1
|
Zhang Y, Wang T, Wang F, Li X, Ma H, Sun Y. Sunlight-Drivable Composite Film Using Carbon Nanopowder-doped PVDF and Liquid Crystal Polymer Network. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5352-5359. [PMID: 39723939 DOI: 10.1021/acsami.4c17962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Actuators based on liquid crystals have garnered significant attention due to their potential applications in wearable technology and bionic soft robots. Composite films composed of liquid crystal polymer networks (LCNs) and other stimulus-responsive materials exhibit the capability to convert external stimuli into mechanical deformation. However, the development of sunlight-driven actuators presents significant challenges, primarily due to the relatively low intensity of sunlight and the limited conversion efficiency of photothermal materials. In this paper, we present a composite film fabricated using poly(vinylidene fluoride) doped with carbon nanopowders (PC) as a photothermal conversion material combined with a hybrid-alignment liquid crystal polymer network film. Under the midday sun during summer, the composite film is heated from room temperature to 74.5 °C quickly, resulting in a substantial angle change of 235°. Additionally, the actuators fabricated by this composite film can demonstrate phototactic and light-avoiding rolling behaviors. This sunlight-drivable composite film shows considerable promise for the research and development of bionic devices powered by natural light.
Collapse
Affiliation(s)
- Yunbo Zhang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Tianxiong Wang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Feifei Wang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoshuai Li
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Hongmei Ma
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Yubao Sun
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
2
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Verma SK, Tyagi V, Sonika, Dutta T, Mishra SK. Flexible and wearable electronic systems based on 2D hydrogel composites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6300-6322. [PMID: 39219494 DOI: 10.1039/d4ay01124d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flexible electronics is a rapidly developing field of study, which integrates many other fields, including materials science, biology, chemistry, physics, and electrical engineering. Despite their vast potential, the widespread utilization of flexible electronics is hindered by several constraints, including elevated Young's modulus, inadequate biocompatibility, and diminished responsiveness. Therefore, it is necessary to develop innovative materials aimed at overcoming these hurdles and catalysing their practical implementation. In these materials, hydrogels are particularly promising owing to their three-dimensional crosslinked hydrated polymer networks and exceptional properties, positioning them as leading candidates for the development of future flexible electronics.
Collapse
Affiliation(s)
- Sushil Kumar Verma
- Centre for Sustainable Polymers, Technology Complex, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Varee Tyagi
- Centre for Sustainable Polymers, Technology Complex, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sonika
- Department of Physics, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh 791112, India
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Howrah, W.B. 711103, India
| | - Satyendra Kumar Mishra
- Space and Resilient Communications and Systems (SRCOM), Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Castelldefels, Spain.
| |
Collapse
|
4
|
Kim S, Lee SN, Melvin AA, Choi JW. Stimuli-Responsive Polymer Actuator for Soft Robotics. Polymers (Basel) 2024; 16:2660. [PMID: 39339124 PMCID: PMC11436224 DOI: 10.3390/polym16182660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Polymer actuators are promising, as they are widely used in various fields, such as sensors and soft robotics, for their unique properties, such as their ability to form high-quality films, sensitivity, and flexibility. In recent years, advances in structural and fabrication processes have significantly improved the reliability of polymer sensing-based actuators. Polymer actuators have attracted considerable attention for use in artificial or biohybrid systems, as they have the potential to operate under diverse conditions with high durability. This review briefly describes different types of polymer actuators and provides an understanding of their working mechanisms. It focuses on actuation modes controlled by diverse or multiple stimuli. Furthermore, it discusses the fabrication processes of polymer actuators; the fabrication process is an important consideration in the development of high-quality actuators with sensing properties for a wide range of applications in soft robotics. Additionally, the high potential of polymer actuators for use in sensing technology is examined, and the latest developments in the field of polymer actuators, such as the development of biohybrid polymers and the use of polymer actuators in 4D printing, are briefly described.
Collapse
Affiliation(s)
- Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Ambrose Ashwin Melvin
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
5
|
Agarwal N, Solanki VS, Ameta KL, Yadav VK, Gupta P, Wanale SG, Shrivastava R, Soni A, Sahoo DK, Patel A. 4-Dimensional printing: exploring current and future capabilities in biomedical and healthcare systems-a Concise review. Front Bioeng Biotechnol 2023; 11:1251425. [PMID: 37675401 PMCID: PMC10478005 DOI: 10.3389/fbioe.2023.1251425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023] Open
Abstract
4-Dimensional Printing (4DP) is the latest concept in the pharmacy and biomedical segment with enormous potential in dosage from personalization and medication designing, which adopts time as the fourth dimension, giving printed structures the flexibility to modify their morphology. It can be defined as the fabrication in morphology with the help of smart/intelligent materials like polymers that permit the final object to alter its properties, shape, or function in response to external stimuli such as heat, light, pH, and moisture. The applications of 4DP in biomedicines and healthcare are explored with a focus on tissue engineering, artificial organs, drug delivery, pharmaceutical and biomedical field, etc. In the medical treatments and pharmaceutical field 4DP is paving the way with unlimited potential applications; however, its mainstream use in healthcare and medical treatments is highly dependent on future developments and thorough research findings. Therefore, previous innovations with smart materials are likely to act as precursors of 4DP in many industries. This review highlights the most recent applications of 4DP technology and smart materials in biomedical and healthcare fields which can show a better perspective of 4DP applications in the future. However, in view of the existing limitations, major challenges of this technology must be addressed along with some suggestions for future research. We believe that the application of proper regulatory constraints with 4DP technology would pave the way for the next technological revolution in the biomedical and healthcare sectors.
Collapse
Affiliation(s)
- Neha Agarwal
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, India
| | - Vijendra Singh Solanki
- Department of Chemistry, Institute of Science and Research (ISR), IPS Academy, Indore, India
| | - Keshav Lalit Ameta
- Centre for Applied Chemistry, School of Applied Material Sciences, Central University of Gujarat, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Premlata Gupta
- Department of Chemistry, Institute of Science and Research (ISR), IPS Academy, Indore, India
| | | | - Ruchi Shrivastava
- Department of Chemistry, Institute of Science and Research (ISR), IPS Academy, Indore, India
| | - Anjali Soni
- Department of Chemistry, Medicaps University, Indore, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|
6
|
Li X, Lin M, Ali I, Ali A, Irfan M, Soomro TA, Choi SH, Yang W, Li H, Rahman S, Faraj Mursal SN, Jazem Ghanim AA, Alyahyawy O, Al thagafi MA. Characteristics Analysis of Plasticized Polyvinyl Chloride Gel-Based Microlens at Different Temperatures. ACS OMEGA 2023; 8:28924-28931. [PMID: 37576690 PMCID: PMC10413451 DOI: 10.1021/acsomega.3c04546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Temperature plays a crucial role in the preparation of polyvinyl chloride (PVC) gels for optical applications. Incorrect temperature selection can lead to various issues such as poor surface roughness, inadequate light transmission, and insufficient solution for optical devices. To address this challenge, this study focuses on the preparation of PVC gel samples by combining PVC powder (n = 3000), eco-friendly dibutyl adipate, and tetrahydrofuran at different stirring temperatures ranging from 40 to 70 °C. The PVC gel preparation process is categorized into four groups (T40, T50, T60, and T70) based on the mixing temperatures, employing a controlled test method with specific temperature conditions. The prepared PVC gel samples are then subjected to analysis to evaluate various properties including surface morphology, tensile strength, light transmittance, and electrical response time. Among the samples, the PVC gel prepared at 60 °C (referred to as T60) exhibits excellent optical properties, with a transmittance of 91.2% and a tensile strength of 2.07 MPa. These results indicate that 60 °C is an optimal reaction temperature. Notably, the PVC gel microlenses produced at this temperature achieve their maximum focal length (ranging from -8 to -20 mm) within approximately 60 s, and they recover their initial state within around 80 s after the power is switched off. This focal length achievement is twice as fast as reported in previous studies on microlenses. It is observed that the reaction temperature significantly influences the solubility of the resin-based raw materials and the homogeneity of the gel. Consequently, these findings open up possibilities for utilizing PVC gel microlenses in novel commercial optics applications, thanks to their desirable properties.
Collapse
Affiliation(s)
- Xudong Li
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Min Lin
- Beijing
Advanced Innovation Center for Soft Matter Science and Engineering,
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Imdad Ali
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ahmed Ali
- Department
of Biomedical Engineering, Electrical Engineering Department, Sukkur IBA University, Sukkur 65200, Pakistan
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Korea
| | - Muhammad Irfan
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Toufique A. Soomro
- Department
of Electronic Engineering, Quaid-e-Awam
University of Engineering, Science and Technology Larkana Campus, Nawabshah 67480, Pakistan
| | - Seung Ho Choi
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Korea
| | - Weimin Yang
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haoyi Li
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Saifur Rahman
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Salim Nasar Faraj Mursal
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | | | - Othman Alyahyawy
- King
Abdulaziz Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | | |
Collapse
|
7
|
Irfan M, Ali I, Ali A, Ahmed M, Soomro TA, Yang W, Rahman S, Faraj Mursal SN, Jalalah M, Jazem Ghanim AA. Analysis of the Performance of a Gel Actuator Made of Plasticized Polyvinyl Chloride/Carboxylated Cellulose Nanocrystals. ACS OMEGA 2023; 8:17976-17982. [PMID: 37251157 PMCID: PMC10210034 DOI: 10.1021/acsomega.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023]
Abstract
Recently, polyvinyl chloride (PVC) gel materials appeared promising for developing actuators, artificial muscles, and sensors. However, their energized response time and recovery limitations restrict their broader applications. Herein, a novel soft composite gel was prepared by mixing functionalized carboxylated cellulose nanocrystals (CCNs) and plasticized PVC. The surface morphology of the plasticized PVC/CCNs composite gel was characterized by scanning electronic microscopy (SEM). The prepared PVC/CCNs gel composites have increased polarity and electrical actuation with a fast response time. Experimental results demonstrated good response characteristics within the actuator model with a multilayer electrode structure when stimulated with a specified DC voltage (1000 V), with deformation of approximately 36.7%. Moreover, this PVC/CCNs gel has excellent tensile elongation, and the elongation at break of the PVC/CCNs gel is greater than the elongation at break of the pure PVC gel under the same thickness conditions. However, these PVC/CCNs composite gels showed excellent properties and development potential and are directed for broad applications in actuators, soft-robotics, and biomedical applications.
Collapse
Affiliation(s)
- Muhammad Irfan
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Imdad Ali
- Department
of Mechanical Engineering, Quaid-e-Awam
University of Engineering, Science and Technology, Shaheed Benazirabad, Sindh 67450, Pakistan
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Ahmed Ali
- Eletrical
Engineering Department, Sukkur IBA University, Sukkur 65200, Pakistan
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Korea
| | - Mushtaq Ahmed
- Department
of Mechanical Engineering, Quaid-e-Awam
University of Engineering, Science and Technology, Shaheed Benazirabad, Sindh 67450, Pakistan
| | - Toufique A. Soomro
- Department
of Electronic Engineering, Quaid-e-Awam
University of Engineering, Science and Technology, Larkana Campus, Larkana, Sindh 67480, Pakistan
| | - Weimin Yang
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Saifur Rahman
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Salim Nasar Faraj Mursal
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Mohammed Jalalah
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | | |
Collapse
|
8
|
Hu L, Chee PL, Sugiarto S, Yu Y, Shi C, Yan R, Yao Z, Shi X, Zhi J, Kai D, Yu HD, Huang W. Hydrogel-Based Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205326. [PMID: 36037508 DOI: 10.1002/adma.202205326] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Flexible electronics is an emerging field of research involving multiple disciplines, which include but not limited to physics, chemistry, materials science, electronic engineering, and biology. However, the broad applications of flexible electronics are still restricted due to several limitations, including high Young's modulus, poor biocompatibility, and poor responsiveness. Innovative materials aiming for overcoming these drawbacks and boost its practical application is highly desirable. Hydrogel is a class of 3D crosslinked hydrated polymer networks, and its exceptional material properties render it as a promising candidate for the next generation of flexible electronics. Here, the latest methods of synthesizing advanced functional hydrogels and the state-of-art applications of hydrogel-based flexible electronics in various fields are reviewed. More importantly, the correlation between properties of the hydrogel and device performance is discussed here, to have better understanding of the development of flexible electronics by using environmentally responsive hydrogels. Last, perspectives on the current challenges and future directions in the development of hydrogel-based multifunctional flexible electronics are provided.
Collapse
Affiliation(s)
- Lixuan Hu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Sigit Sugiarto
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Chuanqian Shi
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, P. R. China
| | - Ren Yan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Zhuoqi Yao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Xuewen Shi
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Jiacai Zhi
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Hai-Dong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
9
|
Wen X, Zhang Y, Chen D, Zhao Q. Reversible Shape-Shifting of an Ionic Strength Responsive Hydrogel Enabled by Programmable Network Anisotropy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40344-40350. [PMID: 36017981 DOI: 10.1021/acsami.2c11693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reversible shape-shifting hydrogels exhibit great potential in diverse fields. Repeatable programmability for the shape transformation has newly been enabled in thermally responsive hydrogels via engineering of the chain orientation of the polymer network, which substantially promotes the transformation capability. However, diversified responsive behavior and the enabling mechanism require further investigation. Herein, we develop an ionic strength (IS) responsive hydrogel enabling the programmable reversible shape transformation based on a semi-interpenetrating network of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA). Deformation of the hydrogel upon external force can be fixed due to crystallization of PVA that underwent cyclic freezing-thawing. Therefore, the chain orientation can be retained in the deformed area, enabling the programmable IS responsive actuation. In contrast to the thermally responsive actuation originated from the lower critical solution temperature phase transition, the IS responsive actuation does not accompany any phase change and the corresponding mechanism is proposed. Reversible bending providing an actuation angle as large as 80° can be achieved after optimization of the PVA content. The PVA crystals can be melted upon heating, and the responsive actuation can thus be reprogrammed. In addition, utilizing a digital light 3D printer, the hydrogels are further fabricated into arbitrary geometries, thus realizing more complex actuations. Overall, our work provides a general strategy to develop reversible shape-shifting hydrogels and paves the way for soft actuators.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, People's Republic of China
| | - Yue Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, People's Republic of China
| | - Di Chen
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, People's Republic of China
| |
Collapse
|
10
|
Zou F, Xu J, Yuan L, Zhang Q, Jiang L. Recent progress on smart hydrogels for biomedicine and bioelectronics. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Fa Zou
- Key Laboratory of Fluid and Power Machinery of Ministry of Education School of Materials Science and Engineering Xihua University Chengdu China
| | - Jiefang Xu
- School of Literature, Journalism and Communication Xihua University Chengdu China
| | - Le Yuan
- Key Laboratory of Fluid and Power Machinery of Ministry of Education School of Materials Science and Engineering Xihua University Chengdu China
| | - Qinyong Zhang
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| | - Lili Jiang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education School of Materials Science and Engineering Xihua University Chengdu China
| |
Collapse
|
11
|
Zhao Y, Cui J, Qiu X, Yan Y, Zhang Z, Fang K, Yang Y, Zhang X, Huang J. Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces. Adv Colloid Interface Sci 2022; 308:102749. [PMID: 36007285 DOI: 10.1016/j.cis.2022.102749] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Living bodies are made of numerous bio-sensors and actuators for perceiving external stimuli and making movement. Hydrogels have been considered as ideal candidates for manufacturing bio-sensors and actuators because of their excellent biocompatibility, similar mechanical and electrical properties to that of living organs. The key point of manufacturing hydrogel sensors/actuators is that the materials should not only possess excellent mechanical and electrical properties but also form effective interfacial connections with various substrates. Traditional hydrogel normally shows high electrical resistance (~ MΩ•cm) with limited mechanical strength (<1 MPa), and it is prone to fatigue fracture during continuous loading-unloading cycles. Just like iron should be toughened and hardened into steel, manufacturing and post-treatment processes are necessary for modifying hydrogels. Besides, advanced design and manufacturing strategies can build effective interfaces between sensors/actuators and other substrates, thus enhancing the desired mechanical and electrical performances. Although various literatures have reviewed the manufacture or modification of hydrogels, the summary regarding the post-treatment strategies and the creation of effective electrical and mechanically sustainable interfaces are still lacking. This paper aims at providing an overview of the following topics: (i) the manufacturing and post-engineering treatment of hydrogel sensors and actuators; (ii) the processes of creating sensor(actuator)-substrate interfaces; (iii) the development and innovation of hydrogel manufacturing and interface creation. In the first section, the manufacturing processes and the principles for post-engineering treatments are discussed, and some typical examples are also presented. In the second section, the studies of interfaces between hydrogels and various substrates are reviewed. Lastly, we summarize the current manufacturing processes of hydrogels, and provide potential perspectives for hydrogel manufacturing and post-treatment methods.
Collapse
Affiliation(s)
- Yiming Zhao
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jiuyu Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yonggan Yan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zekai Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Kezhong Fang
- Lunan Pharmaceutical Group Co., LTD, Linyi 276005, China
| | - Yu Yang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi 276005, China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
12
|
Zhao Y, Liu Y, Dai Y, Yang L, Chen G. Application of 3D Bioprinting in Urology. MICROMACHINES 2022; 13:mi13071073. [PMID: 35888890 PMCID: PMC9321242 DOI: 10.3390/mi13071073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022]
Abstract
Tissue engineering is an emerging field to create functional tissue components and whole organs. The structural and functional defects caused by congenital malformation, trauma, inflammation or tumor are still the major clinical challenges facing modern urology, and the current treatment has not achieved the expected results. Recently, 3D bioprinting has gained attention for its ability to create highly specialized tissue models using biological materials, bridging the gap between artificially engineered and natural tissue structures. This paper reviews the research progress, application prospects and current challenges of 3D bioprinting in urology tissue engineering.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China
| | - Yuebai Liu
- Department of Education and Training, Sichuan Cancer Hospital, Chengdu 610000, China;
| | - Yi Dai
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
| | - Luo Yang
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Correspondence: (L.Y.); (G.C.); Tel.: +86-1-820-288-8984 (G.C.)
| | - Guo Chen
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610000, China
- Correspondence: (L.Y.); (G.C.); Tel.: +86-1-820-288-8984 (G.C.)
| |
Collapse
|
13
|
Khadem E, Kharaziha M, Bakhsheshi-Rad HR, Das O, Berto F. Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications. Polymers (Basel) 2022; 14:1709. [PMID: 35566878 PMCID: PMC9104595 DOI: 10.3390/polym14091709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
With the advent of "intelligent" materials, the design of smart bioadhesives responding to chemical, physical, or biological stimuli has been widely developed in biomedical applications to minimize the risk of wounds reopening, chronic pain, and inflammation. Intelligent bioadhesives are free-flowing liquid solutions passing through a phase shift in the physiological environment due to stimuli such as light, temperature, pH, and electric field. They possess great merits, such as ease to access and the ability to sustained release as well as the spatial transfer of a biomolecule with reduced side effects. Tissue engineering, wound healing, drug delivery, regenerative biomedicine, cancer therapy, and other fields have benefited from smart bioadhesives. Recently, many disciplinary attempts have been performed to promote the functionality of smart bioadhesives and discover innovative compositions. However, according to our knowledge, the development of multifunctional bioadhesives for various biomedical applications has not been adequately explored. This review aims to summarize the most recent cutting-edge strategies (years 2015-2021) developed for stimuli-sensitive bioadhesives responding to external stimuli. We first focus on five primary categories of stimuli-responsive bioadhesive systems (pH, thermal, light, electric field, and biomolecules), their properties, and limitations. Following the introduction of principal criteria for smart bioadhesives, their performances are discussed, and certain smart polymeric materials employed in their creation in 2015 are studied. Finally, advantages, disadvantages, and future directions regarding smart bioadhesives for biomedical applications are surveyed.
Collapse
Affiliation(s)
- Elham Khadem
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Oisik Das
- Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
14
|
Chang L, Jiang A, Rao M, Ma F, Huang H, Zhu Z, Zhang Y, Wu Y, Li B, Hu Y. Progress of low-frequency sound absorption research utilizing intelligent materials and acoustic metamaterials. RSC Adv 2021; 11:37784-37800. [PMID: 35498066 PMCID: PMC9044041 DOI: 10.1039/d1ra06493b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Abstract
In recent years, increasing attention has been paid to the impacts of environmental noises on living creatures as well as the accuracy and stability of precise instruments. Due to inherent properties induced by large wavelength, the attenuation and manipulation of low-frequency sound waves is quite difficult to realize with traditional acoustic absorbers, yet particularly critical to modern designs. The advent of acoustic metamaterials and intelligent materials provides possibilities of energy dissipation mechanisms other than viscous dissipation and heat conduction in conventional porous sound absorbers, and therefore inspires new strategies on the design of subwavelength-scale structures. This short review aims to trace the current advancement on the low-frequency sound absorption research utilizing intelligent materials and metamaterials, including Helmholtz resonators and acoustic metamaterials based on micro-perforated plates, porous media, and decorated membrane, along with the tunable absorbing structures regulated with the function of electroactive polymers or magnetically sensitive materials. The effective principles and prospects were concluded and presented for future investigations of subwavelength-scale acoustic structures.
Collapse
Affiliation(s)
- Longfei Chang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology Hefei 230009 China
- Anhui Province Key Lab of Advanced Functional Materials and Devices, Hefei University of Technology Hefei 230009 China
| | - Ajuan Jiang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology Hefei 230009 China
| | - Manting Rao
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology Hefei 230009 China
| | - Fuyin Ma
- State Key Laboratory for Manufacturing Engineering System, Shanxi Province Key Laboratory for Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University Xi'an 710049 China
| | - Haibo Huang
- School of Mechanical Engineering, Southwest Jiaotong University 610031 Cheng Du Sichuan China
| | - Zicai Zhu
- State Key Laboratory for Manufacturing Engineering System, Shanxi Province Key Laboratory for Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University Xi'an 710049 China
| | - Yu Zhang
- State Key Laboratory for Manufacturing Engineering System, Shanxi Province Key Laboratory for Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University Xi'an 710049 China
| | - Yucheng Wu
- Anhui Province Key Lab of Advanced Functional Materials and Devices, Hefei University of Technology Hefei 230009 China
| | - Bo Li
- State Key Laboratory for Manufacturing Engineering System, Shanxi Province Key Laboratory for Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University Xi'an 710049 China
| | - Ying Hu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology Hefei 230009 China
- Anhui Province Key Lab of Advanced Functional Materials and Devices, Hefei University of Technology Hefei 230009 China
| |
Collapse
|
15
|
Zhang Z, Lucia L. Toward synergistic reinforced graphene nanoplatelets composite hydrogels with self-healing and multi-stimuli responses. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Ali I, Latif A, Hussain K, Shehzad FK, Ali A, Faisal R, Xudong L, Dias OAT, Weimin Y, Haoyi L. Ionic liquids enhanced performance of PVC gels actuator. J Appl Polym Sci 2021. [DOI: 10.1002/app.50710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Imdad Ali
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
- Department of Mechanical Engineering QUEST Nawabshah Nawabshah Pakistan
| | - Abdul Latif
- Department of Mechanical Engineering QUEST Nawabshah Nawabshah Pakistan
| | - Khalid Hussain
- Department of Mechanical Engineering QUEST Nawabshah Nawabshah Pakistan
| | - Farooq Khurum Shehzad
- Department of Chemistry Muhammad Nawaz Sharif University of Engineering and Technology, MNSUET Multan Pakistan
| | - Ahmed Ali
- Department of Electrical Engineering Sukkur IBA University Sukkur Pakistan
| | - Rehman Faisal
- Department of Electrical Engineering Sukkur IBA University Sukkur Pakistan
| | - Li Xudong
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Otavio Augusto Titton Dias
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto Toronto, Ontario, M5S 3B3 Canada
| | - Yang Weimin
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Li Haoyi
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| |
Collapse
|
17
|
Rocha I, Cerqueira G, Varella Penteado F, Córdoba de Torresi SI. Electrical Stimulation and Conductive Polymers as a Powerful Toolbox for Tailoring Cell Behaviour in vitro. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:670274. [PMID: 35047926 PMCID: PMC8757900 DOI: 10.3389/fmedt.2021.670274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
Electrical stimulation (ES) is a well-known method for guiding the behaviour of nerve cells in in vitro systems based on the response of these cells to an electric field. From this perspective, understanding how the electrochemical stimulus can be tuned for the design of a desired cell response is of great importance. Most biomedical studies propose the application of an electrical potential to cell culture arrays while examining the cell response regarding viability, morphology, and gene expression. Conversely, various studies failed to evaluate how the fine physicochemical properties of the materials used for cell culture influence the observed behaviours. Among the various materials used for culturing cells under ES, conductive polymers (CPs) are widely used either in pristine form or in addition to other polymers. CPs themselves do not possess the optimal surface for cell compatibility because of their hydrophobic nature, which leads to poor protein adhesion and, hence, poor bioactivity. Therefore, understanding how to tailor the chemical properties on the material surface will determine the obtention of improved ES platforms. Moreover, the structure of the material, either in a thin film or in porous electrospun scaffolds, also affects the biochemical response and needs to be considered. In this review, we examine how materials based on CPs influence cell behaviour under ES, and we compile the various ES setups and physicochemical properties that affect cell behaviour. This review concerns the culture of various cell types, such as neurons, fibroblasts, osteoblasts, and Schwann cells, and it also covers studies on stem cells prone to ES. To understand the mechanistic behaviour of these devices, we also examine studies presenting a more detailed biomolecular level of interaction. This review aims to guide the design of future ES setups regarding the influence of material properties and electrochemical conditions on the behaviour of in vitro cell studies.
Collapse
Affiliation(s)
- Igor Rocha
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
18
|
Ali I, Ali A, Ali A, Ramzan M, Hussain K, Xudong L, Jin Z, Titton Dias OA, Weimin Y, Haoyi L, Liyan Z, Sain M. Highly electro‐responsive composite gel based on functionally tuned graphene filled polyvinyl chloride. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Imdad Ali
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing P.R. China
- Department of Mechanical Engineering QUEST Nawabshah Sindh Pakistan
| | - Ahsan Ali
- Department of Mechanical Engineering QUEST Nawabshah Sindh Pakistan
| | - Ahmed Ali
- Department of Electrical Engineering Sukkur IBA University Sindh Pakistan
| | - Muhammad Ramzan
- Department of Mechanical Engineering QUEST Nawabshah Sindh Pakistan
| | - Khalid Hussain
- Department of Mechanical Engineering QUEST Nawabshah Sindh Pakistan
| | - Li Xudong
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Zhan Jin
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Otavio Augusto Titton Dias
- Centre for Biocomposites and Biomaterials Processing, Graduate Department of Forestry University of Toronto Toronto Ontario Canada
| | - Yang Weimin
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Li Haoyi
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Zhang Liyan
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Mohini Sain
- Centre for Biocomposites and Biomaterials Processing, Graduate Department of Forestry University of Toronto Toronto Ontario Canada
| |
Collapse
|
19
|
Chen J, Qiu T, Guo L, He L, Li X. Topology Reliable LCST-Type Behavior of ABA Triblock Polymer and Influence on Water Condensation and Crystallization. Macromol Rapid Commun 2021; 42:e2100024. [PMID: 33768621 DOI: 10.1002/marc.202100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/15/2021] [Indexed: 01/26/2023]
Abstract
As a kind of smart material, thermoresponsive hydrogels are widely investigated and applied in many fields. Due to the limitation of the freezing temperature of the water, it is a challenge to further broaden their sol-gel transition temperature (Tgel ) range, especially below 0 °C. Herein, the lower critical solution temperature type of amphiphilic ABA triblock copolymers, synthesized via two-step reversible addition-fragmentation chain transfer (RAFT) polymerization is demonstrated. The hydrophilic A-block and the hydrophobic B-block are composed of poly(N,N-dimethylacrylamide) (PDMAA) and poly(diacetone acrylamide) (PDAAM), respectively. The degree of polymerization (DP) of both A-block and B-block shows a significant influence on the Tgel of triblock copolymer dispersion. By changing the length of these two blocks or physically blending these copolymers dispersions, the Tgel can be well adjusted in a temperature range from 45 to -10 °C. Moreover, When the Tgel is higher than 4 °C, the triblock copolymer coatings show a good anti-fogging property. And when the Tgel is around or lower than the freezing temperature of the water, aqueous dispersions of the triblock copolymer have an ice recrystallization inhibition activity, resulting in the decrease of average maximum grain size (MLGS) of ice crystal.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Teng Qiu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Longhai Guo
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lifan He
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyu Li
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
20
|
Duan X, Yu J, Zhu Y, Zheng Z, Liao Q, Xiao Y, Li Y, He Z, Zhao Y, Wang H, Qu L. Large-Scale Spinning Approach to Engineering Knittable Hydrogel Fiber for Soft Robots. ACS NANO 2020; 14:14929-14938. [PMID: 33073577 DOI: 10.1021/acsnano.0c04382] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efforts to impart responsiveness to environmental stimuli in artificial hydrogel fibers are crucial to intelligent, shape-memory electronics and weavable soft robots. However, owing to the vulnerable mechanical property, poor processability, and the dearth of scalable assembly protocols, such functional hydrogel fibers are still far from practical usage. Herein, we demonstrate an approach toward the continuous fabrication of an electro-responsive hydrogel fiber by using the self-lubricated spinning (SLS) strategy. The polyelectrolyte inside the hydrogel fiber endows it with a fast electro-response property. After solvent exchange with triethylene glycol (TEG), the maximum tensile strength of the hydrogel fiber increases from 114 kPa to 5.6 MPa, far superior to those hydrogel fiber-based actuators reported previously. Consequently, the flexible and mechanical stable hydrogel fiber is knitted into various complex geometries on demand such as a crochet flower, triple knot, thread tube, pentagram, and hollow cage. Additionally, the electrochemical-responsive ionic hydrogel fiber is capable of acting as soft robots underwater to mimic biological motions, such as Mobula-like flapping, jellyfish-mimicking grabbing, sea worm-mimicking multi-degree of freedom movements, and human finger-like smart gesturing. This work not only demonstrates an example for the large-scale production of previous infeasible hydrogel fibers, but also provides a solution for the rational design and fabrication of hydrogel woven intelligent devices.
Collapse
Affiliation(s)
- Xiangyu Duan
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jingyi Yu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yaxun Zhu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zhiqiang Zheng
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Qihua Liao
- Department of Chemistry and Department of Chemistry & Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yukun Xiao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zipan He
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yang Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Huaping Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Liangti Qu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Department of Chemistry and Department of Chemistry & Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
21
|
Carayon I, Gaubert A, Mousli Y, Philippe B. Electro-responsive hydrogels: macromolecular and supramolecular approaches in the biomedical field. Biomater Sci 2020; 8:5589-5600. [PMID: 32996479 DOI: 10.1039/d0bm01268h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogels are soft materials of the utmost importance in the biomedical and healthcare fields. Two approaches can be considered to obtain such biomaterials: the macromolecular one and the supramolecular one. In the first, the chemical gel is based on crosslinking while in the second the physical hydrogel is stabilized thanks to noncovalent interactions. Recently, new trends rely on smart devices able to modify their physico-chemical properties under stimulation. Such stimuli-responsive systems can react to internal (i.e. pH, redox potential, enzyme, etc.) or external (i.e. magnetic field, light, electric field, etc.) triggers leading to smart drug release and drug delivery systems, 3D scaffolds or biosensors. Even if some stimuli-responsive biomaterials are currently widely studied, other ones represent a real challenge. Among them, electro-responsive hydrogels, especially obtained via supramolecular approach, are under-developped leaving room for improvement. Indeed, currently known macromolecular electro-responsive systems are reaching some limitations related to their chemical composition, physicochemical properties, mechanical strength, processing technologies, etc. In contrast, the interest for supramolecular hydrogels has risen for the past few years suggesting that they may provide new solutions as electro-responsive soft materials. In this short review, we give a recent non exhaustive survey on macromolecular and supramolecular approaches for electro-responsive hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Iga Carayon
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | | | | | | |
Collapse
|
22
|
Improving the Actuation Speed and Multi-Cyclic Actuation Characteristics of Silicone/Ethanol Soft Actuators. ACTUATORS 2020. [DOI: 10.3390/act9030062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The actuation of silicone/ethanol soft composite material-actuators is based on the phase change of ethanol upon heating, followed by the expansion of the whole composite, exhibiting high actuation stress and strain. However, the low thermal conductivity of silicone rubber hinders uniform heating throughout the material, creating overheated damaged areas in the silicone matrix and accelerating ethanol evaporation. This limits the actuation speed and the total number of operation cycles of these thermally-driven soft actuators. In this paper, we showed that adding 8 wt.% of diamond nanoparticle-based thermally conductive filler increases the thermal conductivity (from 0.190 W/mK to 0.212 W/mK), actuation speed and amount of operation cycles of silicone/ethanol actuators, while not affecting the mechanical properties. We performed multi-cyclic actuation tests and showed that the faster and longer operation of 8 wt.% filler material-actuators allows collecting enough reliable data for computational methods to model further actuation behavior. We successfully implemented a long short-term memory (LSTM) neural network model to predict the actuation force exerted in a uniform multi-cyclic actuation experiment. This work paves the way for a broader implementation of soft thermally-driven actuators in various robotic applications.
Collapse
|
23
|
Controllable mechanical properties of anthraquinone-urea gel depending on the catalyst effect and their sensing ability for fluoride anion. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Ali I, Yang W, Li X, Ali A, Jiao Z, Xie P, Dias OAT, Pervaiz M, Li H, Sain M. Highly electro-responsive plasticized PVC/FMWCNTs soft composites: A novel flex actuator with functional characteristics. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Razavi B, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M. Light-, temperature-, and pH-responsive micellar assemblies of spiropyran-initiated amphiphilic block copolymers: Kinetics of photochromism, responsiveness, and smart drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110524. [PMID: 32228960 DOI: 10.1016/j.msec.2019.110524] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022]
Abstract
Multi-responsive polymer assemblies are a significant class of smart polymers with potential applications in drug-delivery and gen-delivery systems. Poly(dimethylaminoethyl methacrylate) (PDMAEMA) is among the most applicable multi-responsive polymers that changes its physical and chemical properties in response to temperature, pH, and CO2. Herein, different types of light-, temperature-, pH-, and CO2-responsive polymer assemblies were developed based on multi-responsive PDMAEMA and hydrophobic poly(methyl methacrylate) blocks. In addition, spiropyran was incorporated at the chain ends by using spiropyran-initiated atom transfer radical polymerization method. Novel smart drug-delivery systems were developed by self-assembly of these amphiphilic block copolymers to micellar morphologies in aqueous media. Dynamic light scattering results showed that size of the polymer assemblies changed in response to pH variations (from 5 to 9), temperature changes (above the lower critical solution temperature (LCST) of PDMAEMA), and also UV light irradiation (wavelength of 365 nm). The LCST of PPDMAEMA showed a shift from 53 to 60 °C after isomerization of the SP to MC form, as a result of increase of polarity and water-solubility. The PDMAEMA block results in responsivity of the prepared copolymer assemblies to CO2, which display pH variation from 8-8.6 to 5-6 after 2 min of CO2 gas bubbling. All the multi-responsive micellar polymer assemblies showed various loading capacities and release profiles, and the DOX release can be controlled by pH, temperature, and light. The release efficiency is reached to 60-85% at pH 5.3, 80-90% at temperatures higher than the LCST of PDMAEMA (60 °C), and also 90-100% under UV light irradiation after 48 h. In summary, the multi-responsive polymer assemblies based on amphiphilic block copolymers containing spiropyran chain end groups in the current study have potential applications in smart drug-delivery systems, and offer controlling over the drug-release by different triggers, such as light irradiation, pH variation, and temperature change. A very low concentration of spiropyran molecules (one per polymer chain) showed light-controlling of drug-release from the assemblies with high efficiencies.
Collapse
Affiliation(s)
- Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Amin Abdollahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|