1
|
Zhang H, Xu D, Zhang B, Li X, Li M, Zhang C, Wang H, Zhao Y, Chai R. PEDOT-Integrated Fish Swim Bladders as Conductive Nerve Conduits. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400827. [PMID: 38881504 PMCID: PMC11336940 DOI: 10.1002/advs.202400827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Advanced artificial nerve conduits offer a promising alternative for nerve injury repair. Current research focuses on improving the therapeutic effectiveness of nerve conduits by optimizing scaffold materials and functional components. In this study, a novel poly(3,4-ethylenedioxythiophene) (PEDOT)-integrated fish swim bladder (FSB) is presented as a conductive nerve conduit with ordered topology and electrical stimulation to promote nerve regeneration. PEDOT nanomaterials and adhesive peptides (IKVAV) are successfully incorporated onto the decellularized FSB substrate through pre-coating with polydopamine. The obtained PEDOT/IKVAV-integrated FSB substrate exhibits outstanding mechanical properties, high electrical conductivity, stability, as well as excellent biocompatibility and bioadhesive properties. In vitro studies confirm that the PEDOT/IKVAV-integrated FSB can effectively facilitate the growth and directional extension of pheochromocytoma 12 cells and dorsal root ganglion neurites. In addition, in vivo experiments demonstrate that the proposed PEDOT/IKVAV-integrated FSB conduit can accelerate defective nerve repair and functional restoration. The findings indicate that the FSB-derived conductive nerve conduits with multiple regenerative inducing signals integration provide a conducive milieu for nerve regeneration, exhibiting great potential for repairing long-segment neural defects.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Dongyu Xu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Bin Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xiaofan Li
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Minli Li
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijing100069China
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's Hospital University of Electronic Science and Technology of ChinaChengdu610072China
- Institute for Stem Cell and RegenerationChinese Academy of ScienceBeijing100101China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| |
Collapse
|
2
|
Shi L, Ura K, Takagi Y. Effects of self-assembled type II collagen fibrils on the morphology and growth of pre-chondrogenic ATDC5 cells. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100450. [PMID: 38444516 PMCID: PMC10914481 DOI: 10.1016/j.ocarto.2024.100450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
Objective Although type II collagen could have marked potential for developing cartilage tissue engineering (CTE) scaffolds, its erratic supply and viscous nature have limited these studies, and there are no studies on the use of marine-derived type II collagen fibrils for CTE scaffold materials. In this study, we aimed to generate a fibril-based, thin-layered scaffold from marine-derived type II collagen and investigate its chondrogenic potential. Methods Time-lapse observations revealed the cell adhesion process. The Cell Counting Kit-8 (CCK-8) assay, light microscopy, and scanning electron microscopy were performed to detect proliferation and filopodium morphology. Alcian blue staining was used to show the deposition of extracellular secretions, and qRT-PCR was performed to reveal the expression levels of chondrogenesis-related genes. Results The cell adhesion speed was similar in both fibril-coated and control molecule-coated groups, but the cellular morphology, proliferation, and chondrogenesis activity differed. On fibrils, more elongated finer filopodia showed inter-cell communications, whereas the slower proliferation suggested an altered cell cycle. Extracellular secretions occurred before day 14 and continued until day 28 on fibrils, and on fibrils, the expression of the chondrogenesis-related genes Sox9 (p < 0.001), Col10a1 (p < 0.001), Acan (p < 0.001), and Col2a1 (p = 0.0049) was significantly upregulated on day 21. Conclusion Marine-derived type II collagen was, for the first time, fabricated into a fibril state. It showed rapid cellular affinity and induced chondrogenesis with extracellular secretions. We presented a new model for studying chondrogenesis in vitro and a potential alternative material for cell-laden CTE research.
Collapse
Affiliation(s)
- Linyan Shi
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-Cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Kazuhiro Ura
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| |
Collapse
|
3
|
Jiang H, Kong Y, Song L, Liu J, Wang Z. A Thermostable Type I Collagen from Swim Bladder of Silver Carp ( Hypophthalmichthys molitrix). Mar Drugs 2023; 21:md21050280. [PMID: 37233474 DOI: 10.3390/md21050280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
As a major component of the extracellular matrix, collagen has been used as a biomaterial for many purposes including tissue engineering. Commercial collagen derived from mammals is associated with a risk of prion diseases and religious restrictions, while fish-derived collagen can avoid such issues. In addition, fish-derived collagen is widely available and low-cost; however, it often suffers from poor thermal stability, which limits its biomedical application. In this study, collagen with a high thermal stability was successfully extracted from the swim bladder of silver carp (Hypophthalmichthys molitrix) (SCC). The results demonstrated that it was a type I collagen with high purity and well-preserved triple-helix structure. Amino acid composition assay showed that the amounts of threonine, methionine, isoleucine and phenylalanine in the collagen of swim bladder of silver carp were higher than those of bovine pericardium. After adding salt solution, swim-bladder-derived collagen could form fine and dense collagen fibers. In particular, SCC exhibited a higher thermal denaturation temperature (40.08 °C) compared with collagens from the swim bladder of grass carp (Ctenopharyngodon idellus) (GCC, 34.40 °C), bovine pericardium (BPC, 34.47 °C) and mouse tail (MTC, 37.11 °C). Furthermore, SCC also showed DPPH radical scavenging ability and reducing power. These results indicate that SCC presents a promising alternative source of mammalian collagen for pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Honghui Jiang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yuanyuan Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Lili Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300385, China
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
4
|
Ding C, Tian M, Wang Y, Cheng K, Yi Y, Zhang M. Governing the aggregation of type I collagen mediated through β-cyclodextrin. Int J Biol Macromol 2023; 240:124469. [PMID: 37076074 DOI: 10.1016/j.ijbiomac.2023.124469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The effect of carbohydrates on collagen self-assembly behavior has been widely investigated because of their regulation on collagen fibrogenesis in vivo. In this paper, β-cyclodextrin (β-CD) was selected as an external disturbance to explore its intrinsic regulating mechanism on collagen self-assembly. The results of fibrogenesis kinetics indicated that β-CD had a bilateral regulation on collagen self-aggregation process, which was closely related to the content of β-CD: collagen protofibrils with low β-CD content were less aggregated compared to collagen protofibrils with high β-CD content. However, typical periodic stripes of ~67 nm on collagen fibrils were observed from transmission electron microscope (TEM), indicating that β-CD did not disturb the lateral arrangement of collagen molecules to form a 1/4 staggered structure. Correspondingly, the degree of aggregation of collagen self-assembled fibrils was closely correlated with the addition of β-CD content, as confirmed by field emission scanning electron microscopy (FESEM) and atomic force microscope (AFM). In addition, collagen/β-CD fibrillar hydrogel had good thermal stability and cytocompatibility. These results provide a better understanding of how to construct a structurally reliable collagen/β-CD fibrillar hydrogel as a biomedical material in a β-CD-regulated environment.
Collapse
Affiliation(s)
- Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Mengdie Tian
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Yue Wang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Kuan Cheng
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Yifan Yi
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, PR China.
| |
Collapse
|
5
|
Shen Z, Zhang Q, Li L, Li D, Takagi Y, Zhang X. Properties of Grass Carp ( Ctenopharyngodon idella) Collagen and Gel for Application in Biomaterials. Gels 2022; 8:699. [PMID: 36354607 PMCID: PMC9689431 DOI: 10.3390/gels8110699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2023] Open
Abstract
The biochemical properties of collagens and gels from grass carp (Ctenopharyngodon idella) were studied to explore the feasibility of their application in biomaterials. The yields of skin collagen (SC) and swim bladder collagen (SBC) extracted from grass carp were 10.41 ± 0.67% and 6.11 ± 0.12% on a wet basis, respectively. Both collagens were characterized as type I collagen. Denaturation temperatures of SC and SBC were 37.41 ± 0.02 °C and 39.82 ± 0.06 °C, respectively. SC and SBC had high fibril formation ability in vitro, and higher values of salinity (NaCl, 0-280 mM) and pH (6-8) in formation solution were found to result in faster self-assembly of SC and SBC fibrils as well as thicker fibrils. Further tests of SC gels with regular morphology revealed that their texture properties and water content were affected by pH and NaCl concentration. The hardness, springiness, and cohesiveness of SC gels increased and the chewiness and water content decreased as pH increased from 7 to 8 and NaCl concentration increased from 140 to 280 mM. These properties suggest that collagens from grass carp may be useful in biomaterial applications in the future.
Collapse
Affiliation(s)
- Zhiyuan Shen
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhang
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Xi Zhang
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Engineering collagen fiber templates with oriented nanoarchitecture and concerns on osteoblast behaviors. Int J Biol Macromol 2021; 185:77-86. [PMID: 34139244 DOI: 10.1016/j.ijbiomac.2021.06.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
Nanostructure provides a closer structural support approximation to native bone architecture for cells and further regulates cell's behavior, resulting in the formation of functional tissues. In this work, three engineering collagen templates with oriented fiber architectures were fabricated via electrospinning (Es), plastic compression and tensile (PCT), and dynamic shear stress (SS) methods. Under the observation of POM, SEM, AFM and TEM, the PCT-template and SS-template are packed with well-oriented nanofibers with the native collagen architecture of 67 nm D-periodicity, and the mechanical properties conferred to the templates are better than that of the Es-template. When mentioning the cell's behavior, MC3T3-E1 adhered to grow along the alignment of collagen fiber orientation when cultured on the PCT-template and SS-template. The SS-template with nano- and micro-ordered architecture guided cells to stretch their plasma along with the orientation of collagen fiber, produce more aligned Type I collagen fibers and promote significantly higher osteogenic differentiation of MC3T3-E1 than the PCT-template and Es-template. Overall, it is strongly argued the feasibility of hierarchical collagen fiber architectures for bone tissue regeneration.
Collapse
|
7
|
Nanofibrous Gelatin-Based Biomaterial with Improved Biomimicry Using D-Periodic Self-Assembled Atelocollagen. Biomimetics (Basel) 2021; 6:biomimetics6010020. [PMID: 33803778 PMCID: PMC8006151 DOI: 10.3390/biomimetics6010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Design of bioinspired materials that mimic the extracellular matrix (ECM) at the nanoscale is a challenge in tissue engineering. While nanofibrillar gelatin materials mimic chemical composition and nano-architecture of natural ECM collagen components, it lacks the characteristic D-staggered array (D-periodicity) of 67 nm, which is an important cue in terms of cell recognition and adhesion properties. In this study, a nanofibrous gelatin matrix with improved biomimicry is achieved using a formulation including a minimal content of D-periodic self-assembled atelocollagen. We suggest a processing route approach consisting of the thermally induced phase separation of the gelatin based biopolymeric mixture precursor followed by chemical-free material cross-linking. The matrix nanostructure is characterized using field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), wide angle X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The cell culture assays indicate that incorporation of 2.6 wt.% content of D-periodic atelocollagen to the gelatin material, produces a significant increase of MC3T3-E1 mouse preosteoblast cells attachment and human mesenchymal stem cells (hMSCs) proliferation, in comparison with related bare gelatin matrices. The presented results demonstrate the achievement of an efficient route to produce a cost-effective, compositionally defined and low immunogenic “collagen-like” instructive biomaterial, based on gelatin.
Collapse
|
8
|
Wang J, Chen J, Ran Y, He Q, Jiang T, Li W, Yu X. Utility of Air Bladder-Derived Nanostructured ECM for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:553529. [PMID: 33178669 PMCID: PMC7594528 DOI: 10.3389/fbioe.2020.553529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022] Open
Abstract
Exploration for ideal bone regeneration materials still remains a hot research topic due to the unmet clinical challenge of large bone defect healing. Bone grafting materials have gradually evolved from single component to multiple-component composite, but their functions during bone healing still only regulate one or two biological processes. Therefore, there is an urgent need to develop novel materials with more complex composition, which convey multiple biological functions during bone regeneration. Here, we report an naturally nanostructured ECM based composite scaffold derived from fish air bladder and combined with dicalcium phosphate (DCP) microparticles to form a new type of bone grafting material. The DCP/acellular tissue matrix (DCP/ATM) scaffold demonstrated porous structure with porosity over 65% and great capability of absorbing water and other biologics. In vitro cell culture study showed that DCP/ATM scaffold could better support osteoblast proliferation and differentiation in comparison with DCP/ADC made from acid extracted fish collagen. Moreover, DCP/ATM also demonstrated more potent bone regenerative properties in a rat calvarial defect model, indicating incorporation of ECM based matrix in the scaffolds could better support bone formation. Taken together, this study demonstrates a new avenue toward the development of new type of bone regeneration biomaterial utilizing ECM as its key components.
Collapse
Affiliation(s)
- Jianwei Wang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jiayu Chen
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Yongfeng Ran
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Qianhong He
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Tao Jiang
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Weixu Li
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xiaohua Yu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, Shavandi A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers (Basel) 2020; 12:E2230. [PMID: 32998331 PMCID: PMC7601392 DOI: 10.3390/polym12102230] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the human body. This article presents an overview of the recent studies from 2014 to 2020 conducted on collagen extraction from marine-based materials, in particular fish by-products. The fish collagen structure, extraction methods, characterization, and biomedical applications are presented. More specifically, acetic acid and deep eutectic solvent (DES) extraction methods for marine collagen isolation are described and compared. In addition, the effect of the extraction parameters (temperature, acid concentration, extraction time, solid-to-liquid ratio) on the yield of collagen is investigated. Moreover, biomaterials engineering and therapeutic applications of marine collagen have been summarized.
Collapse
Affiliation(s)
- Hafez Jafari
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Alberto Lista
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy;
| | - Manuela Mafosso Siekapen
- Department of Chemical Engineering and Industrial Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050 Brussels, Belgium;
| | - Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran;
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Amin Shavandi
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
10
|
Phenolic-Enriched Collagen Fibrillar Coatings on Titanium Alloy to Promote Osteogenic Differentiation and Reduce Inflammation. Int J Mol Sci 2020; 21:ijms21176406. [PMID: 32899166 PMCID: PMC7504673 DOI: 10.3390/ijms21176406] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022] Open
Abstract
The adsorption of biomolecules on biomaterial surfaces can promote their integration with surrounding tissue without changing their bulk properties. For biomaterials in bone reconstruction, the promotion of osteogenic differentiation and reduction of inflammation are desirable. Fibrillar coatings are interesting because of fibrils’ high surface area-volume ratio, aiding adsorption and adhesion. Fibrils also serve as a matrix for the immobilization of biomolecules with biological activity, such as the phenolic compound phloroglucinol (PG), the subunit of marine polyphenols. The aim of this work was to investigate the influence of PG coatings on fibroblast- and osteoblast-like cells to increase the osseointegration of titanium implants. Collagen fibril coatings, containing PG at low and high concentrations, were produced on titanium alloy (Ti6Al4V) scaffolds generated by additive manufacturing (AM). These coatings, especially PG-enriched coatings, reduced hydrophobicity and modulated the behavior of human osteosarcoma SaOS-2 and mouse embryonic fibroblast 3T3 cell lines. Both osteoblastic and fibroblastic cells spread and adhered well on PG-enriched coatings. Coatings significantly reduced the inflammatory response. Moreover, osteogenic differentiation was promoted by collagen coatings with a high PG concentration. Thus, the enrichment of collagen fibril coatings with PG is a promising strategy to improve Ti6Al4V implants for bone contact in orthopedics and dentistry and is worthy of further investigation.
Collapse
|
11
|
Meng D, Li W, Ura K, Takagi Y. Effects of phosphate ion concentration on in-vitro fibrillogenesis of sturgeon type I collagen. Int J Biol Macromol 2020; 148:182-191. [PMID: 31953179 DOI: 10.1016/j.ijbiomac.2020.01.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/25/2023]
Abstract
Nonmammalian collagens have attracted significant attention owing to their potential for use as a source of cell scaffolds for tissue engineering. Since the morphology of collagen fibrils controls cell proliferation and differentiation, its regulation is essential for fabricating scaffolds with desirable characteristics. In this study, we evaluated the effects of the phosphate ion (Pi) concentration on the characteristics of fibrils formed from swim bladder type I collagen (SBC) and skin type I collagen (SC) from the Bester sturgeon. An increase in the Pi concentration decreased the fibril formation rate, promoted the formation of thick fibrils, and increased the thermal stability of the fibrils for both SBC and SC. However, the SBC and SC fibrils exhibited different fibril formation rates, degrees of fibrillogenesis, morphologies, and denaturation temperatures for the same reaction conditions. Finally, by regulating the Pi concentration, various types of SBC and SC fibrils could be coated on cell culture wells, and fibroblasts could be cultured on them. The results showed that thin fibrils enhance fibroblast extension and proliferation, whereas thick fibrils restrain fibroblast extension but orient them in the same direction. The results of this study suggest that SBC fibrils, which exhibit diverse morphologies, are suitable for use as a novel scaffold material, whose characteristics can be tailored readily by varying the Pi concentration.
Collapse
Affiliation(s)
- Dawei Meng
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China; Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| | - Wen Li
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Kazuhiro Ura
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
12
|
Zhang X, Adachi S, Ura K, Takagi Y. Properties of collagen extracted from Amur sturgeon Acipenser schrenckii and assessment of collagen fibrils in vitro. Int J Biol Macromol 2019; 137:809-820. [PMID: 31279889 DOI: 10.1016/j.ijbiomac.2019.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 11/28/2022]
Abstract
The objective of this study was to assess the nature of the collagens from the Amur sturgeon to determine its possibility as a potential collagen source for biomedical applications. From a sturgeon (1.22 kg), 6.0 g (dry wt) of skin collagen (SC), 4.1 g of swim bladder collagen (SBC), and 0.4 g of notochord collagen (NC) were obtained. SC and SBC were characterized as type I, and NC as type II collagen. Denaturation temperatures of SC, SBC, and NC were calculated as 28.5, 30.5, and 33.5 °C, respectively. Gene expression of the type I procollagen α2 chain of Amur sturgeon (ascol1a2) was specifically higher than ascol1a1 expression in the swim bladder, suggesting a unique composition of α chains in this organ. SC and SBC had better abilities of fibril formation with unique higher-order structures compared with porcine type I collagen. The maximum transition temperature (Tm) of reassembled fibrils formed in a buffer solution containing NaCl at 0 and 140 mM was 34.4 °C and 38.9 °C in SC, and 40.1 °C and 40.7 °C in SBC, respectively. These characteristic features suggested that sturgeon collagens could be used in the biomedical industries in future applications.
Collapse
Affiliation(s)
- Xi Zhang
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China; Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| | - Shinji Adachi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Kazuhiro Ura
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|