1
|
Wang L, Jiang S, Zhou J, Gholipourmalekabadi M, Cao Y, Lin K, Zhuang Y, Yuan C. From hard tissues to beyond: Progress and challenges of strontium-containing biomaterials in regenerative medicine applications. Bioact Mater 2025; 49:85-120. [PMID: 40124596 PMCID: PMC11928986 DOI: 10.1016/j.bioactmat.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Tissue engineering and regenerative medicine have emerged as crucial disciplines focused on the development of new tissues and organs to overcome the limitations of traditional treatments for tissue damage caused by accidents, diseases, or aging. Strontium ion (Sr2+) has garnered significant attention for its multifaceted role in promoting regeneration medicine and therapy, especially in bone tissue regeneration. Recently, numerous studies further confirm that Sr2+ also plays a critical in soft tissue regeneration. This review firstly summarizes the influence of Sr2+ on critical biological processes such as osteogenesis, angiogenesis, immune modulation, matrix synthesis, mineralization, and antioxidative defence mechanisms. Then details the classification, properties, advantages, and limitations of Sr-containing biomaterials (SrBMs). Additionally, this review extends to the current applications of SrBMs in regenerative medicine for diverse tissues, including bone, cartilage, skeletal muscle, dental pulp, cardiac tissue, skin, hair follicles, etc. Moreover, the review addresses the challenges associated with current SrBMs and provides insights for their future designing and applications in regenerative medicine.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Shengjie Jiang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jialiang Zhou
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Yuan Cao
- Colorado College, 819 N Tejon Street Box 56, Colorado Springs, 80903, Colorado, USA
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Yu Zhuang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| |
Collapse
|
2
|
Zhou X, Mathews P, Berkels B, Delis W, Saood S, Shamseldeen Ali Alhassan A, Keuter P, Schneider JM, Korte‐Kerzel S, Sandlöbes‐Haut S, Raabe D, Neugebauer J, Dehm G, Hickel T, Scheu C, Zhang S. Materials Design by Constructing Phase Diagrams for Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2402191. [PMID: 39551984 PMCID: PMC11756050 DOI: 10.1002/adma.202402191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/10/2024] [Indexed: 11/19/2024]
Abstract
Phase transformations and crystallographic defects are two essential tools to drive innovations in materials. Bulk materials design via tuning chemical compositions is systematized using phase diagrams. It is shown here that the same thermodynamic concept can be applied to manipulate the chemistry at defects. Grain boundaries in Mg-Ga system are chosen as a model system, because Ga segregates to the boundaries, while simultaneously improving the strength and ductility of Mg alloys. To reveal the role of grain boundaries, correlated atomic-scale characterization and simulation to scope and build phase diagrams for defects are presented. The discovery is enabled by triggering phase transformations of individual grain boundaries through local alloying, and sequentially imaging the structural and chemical changes using atomic-resolution scanning transmission electron microscopy. Ab initio simulations determined the thermodynamic stability of grain boundary phases, and found out that increasing Ga content enhances grain boundary cohesion, relating to improved ductility. The methodology to trigger, trace, and simulate defect transformation at atomic resolution enables a systematic development of defect phase diagrams, providing a valuable tool to utilize chemical complexity and phase transformations at defects.
Collapse
Affiliation(s)
- Xuyang Zhou
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| | - Prince Mathews
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| | - Benjamin Berkels
- Aachen Institute for Advanced Study in Computational Engineering Science (AICES)RWTH Aachen UniversitySchinkelstraße 252062AachenGermany
| | - Wassilios Delis
- Insitute for Physical Metallurgy and Materials PhysicsRWTH Aachen52074AachenGermany
| | - Saba Saood
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| | - Amel Shamseldeen Ali Alhassan
- Aachen Institute for Advanced Study in Computational Engineering Science (AICES)RWTH Aachen UniversitySchinkelstraße 252062AachenGermany
| | - Philipp Keuter
- Materials ChemistryRWTH Aachen UniversityKopernikusstraße 1052074AachenGermany
| | - Jochen M. Schneider
- Materials ChemistryRWTH Aachen UniversityKopernikusstraße 1052074AachenGermany
| | - Sandra Korte‐Kerzel
- Insitute for Physical Metallurgy and Materials PhysicsRWTH Aachen52074AachenGermany
| | | | - Dierk Raabe
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| | - Jörg Neugebauer
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| | - Gerhard Dehm
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| | - Tilmann Hickel
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
- Federal Institute for Materials Research and Testing (BAM)Richard‐Willstätter‐Straße 1112489BerlinGermany
| | - Christina Scheu
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| | - Siyuan Zhang
- Max Planck Institute for Sustainable MaterialsMax‐Planck‐Straße 140237DüsseldorfGermany
| |
Collapse
|
3
|
Zhang Z, He D, Wang X, Ma X, Zheng Y, Gu X, Li Y. In vitro and in vivo evaluation of osteogenesis and antibacterial activity of MgGa alloys. Acta Biomater 2024; 185:85-97. [PMID: 39025394 DOI: 10.1016/j.actbio.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
MgGa alloys are considered highly potential biodegradable materials, owing to its good mechanical properties and appropriate corrosion resistance. However, it is still far from application due to the lack of biological evaluation. In the present study, biocompatibility, osteogenesis and antibacterial activity of extruded Mg-xGa (x = 1 and 5 wt%) alloys were investigated by in vitro cell culture experiments and in vivo implantation. The cell adhesion and proliferation of osteoblast precursor cells (MC3T3-E1) showed the excellent cytocompatibility of Mg-1Ga and poor cytocompatibility of Mg-5Ga. The osteogenic activity was evaluated and revealed that Ga3+ in the Mg-1Ga extract had the ability to enhance osteogenic differentiation through the facilitation of its early stages. In vivo studies in a rat femoral condyle model revealed that both Mg-1Ga and Mg-5Ga significantly promoted new bone formation without causing any adverse effects. Mg-5Ga exhibited a much higher corrosion rate in vivo than Mg-1Ga. Its osteogenic activity was better due to the rapid release of Mg2+ and Ga3+, but this caused premature structural integrity loss. Mg-1Ga and Mg-5Ga released Ga3+ to inhibit E. coli and S. aureus, with antibacterial rate increasing with Ga content. Our studies demonstrate that Mg-Ga alloys have the potential to be used as osteogenic and antibacterial implant materials. STATEMENT OF SIGNIFICANCE: This study evaluates the biocompatibility, osteogenesis, and antibacterial activity of Mg-Ga alloys, which are promising biodegradable materials for medical applications. The study finds that Mg-1Ga exhibits excellent cytocompatibility and promotes osteogenic differentiation, facilitating the early stages of osteoblast precursor cell development. In vivo studies in a rat femoral condyle model reveal that Mg-1Ga and Mg-5Ga significantly promote new bone formation without causing any adverse effects. The antibacterial activity of both alloys is evaluated against E. coli and S. aureus, with the inhibition rate increasing with Ga content. These findings suggest that Mg-Ga alloys have the potential to serve as osteogenic and antibacterial implant materials, providing significant insights into the development of novel biomedical implants.
Collapse
Affiliation(s)
- Ziyue Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
| | - Donglei He
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Xueying Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiaolong Ma
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yang Zheng
- School of Aeronautics and Astronautics, Tiangong University, Tianjin 300387, China.
| | - Xuenan Gu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yan Li
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
4
|
Gokyer S, Monsef YA, Buyuksungur S, Schmidt J, Vladescu Dragomir A, Uygur S, Oto C, Orhan K, Hasirci V, Hasirci N, Yilgor P. MgCa-Based Alloys Modified with Zn- and Ga-Doped CaP Coatings Lead to Controlled Degradation and Enhanced Bone Formation in a Sheep Cranium Defect Model. ACS Biomater Sci Eng 2024; 10:4452-4462. [PMID: 38875708 PMCID: PMC11234335 DOI: 10.1021/acsbiomaterials.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Mg-based biodegradable metallic implants are gaining increased attraction for applications in orthopedics and dentistry. However, their current applications are hampered by their high rate of corrosion, degradation, and rapid release of ions and gas bubbles into the physiological medium. The aim of the present study is to investigate the osteogenic and angiogenic potential of coated Mg-based implants in a sheep cranial defect model. Although their osteogenic potential was studied to some extent, their potential to regenerate vascularized bone formation was not studied in detail. We have studied the potential of magnesium-calcium (MgCa)-based alloys modified with zinc (Zn)- or gallium (Ga)-doped calcium phosphate (CaP) coatings as a strategy to control their degradation rate while enhancing bone regeneration capacity. MgCa and its implants with CaP coatings (MgCa/CaP) as undoped or as doped with Zn or Ga (MgCa/CaP + Zn and MgCa/CaP + Ga, respectively) were implanted in bone defects created in the sheep cranium. MgCa implants degraded faster than the others at 4 weeks postop and the weight loss was ca. 50%, while it was ca. 15% for MgCa/CaP and <10% in the presence of Zn and Ga with CaP coating. Scanning electron microscopy (SEM) analysis of the implant surfaces also revealed that the MgCa implants had the largest degree of structural breakdown of all the groups. Radiological evaluation revealed that surface modification with CaP to the MgCa implants induced better bone regeneration within the defects as well as the enhancement of bone-implant surface integration. Bone volume (%) within the defect was ca. 25% in the case of MgCa/CaP + Ga, while it was around 15% for undoped MgCa group upon micro-CT evaluation. This >1.5-fold increase in bone regeneration for MgCa/CaP + Ga implant was also observed in the histopathological examination of the H&E- and Masson's trichrome-stained sections. Immunohistochemical analysis of the bone regeneration (antiosteopontin) and neovascularization (anti-CD31) at the defect sites revealed >2-fold increase in the expression of the markers in both Ga- and Zn-doped, CaP-coated implants. Zn-doped implants further presented low inflammatory reaction, notable bone regeneration, and neovascularization among all the implant groups. These findings indicated that Ga- and Zn-doped CaP coating is an important strategy to control the degradation rate as well as to achieve enhanced bone regeneration capacity of the implants made of Mg-based alloys.
Collapse
Affiliation(s)
- Seyda Gokyer
- Department of Biomedical Engineering, Ankara University, Ankara 06830, Turkey
| | - Yanad Abou Monsef
- Anatomic Pathology Department, National Veterinary School of Toulouse, Toulouse 31300, France
| | - Senem Buyuksungur
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
| | - Jurgen Schmidt
- Gruppenleiter Elektrochemie, Prüssingstraße 27b, INNOVENT e.V. Technologieentwicklung, Jena 07745, Germany
| | - Alina Vladescu Dragomir
- 409 Atomistilor St., National Institute of R&D for Optoelectronics─INOE 2000, Magurele 77125, Romania
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | | | | | | | - Vasif Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
| | - Nesrin Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
- METU Department of Chemistry, Ankara 06800, Turkey
- Near East University Tissue Engineering and Biomaterials Research Center, Nicosia 99138, TRNC Mersin 10, Turkey
| | - Pinar Yilgor
- Department of Biomedical Engineering, Ankara University, Ankara 06830, Turkey
| |
Collapse
|
5
|
Huang T, Huang S, Liu D, Zhu W, Wu Q, Chen L, Zhang X, Liu M, Wei Y. Recent advances and progress on the design, fabrication and biomedical applications of Gallium liquid metals-based functional materials. Colloids Surf B Biointerfaces 2024; 238:113888. [PMID: 38599077 DOI: 10.1016/j.colsurfb.2024.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Gallium (Ga) is a well-known liquid metals (LMs) that possesses the features, such as fluidity, low viscosity, high electrical and thermal conductivity, and relative low toxicity. Owing to the weak interactions between Ga atoms, Ga LMs can be adopted for fabrication of various Ga LMs-based functional materials via ultrasonic treatment and mechanical grinding. Moreover, many organic compounds/polymers can be coated on the surface of LMs-based materials through coordination between oxidized outlayers of Ga LMs and functional groups of organic components. Over the past decades, different strategies have been reported for synthesizing Ga LMs-based functional materials and their biomedical applications have been intensively investigated. Although some review articles have published over the past few years, a concise review is still needed to advance the latest developments in biomedical fields. The main context can be majorly divided into two parts. In the first section, various strategies for fabrication of Ga LMs-based functional materials via top-down strategies were introduced and discussed. Following that, biomedical applications of Ga LMs-based functional materials were summarized and design Ga LMs-based functional materials with enhanced performance for cancer photothermal therapy (PTT) and PTT combined therapy were highlighted. We trust this review article will be beneficial for scientists to comprehend this promising field and greatly advance future development for fabrication of other Ga LMs-based functional materials with better performance for biomedical applications.
Collapse
Affiliation(s)
- Tongsheng Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Shiyu Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dong Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qinghua Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Meiying Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Tang H, Qi C, Bai Y, Niu X, Gu X, Fan Y. Incorporation of Magnesium and Zinc Metallic Particles in PLGA Bi-layered Membranes with Sequential Ion Release for Guided Bone Regeneration. ACS Biomater Sci Eng 2023. [PMID: 37162308 DOI: 10.1021/acsbiomaterials.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Guided bone regeneration (GBR) membranes are commonly used for periodontal tissue regeneration. Due to the complications of existing GBR membranes, the design of bioactive membranes is still relevant. GBR membranes with an asymmetric structure can accommodate the functional requirements of different interfacial tissues. Here, poly(lactic acid-glycolic acid) (PLGA) was selected as the matrix for preparing a bi-layered membrane with both dense and porous structure. The dense layer for blocking soft tissues was incorporated with zinc (Zn) particles, while the porous layer for promoting bone regeneration was co-incorporated with magnesium (Mg) and Zn particles. Mg/Zn-embedded PLGA membranes exhibited 166% higher mechanical strength in comparison with pure PLGA membranes and showed suitable degradation properties with a sequential ion release behavior of Mg2+ first and continuously Zn2+. More importantly, the release of Zn2+ from bi-layered PLGA endowed GBR membranes with excellent antibacterial activity (antibacterial rate > 69.3%) as well as good cytocompatibility with MC3T3-E1 (mouse calvaria pre-osteoblastic cells) and HGF-1 (human gingival fibroblast cells). Thus, the asymmetric bi-layered PLGA membranes embedded with Mg and Zn particles provide a simple and effective strategy to not only reinforce the PLGA membrane but also endow membranes with osteogenic and antibacterial activity due to the continuous ion release profile, which serves as a promising candidate for use in GBR therapy.
Collapse
Affiliation(s)
- Hongyan Tang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chengkai Qi
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yanjie Bai
- Stomatology Department, Peking University Third Hospital, Beijing 100191, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xuenan Gu
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
7
|
Aboutalebianaraki N, Zeblisky P, Sarker MD, Jeyaranjan A, Sakthivel TS, Fu Y, Lucchi J, Baudelet M, Seal S, Kean TJ, Razavi M. An osteogenic magnesium alloy with improved corrosion resistance, antibacterial, and mechanical properties for orthopedic applications. J Biomed Mater Res A 2023; 111:556-574. [PMID: 36494895 DOI: 10.1002/jbm.a.37476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/08/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
The aim of this study was to develop a novel biodegradable magnesium (Mg) alloy for bone implant applications. We used scandium (Sc; 2 wt %) and strontium (Sr; 2 wt %) as alloying elements due to their high biocompatibility, antibacterial efficacy, osteogenesis, and protective effects against corrosion. In the present work, we also examined the effect of a heat treatment process on the properties of the Mg-Sc-Sr alloy. Alloys were manufactured using a metal casting process followed by heat treatment. The microstructure, corrosion, mechanical properties, antibacterial activity, and osteogenic activity of the alloy were assessed in vitro. The results showed that the incorporation of Sc and Sr elements controlled the corrosion, reduced the hydrogen generation, and enhanced mechanical properties. Furthermore, alloying with Sc and Sr demonstrated a significantly enhanced antibacterial activity and decreased biofilm formation compared to control Mg. Also, culturing Mg-Sc-Sr alloy with human bone marrow-derived mesenchymal stromal cells showed a high degree of biocompatibility (>90% live cells) and a significant increase in osteoblastic differentiation in vitro shown by Alizarin red staining and alkaline phosphatase activity. Based on these results, the Mg-Sc-Sr alloy heat-treated at 400°C displayed optimal mechanical properties, corrosion rate, antibacterial efficacy, and osteoinductivity. These characteristics make the Mg-Sc-Sr alloy a promising candidate for biodegradable orthopedic implants in the fixation of bone fractures such as bone plate-screws or intramedullary nails.
Collapse
Affiliation(s)
- Nadia Aboutalebianaraki
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Peter Zeblisky
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - M D Sarker
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Aadithya Jeyaranjan
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Tamil S Sakthivel
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Yifei Fu
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - John Lucchi
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA.,National Center for Forensic Science, University of Central Florida, Orlando, Florida, USA
| | - Matthieu Baudelet
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA.,National Center for Forensic Science, University of Central Florida, Orlando, Florida, USA.,CREOL - The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Thomas J Kean
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
8
|
Zhang Y, Liu Y, Zheng R, Zheng Y, Chen L. Research progress on corrosion behaviors and biocompatibility of rare-earth magnesium alloys in vivo and in vitro. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
9
|
Corrosion Behavior and Biocompatibility of Hot-Extruded Mg-Zn-Ga-(Y) Biodegradable Alloys. J Funct Biomater 2022; 13:jfb13040294. [PMID: 36547554 PMCID: PMC9784916 DOI: 10.3390/jfb13040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Fixation screws and other temporary magnesium alloy fixation devices are used in orthopedic practice because of their biodegradability, biocompatibility and acceptable biodegradation rates. The substitution of dissolving implant by tissues during the healing process is one of the main requirements for biodegradable implants. Previously, clinical tests showed the effectiveness of Ga ions on bone tissue regeneration. This work is the first systematic study on the corrosion rate and biocompatibility of Mg-Zn-Ga-(Y) alloys prepared by hot extrusion, where Ga is an additional major alloying element, efficient as a bone-resorption inhibitor. Most investigated alloys have a low corrosion rate in Hanks' solution close to ~0.2 mm/year. No cytotoxic effects of Mg-2Zn-2Ga (wt.%) alloy on MG63 cells were observed. Thus, considering the high corrosion resistance and good biocompatibility, the Mg-2Zn-2Ga alloy is possible for applications in osteosynthesis implants with improved bone tissue regeneration ability.
Collapse
|
10
|
Kurtuldu F, Mutlu N, Boccaccini AR, Galusek D. Gallium containing bioactive materials: A review of anticancer, antibacterial, and osteogenic properties. Bioact Mater 2022; 17:125-146. [PMID: 35386441 PMCID: PMC8964984 DOI: 10.1016/j.bioactmat.2021.12.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
The incorporation of gallium into bioactive materials has been reported to enhance osteogenesis, to influence blood clotting, and to induce anti-cancer and anti-bacterial activity. Gallium-doped biomaterials prepared by various techniques include melt-derived and sol-gel-derived bioactive glasses, calcium phosphate bioceramics, metals and coatings. In this review, we summarize the recently reported developments in antibacterial, anticancer, osteogenesis, and hemostasis properties of Ga-doped biomaterials and briefly outline the mechanisms leading to Ga biological effects. The key finding is that gallium addition to biomaterials has great potential for treating bone-related diseases since it can be efficiently transferred to the desired region at a controllable rate. Besides, it can be used as a potential substitute for antibiotics for the inhibition of infections during the initial and advanced phases of the wound healing process. Ga is also used as an anticancer agent due to the increased concentration of gallium around excessive cell proliferation (tumor) sites. Moreover, we highlight the possibility to design different therapeutic approaches aimed at increasing the efficiency of the use of gallium containing bioactive materials for multifunctional applications.
Collapse
Affiliation(s)
- Fatih Kurtuldu
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50, Trenčín, Slovakia
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Nurshen Mutlu
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50, Trenčín, Slovakia
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Dušan Galusek
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50, Trenčín, Slovakia
- Joint Glass Centre of the IIC SAS, TnUAD and FChFT STU, Študentská 2, 911 50, Trenčín, Slovakia
| |
Collapse
|
11
|
Paiva JCC, Oliveira L, Vaz MF, Costa-de-Oliveira S. Biodegradable Bone Implants as a New Hope to Reduce Device-Associated Infections-A Systematic Review. Bioengineering (Basel) 2022; 9:409. [PMID: 36004934 PMCID: PMC9405200 DOI: 10.3390/bioengineering9080409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone fractures often require fixation devices that frequently need to be surgically removed. These temporary implants and procedures leave the patient more prone to developing medical device-associated infections, and osteomyelitis associated with trauma is a challenging complication for orthopedists. In recent years, biodegradable materials have gained great importance as temporary medical implant devices, avoiding removal surgery. The purpose of this systematic review was to revise the literature regarding the use of biodegradable bone implants in fracture healing and its impact on the reduction of implant-associated infections. The systematic review followed the PRISMA guidelines and was conducted by searching published studies regarding the in vivo use of biodegradable bone fixation implants and its antibacterial activity. From a total of 667 references, 23 studies were included based on inclusion and exclusion criteria. Biodegradable orthopedic implants of Mg-Cu, Mg-Zn, and Zn-Ag have shown antibacterial activity, especially in reducing infection burden by MRSA strains in vivo osteomyelitis models. Their ability to prevent and tackle implant-associated infections and to gradually degrade inside the body reduces the need for a second surgery for implant removal, with expectable gains regarding patients' comfort. Further in vivo studies are mandatory to evaluate the efficiency of these antibacterial biodegradable materials.
Collapse
Affiliation(s)
- José C. C. Paiva
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Luís Oliveira
- DPS—Product Systems Development, INEGI—Institute of Science and Innovation in Mechanical and Industrial Engineering, 4200-465 Porto, Portugal
| | - Maria Fátima Vaz
- IDMEC—Instituto Superior Técnico, Universidade de Lisboa, 1499-002 Lisboa, Portugal
- Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, 1499-002 Lisboa, Portugal
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
12
|
Song MS, Li RW, Qiu Y, Man SM, Tuipulotu DE, Birbilis N, Smith PN, Cole I, Kaplan DL, Chen XB. Gallium-Strontium Phosphate Conversion Coatings for Promoting Infection Prevention and Biocompatibility of Magnesium for Orthopedic Applications. ACS Biomater Sci Eng 2022; 8:2709-2723. [PMID: 35574832 DOI: 10.1021/acsbiomaterials.2c00099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Device-associated infections remain a clinical challenge. The common strategies to prevent bacterial infection are either toxic to healthy mammalian cells and tissue or involve high doses of antibiotics that can prompt long-term negative consequences. An antibiotic-free coating strategy to suppress bacterial growth is presented herein, which concurrently promotes bone cell growth and moderates the dissolution kinetics of resorbable magnesium (Mg) biomaterials. Pure Mg as a model biodegradable material was coated with gallium-doped strontium-phosphate through a chemical conversion process. Gallium was distributed in a gradual manner throughout the strontium-phosphate coating, with a compact structure and a gallium-rich surface. It was demonstrated that the coating protected the underlying Mg parts from significant degradation in minimal essential media at physiological conditions over 9 days. In terms of bacteria culture, the liberated gallium ions from the coatings upon Mg specimens, even though in minute quantities, inhibited the growth of Gram-positiveStaphylococcus aureus, Gram-negative Escherichia coli, andPseudomonas aeruginosa ─ key pathogens causing infection and early failure of the surgical implantations in orthopedics and trauma. More importantly, the gallium dopants displayed minimal interferences with the strontium-phosphate-based coating which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures. This work provides a new strategy to prevent bacterial infection and control the degradation behavior of Mg-based orthopedic implants, while preserving osteogenic features of the devices.
Collapse
Affiliation(s)
- Ming-Shi Song
- School of Engineering, RMIT University, Carlton, Victoria 3053, Australia
| | - Rachel W Li
- Trauma and Orthopaedic Research Laboratory, Department of Surgery, The Medical School, The Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Yao Qiu
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, College of Health & Medicine, The Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Daniel E Tuipulotu
- Department of Immunology and Infectious Disease, College of Health & Medicine, The Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Nick Birbilis
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Paul N Smith
- Department of Surgery, The Canberra Hospital, Garran, Australian Capital Territory 2605, Australia
| | - Ivan Cole
- School of Engineering, RMIT University, Carlton, Victoria 3053, Australia
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Carlton, Victoria 3053, Australia
| |
Collapse
|
13
|
Wang N, Ma Y, Shi H, Song Y, Guo S, Yang S. Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials. Front Bioeng Biotechnol 2022; 10:888084. [PMID: 35677296 PMCID: PMC9168471 DOI: 10.3389/fbioe.2022.888084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Implant-associated infection (IAI) is one of the major challenges in orthopedic surgery. The development of implants with inherent antibacterial properties is an effective strategy to resolve this issue. In recent years, biodegradable alloy materials have received considerable attention because of their superior comprehensive performance in the field of orthopedic implants. Studies on biodegradable alloy orthopedic implants with antibacterial properties have gradually increased. This review summarizes the recent advances in biodegradable magnesium- (Mg-), iron- (Fe-), and zinc- (Zn-) based alloys with antibacterial properties as orthopedic implant materials. The antibacterial mechanisms of these alloy materials are also outlined, thus providing more basis and insights on the design and application of biodegradable alloys with antibacterial properties as orthopedic implants.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| |
Collapse
|
14
|
Xie Y, Chen S, Peng X, Wang X, Wei Z, Richardson JJ, Liang K, Ejima H, Guo J, Zhao C. Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization. Bioact Mater 2022; 16:95-106. [PMID: 35386317 PMCID: PMC8958420 DOI: 10.1016/j.bioactmat.2022.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
New materials for combating bacteria-caused infection and promoting the formation of microvascular networks during wound healing are of vital importance. Although antibiotics can be used to prevent infection, treatments that can disinfect and accelerate wound healing are scarce. Herein, we engineer a coating that is both highly compatible with current wound dressing substrates and capable of simultaneously disinfecting and revascularizing wounds using a metal-phenolic nanoplatform containing an alloyed nanostructured architecture (Ag@Cu-MPNNC). The alloyed nanostructure is formed by the spontaneous co-reduction and catalytic disproportionation reaction of multiple metal ions on a foundation metal-phenolic supramolecular layer. This synergistic presence of metals greatly improves the antibacterial activity against both Gram-negative and Gram-positive pathogenic bacteria, while demonstrating negligible cytotoxicity to normal tissue. In infected rat models, the Ag@Cu-MPNNC could kill bacteria efficiently, promoting revascularization and accelerate wound closure with no adverse side effects in infected in vivo models. In other words, this material acts as a combination therapy by inhibiting bacterial invasion and modulating bio-nano interactions in the wound.
Collapse
Affiliation(s)
- Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Shengqiu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xu Peng
- Laboratory Animal Center, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan Univerisity, Chengdu, Sichuan, 610065, China
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hirotaka Ejima
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Junling Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan Univerisity, Chengdu, Sichuan, 610065, China.,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
15
|
Lu X, Cai H, Li YR, Zheng X, Yun J, Li W, Geng X, Kwon JS, Jiang HB. A Systematic Review and Network Meta-Analysis of Biomedical Mg Alloy and Surface Coatings in Orthopedic Application. Bioinorg Chem Appl 2022; 2022:4529520. [PMID: 35399618 PMCID: PMC8991394 DOI: 10.1155/2022/4529520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/19/2022] [Indexed: 12/15/2022] Open
Abstract
Magnesium alloys have great application prospects as ideal bone implant materials. However, their poor corrosion resistance limits their clinical orthopedic application. Surface modification promotes the corrosion resistance of magnesium. Conversion coatings, such as calcium phosphate (Ca-P) coating, microarc oxidation (MAO) treatment, and fluoride (FLU) treatment, have been extensively investigated in in vivo studies. This systematic review and network meta-analysis compared the influence of different conversion coatings on bone repair, material properties, and systemic host response in orthopedic applications. Using the PICOS model, the inclusion criteria for biodegradable magnesium and its alloys were determined for in vivo studies. Four databases were used. The standard and weight mean differences with 95% confidence intervals were used to analyze new bone formation and degradation rate. Network structure and forest plots were created, and ranking probabilities were estimated. The risk of bias and quality of evidence were assessed using SYRCLE, CERQual, and GRADE tools. In the qualitative analysis, 43 studies were selected, and the evaluation of each outcome indicator was not entirely consistent from article to article. In the quantitative analysis, 21 articles were subjected to network meta-analysis, with 16 articles on implant degradation and 8 articles for new bone formation. Additionally, SUCRA indicated that Ca-P coating exhibited the highest corrosion resistance, followed by FLU treatment. MAO demonstrated the best capability for new bone formation, followed by Ca-P coating. Ca-P coating exhibited the highest overall performance. To conclude, coated Mg can promote better new bone formation than bare Mg and has considerable biocompatibility. Ca-P-coated Mg and MAO-coated Mg have the greatest potential to significantly promote corrosion resistance and bone regeneration, respectively. The findings of this study will provide a theoretical basis for the investigation of composite coatings and guidance for the orthopedic application of Mg bone implants.
Collapse
Affiliation(s)
- XinYue Lu
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Yu Ru Li
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - Xinru Zheng
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - Jiahao Yun
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - Wenhui Li
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - XiaoYu Geng
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Heng Bo Jiang
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| |
Collapse
|
16
|
Li F, Liu F, Huang K, Yang S. Advancement of Gallium and Gallium-Based Compounds as Antimicrobial Agents. Front Bioeng Biotechnol 2022; 10:827960. [PMID: 35186906 PMCID: PMC8855063 DOI: 10.3389/fbioe.2022.827960] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022] Open
Abstract
With the abuse and misuse of antibiotics, antimicrobial resistance has become a challenging issue in the medical system. Iatrogenic and non-iatrogenic infections caused by multidrug-resistant (MDR) pathogens pose serious threats to global human life and health because the efficacy of traditional antibiotics has been greatly reduced and the resulting socio-economic burden has increased. It is important to find and develop non-antibiotic-dependent antibacterial strategies because the development of new antibiotics can hardly keep pace with the emergence of resistant bacteria. Gallium (III) is a multi-target antibacterial agent that has an excellent antibacterial activity, especially against MDR pathogens; thus, a gallium (III)-based treatment is expected to become a new antibacterial strategy. However, some limitations of gallium ions as antimicrobials still exist, including low bioavailability and explosive release. In recent years, with the development of nanomaterials and clathrates, the progress of manufacturing technology, and the emergence of synergistic antibacterial strategies, the antibacterial activities of gallium have greatly improved, and the scope of application in medical systems has expanded. This review summarizes the advancement of current optimization for these key factors. This review will enrich the knowledge about the efficiency and mechanism of various gallium-based antibacterial agents and provide strategies for the improvement of the antibacterial activity of gallium-based compounds.
Collapse
Affiliation(s)
| | - Fengxiang Liu
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| | - Kai Huang
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| | - Shengbing Yang
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| |
Collapse
|
17
|
Zhang Y, Li Y, Lv Y, Zhang X, Dong Z, Yang L, Zhang E. Ag distribution and corrosion behaviour of the plasma electrolytic oxidized antibacterial Mg-Ag alloy. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Tamay DG, Gokyer S, Schmidt J, Vladescu A, Yilgor Huri P, Hasirci V, Hasirci N. Corrosion Resistance and Cytocompatibility of Magnesium-Calcium Alloys Modified with Zinc- or Gallium-Doped Calcium Phosphate Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:104-122. [PMID: 34958199 DOI: 10.1021/acsami.1c16307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In orthopedic surgery, metals are preferred to support or treat damaged bones due to their high mechanical strength. However, the necessity for a second surgery for implant removal after healing creates problems. Therefore, biodegradable metals, especially magnesium (Mg), gained importance, although their extreme susceptibility to galvanic corrosion limits their applications. The focus of this study was to control the corrosion of Mg and enhance its biocompatibility. For this purpose, surfaces of magnesium-calcium (MgCa1) alloys were modified with calcium phosphate (CaP) or CaP doped with zinc (Zn) or gallium (Ga) via microarc oxidation. The effects of surface modifications on physical, chemical, and mechanical properties and corrosion resistance of the alloys were studied using surface profilometry, goniometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), nanoindentation, and electrochemical impedance spectroscopy (EIS). The coating thickness was about 5-8 μm, with grain sizes of 43.1 nm for CaP coating and 28.2 and 58.1 nm for Zn- and Ga-doped coatings, respectively. According to EIS measurements, the capacitive response (Yc) decreased from 11.29 to 8.72 and 0.15 Ω-1 cm-2 sn upon doping with Zn and Ga, respectively. The Ecorr value, which was -1933 mV for CaP-coated samples, was found significantly electropositive at -275 mV for Ga-doped ones. All samples were cytocompatible according to indirect tests. In vitro culture with Saos-2 cells led to changes in the surface compositions of the alloys. The numbers of cells attached to the Zn-doped (2.6 × 104 cells/cm2) and Ga-doped (6.3 × 104 cells/cm2) coatings were higher than that on the surface of the undoped coating (1.0 × 103 cells/cm2). Decreased corrosivity and enhanced cell affinity of the modified MgCa alloys (CaP coated and Zn and Ga doped, with Ga-doped ones having the greatest positive effect) make them novel and promising candidates as biodegradable metallic implant materials for the treatment of bone damages and other orthopedic applications.
Collapse
Affiliation(s)
- Dilara Goksu Tamay
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
- Department of Biotechnology, Middle East Technical University (METU), Ankara 06800, Turkey
| | - Seyda Gokyer
- Department of Biomedical Engineering, Ankara University, Ankara 06830, Turkey
| | - Jürgen Schmidt
- Team Leader Electrochemistry, INNOVENT e.V. Technology Development, Prüssingstraße 27b, Jena 07745, Germany
| | - Alina Vladescu
- National Institute of Research and Development for Optoelectronics - INOE 2000, 409 Atomistilor St., Magurele 077125, Romania
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 43, Tomsk 634050, Russia
| | - Pinar Yilgor Huri
- Department of Biomedical Engineering, Ankara University, Ankara 06830, Turkey
| | - Vasif Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey
- Biomaterials Center, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey
| | - Nesrin Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
- Department of Biotechnology, Middle East Technical University (METU), Ankara 06800, Turkey
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Tissue Engineering and Biomaterial Research Center, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
19
|
Effect of Heat Treatment on the Mechanical and Corrosion Properties of Mg-Zn-Ga Biodegradable Mg Alloys. MATERIALS 2021; 14:ma14247847. [PMID: 34947441 PMCID: PMC8708447 DOI: 10.3390/ma14247847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Mg alloys have mechanical properties similar to those of human bones, and have been studied extensively because of their potential use in biodegradable medical implants. In this study, the influence of different heat treatment regimens on the microstructure and mechanical and corrosion properties of biodegradable Mg-Zn-Ga alloys was investigated, because Ga is effective in the treatment of disorders associated with accelerated bone loss. Solid-solution heat treatment (SSHT) enhanced the mechanical properties of these alloys, and a low corrosion rate in Hanks' solution was achieved because of the decrease in the cathodic-phase content after SSHT. Thus, the Mg-4 wt.% Zn-4 wt.% Ga-0.5 wt.% Y alloy after 18 h of SSHT at 350 °C (ultimate tensile strength: 207 MPa; yield strength: 97 MPa; elongation at fracture: 7.5%; corrosion rate: 0.27 mm/year) was recommended for low-loaded orthopedic implants.
Collapse
|
20
|
Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum HA. Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections In Vivo. ACS Infect Dis 2021; 7:3125-3160. [PMID: 34761915 DOI: 10.1021/acsinfecdis.1c00465] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While orthopedic implant-associated infections are rare, revision surgeries resulting from infections incur considerable healthcare costs and represent a substantial research area clinically, in academia, and in industry. In recent years, there have been numerous advances in the development of antimicrobial strategies for the prevention and treatment of orthopedic implant-associated infections which offer promise to improve the limitations of existing delivery systems through local and controlled release of antimicrobial agents. Prior to translation to in vivo orthopedic implant-associated infection models, the properties (e.g., degradation, antimicrobial activity, biocompatibility) of the antimicrobial materials can be evaluated in subcutaneous implant in vivo models. The antimicrobial materials are then incorporated into in vivo implant models to evaluate the efficacy of using the material to prevent or treat implant-associated infections. Recent technological advances such as 3D-printing, bacterial genomic sequencing, and real-time in vivo imaging of infection and inflammation have contributed to the development of preclinical implant-associated infection models that more effectively recapitulate the clinical presentation of infections and improve the evaluation of antimicrobial materials. This Review highlights the advantages and limitations of antimicrobial materials used in conjunction with orthopedic implants for the prevention and treatment of orthopedic implant-associated infections and discusses how these materials are evaluated in preclinical in vivo models. This analysis serves as a resource for biomaterial researchers in the selection of an appropriate orthopedic implant-associated infection preclinical model to evaluate novel antimicrobial materials.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ningjing Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Greg D. Learn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
21
|
Wen Y, Liu Q, Wang J, Yang Q, Zhao W, Qiao B, Li Y, Jiang D. Improving in vitro and in vivo corrosion resistance and biocompatibility of Mg-1Zn-1Sn alloys by microalloying with Sr. Bioact Mater 2021; 6:4654-4669. [PMID: 34095623 PMCID: PMC8164010 DOI: 10.1016/j.bioactmat.2021.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Magnesium (Mg) and its alloys have attracted attention as potential biodegradable materials in orthopedics due to their mechanical and physical properties, which are compatible with those of human bone. However, the effect of the mismatch between the rapid material degradation and fracture healing caused by the adverse effect of hydrogen (H2), which is generated during degradation, on surrounding bone tissue has severely restricted the application of Mg and its alloys. Thus, the development of new Mg alloys to achieve ideal degradation rates, H2 evolution and mechanical properties is necessary. Herein, a novel Mg-1Zn-1Sn-xSr (x = 0, 0.2, 0.4, and 0.6 wt%) quaternary alloy was developed, and the microstructure, mechanical properties, corrosion behavior and biocompatibility in vitro/vivo were investigated. The results demonstrated that a minor amount of strontium (Sr) (0.2 wt %) enhanced the corrosion resistance and mechanical properties of Mg-1Zn-1Sn alloy through grain refinement and second phase strengthening. Simultaneously, due to the high hydrogen overpotential of tin (Sn), the H2 release of the alloys was significantly reduced. Furthermore, Sr-containing Mg-1Zn-1Sn-based alloys significantly enhanced the viability, adhesion and spreading of MC3T3-E1 cells in vitro due to their unique biological activity and the ability to spontaneously form a network structure layer with micro/nanotopography. A low corrosion rate and improved biocompatibility were also maintained in a rat subcutaneous implantation model. However, excessive Sr (>0.2 wt %) led to a microgalvanic reaction and accelerated corrosion and H2 evolution. Considering the corrosion resistance, H2 evolution, mechanical properties and biocompatibility in vitro and in vivo, Mg-1Zn-1Sn-0.2Sr alloy has tremendous potential for clinical applications.
Collapse
Affiliation(s)
- Yafeng Wen
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China
| | - Qingshan Liu
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Jingfeng Wang
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Qiming Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China
| | - Weikang Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China
| | - Bo Qiao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China
| | - Yuling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Road, Nanchong City, Sichuan Province, 637000, People's Republic of China
| | - Dianming Jiang
- The Third Affiliated Hospital of Chongqing Medical University, No.1 Shuanghu Road, Yubei District, Chongqing, 401120, People's Republic of China
| |
Collapse
|
22
|
Xie K, Wang N, Guo Y, Zhao S, Tan J, Wang L, Li G, Wu J, Yang Y, Xu W, Chen J, Jiang W, Fu P, Hao Y. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivo study. Bioact Mater 2021; 8:140-152. [PMID: 34541392 PMCID: PMC8424517 DOI: 10.1016/j.bioactmat.2021.06.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 01/05/2023] Open
Abstract
Magnesium (Mg) alloys that have both antibacterial and osteogenic properties are suitable candidates for orthopedic implants. However, the fabrication of ideal Mg implants suitable for bone repair remains challenging because it requires implants with interconnected pore structures and personalized geometric shapes. In this study, we fabricated a porous 3D-printed Mg-Nd-Zn-Zr (denoted as JDBM) implant with suitable mechanical properties using selective laser melting technology. The 3D-printed JDBM implant exhibited cytocompatibility in MC3T3-E1 and RAW267.4 cells and excellent osteoinductivity in vitro. Furthermore, the implant demonstrated excellent antibacterial ratios of 90.0% and 92.1% for methicillin-resistant S. aureus (MRSA) and Escherichia coli, respectively. The 3D-printed JDBM implant prevented MRSA-induced implant-related infection in a rabbit model and showed good in vivo biocompatibility based on the results of histological evaluation, blood tests, and Mg2+ deposition detection. In addition, enhanced inflammatory response and TNF-α secretion were observed at the bone-implant interface of the 3D-printed JDBM implants during the early implantation stage. The high Mg2+ environment produced by the degradation of 3D-printed JDBM implants could promote M1 phenotype of macrophages (Tnf, iNOS, Ccl3, Ccl4, Ccl5, Cxcl10, and Cxcl2), and enhance the phagocytic ability of macrophages. The enhanced immunoregulatory effect generated by relatively fast Mg2+ release and implant degradation during the early implantation stage is a potential antibacterial mechanism of Mg-based implant. Our findings indicate that 3D-printed porous JDBM implants, having both antibacterial property and osteoinductivity, hold potential for future orthopedic applications. Porous JDBM implants promising mechanical properties was fabricated by selective laser melting. 3D-printed JDBM implant exhibited excellent antibacterial property, osteoinductivity, and biocompatibility. Temporally enhanced immunoregulatory effect in early stage was a potential antibacterial mechanism of Mg-based implant.
Collapse
Affiliation(s)
- Kai Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Nanqing Wang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, 100044, Beijing, China
| | - Shuang Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jia Tan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lei Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guoyuan Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Junxiang Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yangzi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenyu Xu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Chen
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Penghuai Fu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
23
|
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 2021; 6:2569-2612. [PMID: 33615045 PMCID: PMC7876544 DOI: 10.1016/j.bioactmat.2021.01.030] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.
Collapse
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Ruoxian Wang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Shan Fu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
24
|
Jiao J, Zhang S, Qu X, Yue B. Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Front Cell Infect Microbiol 2021; 11:693939. [PMID: 34277473 PMCID: PMC8283567 DOI: 10.3389/fcimb.2021.693939] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Implants are widely used in orthopedic surgery and are gaining attention of late. However, their use is restricted by implant-associated infections (IAI), which represent one of the most serious and dangerous complications of implant surgeries. Various strategies have been developed to prevent and treat IAI, among which the closest to clinical translation is designing metal materials with antibacterial functions by alloying methods based on existing materials, including titanium, cobalt, tantalum, and biodegradable metals. This review first discusses the complex interaction between bacteria, host cells, and materials in IAI and the mechanisms underlying the antibacterial effects of biomedical metals and alloys. Then, their applications for the prevention and treatment of IAI are highlighted. Finally, new insights into their clinical translation are provided. This review also provides suggestions for further development of antibacterial metals and alloys.
Collapse
Affiliation(s)
- Juyang Jiao
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
The Effect of Equal-Channel Angular Pressing on Microstructure, Mechanical Properties, and Biodegradation Behavior of Magnesium Alloyed with Silver and Gadolinium. CRYSTALS 2020. [DOI: 10.3390/cryst10100918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effect of equal channel angular pressing (ECAP) on the microstructure, texture, mechanical properties, and corrosion resistance of the alloys Mg-6.0%Ag and Mg-10.0%Gd was studied. It was shown that ECAP leads to grain refinement of the alloys down to the average grain size of 2–3 μm and 1–2 μm, respectively. In addition, in both alloys the precipitation of fine particles of phases Mg54Ag17 and Mg5Gd with sizes of ~500–600 and ~400–500 nm and a volume fraction of ~9% and ~8.6%, respectively, was observed. In the case of the alloy Mg-6.0%Ag, despite a significant grain refinement, a drop in the strength characteristics and a nearly twofold increase in ductility (up to ~30%) was found. This behavior is associated with the formation of a sharp inclined basal texture. For alloy Mg-10.0%Gd, both ductility and strength were enhanced, which can be associated with the combined effect of significant grain refinement and an increased probability of prismatic and basal glide. ECAP was also shown to cause a substantial rise of the biodegradation rate of both alloys and an increase in pitting corrosion. The latter effect is attributed to an increase in the dislocation density induced by ECAP and the occurrence of micro-galvanic corrosion at the matrix/particle interfaces.
Collapse
|
26
|
Yu X, Li D, Liu Y, Ding P, He X, Zhao Y, Chen M, Liu D. In vitro and in vivo studies on the degradation and biosafety of Mg-Zn-Ca-Y alloy hemostatic clip with the carotid artery of SD rat model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111093. [PMID: 32600697 DOI: 10.1016/j.msec.2020.111093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
An Mg-Zn-Ca-Y alloy operative clip was developed to overcome the drawbacks of the Ti clips such as ion dissolution inflammation, interference imaging diagnosis, and the potential harm that permanent retention brings to the patient. The structure optimization design of the hemostatic clip was carried out by the finite element numerical simulation method to realize the matching between the structure design and the material properties. Hot extrusion and wire cutting process was used to prepare the Mg-Zn-Ca-Y alloy operative clip. Corrosion degradation behavior of Mg-Zn-Ca-Y alloy in vitro was investigated using electrochemical noise (EN) and immersion test in Simulated body fluid (SBF). The carotid artery of SD rats was clipped using the Mg-Zn-Ca-Y operative clip to evaluate occlusion safety and the complete corrosion degradation behavior and biocompatibility of Mg-Zn-Ca-Y alloy clip in vivo were investigated using micro-computed tomography, histological analysis, and blood biochemical indicators. It was found that the newly designed Mg-Zn-Ca-Y clip can successfully ligate the carotid artery, and no blood leakage occurred after surgery. After eight months, the Mg-Zn-Ca-Y clip degraded utterly. Histological analysis and various blood biochemical parameters in SD rat serum samples collected at different time periods showed no tissue inflammation around the clips.
Collapse
Affiliation(s)
- Xiao Yu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Dongyang Li
- Tianjin Medical University General Hospital, Department of General Surgery, Tianjin 300070, China
| | - Yuanchao Liu
- Tianjin Medical University General Hospital, Department of General Surgery, Tianjin 300070, China
| | - Pengfei Ding
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xianghui He
- Tianjin Medical University General Hospital, Department of General Surgery, Tianjin 300070, China
| | - Yue Zhao
- School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, NSW2522, Australia
| | - Minfang Chen
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin 300384, China
| | - Debao Liu
- National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
27
|
Van Sy L, Quoc Binh PM, Lal B, Nguyen QB, Van Hung T, Panaitescu C, Nam ND. The role of alloyed strontium in the microstructures and alkaline electrochemistry of Mg-5Al-4Sn alloys. RSC Adv 2020; 10:34387-34395. [PMID: 35514386 PMCID: PMC9056793 DOI: 10.1039/d0ra01956a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/28/2020] [Indexed: 01/17/2023] Open
Abstract
In this study, strontium is used as an alloying element for improving the pitting resistance of Mg–5Al–4Sn based alloys in an alkaline solution. Potentiodynamic polarization measurements suggest that the addition of strontium increases the robustness of the pitting resistance as a result of the higher pitting potential and wider range of passive potential. Electrochemical impedance spectroscopy (EIS) confirms the formation of a solid passive film on the alloy surface due to a significant increase in the passive film and the charge transfer resistance, as well as lower film and double layer constant phase element magnitude values. Additionally, the potentiostatic polarisation results also show a lower passive current density and passive film stability, resulting in an increase in the breakdown time when the amount of strontium added to the alloy increases from 0.0 to 1.0 wt%. Furthermore, the scanning electron microscopy results indicate that insignificant corrosion is observed on alloy specimens containing strontium, whereas there is fierce corrosion on alloy based surfaces. This robust corrosion resistance could be attributed to the α-grain reduction and refined precipitates at the alloy grain boundaries, resulting in promoted formation of the passive film which is formed from a mixture of magnesium, aluminum and tin oxides/hydroxides, as confirmed by the X-ray photoelectron spectroscopy results. The development of Mg–5Al–4Sn–xSr alloys with α-grain reduction, refined precipitates and pitting corrosion resistance by die casting.![]()
Collapse
Affiliation(s)
- Le Van Sy
- PetroVietnam University 762 Cach Mang Thang Tam Street, Long Toan Ward Ba Ria City 790000 Vietnam
| | - Phan Minh Quoc Binh
- PetroVietnam University 762 Cach Mang Thang Tam Street, Long Toan Ward Ba Ria City 790000 Vietnam
| | - Bhajan Lal
- Chemical Engineering Department, Universiti Teknologi Petronas Bandar Seri Iskandar 32610 Perak Malaysia
| | - Quy Bau Nguyen
- College of Engineering, IT & Environment, Charles Darwin University 0909 Australia
| | - Tran Van Hung
- Institute of Research and Development, Duy Tan University Danang 550000 Vietnam .,The Faculty of Environmental and Chemical Engineering, Duy Tan University Danang 550000 Vietnam
| | - Casen Panaitescu
- Department Engineering of Petroleum Processing and Environmental Protection, Petroleum-Gas University of Ploiesti 100680 Ploiesti Romania
| | - Nguyen Dang Nam
- Institute of Research and Development, Duy Tan University Danang 550000 Vietnam .,The Faculty of Environmental and Chemical Engineering, Duy Tan University Danang 550000 Vietnam
| |
Collapse
|
28
|
Schmid JL, Kirchberg M, Sarembe S, Kiesow A, Sculean A, Mäder K, Buchholz M, Eick S. In Vitro Evaluation of Antimicrobial Activity of Minocycline Formulations for Topical Application in Periodontal Therapy. Pharmaceutics 2020; 12:pharmaceutics12040352. [PMID: 32295046 PMCID: PMC7238147 DOI: 10.3390/pharmaceutics12040352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022] Open
Abstract
Periodontal therapy using antimicrobials that are topically applied requires slow or controlled release devices. The in vitro antimicrobial activity of biodegradable polymer formulations that contain a new minocycline lipid complex (P-MLC) was evaluated. The new P-MLC formulations that contained 11.5% minocycline were compared with pure minocycline or an existing commercial formulation, which included determination of minimal inhibitory concentration (MIC) values against two oral bacteria and activity on six-species periodontal biofilm. Moreover, the flow of gingival crevicular fluid (GCF) was modeled up to 42 d and the obtained eluates were tested both for MIC values and inhibiting biofilm formation. In general, MICs of the P-MLC formulations were slightly increased as compared with pure minocycline. Biofilm formation was clearly inhibited by all tested formulations containing minocycline with no clear difference between them. In 3.5 d old biofilms, all formulations with 250 µg/mL minocycline decreased bacterial counts by 3 log10 and metabolic activity with no difference to pure antimicrobials. Eluates of experimental formulations showed superiority in antimicrobial activity. Eluates of one experimental formulation (P503-MLC) still inhibited biofilm formation at 28 d, with a reduction by 1.87 log10 colony forming units (CFU) vs. the untreated control. The new experimental formulations can easily be instilled in periodontal pockets and represent alternatives in local antimicrobials, and thus warrant further testing.
Collapse
Affiliation(s)
- Jan-Luca Schmid
- Laboratory of Oral Microbiology, Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010 Bern, Switzerland;
| | - Martin Kirchberg
- Institute of Pharmacy, Martin-Luther University Halle, D-06120 Halle (Saale), Germany; (M.K.); (K.M.)
| | - Sandra Sarembe
- Characterization of Medical and Cosmetic Care Products, Fraunhofer Institute for Microstructures and Materials IMWS, D-06120 Halle/Saale, Germany; (S.S.); (A.K.)
| | - Andreas Kiesow
- Characterization of Medical and Cosmetic Care Products, Fraunhofer Institute for Microstructures and Materials IMWS, D-06120 Halle/Saale, Germany; (S.S.); (A.K.)
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010 Bern, Switzerland;
| | - Karsten Mäder
- Institute of Pharmacy, Martin-Luther University Halle, D-06120 Halle (Saale), Germany; (M.K.); (K.M.)
| | - Mirko Buchholz
- Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT and PerioTrap Pharmaceuticals GmbH, D-06120 Halle/Saale, Germany;
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010 Bern, Switzerland;
- Correspondence:
| |
Collapse
|
29
|
Luque-Agudo V, Fernández-Calderón MC, Pacha-Olivenza MA, Pérez-Giraldo C, Gallardo-Moreno AM, González-Martín ML. The role of magnesium in biomaterials related infections. Colloids Surf B Biointerfaces 2020; 191:110996. [PMID: 32272388 DOI: 10.1016/j.colsurfb.2020.110996] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 01/09/2023]
Abstract
Magnesium is currently increasing interest in the field of biomaterials. An extensive bibliography on this material in the last two decades arises from its potential for the development of biodegradable implants. In addition, many researches, motivated by this progress, have analyzed the performance of magnesium in both in vitro and in vivo assays with gram-positive and gram-negative bacteria in a very broad range of conditions. This review explores the extensive literature in recent years on magnesium in biomaterials-related infections, and discusses the mechanisms of the Mg action on bacteria, as well as the competition of Mg2+ and/or synergy with other divalent cations in this subject.
Collapse
Affiliation(s)
- Verónica Luque-Agudo
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain
| | - M Coronada Fernández-Calderón
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain; University of Extremadura, Department of Biomedical Science, Badajoz, Spain
| | - Miguel A Pacha-Olivenza
- University of Extremadura, Department of Biomedical Science, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain
| | - Ciro Pérez-Giraldo
- University of Extremadura, Department of Biomedical Science, Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| | - Amparo M Gallardo-Moreno
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain.
| | - M Luisa González-Martín
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain
| |
Collapse
|