - Fanny N Costa
- Natural and Human Sciences Center, Federal University of ABC (UFABC), Av. dos Estados, n° 5001, Bloco A, Torre 3, Lab 503-3, Santo André, SP, Brazil
| | - Daniele R de Araujo
- Natural and Human Sciences Center, Federal University of ABC (UFABC), Av. dos Estados, n° 5001, Bloco A, Torre 3, Lab 503-3, Santo André, SP, Brazil
| | - Carlos Alberto-Silva
- Natural and Human Sciences Center, Federal University of ABC (UFABC), Rua Arcturus, n° 03, Bloco Delta, São Bernardo do Campo, 09606-070, SP, Brazil
| |
Collapse
|
29
|
DETERMINATION OF THE BIOADHESION INDICATORS OF VAGINAL GEL WITH RESVERATROL AND HYALURONIC ACID. EUREKA: HEALTH SCIENCES 2019. [DOI: 10.21303/2504-5679.2019.00880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aim. The purpose of the work is to determine the bioadhesion indices of vaginal gel with resveratrol and hyaluronic acid, as well as the choice of the type and content of mucoadhesives in the composition.
Materials and methods. As research objects samples of gels with different mucoadhesives in the composition were used. Among used mucoadhesives were: sodium alginate (FMC BioPolimer AS, Norway), methyl cellulose (Shin Etsu, Germany), Methocel – methyl cellulose with hydroxypropylmethyl cellulose (Dow Pharmaceutical Sciences, USA), OraRez® W-100L16 – vinyl methyl ether and maleic anhydride copolymer (BOAI, China). As a comparison drug, vaginal gel "Gynodec" (Yuriya-Pharm) was used. During the study, the rate of gel distribution, the degree of deformation under the influence of mechanical forces, the degree of the gel fixation on the surface of the mucosa and the adhesion ability of the samples have been determined.
Results. The study has determined that sample No. 2 with sodium alginate has the highest distribution rate, which was 1.56 cm/min. The study of the fixation of samples on the surface of the model of the mucous was performed by the method of flow. The results have showed that the sample with sodium alginate has the closest value to the reference drug. The adhesive ability of samples with different sodium alginate contents was determined. The tensimetric study has found that at a concentration of 0.5 %, the force required to separate the surface is 6158 Pa.
Conclusions. On the basis of the complex of physico-chemical studies, bioadhesion indicators of vaginal gel with resveratrol, depending on the type and concentration of mucoadhesives have been determined. According to the distribution parameters on the surface of the genital mucosa model, it has been found that the best properties compared with other types of mucoadhesives has a sample containing sodium alginate. The study by means of a strain gauge has found that the addition of sodium alginate at a concentration of 0.5 % would provide a satisfactory adhesive ability of the vaginal gel.
Collapse
|