1
|
Shafiq M, Habib S, Akhtar H, Naz S, Öteyaka MÖ, Shah AT, Alhamoudi FH, Chaudhry AA, Khalid H, Khan AF. Biomimetic trilayered silk-based electrospun scaffolds for regeneration of dura mater. RSC Adv 2025; 15:17649-17664. [PMID: 40433028 PMCID: PMC12109405 DOI: 10.1039/d5ra00986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Dura mater healing is essential to prevent cerebrospinal fluid (CSF) leaks in neurosurgical procedures. Drawing inspiration from the hierarchical structure of native dura mater, we have designed a biomimetic electrospun trilayered scaffold (TLS) utilizing silk fiber to replicate both the structure and function of the original tissue. The electrospun trilayered scaffold comprises three distinct layers: a skull-facing layer constructed from silk fibroin combined with strontium-doped bioactive glass, a gradient inert polyurethane middle layer and a brain-facing layer consisting of polyurethane infused with oregano essential oil. For the first time, oregano essential oil is used in dural substitute to impart potential antibacterial properties. The physicochemical properties of TLS were systematically evaluated using Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), microcomputed tomography (micro-CT) and thermogravimetric analysis. The nanoscale architecture was verified through SEM while micro-CT analysis provided additional insights into the fibrous surfaces of the trilayered scaffold. Surface wettability tests revealed that the wetting characteristics were comparable to those of the native dura mater, with the brain-facing layer exhibiting hydrophobic properties conducive to water-tight dural closure and the skull-facing layer presenting hydrophilic properties favorable for cell adhesion. After immersion in phosphate-buffered saline (PBS) for 28 days, the TLS showed a degradation rate of 13%. Furthermore, the results show that TLS was porous (60%) and demonstrated improved swelling in PBS. The addition of OEO improved the antibacterial potential; the TLS exhibited 80% antibacterial activity against Escherichia coli after 48 hours. Furthermore, the fibroblast cell line was exploited to assess the biological properties of TLS. Cell culture results indicated that TLS promoted NIH3T3 proliferation in the 3D microenvironments and was non-toxic. Similarly, live/dead and migration assay results further confirmed the biocompatibility of TLS with increased cell viability and 99% wound closure after 24 hours. Overall, we were able to manufacture a trilayered scaffold that architecturally mimics the native structure of dura mater.
Collapse
Affiliation(s)
- Maryam Shafiq
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Defence Road, off Raiwind Road Lahore Pakistan
| | - Sadia Habib
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Defence Road, off Raiwind Road Lahore Pakistan
| | - Hafsah Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Defence Road, off Raiwind Road Lahore Pakistan
| | - Saamia Naz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Defence Road, off Raiwind Road Lahore Pakistan
| | - Mustafa Özgür Öteyaka
- Eskişehir Vocational School, Electronic and Automation, Mechatronic Program, Eskişehir Osmangazi University Eskisehir 26250 Türkey
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Defence Road, off Raiwind Road Lahore Pakistan
| | - Fahad Hussain Alhamoudi
- Department of Allied Dental Health Science, College of Medical Science, King Khalid University Abha 62529 Kingdom of Saudi Arabia
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Defence Road, off Raiwind Road Lahore Pakistan
| | - Hamad Khalid
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Defence Road, off Raiwind Road Lahore Pakistan
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Defence Road, off Raiwind Road Lahore Pakistan
| |
Collapse
|
2
|
Methachittipan A, Vejpongsa A, Manissorn J, Khwannimit D, Wannalobon T, Ngambenjawong C, Damrongsakkul S, Wangkanont K, Tonsomboon K, Usaku C, Thongnuek P. Interfacing bioactive glass with silk fibroin: a soft matter approach to tunable mechanics and enhanced biocompatibility. SOFT MATTER 2025. [PMID: 40364702 DOI: 10.1039/d5sm00038f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Tissue-engineering scaffolds must balance mechanical compatibility with biological performance to support effective tissue regeneration. Bioactive glass (BG), valued for its strength and bone-bonding ability, often suffers from high stiffness, risking stress shielding. To address this limitation, we hybridized BG with silk fibroin (SF), a soft, biocompatible protein, to create (3-glycidyloxypropyl)trimethoxysilane (GPTMS)-crosslinked BG-SF scaffolds with tunable mechanics and enhanced cellular interactions. Fabricated via the sol-gel technique with varying BG-to-SF ratios, the scaffolds demonstrated increased porosity with higher SF content, positioning SF as a natural alternative to chemical porogens. Mechanical testing revealed that incorporating SF reduced BG stiffness, improved flexibility, and enhanced toughness, aligning the scaffold properties with those of native tissues. Fatigue testing confirmed greater durability in SF-enriched scaffolds, while degradation studies highlighted controllable rates conducive to tissue regeneration. Remarkably, as little as 10 wt% SF increased cell survival by 6.5-fold in biocompatibility assays. These findings underscore the synergy between BG and SF, presenting a soft matter strategy for designing scaffolds with customizable properties for tissue-engineering applications.
Collapse
Affiliation(s)
- Apipon Methachittipan
- International School of Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Ayuth Vejpongsa
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Juthatip Manissorn
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Biomedical Materials and Devices for Revolutionary and Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Pathumwan, 10330, Thailand
| | - Duangruedee Khwannimit
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Biomedical Materials and Devices for Revolutionary and Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Pathumwan, 10330, Thailand
| | - Thanaphum Wannalobon
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Biomedical Materials and Devices for Revolutionary and Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Pathumwan, 10330, Thailand
| | - Chayanon Ngambenjawong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Siriporn Damrongsakkul
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Kittikhun Wangkanont
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Khaow Tonsomboon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, 12120, Thailand
| | - Chonlatep Usaku
- Research Unit on Sustainable Algal Cultivation and Applications, Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Peerapat Thongnuek
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Biomedical Materials and Devices for Revolutionary and Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Pathumwan, 10330, Thailand
| |
Collapse
|
3
|
Najafi P, Tamjid E, Abdolmaleki P, Behmanesh M. Thermomagneto-responsive injectable hydrogel for chondrogenic differentiation of mesenchymal stem cells. BIOMATERIALS ADVANCES 2025; 168:214115. [PMID: 39580987 DOI: 10.1016/j.bioadv.2024.214115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/22/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
Damaged cartilage tissue has a limited ability to self-heal due to its avascular nature and low cellularity. To effectively engineer cartilage tissue, innovative techniques such as injectable and interactive hydrogels using a minimally invasive approach are required to mimic the natural properties of cartilage. In this study, an injectable hydrogel containing magnetic iron oxide nanoparticles (MNPs) has been rationally designed to induce chondrogenic differentiation in bone marrow mesenchymal stem cells (BMSCs) using an external magnetic field application. The effect of the incorporation of MNPs with the surface functional group of either carboxyl or amine on the properties of the hydrogels (denoted as HS and HA samples, respectively) has been investigated, and compared to control hydrogel without MNPs (denoted as H). The hydrogels demonstrated thermomagnetic-responsive and shear-thinning behavior. Incorporating MNPs in the hydrogel combination resulted in the formation of a more robust network with increased compressive modulus (by 2 and 2.5 times), cell viability (by 24 % and 7 %), swelling ratio (by 97 % and 42 %) for HS and HA, respectively, as well as better cell adhesion. Also, incorporating MNPs resulted in decreased elastic modulus (by 28 and 5 times), biodegradation rate (by 5 % and 9 %), and viscosity (by 4 and 20 times) for HS and HA, respectively. The results of glycosaminoglycans (GAG) staining indicated the synergistic effect of MNP incorporation and magnetic field application in improving chondrogenic differentiation of BMSCs in vitro. The research findings could lead to the development of superior injectable hydrogels and bioinks for tissue engineering applications.
Collapse
Affiliation(s)
- Parvin Najafi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-154, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-154, Iran; Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Iran.
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-154, Iran
| | - Mehrdad Behmanesh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-154, Iran; Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-154, Iran
| |
Collapse
|
4
|
Qiao M, Wu W, Tang W, Zhao Y, Wang J, Pei X, Zhang B, Wan Q. Applications and prospects of indirect 3D printing technology in bone tissue engineering. Biomater Sci 2025; 13:587-605. [PMID: 39717906 DOI: 10.1039/d4bm01374c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In bone tissue engineering, manufacturing bone tissue constructs that closely replicate physiological features for regenerative repair remains a significant challenge. In recent years, the advent of indirect 3D printing technology has overcome the stringent material demands, confined resolution, and structural control challenges inherent to direct 3D printing. By utilizing sacrificial templates, the natural structures and physiological functions of bone tissues can be precisely duplicated. It facilitates the fabrication of vascularized and biomimetic bone constructs that are similar to natural counterparts. Hence, indirect 3D printing technology is increasingly recognized as a promising option for bone regenerative therapies. Based on the aforementioned research hotspots, this review outlines the classification and techniques of indirect 3D printing, along with the associated printing materials and methodologies. More importantly, a detailed summary of the clinical application prospects of indirect 3D printing in the regeneration of bone, cartilage and osteochondral tissues is provided, along with exploring the current challenges and outlook of this technology.
Collapse
Affiliation(s)
- Mingxin Qiao
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Wu
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wen Tang
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhao
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jian Wang
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xibo Pei
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bowen Zhang
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qianbing Wan
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zhang H, Wang Y, Qiang H, Leng D, Yang L, Hu X, Chen F, Zhang T, Gao J, Yu Z. Exploring the frontiers: The potential and challenges of bioactive scaffolds in osteosarcoma treatment and bone regeneration. Mater Today Bio 2024; 29:101276. [PMID: 39444939 PMCID: PMC11497376 DOI: 10.1016/j.mtbio.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
The standard treatment for osteosarcoma combines surgery with chemotherapy, yet it is fraught with challenges such as postoperative tumor recurrence and chemotherapy-induced side effects. Additionally, bone defects after surgery often surpass the body's regenerative ability, affecting patient recovery. Bioengineering offers a novel approach through the use of bioactive scaffolds crafted from metals, ceramics, and hydrogels for bone defect repair. However, these scaffolds are typically devoid of antitumor properties, necessitating the integration of therapeutic agents. The development of a multifunctional therapeutic platform incorporating chemotherapeutic drugs, photothermal agents (PTAs), photosensitizers (PIs), sound sensitizers (SSs), magnetic thermotherapeutic agents (MTAs), and naturally occurring antitumor compounds addresses this limitation. This platform is engineered to target osteosarcoma cells while also facilitating bone tissue repair and regeneration. This review synthesizes recent advancements in integrated bioactive scaffolds (IBSs), underscoring their dual role in combating osteosarcoma and enhancing bone regeneration. We also examine the current limitations of IBSs and propose future research trajectories to overcome these hurdles.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Wang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Huifen Qiang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Dewen Leng
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Luling Yang
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xueneng Hu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Feiyan Chen
- Department of Orthopedics, Huashan Hospital, Fudan University Shanghai, 201508, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200336, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200336, China
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| |
Collapse
|
6
|
Sreena R, Raman G, Manivasagam G, Nathanael AJ. Bioactive glass-polymer nanocomposites: a comprehensive review on unveiling their biomedical applications. J Mater Chem B 2024; 12:11278-11301. [PMID: 39392456 DOI: 10.1039/d4tb01525h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Most natural and synthetic polymers are promising materials for biomedical applications because of their biocompatibility, abundant availability, and biodegradability. Their properties can be tailored according to the intended application by fabricating composites with other polymers or ceramics. The incorporation of ceramic nanoparticles such as bioactive glass (BG) and hydroxyapatite aids in the improvement of mechanical and biological characteristics and alters the degradation kinetics of polymers. BG can be used in the form of nanoparticles, nanofibers, scaffolds, pastes, hydrogels, or coatings and is significantly employed in different applications. This biomaterial is highly preferred because of its excellent biocompatibility, bone-stimulating activity, and favourable mechanical and degradation characteristics. Different compositions of nano BG are incorporated into the polymer system and studied for positive results such as enhanced bioactivity, better cell adherence, and proliferation rate. This review summarizes the fabrication and the progress of natural/synthetic polymer-nano BG systems for biomedical applications such as drug delivery, wound healing, and tissue engineering. The challenges and the future perspectives of the composite system are also addressed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea.
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
| | - A Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Wei S, Hu Q, Dong J, Sun Y, Bai J, Shan H, Gao X, Sheng L, Dai J, Jiang F, Dai X, Gu X, Zhou X. Mechanically enhanced biodegradable scaffold based on SF microfibers for repairing bone defects in the distal femur of rats. Int J Biol Macromol 2024; 282:137372. [PMID: 39521213 DOI: 10.1016/j.ijbiomac.2024.137372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Silk-based biodegradable materials play an important role in tissue engineering, especially in the field of bone regeneration. However, while optimizing mechanical properties and bone regeneration characteristics, modified silk fibroin (SF)-based materials also increase the complexity of scaffold systems, which is not conducive to clinical translation. In this study, we first added synthetic biomimetic mineralized collagen (MC) particles to SF-based materials to improve the bone regeneration properties of the scaffolds and simultaneously regulated the degradation rate of the scaffolds to match the bone regeneration rate. Second, SF microfibers were prepared by hydrolysis with alkaline heating and added to SFMC scaffolds with excellent osteogenic stimulation ability to prepare SF microfiber (mf)-modified SFMC-mf scaffolds with excellent mechanical properties, whose compression modulus increased from 4.58±0.23 MPa to 14.63±0.88 MPa. Finally, the SFMC-mf scaffold was implanted into the weight-bearing bone defect area of the distal femur of rats, and the results showed that the SFMC-mf scaffold significantly promoted functional recovery of the affected limb and increased the amount of new bone in the defect area compared with those in the SFC-mf group and the blank control group. In addition, the RNA-seq results suggested that the genes with upregulated expression in the SFMC-mf scaffold group were mainly enriched in vascular regeneration. In conclusion, this SF microfiber modification method effectively improved the mechanical properties of SFMC scaffolds without moving the SF scaffold system in the direction of compositional complexity, providing new insights for the subsequent development of more effective bionic repair materials for bone defects and assisting in their clinical translation.
Collapse
Affiliation(s)
- Shuai Wei
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qian Hu
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jin Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Yu Sun
- New Material Technology, Soochow Xianjue, Suzhou, Jiangsu 215000, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Huajian Shan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Lei Sheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jun Dai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Fengxian Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.
| |
Collapse
|
8
|
Shahrebabaki KE, Labbaf S, Karimzadeh F, Goli M, Mirhaj M. Alginate-gelatin based nanocomposite hydrogel scaffold incorporated with bioactive glass nanoparticles and fragmented nanofibers promote osteogenesis: From design to in vitro studies. Int J Biol Macromol 2024; 282:137104. [PMID: 39510461 DOI: 10.1016/j.ijbiomac.2024.137104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The current study proposes fragmented nanofibers of polycaprolactone (FNF) with bioactive glass nanoparticles (nBG) incorporated into a polymeric matrix of alginate-gelatin for the creation of a hydrogel scaffold. Four groups were prepared: control, bioactive glass containing scaffold (BG), fragmented nanofibers with bioactive glass scaffold (FNF(PCL) + BG), and fragmented composite nanofibers scaffold (FNF (PCL + BG)). FNF (PCL + BG) scaffolds revealed a more controlled degradation rate, with approximately 20 % degradation occurring after 28 compared. The FNF(PCL) + BG scaffolds had the highest compressive strength in both dry and wet states. Following 14 days of incubation in simulated body fluid, hydroxyapatite formation had occurred on the surface of scaffolds containing nBG, and after 28 days on other groups tested. Cell studies revealed that the FNF(PCL) + BG scaffolds had superior cell viability without inhibiting cell proliferation. The FNF(PCL) + BG and FNF(PCL + BG) scaffolds had the highest alkaline phosphatase (ALP) activity and FNF(PCL) + BG scaffolds showed to support osteogenic differentiation.
Collapse
Affiliation(s)
| | - Sheyda Labbaf
- Department of materials engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Fathallah Karimzadeh
- Department of materials engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Majid Goli
- Department of materials engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Department of materials engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
9
|
Waidi YO, Debnath S, Datta S, Chatterjee K. 3D-Printed Silk Proteins for Bone Tissue Regeneration and Associated Immunomodulation. Biomacromolecules 2024; 25:5512-5540. [PMID: 39133748 DOI: 10.1021/acs.biomac.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Current bone repair methods have limitations, prompting the exploration of innovative approaches. Tissue engineering emerges as a promising solution, leveraging biomaterials to craft scaffolds replicating the natural bone environment, facilitating cell growth and differentiation. Among fabrication techniques, three-dimensional (3D) printing stands out for its ability to tailor intricate scaffolds. Silk proteins (SPs), known for their mechanical strength and biocompatibility, are an excellent choice for engineering 3D-printed bone tissue engineering (BTE) scaffolds. This article comprehensively reviews bone biology, 3D printing, and the unique attributes of SPs, specifically detailing criteria for scaffold fabrication such as composition, structure, mechanics, and cellular responses. It examines the structural, mechanical, and biological attributes of SPs, emphasizing their suitability for BTE. Recent studies on diverse 3D printing approaches using SPs-based for BTE are highlighted, alongside advancements in their 3D and four-dimensional (4D) printing and their role in osteo-immunomodulation. Future directions in the use of SPs for 3D printing in BTE are outlined.
Collapse
Affiliation(s)
- Yusuf Olatunji Waidi
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Sudipto Datta
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
10
|
Wang S, Jia Z, Dai M, Feng X, Tang C, Liu L, Cao L. Advances in natural and synthetic macromolecules with stem cells and extracellular vesicles for orthopedic disease treatment. Int J Biol Macromol 2024; 268:131874. [PMID: 38692547 DOI: 10.1016/j.ijbiomac.2024.131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Serious orthopedic disorders resulting from myriad diseases and impairments continue to pose a considerable challenge to contemporary clinical care. Owing to its limited regenerative capacity, achieving complete bone tissue regeneration and complete functional restoration has proven challenging with existing treatments. By virtue of cellular regenerative and paracrine pathways, stem cells are extensively utilized in the restoration and regeneration of bone tissue; however, low survival and retention after transplantation severely limit their therapeutic effect. Meanwhile, biomolecule materials provide a delivery platform that improves stem cell survival, increases retention, and enhances therapeutic efficacy. In this review, we present the basic concepts of stem cells and extracellular vesicles from different sources, emphasizing the importance of using appropriate expansion methods and modification strategies. We then review different types of biomolecule materials, focusing on their design strategies. Moreover, we summarize several forms of biomaterial preparation and application strategies as well as current research on biomacromolecule materials loaded with stem cells and extracellular vesicles. Finally, we present the challenges currently impeding their clinical application for the treatment of orthopedic diseases. The article aims to provide researchers with new insights for subsequent investigations.
Collapse
Affiliation(s)
- Supeng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China; Ningxia Medical University, Ningxia 750004, China
| | - Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xujun Feng
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Lingling Cao
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China.
| |
Collapse
|
11
|
Spessot E, Passuello S, Shah LV, Maniglio D, Motta A. Nanocomposite Methacrylated Silk Fibroin-Based Scaffolds for Bone Tissue Engineering. Biomimetics (Basel) 2024; 9:218. [PMID: 38667229 PMCID: PMC11048339 DOI: 10.3390/biomimetics9040218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The treatment of bone defects is a clinical challenge. Bone tissue engineering is gaining interest as an alternative to current treatments, with the development of 3D porous structures (scaffolds) helpful in promoting bone regeneration by ensuring temporary functional support. In this work, methacrylated silk fibroin (SilMA) sponges were investigated as scaffolds for bone tissue engineering by exploiting the combination of physical (induced by NaCl salt during particulate leaching) and chemical crosslinking (induced by UV-light exposure) techniques. A biomimetic approach was adopted to better simulate the extracellular matrix of the bone by introducing either natural (mussel shell-derived) or synthetic-origin hydroxyapatite nanoparticles into the SilMA sponges. The obtained materials were characterized in terms of pore size, water absorption capability and mechanical properties to understand both the effect of the inclusion of the two different types of nanoparticles and the effect of the photocrosslinking. Moreover, the SilMA sponges were tested for their bioactivity and suitability for bone tissue engineering purposes by using osteosarcoma cells, studying their metabolism by an AlamarBlue assay and their morphology by scanning electron microscopy. Results indicate that photocrosslinking helps in obtaining more regular structures with bimodal pore size distributions and in enhancing the stability of the constructs in water. Moreover, the addition of naturally derived hydroxyapatite was observed to be more effective at activating osteosarcoma cell metabolism than synthetic hydroxyapatite, showing a statistically significant difference in the AlamarBlue measurement on day 7 after seeding. The methacrylated silk fibroin/hydroxyapatite nanocomposite sponges developed in this work were found to be promising tools for targeting bone regeneration with a sustainable approach.
Collapse
Affiliation(s)
- Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| | - Serena Passuello
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
| | - Lekha Vinod Shah
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| | - Devid Maniglio
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| |
Collapse
|
12
|
Ghosh R, Gupta S, Mehrotra S, Kumar A. Surface-Modified Diopside-Reinforced PCL Biopolymer Composites with Enhanced Interfacial Strength and Mechanical Properties for Orthopedic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7670-7685. [PMID: 38310585 DOI: 10.1021/acsami.3c15637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The phase separation of ceramics in a biopolymer matrix makes it challenging to achieve satisfactory mechanical properties required for orthopedic applications. It has been found that silane coupling agents can modify the surface of the bioceramic phase by forming a molecular bridge between the polymer and the ceramic, resulting in improved interfacial strength and adhesion. Therefore, in the present study, silane-modified diopside (DI) ceramic and ε-polycaprolactone (PCL) biopolymer composites were fabricated by injection molding method. The silane modification of DI resulted in their uniform dispersion in the PCL matrix, whereas agglomeration was found in composites containing unmodified DI. The thermal stability of the silane-modified DI-containing composites also increased. The Young's modulus of the composite containing 50% w/w DI modified by 3% w/w silane increased by 103% compared to composites containing 50% w/w unmodified DI. The biodegradation of the unmodified composites was significantly high, indicating their weak interfacial strength with the PCL matrix (p ≤ 0.001). The osteoconductive behavior of the composites was also validated by in vitro cell-material studies. Overall, our findings supported that the silane-modified composites have improved surface roughness, mechanical, and osteoconductive properties compared to the unmodified composite and have the potential for orthopedic applications.
Collapse
Affiliation(s)
- Rupita Ghosh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
13
|
Akdag Z, Ulag S, Kalaskar DM, Duta L, Gunduz O. Advanced Applications of Silk-Based Hydrogels for Tissue Engineering: A Short Review. Biomimetics (Basel) 2023; 8:612. [PMID: 38132551 PMCID: PMC10742028 DOI: 10.3390/biomimetics8080612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Silk has been consistently popular throughout human history due to its enigmatic properties. Today, it continues to be widely utilized as a polymer, having first been introduced to the textile industry. Furthermore, the health sector has also integrated silk. The Bombyx mori silk fibroin (SF) holds the record for being the most sustainable, functional, biocompatible, and easily produced type among all available SF sources. SF is a biopolymer approved by the FDA due to its high biocompatibility. It is versatile and can be used in various fields, as it is non-toxic and has no allergenic effects. Additionally, it enhances cell adhesion, adaptation, and proliferation. The use of SF has increased due to the rapid advancement in tissue engineering. This review comprises an introduction to SF and an assessment of the relevant literature using various methods and techniques to enhance the tissue engineering of SF-based hydrogels. Consequently, the function of SF in skin tissue engineering, wound repair, bone tissue engineering, cartilage tissue engineering, and drug delivery systems is therefore analysed. The potential future applications of this functional biopolymer for biomedical engineering are also explored.
Collapse
Affiliation(s)
- Zekiye Akdag
- Center for Nanotechnology Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34890, Turkey;
| | - Songul Ulag
- Division of Surgery Interventional Science, University College London, Royal National Orthopaedic Hospital, UCL Institute of Orthopaedic Musculoskeletal Science, Stanmore, London HA7 4LP, UK; (S.U.); (D.M.K.)
| | - Deepak M. Kalaskar
- Division of Surgery Interventional Science, University College London, Royal National Orthopaedic Hospital, UCL Institute of Orthopaedic Musculoskeletal Science, Stanmore, London HA7 4LP, UK; (S.U.); (D.M.K.)
- Spinal Surgery Unit, Royal National Orthopaedic Hospital NHS Trust, Stanmore, London HA7 4LP, UK
| | - Liviu Duta
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Oguzhan Gunduz
- Center for Nanotechnology Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34890, Turkey;
| |
Collapse
|
14
|
He L, Yin J, Gao X. Additive Manufacturing of Bioactive Glass and Its Polymer Composites as Bone Tissue Engineering Scaffolds: A Review. Bioengineering (Basel) 2023; 10:672. [PMID: 37370603 DOI: 10.3390/bioengineering10060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Bioactive glass (BG) and its polymer composites have demonstrated great potential as scaffolds for bone defect healing. Nonetheless, processing these materials into complex geometry to achieve either anatomy-fitting designs or the desired degradation behavior remains challenging. Additive manufacturing (AM) enables the fabrication of BG and BG/polymer objects with well-defined shapes and intricate porous structures. This work reviewed the recent advancements made in the AM of BG and BG/polymer composite scaffolds intended for bone tissue engineering. A literature search was performed using the Scopus database to include publications relevant to this topic. The properties of BG based on different inorganic glass formers, as well as BG/polymer composites, are first introduced. Melt extrusion, direct ink writing, powder bed fusion, and vat photopolymerization are AM technologies that are compatible with BG or BG/polymer processing and were reviewed in terms of their recent advances. The value of AM in the fabrication of BG or BG/polymer composites lies in its ability to produce scaffolds with patient-specific designs and the on-demand spatial distribution of biomaterials, both contributing to effective bone defect healing, as demonstrated by in vivo studies. Based on the relationships among structure, physiochemical properties, and biological function, AM-fabricated BG or BG/polymer composite scaffolds are valuable for achieving safer and more efficient bone defect healing in the future.
Collapse
Affiliation(s)
- Lizhe He
- Center for Medical and Engineering Innovation, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| |
Collapse
|
15
|
Wang H, Xu X, Wang X, Qu W, Qing Y, Li S, Chen B, Ying B, Li R, Qin Y. Performance optimization of biomimetic ant-nest silver nanoparticle coatings for antibacterial and osseointegration of implant surfaces. BIOMATERIALS ADVANCES 2023; 149:213394. [PMID: 37001309 DOI: 10.1016/j.bioadv.2023.213394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/27/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Infection prevention and bone-implant integration remain major clinical challenges. Silver nanoparticle (AgNPs) bone-implant coatings have received extensive attention. Balancing the toxicity and antibacterial properties of AgNP coatings has become a significant problem. In this study, inspired by the structure of the ant-nest, a polyetherimide (PEI) coating with ant-nest structure was prepared, aiming to realize the structural modification of the AgNPs coating. AgNPs were loaded in the inner porous area of the PEI ant-nest coating, avoiding direct contact between AgNPs and cells. The nanopores on the surface of the coating ensured the orderly release of silver ions. SEM, FTIR, XPS, and XRD experiments confirmed that the PEI ant-nest coating was successfully prepared. Interestingly, in the PEI ant-nest coating, Ag+ showed a steady increase in the release trend within 28 days, and there was no early burst release phenomenon. In -vivo experiments showed a good control effect for local infection. In order to improve the osteogenic properties of the materials, 45S5 bioactive glasses (BG) were loaded to achieve further osseointegration. In general, this natural ant-nest-inspired surface modification coating for orthopedic prostheses provides a new strategy for balancing the antibacterial and toxic effects of AgNP coatings.
Collapse
Affiliation(s)
- Hao Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Xinyu Xu
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Xingyue Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Wenrui Qu
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Yunan Qing
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Shihuai Li
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Bo Chen
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Boda Ying
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Ruiyan Li
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China.
| | - Yanguo Qin
- Department of Orthopaedics, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China.
| |
Collapse
|
16
|
Motameni A, Çardaklı İS, Gürbüz R, Alshemary AZ, Razavi M, Farukoğlu ÖC. Bioglass-polymer composite scaffolds for bone tissue regeneration: a review of current trends. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2186864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ali Motameni
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
| | - İsmail Seçkin Çardaklı
- Department of Metallurgical and Materials Engineering, Atatürk University, Erzurum, Turkey
| | - Rıza Gürbüz
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Ammar Z. Alshemary
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ömer Can Farukoğlu
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
- Department of Manufacturing Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
17
|
Alginates Combined with Natural Polymers as Valuable Drug Delivery Platforms. Mar Drugs 2022; 21:md21010011. [PMID: 36662184 PMCID: PMC9861938 DOI: 10.3390/md21010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Alginates (ALG) have been used in biomedical and pharmaceutical technologies for decades. ALG are natural polymers occurring in brown algae and feature multiple advantages, including biocompatibility, low toxicity and mucoadhesiveness. Moreover, ALG demonstrate biological activities per se, including anti-hyperlipidemic, antimicrobial, anti-reflux, immunomodulatory or anti-inflammatory activities. ALG are characterized by gelling ability, one of the most frequently utilized properties in the drug form design. ALG have numerous applications in pharmaceutical technology that include micro- and nanoparticles, tablets, mucoadhesive dosage forms, wound dressings and films. However, there are some shortcomings, which impede the development of modified-release dosage forms or formulations with adequate mechanical strength based on pure ALG. Other natural polymers combined with ALG create great potential as drug carriers, improving limitations of ALG matrices. Therefore, in this paper, ALG blends with pectins, chitosan, gelatin, and carrageenans were critically reviewed.
Collapse
|
18
|
Wu H, Lin K, Zhao C, Wang X. Silk fibroin scaffolds: A promising candidate for bone regeneration. Front Bioeng Biotechnol 2022; 10:1054379. [PMID: 36507269 PMCID: PMC9732393 DOI: 10.3389/fbioe.2022.1054379] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
It remains a big challenge in clinical practice to repair large-sized bone defects and many factors limit the application of autografts and allografts, The application of exogenous scaffolds is an alternate strategy for bone regeneration, among which the silk fibroin (SF) scaffold is a promising candidate. Due to the advantages of excellent biocompatibility, satisfying mechanical property, controllable biodegradability and structural adjustability, SF scaffolds exhibit great potential in bone regeneration with the help of well-designed structures, bioactive components and functional surface modification. This review will summarize the cell and tissue interaction with SF scaffolds, techniques to fabricate SF-based scaffolds and modifications of SF scaffolds to enhance osteogenesis, which will provide a deep and comprehensive insight into SF scaffolds and inspire the design and fabrication of novel SF scaffolds for superior osteogenic performance. However, there still needs more comprehensive efforts to promote better clinical translation of SF scaffolds, including more experiments in big animal models and clinical trials. Furthermore, deeper investigations are also in demand to reveal the degradation and clearing mechanisms of SF scaffolds and evaluate the influence of degradation products.
Collapse
Affiliation(s)
- Hao Wu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Cancan Zhao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Cancan Zhao, ; Xudong Wang,
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Cancan Zhao, ; Xudong Wang,
| |
Collapse
|
19
|
Chakraborty J, Mu X, Pramanick A, Kaplan DL, Ghosh S. Recent advances in bioprinting using silk protein-based bioinks. Biomaterials 2022; 287:121672. [PMID: 35835001 DOI: 10.1016/j.biomaterials.2022.121672] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
3D printing has experienced swift growth for biological applications in the field of regenerative medicine and tissue engineering. Essential features of bioprinting include determining the appropriate bioink, printing speed mechanics, and print resolution while also maintaining cytocompatibility. However, the scarcity of bioinks that provide printing and print properties and cell support remains a limitation. Silk Fibroin (SF) displays exceptional features and versatility for inks and shows the potential to print complex structures with tunable mechanical properties, degradation rates, and cytocompatibility. Here we summarize recent advances and needs with the use of SF protein from Bombyx mori silkworm as a bioink, including crosslinking methods for extrusion bioprinting using SF and the maintenance of cell viability during and post bioprinting. Additionally, we discuss how encapsulated cells within these SF-based 3D bioprinted constructs are differentiated into various lineages such as skin, cartilage, and bone to expedite tissue regeneration. We then shift the focus towards SF-based 3D printing applications, including magnetically decorated hydrogels, in situ bioprinting, and a next-generation 4D bioprinting approach. Future perspectives on improvements in printing strategies and the use of multicomponent bioinks to improve print fidelity are also discussed.
Collapse
Affiliation(s)
- Juhi Chakraborty
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 2155, USA
| | - Ankita Pramanick
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 2155, USA
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India.
| |
Collapse
|
20
|
Dukle A, Murugan D, Nathanael AJ, Rangasamy L, Oh TH. Can 3D-Printed Bioactive Glasses Be the Future of Bone Tissue Engineering? Polymers (Basel) 2022; 14:1627. [PMID: 35458377 PMCID: PMC9027654 DOI: 10.3390/polym14081627] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
According to the Global Burden of Diseases, Injuries, and Risk Factors Study, cases of bone fracture or injury have increased to 33.4% in the past two decades. Bone-related injuries affect both physical and mental health and increase the morbidity rate. Biopolymers, metals, ceramics, and various biomaterials have been used to synthesize bone implants. Among these, bioactive glasses are one of the most biomimetic materials for human bones. They provide good mechanical properties, biocompatibility, and osteointegrative properties. Owing to these properties, various composites of bioactive glasses have been FDA-approved for diverse bone-related and other applications. However, bone defects and bone injuries require customized designs and replacements. Thus, the three-dimensional (3D) printing of bioactive glass composites has the potential to provide customized bone implants. This review highlights the bottlenecks in 3D printing bioactive glass and provides an overview of different types of 3D printing methods for bioactive glass. Furthermore, this review discusses synthetic and natural bioactive glass composites. This review aims to provide information on bioactive glass biomaterials and their potential in bone tissue engineering.
Collapse
Affiliation(s)
- Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Dhanashree Murugan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
| | - Loganathan Rangasamy
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
21
|
Ze Y, Li Y, Huang L, Shi Y, Li P, Gong P, Lin J, Yao Y. Biodegradable Inks in Indirect Three-Dimensional Bioprinting for Tissue Vascularization. Front Bioeng Biotechnol 2022; 10:856398. [PMID: 35402417 PMCID: PMC8990266 DOI: 10.3389/fbioe.2022.856398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Mature vasculature is important for the survival of bioengineered tissue constructs, both in vivo and in vitro; however, the fabrication of fully vascularized tissue constructs remains a great challenge in tissue engineering. Indirect three-dimensional (3D) bioprinting refers to a 3D printing technique that can rapidly fabricate scaffolds with controllable internal pores, cavities, and channels through the use of sacrificial molds. It has attracted much attention in recent years owing to its ability to create complex vascular network-like channels through thick tissue constructs while maintaining endothelial cell activity. Biodegradable materials play a crucial role in tissue engineering. Scaffolds made of biodegradable materials act as temporary templates, interact with cells, integrate with native tissues, and affect the results of tissue remodeling. Biodegradable ink selection, especially the choice of scaffold and sacrificial materials in indirect 3D bioprinting, has been the focus of several recent studies. The major objective of this review is to summarize the basic characteristics of biodegradable materials commonly used in indirect 3D bioprinting for vascularization, and to address recent advances in applying this technique to the vascularization of different tissues. Furthermore, the review describes how indirect 3D bioprinting creates blood vessels and vascularized tissue constructs by introducing the methodology and biodegradable ink selection. With the continuous improvement of biodegradable materials in the future, indirect 3D bioprinting will make further contributions to the development of this field.
Collapse
Affiliation(s)
- Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering. Tissue Eng Regen Med 2022; 19:325-361. [PMID: 35092596 PMCID: PMC8971271 DOI: 10.1007/s13770-021-00417-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering (TE) is a therapeutic option within regenerative medicine that allows to mimic the original cell environment and functional organization of the cell types necessary for the recovery or regeneration of damaged tissue using cell sources, scaffolds, and bioreactors. Among the cell sources, the utilization of mesenchymal cells (MSCs) has gained great interest because these multipotent cells are capable of differentiating into diverse tissues, in addition to their self-renewal capacity to maintain their cell population, thus representing a therapeutic alternative for those diseases that can only be controlled with palliative treatments. This review aimed to summarize the state of the art of the main sources of MSCs as well as particular characteristics of each subtype and applications of MSCs in TE in seven different areas (neural, osseous, epithelial, cartilage, osteochondral, muscle, and cardiac) with a systemic revision of advances made in the last 10 years. It was observed that bone marrow-derived MSCs are the principal type of MSCs used in TE, and the most commonly employed techniques for MSCs characterization are immunodetection techniques. Moreover, the utilization of natural biomaterials is higher (41.96%) than that of synthetic biomaterials (18.75%) for the construction of the scaffolds in which cells are seeded. Further, this review shows alternatives of MSCs derived from other tissues and diverse strategies that can improve this area of regenerative medicine.
Collapse
Affiliation(s)
- Rosa Angelica Gonzalez-Vilchis
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Angelica Piedra-Ramirez
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Carlos Cesar Patiño-Morales
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Concepcion Sanchez-Gomez
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Nohra E Beltran-Vargas
- Department of Processes and Technology, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, Cuajimalpa. Vasco de Quiroga 4871. Cuajimalpa de Morelos, 05348, CDMX, Mexico.
| |
Collapse
|
23
|
Ravoor J, Thangavel M, Elsen S R. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS APPLIED BIO MATERIALS 2021; 4:8129-8158. [PMID: 35005929 DOI: 10.1021/acsabm.1c00949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bio-scaffolds are synthetic entities widely employed in bone and soft-tissue regeneration applications. These bio-scaffolds are applied to the defect site to provide support and favor cell attachment and growth, thereby enhancing the regeneration of the defective site. The progressive research in bio-scaffold fabrication has led to identification of biocompatible and mechanically stable materials. The difficulties in obtaining grafts and expenditure incurred in the transplantation procedures have also been overcome by the implantation of bio-scaffolds. Drugs, cells, growth factors, and biomolecules can be embedded with bio-scaffolds to provide localized treatments. The right choice of materials and fabrication approaches can help in developing bio-scaffolds with required properties. This review mostly focuses on the available materials and bio-scaffold techniques for bone and soft-tissue regeneration application. The first part of this review gives insight into the various classes of biomaterials involved in bio-scaffold fabrication followed by design and simulation techniques. The latter discusses the various additive, subtractive, hybrid, and other improved techniques involved in the development of bio-scaffolds for bone regeneration applications. Techniques involving multimaterial printing and multidimensional printing have also been briefly discussed.
Collapse
Affiliation(s)
- Jishita Ravoor
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mahendran Thangavel
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen S
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
24
|
Xia P, Luo Y. Vascularization in tissue engineering: The architecture cues of pores in scaffolds. J Biomed Mater Res B Appl Biomater 2021; 110:1206-1214. [PMID: 34860454 DOI: 10.1002/jbm.b.34979] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022]
Abstract
Vascularization is a key event and also still a challenge in tissue engineering. Many efforts have been devoted to the development of vascularization based on cells, growth factors, and porous scaffolds in the past decades. Among these efforts, the architecture features of pores in scaffolds played important roles for vascularization, which have attracted increasing attention. It has been known that the open macro pores in scaffolds could facilitate cell migration, nutrient, and oxygen diffusion, which then could promote new tissue formation and vascularization. The pore parameters are the important factors affecting cells response and vessel formation. Thus, this review will give an overview of the current advances in the effects of pore parameters on vascularization in tissue engineering, mainly including pore size, interconnectivity, pore size distribution, pore shape (channel structure), and the micro/nano-surface topography of pores.
Collapse
Affiliation(s)
- Ping Xia
- People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Yongxiang Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
25
|
Raheem AA, Hameed P, Whenish R, Elsen RS, G A, Jaiswal AK, Prashanth KG, Manivasagam G. A Review on Development of Bio-Inspired Implants Using 3D Printing. Biomimetics (Basel) 2021; 6:65. [PMID: 34842628 PMCID: PMC8628669 DOI: 10.3390/biomimetics6040065] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023] Open
Abstract
Biomimetics is an emerging field of science that adapts the working principles from nature to fine-tune the engineering design aspects to mimic biological structure and functions. The application mainly focuses on the development of medical implants for hard and soft tissue replacements. Additive manufacturing or 3D printing is an established processing norm with a superior resolution and control over process parameters than conventional methods and has allowed the incessant amalgamation of biomimetics into material manufacturing, thereby improving the adaptation of biomaterials and implants into the human body. The conventional manufacturing practices had design restrictions that prevented mimicking the natural architecture of human tissues into material manufacturing. However, with additive manufacturing, the material construction happens layer-by-layer over multiple axes simultaneously, thus enabling finer control over material placement, thereby overcoming the design challenge that prevented developing complex human architectures. This review substantiates the dexterity of additive manufacturing in utilizing biomimetics to 3D print ceramic, polymer, and metal implants with excellent resemblance to natural tissue. It also cites some clinical references of experimental and commercial approaches employing biomimetic 3D printing of implants.
Collapse
Affiliation(s)
- Ansheed A. Raheem
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Pearlin Hameed
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Ruban Whenish
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Renold S. Elsen
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India;
| | - Aswin G
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India;
| | - Amit Kumar Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Konda Gokuldoss Prashanth
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
- Erich Schmid Institute of Materials Science, Austrian Academy of Science, Jahnstrasse 12, 8700 Leoben, Austria
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| |
Collapse
|
26
|
Wu R, Li H, Yang Y, Zheng Q, Li S, Chen Y. Bioactive Silk Fibroin-Based Hybrid Biomaterials for Musculoskeletal Engineering: Recent Progress and Perspectives. ACS APPLIED BIO MATERIALS 2021; 4:6630-6646. [PMID: 35006966 DOI: 10.1021/acsabm.1c00654] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Musculoskeletal engineering has been considered as a promising approach to customize regenerated tissue (such as bone, cartilage, tendon, and ligament) via a self-healing performance. Recent advances have demonstrated the great potential of bioactive materials for regenerative medicine. Silk fibroin (SF), a natural polymer, is regarded as a remarkable bioactive material for musculoskeletal engineering thanks to its biocompatibility, biodegradability, and tunability. To improve tissue-engineering performance, silk fibroin is hybridized with other biomaterials to form silk-fibroin-based hybrid biomaterials, which achieve superior mechanical and biological performance. Herein, we summarize the recent development of silk-based hybrid biomaterials in musculoskeletal tissue with reasonable generalization and classification, mainly including silk fibroin-based inorganic and organic hybrid biomaterials. The applied inorganics are composed of calcium phosphate, graphene oxide, titanium dioxide, silica, and bioactive glass, while the polymers include polycaprolactone, collagen (or gelatin), chitosan, cellulose, and alginate. This article mainly focuses on the physical and biological performances both in vitro and in vivo study of several common silk-based hybrid biomaterials in musculoskeletal engineering. The timely summary and highlight of silk-fibroin-based hybrid biomaterials will provide a research perspective to promote the further improvement and development of silk fibroin hybrid biomaterials for improved musculoskeletal engineering.
Collapse
Affiliation(s)
- Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Yuexiu District, Guangzhou, 510000, PR China
- Shantou University Medical College, Shantou, 515000, PR China
| | - Haotao Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Yuexiu District, Guangzhou, 510000, PR China
- Shantou University Medical College, Shantou, 515000, PR China
| | - Yuliang Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Yuexiu District, Guangzhou, 510000, PR China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Yuanfeng Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Yuexiu District, Guangzhou, 510000, PR China
- Research Department of Medical Science, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, PR China
| |
Collapse
|
27
|
Mostafa AA, Mahmoud AA, Hamid MAA, Basha M, El-Okaily MS, Abdelkhalek AFA, El-Anwar MI, El Moshy S, Gibaly A, Hassan EA. An in vitro / in vivo release test of risedronate drug loaded nano-bioactive glass composite scaffolds. Int J Pharm 2021; 607:120989. [PMID: 34389417 DOI: 10.1016/j.ijpharm.2021.120989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/06/2023]
Abstract
Three-dimensional (3D) matrices scaffolds play a noteworthy role in promoting cell generation and propagation. In this study, scaffolds prepared from chitosan/polyvinyl alcohol loaded with/without an osteoporotic drug (risedronate) and nano-bioactive glass (nBG) have been developed to promote healing of bone defects. The scaffolds were characterized by scanning electron microscopy (SEM), porosity test as well as mechanical strength. The pattern of drug release and ability to promote the proliferation of Saos-2osteosarcoma cells had also been reported. Osteogenic potential of the scaffolds was evaluated by testing their effect on healing critical-sized dog's mandibular bone defects. Increasing chitosan and nBG in the porous scaffolds induced decrease in drug release, increased the scaffold's strength and supported their cell proliferation, alkaline phosphatase (ALP) activities, as well as increased calcium deposition. Histological and histomorphometric results demonstrated newly formed bone trabeculae inside critical-sized mandibular defects when treated with scaffolds. Trabecular thickness, bone volume/tissue volume and the percentage of mature collagen fibers increased in groups treated with scaffolds loaded with 10% nBG and risedronate or loaded with 30% nBG with/without risedronate compared with those treated with non-loaded scaffolds and empty control groups. These findings confirmed the potential osteogenic activity of chitosan/polyvinyl alcohol-based scaffolds loaded with risedronate and nBG.
Collapse
Affiliation(s)
- Amany A Mostafa
- Nanomedicine & Tissue Engineering Lab., Medical Research Center of Excellence (MRCE), National Research Centre, Cairo, Egypt; Refractories, Ceramics & Building Materials Department (Biomaterials group), National Research Centre, Cairo, Egypt.
| | - Azza A Mahmoud
- Nanomedicine & Tissue Engineering Lab., Medical Research Center of Excellence (MRCE), National Research Centre, Cairo, Egypt; Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mohamed A Abdel Hamid
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mona Basha
- Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| | - Mohamed S El-Okaily
- Nanomedicine & Tissue Engineering Lab., Medical Research Center of Excellence (MRCE), National Research Centre, Cairo, Egypt; Refractories, Ceramics & Building Materials Department (Biomaterials group), National Research Centre, Cairo, Egypt
| | - Abdel Fattah A Abdelkhalek
- Department of Microbiology of Supplementary General Science, Faculty of Oral & Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Mohamed I El-Anwar
- Department of Mechanical Engineering, National Research Centre, Cairo, Egypt
| | - Sara El Moshy
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Amr Gibaly
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt
| | - Elham A Hassan
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
28
|
Su X, Wang T, Guo S. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regen Ther 2021; 16:63-72. [PMID: 33598507 PMCID: PMC7868584 DOI: 10.1016/j.reth.2021.01.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repair and regeneration of patients, so regenerative medicine came into being. Stem cell therapy plays an important role in the field of regenerative medicine, but it is difficult to fill large tissue defects by injection alone. The scientists combine three-dimensional (3D) printed bone tissue engineering scaffolds with stem cells to achieve the desired effect. These scaffolds can mimic the extracellular matrix (ECM), bone and cartilage, and eventually form functional tissues or organs by providing structural support and promoting attachment, proliferation and differentiation. This paper mainly discussed the applications of 3D printed bone tissue engineering scaffolds in stem cell regenerative medicine. The application examples of different 3D printing technologies and different raw materials are introduced and compared. Then we discuss the superiority of 3D printing technology over traditional methods, put forward some problems and limitations, and look forward to the future.
Collapse
Key Words
- 3D printing
- 3D, three-dimensional
- ABS, Acrylonitrile Butadiene Styrene plastic
- AM, additive manufacturing
- ASCs, adult stem cells
- Alg, alginate
- BCP, biphasic calcium phosphate
- BMSCs, bone marrow-derived mesenchymal stem cells
- Bone tissue engineering
- CAD, computer-aided design
- CAP, cold atmospheric plasma
- CHMA, chitosan methacrylate
- CT, computed tomography
- DCM, dichloromethane
- ECM, extracellular matrix
- ESCs, embryonic stem cells
- FDM, fused deposition molding
- GO, graphene oxide
- HA, hydroxyapatite
- HAp, hydroxyapatite nanoparticles
- HTy, 4-hydroxyphenethyl 2-(4-hydroxyphenyl) acetate
- LDM, Low Temperature Deposition Modeling
- LIPUS, low intensity pulsed ultrasound
- MBG/SA–SA, mesoporous bioactive glass/sodium alginate-sodium alginate
- MSCs, Marrow stem cells
- PC, Polycarbonate
- PCL, polycraprolactone
- PDA, polydopamine
- PED, Precision Extrusion Deposition
- PEG, Polyethylene glycol
- PEGDA, poly (ethylene glycol) diacrylate
- PLGA, poly (lactide-co-glycolide)
- PLLA, poly l-lactide
- PPSU, Polyphenylene sulfone resins
- PRF, platelet-rich fibrin
- PVA, polyvinyl alcohol
- RAD16-I, a soft nanofibrous self-assembling peptide
- SCAPs, human stem cells from the apical papilla
- SF-BG, silk fibroin and silk fibroin-bioactive glass
- SLA, Stereolithography
- SLM, Selective Laser Melting
- STL, standard tessellation language
- Scaffold materials
- Stem cells
- TCP, β-tricalcium phosphate
- dECM, decellularized bovine cartilage extracellular matrix
- hADSC, human adipose derived stem cells
- hMSCs, human mesenchymal stem cells
- iPS, induced pluripotent stem
- pcHμPs, novel self-healable pre-cross- linked hydrogel microparticles
- rBMSCs, rat bone marrow stem cells
Collapse
Affiliation(s)
- Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, Liaoning, People's Republic of China
| | - Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, Liaoning, People's Republic of China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, Liaoning, People's Republic of China
| |
Collapse
|
29
|
Shamloo A, Aghababaie Z, Afjoul H, Jami M, Bidgoli MR, Vossoughi M, Ramazani A, Kamyabhesari K. Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study. Int J Pharm 2021; 592:120068. [PMID: 33188894 DOI: 10.1016/j.ijpharm.2020.120068] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
In this study, physically cross-linked hydrogels were developed by freezing-thawing method while different concentrations of honey were included into the hydrogels for accelerated wound healing. The hydrogel was composed of chitosan, polyvinyl alcohol (PVA), and gelatin with the ratio of 2:1:1 (v/v), respectively. Further, the effect of honey concentrations on antibacterial properties, and cell behavior was investigated. In vivo studies, including wound healing mechanism using rat model and histological analysis of section tissue samples were performed. The results illustrated that the incorporation of honey in hydrogels increased the ultimate strain of hydrogels approximately two times, while reduced the ultimate tensile strength and elastic modulus of hydrogels. Moreover, the antibacterial activities of samples were increased by increasing the concentration of honey. Regarding MTT assay, as the concentration of honey increased, the cell viability of hydrogels was enhanced until an optimal amount of honey. Further, the integration of honey into the hydrogel matrix results in the maintenance of a well-structured layer of epidermis containing mature collagen and accelerates the rate of wound healing. The 3D Chitosan/PVA/Gelatin hydrogel containing honey with appropriate mechanical, antibacterial activity, and biocompatibility could be a promising approach for wound healing.
Collapse
Affiliation(s)
- Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Zahra Aghababaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Homa Afjoul
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mehrzad Jami
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ahmad Ramazani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Kambiz Kamyabhesari
- Department of Dermatopathology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Sergi R, Bellucci D, Cannillo V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5560. [PMID: 33291305 PMCID: PMC7730917 DOI: 10.3390/ma13235560] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose are biocompatible and non-cytotoxic, being attractive natural polymers for medical devices for both soft and hard tissues. However, such natural polymers have low bioactivity and poor mechanical properties, which limit their applications. To tackle these drawbacks, collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose can be combined with bioactive glass (BG) nanoparticles and microparticles to produce composites. The incorporation of BGs improves the mechanical properties of the final system as well as its bioactivity and regenerative potential. Indeed, several studies have demonstrated that polymer/BG composites may improve angiogenesis, neo-vascularization, cells adhesion, and proliferation. This review presents the state of the art and future perspectives of collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose matrices combined with BG particles to develop composites such as scaffolds, injectable fillers, membranes, hydrogels, and coatings. Emphasis is devoted to the biological potentialities of these hybrid systems, which look rather promising toward a wide spectrum of applications.
Collapse
Affiliation(s)
| | | | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| |
Collapse
|
31
|
Belda Marín C, Fitzpatrick V, Kaplan DL, Landoulsi J, Guénin E, Egles C. Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Front Chem 2020; 8:604398. [PMID: 33335889 PMCID: PMC7736416 DOI: 10.3389/fchem.2020.604398] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.
Collapse
Affiliation(s)
- Cristina Belda Marín
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Jessem Landoulsi
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Erwann Guénin
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
| | - Christophe Egles
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
32
|
Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: The role of coupling agent. Colloids Surf B Biointerfaces 2020; 193:111083. [DOI: 10.1016/j.colsurfb.2020.111083] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
|
33
|
Zhang X, Liu Y, Luo C, Zhai C, Li Z, Zhang Y, Yuan T, Dong S, Zhang J, Fan W. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111388. [PMID: 33254994 DOI: 10.1016/j.msec.2020.111388] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/14/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
As cartilage tissue lacks the innate ability to mount an adequate regeneration response, damage to it is detrimental to the quality of life of the subject. The emergence of three-dimensional bioprinting (3DBP) technology presents an opportunity to repair articular cartilage defects. However, widespread adoption of this technique has been impeded by difficulty in preparing a suitable bioink and the toxicity inherent in the chemical crosslinking process of most bioinks. Our objective was to develop a crosslinker-free bioink with the same biological activity as the original cartilage extracellular matrix (ECM) and good mechanical strength. We prepared bioinks containing different concentrations of silk fibroin and decellularized extracellular matrix (SF-dECM bioinks) mixed with bone marrow mesenchymal stem cells (BMSCs) for 3D bioprinting. SF and dECM interconnect with each other through physical crosslinking and entanglement. A porous structure was formed by removing the polyethylene glycol from the SF-dECM bioink. The results showed the SF-dECM construct had a suitable mechanical strength and degradation rate, and the expression of chondrogenesis-specific genes was found to be higher than that of the SF control construct group. Finally, we confirmed that a SF-dECM construct that was designed to release TGF-β3 had the ability to promote chondrogenic differentiation of BMSCs and provided a good cartilage repair environment, suggesting it is an ideal scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chunyang Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenjun Zhai
- Department of Orthopedics, Yixing People's Hospital, Yixing, Jiangsu 214200, China
| | - Zuxi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Yuan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shilei Dong
- Key Lab of Biofabrication of AnHui Higher Education Institution Centre for Advanced Biofabrication, Hefei, Anhui 230601, China
| | - Jiyong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
34
|
Mu X, Fitzpatrick V, Kaplan DL. From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Adv Healthc Mater 2020; 9:e1901552. [PMID: 32109007 PMCID: PMC7415583 DOI: 10.1002/adhm.201901552] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/18/2019] [Indexed: 12/25/2022]
Abstract
Silk spinning offers an evolution-based manufacturing strategy for industrial polymer manufacturing, yet remains largely inaccessible as the manufacturing mechanisms in biological and synthetic systems, especially at the molecular level, are fundamentally different. The appealing characteristics of silk spinning include the sustainable sourcing of the protein material, the all-aqueous processing into fibers, and the unique material properties of silks in various formats. Substantial progress has been made to mimic silk spinning in artificial manufacturing processes, despite the gap between natural and artificial systems. This report emphasizes the universal spinning conditions utilized by both spiders and silkworms to generate silk fibers in nature, as a scientific and technical framework for directing molecular assembly into high-performance structures. The preparation of regenerated silk feedstocks and mimicking native spinning conditions in artificial manufacturing are discussed, as is progress and challenges in fiber spinning and 3D printing of silk-composites. Silk spinning is a biomimetic model for advanced and sustainable artificial polymer manufacturing, offering benefits in biomedical applications for tissue scaffolds and implantable devices.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
35
|
Xing Z, Cai J, Sun Y, Cao M, Li Y, Xue Y, Finne-Wistrand A, Kamal M. Altered Surface Hydrophilicity on Copolymer Scaffolds Stimulate the Osteogenic Differentiation of Human Mesenchymal Stem Cells. Polymers (Basel) 2020; 12:polym12071453. [PMID: 32610488 PMCID: PMC7407625 DOI: 10.3390/polym12071453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recent studies have suggested that both poly(l-lactide-co-1,5-dioxepan-2-one) (or poly(LLA-co-DXO)) and poly(l-lactide-co-ε-caprolactone) (or poly(LLA-co-CL)) porous scaffolds are good candidates for use as biodegradable scaffold materials in the field of tissue engineering; meanwhile, their surface properties, such as hydrophilicity, need to be further improved. METHODS We applied several different concentrations of the surfactant Tween 80 to tune the hydrophilicity of both materials. Moreover, the modification was applied not only in the form of solid scaffold as a film but also a porous scaffold. To investigate the potential application for tissue engineering, human bone marrow mesenchymal stem cells (hMSCs) were chosen to test the effect of hydrophilicity on cell attachment, proliferation, and differentiation. First, the cellular cytotoxicity of the extracted medium from modified scaffolds was investigated on HaCaT cells. Then, hMSCs were seeded on the scaffolds or films to evaluate cell attachment, proliferation, and osteogenic differentiation. The results indicated a significant increasing of wettability with the addition of Tween 80, and the hMSCs showed delayed attachment and spreading. PCR results indicated that the differentiation of hMSCs was stimulated, and several osteogenesis related genes were up-regulated in the 3% Tween 80 group. Poly(LLA-co-CL) with 3% Tween 80 showed an increased messenger Ribonucleic acid (mRNA) level of late-stage markers such as osteocalcin (OC) and key transcription factor as runt related gene 2 (Runx2). CONCLUSION A high hydrophilic scaffold may speed up the osteogenic differentiation for bone tissue engineering.
Collapse
Affiliation(s)
- Zhe Xing
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
| | - Jiazheng Cai
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
| | - Yang Sun
- Department of Fibre and Polymer Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden; (Y.S.); (A.F.-W.)
| | - Mengnan Cao
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
| | - Yi Li
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
- Correspondence: (Y.L.); (Y.X.)
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
- Correspondence: (Y.L.); (Y.X.)
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden; (Y.S.); (A.F.-W.)
| | - Mustafa Kamal
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
| |
Collapse
|
36
|
Afjoul H, Shamloo A, Kamali A. Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110957. [PMID: 32487379 DOI: 10.1016/j.msec.2020.110957] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
In this study, fabrication of a three-dimensional porous scaffold was performed using freeze gelation method. Recently, fabrication of scaffolds using polymer blends has become common for many tissue engineering applications due to their unique tunable properties. In this work, we fabricated alginate-gelatin porous hydrogels for wound healing application using a new method based on some modifications to the freeze-gelation method. Alginate and gelatin were mixed in three different ratios and the resulting solutions underwent freeze gelation to obtain 3D porous matrices. We analyzed the samples using different characterization tests. The scanning electron microscopy (SEM) results indicated that the freeze gelation method was successful in obtaining porous morphologies for all the fabricated alginate-gelatin samples as previously was seen in single-polymer fabrication using this method. The alginate to gelatin ratio affected swelling, biodegradation, cell culture and mechanical properties of the matrices. The scaffold with the lowest content of gelatin had the highest swelling ratio while biodegradation and cell proliferation and viability were increased with the gelatin content. Regarding the mechanical properties, as the gelatin content increased, the scaffold became more ductile and showed higher tensile strength. The in-vivo results also showed the biocompatibility of the blend scaffold and its positive role in wound healing process in rats. The low-cost procedure used in this study to fabricate the porous alginate-gelatin scaffolds can be adapted and modified to suit different tissue engineering applications.
Collapse
Affiliation(s)
- Homa Afjoul
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Ali Kamali
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
37
|
Chen YW, Chen CC, Ng HY, Lou CW, Chen YS, Shie MY. Additive Manufacturing of Nerve Decellularized Extracellular Matrix-Contained Polyurethane Conduits for Peripheral Nerve Regeneration. Polymers (Basel) 2019; 11:E1612. [PMID: 31590259 PMCID: PMC6835403 DOI: 10.3390/polym11101612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/29/2022] Open
Abstract
The nervous system is the part of our body that plays critical roles in the coordination of actions and sensory information as well as communication between different body parts through electrical signal transmissions. Current studies have shown that patients are likely to experience a functional loss if they have to go through a nerve repair for >15 mm lesion. The ideal treatment methodology is autologous nerve transplant, but numerous problems lie in this treatment method, such as lack of harvesting sites. Therefore, researchers are attempting to fabricate alternatives for nerve regeneration, and nerve conduit is one of the potential alternatives for nerve regeneration. In this study, we fabricated polyurethane/polydopamine/extracellular matrix (PU/PDA/ECM) nerve conduits using digital light processing (DLP) technology and assessed for its physical properties, biodegradability, cytocompatibility, neural related growth factor, and proteins secretion and expression and its potential in allowing cellular adhesion and proliferation. It was reported that PU/PDA/ECM nerve conduits were more hydrophilic and allowed enhanced cellular adhesion, proliferation, expression, and secretion of neural-related proteins (collagen I and laminin) and also enhanced expression of neurogenic proteins, such as nestin and microtubule-associated protein 2 (MAP2). In addition, PU/PDA/ECM nerve conduits were reported to be non-cytotoxic, had sustained biodegradability, and had similar physical characteristics as PU conduits. Therefore, we believed that PU/PDA/ECM nerve conduits could be a potential candidate for future nerve-related research or clinical applications.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan.
- D Printing Medical Research Institute, Asia University, Taichung 40447, Taiwan.
| | - Chien-Chang Chen
- D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Hooi Yee Ng
- D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Medicine, China Medical University, Taichung 40447, Taiwan.
| | - Ching-Wen Lou
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
| | - Yueh-Sheng Chen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan.
| | - Ming-You Shie
- D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
- School of Dentistry, China Medical University, Taichung 40447, Taiwan.
| |
Collapse
|