1
|
Kelle D, Speth KR, Martínez-Negro M, Mailänder V, Landfester K, Iyisan B. Effect of protein corona on drug release behavior of PLGA nanoparticles. Eur J Pharm Biopharm 2025; 207:114611. [PMID: 39674519 DOI: 10.1016/j.ejpb.2024.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Poly(lactic-co-glycolide) (PLGA) nanoparticles are highly attractive for drug delivery due to their biocompatibility, biodegradability, and potential for controlled release and targeting. Despite these outstanding properties, challenges remain for clinical translation as nanomedicines. One significant factor to address is highlighting the protein corona structure and its effect on the drug release behavior. Protein corona forms upon contact with the bloodstream and influences the fate of the nanoparticles in the body. Here, we synthesize PLGA nanoparticles by miniemulsion/solvent evaporation technique, followed by the formation of protein corona on their surface using either human plasma or fetal bovine serum (FBS). Analysis by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-mass spectrometry (LC-MS) reveals that dysopsonin proteins, mainly albumin, dominate the protein corona structure, suggesting prolonged blood circulation for the PLGA nanoparticles. As an anticancer drug, doxorubicin is encapsulated into PLGA nanoparticles, and in vitro drug release is performed at pH 7.4. While there is a minimal change in cumulative drug release after protein corona formation, our comprehensive analysis through different kinetic models shows that the protein corona alters the drug release profile of PLGA nanoparticles to a modest extent.
Collapse
Affiliation(s)
- Damla Kelle
- Biofunctional Nanomaterials Design (BIND) Laboratory, Institute of Biomedical Engineering, Bogazici University, 34684 Istanbul, Turkey
| | - Kai R Speth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - María Martínez-Negro
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Banu Iyisan
- Biofunctional Nanomaterials Design (BIND) Laboratory, Institute of Biomedical Engineering, Bogazici University, 34684 Istanbul, Turkey; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
2
|
Rodero CF, Luiz MT, Sato MR, Boni F, Fernandes GFS, Dos Santos JL, Martinez-Lopez AL, Irache JM, Chorilli M. Rapamycin-loaded nanostructured lipid carrier modified with folic acid intended for breast cancer therapy. Int J Pharm 2025; 668:124954. [PMID: 39542123 DOI: 10.1016/j.ijpharm.2024.124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Breast cancer stands as the most common form of malignancy among women globally, and it showcases commendable rates of cure when detected in early-stage and non-metastatic conditions. To overcome drug resistance and side effects observed in conventional chemotherapy, the present study aims to deliver rapamycin (RAP), a mTOR protein inhibitor, into a nanostructured lipid carrier (NLC) functionalized with folic acid for promoting active targeting to breast cancer cells. In the first step, the synthesis of 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[amino(polyethylene glycol)-2000] (ammonium salt) with folic acid (DSPE-PEG2000-FA) was successfully performed and characterized by UV spectroscopy, nuclear magnetic resonance, and infrared spectroscopy. Then, the folic acid-modified NLC loaded with RAP (FA-NLC-RAP) and the unmodified formulation (NLC-RAP) was developed and displayed a size of about 100 nm, negative surface charge, and high RAP encapsulation efficiency (94.92 % and 85.72 %, respectively). In vitro studies suggested that FA-NLC-RAP exhibited a higher degree of internalization in cancer cells (MCF-7) than in normal cells (MCF-10A), demonstrating the potential of folic acid as a ligand for promoting active targeting of RAP for breast cancer cells through folate receptors overexpressed in tumor cells FA-NLC-RAP significantly reduced tumor cell viability, similarly to that observed with the RAP solution. The release profile of the formulation was prolonged. Finally, studies in Caenorhabditis elegans evidenced the safety of FA-NLC-RAP characterized by a complete absence of toxicity in this animal model. Therefore, the findings imply that FA-NLC-RAP holds considerable promise for the treatment of breast cancer.
Collapse
Affiliation(s)
- Camila Fernanda Rodero
- School of Pharmaceutical Science of São Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Science of São Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil.
| | - Mariana Rillo Sato
- School of Pharmaceutical Science of São Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Fernanda Boni
- School of Pharmaceutical Science of São Paulo University (USP), Sao Paulo, Sao Paulo, Brazil
| | - Guilherme F S Fernandes
- School of Pharmaceutical Science of São Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil; School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Science of São Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | | | - Juan M Irache
- University of Navarra, Department of Pharmaceutical Sciences, 31008 Pamplona, Spain
| | - Marlus Chorilli
- School of Pharmaceutical Science of São Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Yang J, Zeng H, Luo Y, Chen Y, Wang M, Wu C, Hu P. Recent Applications of PLGA in Drug Delivery Systems. Polymers (Basel) 2024; 16:2606. [PMID: 39339068 PMCID: PMC11435547 DOI: 10.3390/polym16182606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable and biocompatible copolymer in drug delivery systems (DDSs). In this article, we highlight the critical physicochemical properties of PLGA, including its molecular weight, intrinsic viscosity, monomer ratio, blockiness, and end caps, that significantly influence drug release profiles and degradation times. This review also covers the extensive literature on the application of PLGA in delivering small-molecule drugs, proteins, peptides, antibiotics, and antiviral drugs. Furthermore, we discuss the role of PLGA-based DDSs in the treating various diseases, including cancer, neurological disorders, pain, and inflammation. The incorporation of drugs into PLGA nanoparticles and microspheres has been shown to enhance their therapeutic efficacy, reduce toxicity, and improve patient compliance. Overall, PLGA-based DDSs holds great promise for the advancement of the treatment and management of multiple chronic conditions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Huiying Zeng
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Yusheng Luo
- International School, Jinan University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510660, China
| | - Miao Wang
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510660, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Ping Hu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| |
Collapse
|
4
|
Jamali S, Jamali B, Abedi F, Firoozrai M, Davaran S, Vaghefi Moghaddam S. Folate receptor-mediated delivery system based on chitosan coated polymeric nanoparticles for combination therapy of breast cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:605-627. [PMID: 38271010 DOI: 10.1080/09205063.2024.2303196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Combination therapy using two or more drugs with different mechanisms of action is an effective strategy for treating cancer. This is because of the synergistic effect of complementary drugs that enhances their effectiveness. However, this approach has some limitations, such as non-specific distribution of the drugs in the tumor and the occurrence of dose-dependent toxicity to healthy tissues. To overcome these issues, we have developed a folate receptor-mediated co-delivery system that improves the access of chemotherapy drugs to the tumor site. We prepared a nanoplatform by encapsulating paclitaxel (PTX) and curcumin (CUR) in poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone) (PCL-PEG-PCL) co-polymer using a double emulsion method and coating nanoparticles with pH-responsive chitosan-folic acid (CS-FA) conjugate. The nanocarrier's physicochemical properties were studied, confirming successful preparation with appropriate size and morphology. PTX and CUR could be released synchronously in a controlled and acid-facilitated manner. The dual drug-loaded nanocarrier exhibited excellent anti-tumor efficiency in MDA-MB-231 cells in vitro. The active targeting effect of FA concluded from the high inhibitory effect of dual drug-loaded nanocarrier on MDA-MB-231 cells, which have overexpressed folate receptors on their surface, compared to Human umbilical vein endothelial cells (HUVEC). Overall, the nanoengineered folate receptor-mediated co-delivery system provides great potential for safe and effective cancer therapy.
Collapse
Affiliation(s)
- Sajjad Jamali
- Department of Clinical Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Behzad Jamali
- Department of Clinical Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Firoozrai
- Department of Clinical Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Wu Y, Zhang J, Zhao J, Wang B. Folate-modified liposomes mediate the co-delivery of cisplatin with miR-219a-5p for the targeted treatment of cisplatin-resistant lung cancer. BMC Pulm Med 2024; 24:159. [PMID: 38561695 PMCID: PMC10986081 DOI: 10.1186/s12890-024-02938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Cisplatin (DDP) resistance, often leading to first-line chemotherapy failure in non-small cell lung cancer (NSCLC), poses a significant challenge. MiR-219a-5p has been reported to enhance the sensitivity of human NSCLC to DDP. However, free miR-219a-5p is prone to degradation by nucleases in the bloodstream, rendering it unstable. In light of this, our study developed an efficient nanodrug delivery system that achieved targeted delivery of DDP and miR-219a-5p by modifying liposomes with folate (FA). Based on the results of material characterization, we successfully constructed a well-dispersed and uniformly sized (approximately 135.8 nm) Lipo@DDP@miR-219a-5p@FA nanodrug. Agarose gel electrophoresis experiments demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited good stability in serum, effectively protecting miR-219a-5p from degradation. Immunofluorescence and flow cytometry experiments revealed that, due to FA modification, Lipo@DDP@miR-219a-5p@FA could specifically bind to FA receptors on the surface of tumor cells (A549), thus enhancing drug internalization efficiency. Safety evaluations conducted in vitro demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited no significant toxicity to non-cancer cells (BEAS-2B) and displayed excellent blood compatibility. Cellular functional experiments, apoptosis assays, and western blot demonstrated that Lipo@DDP@miR-219a-5p@FA effectively reversed DDP resistance in A549 cells, inhibited cell proliferation and migration, and further promoted apoptosis. In summary, the Lipo@DDP@miR-219a-5p@FA nanodrug, through specific targeting of cancer cells and reducing their resistance to DDP, significantly enhanced the anti-NSCLC effects of DDP in vitro, providing a promising therapeutic option for the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Jiandong Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Junjun Zhao
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Bin Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China.
| |
Collapse
|
6
|
Ps SS, Guha A, Deepika B, Udayakumar S, Nag M, Lahiri D, Girigoswami A, Girigoswami K. Nanocargos designed with synthetic and natural polymers for ovarian cancer management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3407-3415. [PMID: 37421430 DOI: 10.1007/s00210-023-02608-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Ovarian cancer cells usually spread in the peritoneal region, and if chemotherapeutic drugs can be given in these regions with proximity, then the anticancer property of the chemotherapeutic drugs can enhance. However, chemotherapeutic drug administrations are hindered by local toxicity. In the drug delivery system, microparticles or nanoparticles are administered in a controlled manner. Microparticles stay in a close vicinity while nanoparticles are smaller and can move evenly in the peritoneum. Intravenous administration of the drug evenly distributes the medicine in the target places and if the composition of the drug has nanoparticles it will have more specificity and will have easy access to the cancer cells and tumors. Among the different types of nanoparticles, polymeric nanoparticles were proven as most efficient in drug delivery. Polymeric nanoparticles are seen to be combined with many other molecules like metals, non-metals, lipids, and proteins, which helps in the increase of cellular uptake. The efficiency of different types of polymeric nanoparticles used in delivering the load for management of ovarian cancer will be discussed in this mini-review.
Collapse
Affiliation(s)
- Sharon Sofini Ps
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Arina Guha
- Dept. of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Balasubramanian Deepika
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Saranya Udayakumar
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Moupriya Nag
- Dept. of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Dibyajit Lahiri
- Dept. of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
7
|
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther 2023; 8:418. [PMID: 37919282 PMCID: PMC10622502 DOI: 10.1038/s41392-023-01642-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.
Collapse
Affiliation(s)
- Leming Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqi Ye
- Sorrento Therapeutics Inc., 4955 Directors Place, San Diego, CA, 92121, USA
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rehmat Islam
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
8
|
Ying N, Liu S, Zhang M, Cheng J, Luo L, Jiang J, Shi G, Wu S, Ji J, Su H, Pan H, Zeng D. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids Surf B Biointerfaces 2023; 228:113419. [PMID: 37393700 DOI: 10.1016/j.colsurfb.2023.113419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Paclitaxel is one of the most effective chemotherapeutic drugs which processes the obvious curative effect for a broad range of cancers including breast, ovarian, lung, and head & neck cancers. Though some novel paclitaxel-loaded formulations have been developed, the clinical application of the paclitaxel is still limited due to its toxicity and solubility issues. Over the past decades, we have seen rapid advances in applying nanocarriers in paclitaxel delivery systems. The nano-drug delivery systems offer unique advantages in enhancing the aqueous solubility, reducing side effects, increasing permeability, prolonging circulation half-life of paclitaxel. In this review, we summarize recent advances in developing novel paclitaxel-loaded nano delivery systems based on nanocarriers. These nanocarriers show great potentials in overcoming the disadvantages of pure paclitaxel and as a result improving the efficacy.
Collapse
Affiliation(s)
- Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sisi Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Cheng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaofan Shi
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu Wu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haoyuan Su
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
9
|
Zaslavsky J, Bannigan P, Allen C. Re-envisioning the design of nanomedicines: harnessing automation and artificial intelligence. Expert Opin Drug Deliv 2023; 20:241-257. [PMID: 36644850 DOI: 10.1080/17425247.2023.2167978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Interest in nanomedicines has surged in recent years due to the critical role they have played in the COVID-19 pandemic. Nanoformulations can turn promising therapeutic cargo into viable products through improvements in drug safety and efficacy profiles. However, the developmental pathway for such formulations is non-trivial and largely reliant on trial-and-error. Beyond the costly demands on time and resources, this traditional approach may stunt innovation. The emergence of automation, artificial intelligence (AI) and machine learning (ML) tools, which are currently underutilized in pharmaceutical formulation development, offers a promising direction for an improved path in the design of nanomedicines. AREAS COVERED the potential of harnessing experimental automation and AI/ML to drive innovation in nanomedicine development. The discussion centers on the current challenges in drug formulation research and development, and the major advantages afforded through the application of data-driven methods. EXPERT OPINION The development of integrated workflows based on automated experimentation and AI/ML may accelerate nanomedicine development. A crucial step in achieving this is the generation of high-quality, accessible datasets. Future efforts to make full use of these tools can ultimately contribute to the development of more innovative nanomedicines and improved clinical translation of formulations that rely on advanced drug delivery systems.
Collapse
Affiliation(s)
- Jonathan Zaslavsky
- Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| |
Collapse
|
10
|
Patra A, Satpathy S, Naik PK, Kazi M, Hussain MD. Folate receptor-targeted PLGA-PEG nanoparticles for enhancing the activity of genistein in ovarian cancer. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:228-239. [DOI: 10.1080/21691401.2022.2118758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arjun Patra
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, California Health Sciences University, Clovis, CA, USA
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, India
| | - Swaha Satpathy
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, California Health Sciences University, Clovis, CA, USA
- Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, India
| | - Pradeep K. Naik
- Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, India
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, POBOX-2457, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Delwar Hussain
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, California Health Sciences University, Clovis, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmacy, Husson University, Bangor, ME, USA
| |
Collapse
|
11
|
An Overview on Taxol Production Technology and Its Applications as Anticancer Agent. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Mendez-Pfeiffer P, Juarez J, Hernandez J, Taboada P, Virués C, Alday E, Valencia D, Velazquez C. Polymeric nanoparticles for the delivery of Sonoran desert propolis: Synthesis, characterization and antiproliferative activity on cancer cells. Colloids Surf B Biointerfaces 2022; 215:112475. [PMID: 35390598 DOI: 10.1016/j.colsurfb.2022.112475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/18/2022]
Abstract
Sonoran propolis (SP) exerts remarkable biological activities attributed to its polyphenolic composition, mostly described as poplar-type flavonoids. It is known that polyphenols present low bioavailability derived of their molecular weight, glycosylation level, metabolic conversion, as well as interaction with the intestinal microbiota, affording limitations for possible in vivo applications. The aim of this work was to synthesize Poly-(lactide-co-glycolide) acid (PLGA) nanoparticles for encapsulation of SP, as a matrix to increase solubility of their polyphenolic compounds and improve delivery, for the evaluation of its antiproliferative activity on cancer cells. The Sonoran propolis-loaded PLGA nanoparticles (SP-PLGA NPs) were synthesized (by nanoprecipitation), and their physicochemical parameters were determined (size, morphology, zeta potential, stability, and drug release). Additionally, the antiproliferative activity of SP-PLGA nanoparticles was evaluated in vitro against murine (M12.C3.F6) and human (HeLa) cancer cell lines, including a non-cancer human cell line (ARPE-19) as control. SP-PLGA NPs presented a mean size of 152.6 ± 7.1 nm with an average negative charge of - 21.2 ± 0.7 mV. The encapsulation yield of SP into PLGA system was approximately 68.2 ± 6.0% with an in vitro release of 45% of propolis content at 48 h. SP-PLGA NPs presented antiproliferative activity against both cancer cell lines tested, with lower IC50 values in M12.C3.F6 and HeLa cell lines (7.8 ± 0.4 and 3.8 ± 0.4 μg/mL, respectively) compared to SP (24.0 ± 4.3 and 7.4 ± 0.4 μg/mL, respectively). In contrast, the IC50 of SP-PLGA NPs and SP against ARPE-19 was higher than 50 µg/mL. Cancer cells treated with SP and SP-PLGA NPs presented morphological features characteristic of apoptosis (cellular shrinkage and membrane blebs), as well as elongated cells, effect previously reported for SP, meanwhile, no morphological changes were observed with ARPE-19 cells. The obtained delivery system demonstrates appropriate encapsulation characteristics and antiproliferative activity to be used in the field of nanomedicine, therefore SP could be potentially used in antitumoral in vivo assays upon its encapsulation into PLGA nanoparticles.
Collapse
Affiliation(s)
- Pablo Mendez-Pfeiffer
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico
| | - Josue Juarez
- Departament of Physics, University of Sonora, Hermosillo, Sonora CP. 83000, Mexico
| | - Javier Hernandez
- Instituto de Química Aplicada (IQA), Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa, 91190 Veracruz, Mexico
| | - Pablo Taboada
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, Santiago de Compostela CP. 15782, Spain
| | - Claudia Virués
- Instituto de Química Aplicada (IQA), Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa, 91190 Veracruz, Mexico
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico
| | - Dora Valencia
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad and Irigoyen, Caborca, Sonora C.P. 83600, Mexico.
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico.
| |
Collapse
|
13
|
Curcumin-loaded carrageenan nanoparticles: Fabrication, characterization, and assessment of the effects on osteoblasts mineralization. Colloids Surf B Biointerfaces 2022; 217:112622. [PMID: 35759898 DOI: 10.1016/j.colsurfb.2022.112622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/14/2023]
Abstract
The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of kappa-carrageenan (κ-Carr), a sulphated polysaccharide, as cost-effective, biodegradable and biocompatible CR carriers. CR-loaded κ-Carr nanoparticles (CR@Carr NPs) were prepared by mixing a κ-Carr aqueous solution with a CR ethanolic solution. The final suspension was centrifuged and re-suspended in phosphate buffer solution. The NPs' size was tuned by changing the concentration of the polysaccharide. CR@CarrNPs displayed high CR incorporation efficiency (~80 wt%) and a double-exponential curve of CR release at physiological conditions (37 °C and pH 7.4) with a cumulative drug release of 32 wt% after 24 h for the smaller NP. Our results also showed that CR@CarrNPs were not cytotoxic to osteoblasts at concentrations up to 1 μM. Confocal microscopy images revealed the internalization of CR by the cells guided by the NPs. Cells treated with CR@CarrNPs exhibited higher activity of alkaline phosphatase and higher expression of the main osteogenic genes (Sp7, Col1 and Runx2), and mineralized the extracellular matrix in a higher extent compared to the cells cultivated in absence of the NPs. We posited that these effects were related to the NP-driven internalization of CR by osteoblasts. Our study sheds light on the possible use of CR@CarrNPs as efficient and safe therapeutic tools for the treatment of bone-related diseases.
Collapse
|
14
|
Dodda JM, Remiš T, Rotimi S, Yeh YC. Progress in the drug encapsulation of poly(lactic- co-glycolic acid) and folate-decorated poly(ethylene glycol)-poly(lactic- co-glycolic acid) conjugates for selective cancer treatment. J Mater Chem B 2022; 10:4127-4141. [PMID: 35593381 DOI: 10.1039/d2tb00469k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a US Food and Drug Administration (FDA)-approved polymer used in humans in the forms of resorbable sutures, drug carriers, and bone regeneration materials. Recently, PLGA-based conjugates have been extensively investigated for cancer, which is the second leading cause of death globally. This article presents an account of the literature on PLGA-based conjugates, focusing on their chemistries, biological activity, and functions as targeted drug carriers or sustained drug controllers for common cancers (e.g., breast, prostate, and lung cancers). The preparation and drug encapsulation of PLGA nanoparticles and folate-decorated poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) conjugates are discussed, along with several representative examples. Particularly, the reactions used for preparing drug-conjugated PLGA and FA-PEG-PLGA are emphasized, with the associated chemistries involved in the formation of structures and their biocompatibility with internal organs. This review provides a deeper understanding of the constituents and interactions of PLGA-conjugated materials to ensure successful conjugation in PLGA material design and the subsequent biomedical applications.
Collapse
Affiliation(s)
- Jagan Mohan Dodda
- New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | - Tomáš Remiš
- New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | - Sadiku Rotimi
- Institute of NanoEngineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Staatsartillerie Rd, 0183, Pretoria West Campus, South Africa
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Study on the Mechanism of Action of Paclitaxel-Loaded Polylactic-co-glycolic Acid Nanoparticles in Non-Small-Cell Lung Carcinoma Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8524951. [PMID: 35432585 PMCID: PMC9007685 DOI: 10.1155/2022/8524951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
Objective. To study effective carriers that can enhance the antitumor effect of paclitaxel (PTX). Methods. PTX-loaded polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) (PTX-PLGA NPs), constructed using the emulsification solvent evaporation method, were characterized by scanning electron microscopy and dynamic light scattering. Non-small-cell lung carcinoma (NSCLC) cells were divided into the dimethyl sulfoxide (DMSO) group, PLGA NPs group, PTX group, and PTX-PLGA NPs group. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell apoptosis was determined by flow cytometry, and cell migration and invasion were assessed using Transwell assay. Results. PTX-PLGA NPs were smooth in the surface and spherical in shape, with a particle size of
nm. Both PTX and PTX-PLGA NPs could effectively inhibit the activity of A549 and H1650 cells. At 12 and 24 h, PTX-PLGA NPs presented weaker inhibition on the activity of NSCLC cells than PTX, but at 48 and 72 h, PTX-PLGA NPs presented stronger inhibition. Compared with PTX, PTX-PLGA NPs were more effective in enhancing apoptosis and inhibiting migration and invasion of NSCLC cells. Conclusion. With good sustained release and the ability to promote cellular uptake, PTX-PLGA NPs can strongly inhibit the malignant activities of NSCLC cells, which can be used as a promising drug carrier.
Collapse
|
16
|
α-Acylamino-β-lactone N-Acylethanolamine-hydrolyzing Acid Amidase Inhibitors Encapsulated in PLGA Nanoparticles: Improvement of the Physical Stability and Protection of Human Cells from Hydrogen Peroxide-Induced Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040686. [PMID: 35453371 PMCID: PMC9028182 DOI: 10.3390/antiox11040686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase that preferentially catalyzes the hydrolysis of endogenous lipid mediators such as palmitoylethanolamide, which has been shown to exhibit neuroprotective and antinociceptive properties by engaging peroxisome proliferator-activated receptor-α. A few potent NAAA inhibitors have been developed, including α-acylamino-β-lactone derivatives, which are very strong and effective, but they have limited chemical and plasmatic stability, compromising their use as systemic agents. In the present study, as an example of a molecule belonging to the chemical class of N-(2-oxo-3-oxetanyl)amide NAAA inhibitors, URB866 was entrapped in poly(lactic-co-glycolic acid) nanoparticles in order to increase its physical stability. The data show a monomodal pattern and a significant time- and temperature-dependent stability of the molecule-loaded nanoparticles, which also demonstrated a greater ability to effectively retain the compound. The nanoparticles improved the photostability of URB866 with respect to that of the free molecule and displayed a better antioxidant profile on various cell lines at the molecule concentration of 25 μM. Overall, these results prove that the use of polymeric nanoparticles could be a useful strategy for overcoming the instability of α-acylamino-β-lactone NAAA inhibitors, allowing the maintenance of their characteristics and activity for a longer time.
Collapse
|
17
|
Ghandehari S, Homayouni Tabrizi M, Izadi Nia J, Goodarzi MT. Anti-inflammatory and Antioxidant Properties of PLGA Nanoparticles Produced From Kombucha Extract on A2780 Human Ovarian Cancer Cell Line. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2021. [DOI: 10.34172/ajmb.2021.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Anti-cancer agents encapsulated in nanoparticles (NPs) can result in higher efficiency. Kombucha is a fermented tea beverage, and previous reports support its anti-cancer properties. Objectives: The present study aimed to evaluate the anti-cancer and anti-inflammatory properties of poly (lactic-co-glycolic acid) loaded Kombucha NPs (PLGA-K-NPs) against the A2780 human ovarian cancer cell line. Methods: The antioxidant activity was analyzed using ferric reducing ability of plasma and 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) assays, along with the measurement of catalase (CAT) gene expression. The gene expression of three interleukins (IL-1β, IL-6, and IL-10) was also determined to demonstrate the anti-inflammatory properties of NPs. Results: The results revealed the antioxidant effects of PLGA-K-NPs on the studied cell lines by increasing Fe3+ reduction, inhibiting the free radical formation (P<0.001), and increasing the expression of the CAT gene (P<0.001). In addition, NPs could significantly elevate the gene expression of IL-10 (P<0.01) as an anti-inflammatory cytokine at a 40 µg/mL concentration, while reducing the expression of IL-1β and IL-6, and inflammatory cytokines at all tested concentrations (P<0.01). Conclusion: According to the obtained results, PLGA-K-NPs have anti-inflammatory and anti-oxidant properties, therefore, they can be considered as a compound in the treatment of ovarian cancer. However, it needs to be further investigated in animal studies to clarify more details.
Collapse
Affiliation(s)
- Sara Ghandehari
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | - Jafar Izadi Nia
- Department of Chemistry, Herbal Medicines Raw Materials Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | |
Collapse
|
18
|
Winter SJ, Miller HA, Steinbach-Rankins JM. Multicellular Ovarian Cancer Model for Evaluation of Nanovector Delivery in Ascites and Metastatic Environments. Pharmaceutics 2021; 13:1891. [PMID: 34834307 PMCID: PMC8625169 DOI: 10.3390/pharmaceutics13111891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
A novel multicellular model composed of epithelial ovarian cancer and fibroblast cells was developed as an in vitro platform to evaluate nanovector delivery and ultimately aid the development of targeted therapies. We hypothesized that the inclusion of peptide-based scaffold (PuraMatrix) in the spheroid matrix, to represent in vivo tumor microenvironment alterations along with metastatic site conditions, would enhance spheroid cell growth and migration and alter nanovector transport. The model was evaluated by comparing the growth and migration of ovarian cancer cells exposed to stromal cell activation and tissue hypoxia. Fibroblast activation was achieved via the TGF-β1 mediated pathway and tissue hypoxia via 3D spheroids incubated in hypoxia. Surface-modified nanovector transport was assessed via fluorescence and confocal microscopy. Consistent with previous in vivo observations in ascites and at distal metastases, spheroids exposed to activated stromal microenvironment were denser, more contractile and with more migratory cells than nonactivated counterparts. The hypoxic conditions resulted in negative radial spheroid growth over 5 d compared to a radial increase in normoxia. Nanovector penetration attenuated in PuraMatrix regardless of surface modification due to a denser environment. This platform may serve to evaluate nanovector transport based on ovarian ascites and metastatic environments, and longer term, it provide a means to evaluate nanotherapeutic efficacy.
Collapse
Affiliation(s)
- Stephen J. Winter
- School of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Hunter A. Miller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Jill M. Steinbach-Rankins
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
19
|
Wang Z, Meng F, Zhong Z. Emerging targeted drug delivery strategies toward ovarian cancer. Adv Drug Deliv Rev 2021; 178:113969. [PMID: 34509574 DOI: 10.1016/j.addr.2021.113969] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is a high-mortality malignancy in women. The contemporary clinical chemotherapy with classic cytotoxic drugs, targeted molecular inhibitors would mostly fail when ovarian cancer cells become drug-resistant or metastasize through the body or when patients bare no more toleration because of strong adverse effects. The past decade has spotted varying targeted delivery systems including antibody-drug conjugates (ADCs), peptide/folate/aptamer-drug conjugates, polymer-drug conjugates, ligand-functionalized nanomedicines, and dual-targeted nanomedicines that upgrade ovarian cancer chemo- and molecular therapy effectively in preclinical/clinical settings via endowing therapeutic agents selectivity and bypassing drug resistance as well as lessening systemic toxicity. The targeted delivery approaches further provide means to potentiate emergent treatment modalities such as molecular therapy, gene therapy, protein therapy, photodynamic therapy, dual-targeting therapy and combination therapy for ovarian cancer. This review highlights up-to-date development of targeted drug delivery strategies toward advanced, metastatic, relapsed, and drug resistant ovarian cancers.
Collapse
|
20
|
Raspantini GL, Luiz MT, Abriata JP, Eloy JDO, Vaidergorn MM, Emery FDS, Marchetti JM. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: Development, physicochemical and biological characterization. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Zhao J, Zhang L, Qi Y, Liao K, Wang Z, Wen M, Zhou D. NIR Laser Responsive Nanoparticles for Ovarian Cancer Targeted Combination Therapy with Dual-Modal Imaging Guidance. Int J Nanomedicine 2021; 16:4351-4369. [PMID: 34234430 PMCID: PMC8254569 DOI: 10.2147/ijn.s299376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose Multifunctional nanoparticles with targeted therapeutic function and diagnostic-imaging are of great interest in the domain of precision therapy. NIR laser responsive nanoparticles (PLGA-PEG-FA encapsulating Bi2S3, PFP, and Dox (designed as FBPD NPs)) are synthesized for ovarian cancer targeted combination therapy with CT/PA dual-modal imaging guidance (PA: photoacoustic; CT: X-ray computed tomography). Methods and Results The FBPD NPS prepared by the double emulsification method revealed excellent dispersity, great stability, outstanding optical properties. The temperature of FBPD NPs increased rapidly after laser irradiation, inducing liquid-to-gas conversion of perfluoropentane (PFP), and promoting the release of Dox up to 86.7%. These FBPD NPs demonstrated their outstanding imaging capability for both PA and CT imaging both in vitro and in vivo, providing the potential for therapeutic guidance and monitoring. Assisted by folic acid, these nanoparticles could highly enrich in ovarian tumor tissue and the accumulation peaked at 3 h after intravenous administration. The desirable photothermal-conversion efficiency of the nanoparticles combined with chemotherapy achieved highly efficient therapy, which was demonstrated both in vitro and in vivo. Conclusion We successfully constructed multifunctional theranostic FBPD NPs for highly efficient PTT/chemotherapy combined therapy with dual CT/PA imaging guidance/monitoring. The unique nanoparticles with multiple abilities pave an emerging way toward precise treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jiawen Zhao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yingjie Qi
- Department of Intensive Care Unit (ICU), Dianjiang People's Hospital of Chongqing, Chongqing, People's Republic of China
| | - Kui Liao
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ming Wen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Di Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
22
|
Asgari S, Pourjavadi A, Setayeshmehr M, Boisen A, Ajalloueian F. Encapsulation of Drug‐Loaded Graphene Oxide‐Based Nanocarrier into Electrospun Pullulan Nanofibers for Potential Local Chemotherapy of Breast Cancer. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shadi Asgari
- Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800 Kgs. Lyngby Denmark
- Polymer Research Laboratory Department of Chemistry Sharif University of Technology Tehran 1458889694 Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory Department of Chemistry Sharif University of Technology Tehran 1458889694 Iran
| | - Mohsen Setayeshmehr
- Department of Biomaterials Tissue Engineering and Nanotechnology School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan 8174673461 Iran
| | - Anja Boisen
- Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800 Kgs. Lyngby Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN) Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800, Kgs. Lyngby Denmark
| | - Fatemeh Ajalloueian
- Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800 Kgs. Lyngby Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN) Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800, Kgs. Lyngby Denmark
| |
Collapse
|
23
|
Alves RC, Schulte ZM, Luiz MT, Bento da Silva P, Frem RCG, Rosi NL, Chorilli M. Breast Cancer Targeting of a Drug Delivery System through Postsynthetic Modification of Curcumin@N 3-bio-MOF-100 via Click Chemistry. Inorg Chem 2021; 60:11739-11744. [PMID: 34101467 DOI: 10.1021/acs.inorgchem.1c00538] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) offer many opportunities for applications across biology and medicine. Their wide range of chemical composition makes toxicologically acceptable formulation possible, and their high level of functionality enables possible applications as delivery systems for therapeutics agents. Surface modifications have been used in drug delivery systems to minimize their interaction with the bulk, improving their specificity as targeted carriers. Herein, we discuss a strategy to achieve a tumor-targeting drug-loaded MOF using "click" chemistry to anchor functional folic acid (FA) molecules on the surface of N3-bio-MOF-100. Using curcumin (CCM) as an anticancer drug, we observed drug loading encapsulation efficiencies (DLEs) of 24.02 and 25.64% after soaking N3-bio-MOF-100 in CCM solutions for 1 day and 3 days, respectively. The success of postsynthetic modification of FA was confirmed by 1H NMR spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography-mass spectrometry (LC-MS). The stimuli-responsive drug release studies demonstrated an increase of CCM released under acidic microenvironments. Moreover, the cell viability assay was performed on the 4T1 (breast cancer) cell line in the presence of CCM@N3-bio-MOF-100 and CCM@N3-bio-MOF-100/FA carriers to confirm its biological compatibility. In addition, a cellular uptake study was conducted to evaluate the targeting of tumor cells.
Collapse
Affiliation(s)
- Renata C Alves
- Department of Drugs and Medicines, School of Pharmaceutical Sciences of São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, 14800-903 Araraquara, São Paulo, Brazil
| | - Zachary M Schulte
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 1560, United States
| | - Marcela T Luiz
- Department of Pharmaceutical Sciences, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n - Campus da USP, 14040-903 Ribeirão Preto, Sao Paulo, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia (UnB), Campus Universitario Darcy Ribeiro - Asa Norte, 70910-900 Brasilia, Federal District, Brazil
| | - Regina C G Frem
- Institute of Chemistry, São Paulo State University (UNESP), Prof. Francisco Degni 55, PO Box 355, 14800-970 Araraquara, São Paulo, Brazil
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 1560, United States
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences of São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, 14800-903 Araraquara, São Paulo, Brazil
| |
Collapse
|
24
|
Guo W, Chen Z, Feng X, Shen G, Huang H, Liang Y, Zhao B, Li G, Hu Y. Graphene oxide (GO)-based nanosheets with combined chemo/photothermal/photodynamic therapy to overcome gastric cancer (GC) paclitaxel resistance by reducing mitochondria-derived adenosine-triphosphate (ATP). J Nanobiotechnology 2021; 19:146. [PMID: 34011375 PMCID: PMC8136184 DOI: 10.1186/s12951-021-00874-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Paclitaxel (PTX) has been suggested to be a promising front-line drug for gastric cancer (GC), while P-glycoprotein (P-gp) could lead to drug resistance by pumping PTX out of GC cells. Consequently, it might be a hopeful way to combat drug resistance by inhibiting the out-pumping function of P-gp. RESULTS In this study, we developed a drug delivery system incorporating PTX onto polyethylene glycol (PEG)-modified and oxidized sodium alginate (OSA)-functionalized graphene oxide (GO) nanosheets (NSs), called PTX@GO-PEG-OSA. Owing to pH/thermal-sensitive drug release properties, PTX@GO-PEG-OSA could induced more obvious antitumor effects on GC, compared to free PTX. With near infrared (NIR)-irradiation, PTX@GO-PEG-OSA could generate excessive reactive oxygen species (ROS), attack mitochondrial respiratory chain complex enzyme, reduce adenosine-triphosphate (ATP) supplement for P-gp, and effectively inhibit P-gp's efflux pump function. Since that, PTX@GO-PEG-OSA achieved better therapeutic effect on PTX-resistant GC without evident toxicity. CONCLUSIONS In conclusion, PTX@GO-PEG-OSA could serve as a desirable strategy to reverse PTX's resistance, combined with chemo/photothermal/photodynamic therapy.
Collapse
Affiliation(s)
- Weihong Guo
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Zhian Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Xiaoli Feng
- Guangdong Provincial Stomatology Hospital, Southern Medical University, Guangzhou, 510000 China
| | - Guodong Shen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Huilin Huang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Yanrui Liang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Bingxia Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 PR China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Yanfeng Hu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
25
|
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front Cell Dev Biol 2021; 9:626910. [PMID: 33855017 PMCID: PMC8039396 DOI: 10.3389/fcell.2021.626910] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022] Open
Abstract
Paclitaxel (PTX) has been used for cancer treatment for decades and has become one of the most successful chemotherapeutics in the clinic and financially. However, serious problems with its use still exist, owing to its poor solubility and non-selective toxicity. With respect to these issues, recent advances have addressed the water solubility and tumor specificity related to PTX application. Many measures have been proposed to remedy these limitations by enhancing tumor recognition via ligand-receptor-mediated targeting as well as other associated strategies. In this review, we investigated various kinds of ligands that have emerged as PTX tumor-targeting tools. In particular, this article highlights small molecule-, protein-, and aptamer-functionalized conjugates and nanoparticles (NPs), providing a promising approach for PTX-based individualized treatment prospects.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Baoxian Zhang
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Angela Chun Fai Kung
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Jin Gao
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hengqin) Institute Co. Limited, Zhuhai, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
26
|
Ansari MA, Thiruvengadam M, Farooqui Z, Rajakumar G, Sajid Jamal QM, Alzohairy MA, Almatroudi A, Alomary MN, Chung IM, Al-Suhaimi EA. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer. Semin Cancer Biol 2021; 69:109-128. [PMID: 31891780 DOI: 10.1016/j.semcancer.2019.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance. An increasing number of studies has revealed miRNAs as novel natural alternative substances that play a crucial role in regulating several physiological processes and have a close, adverse association with several diseases, including breast cancer. Due to the therapeutic potential of miRNA and paclitaxel in cancer research, the current review focuses on the differential roles of various miRNAs in breast cancer development and treatment. miRNA delivery to a specific target site, the development of paclitaxel and miRNA formulations, and nanotechnological strategies for the delivery of nanopaclitaxel in the management of breast cancer are discussed. These strategies involve improving the cellular uptake and bioavailability and reducing the toxicity of free paclitaxel to achieve accumulation tumor site. Furthermore, a molecular docking study was performed to ascertain the enhanced anticancer activity of the nanoformulation of ANG1005 and Abraxane. An in silico analysis revealed that ANG1005 and Abraxane nanoformulations have superior and significantly enhanced interactions with the proteins α-tubulin and Bcl-2. Therefore, ANG1005 and Abraxane may be more suitable in the therapeutic management of breast cancer than the existing free paclitaxel. miRNAs can revert abnormal gene expression to normalcy; since miRNAs serve as tumor suppressors. Therefore, restoration of particular miRNAs levels as a replacement therapy may be an effective endocrine potential strategy for treating ER positive/ negative breast cancers.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Zeba Farooqui
- College of Pharmacy, University of Houston, Houston, TX, 77204, United States
| | - Govindaswamy Rajakumar
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al-Bukayriyah, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad N Alomary
- National Center of Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Ebtesam Abdullah Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia; Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
27
|
Li M, Dong J, Cheng F, Li C, Wang H, Sun T, He W, Wang Q. Controlling Conjugated Antibodies at the Molecular Level for Active Targeting Nanoparticles toward HER2-Positive Cancer Cells. Mol Pharm 2021; 18:1196-1207. [PMID: 33448219 DOI: 10.1021/acs.molpharmaceut.0c01090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For active targeting nanodrug delivery systems conjugated with antibodies, both lack of control of the antibody at the molecular level and protein corona formation remarkably decreases targeting efficacy. Herein, we designed a series of silica nanoparticles toward HER2-positive breast cancer cells, with an anti-HER2 Fab-6His density ranging from 50 to 180 molecules per nanoparticle. Through the site-directed immobilization method we developed, the antigen-binding domain of anti-HER2 Fab was mostly accessible to the HER2 receptor. Both polyethylene glycol (PEG) chains and a high density of Fab were shown to suppress protein corona formation and macrophage uptake. The dependency of targeting efficacy and cytotoxicity on Fab density was shown using a series of breast cancer cell lines with different levels of the HER2 expression. The high density of Fab stimulates quick responses from HER2-positive cells. Combined with PEG chains, conjugated antibodies with a well-controlled orientation and density significantly improves delivery performance and sheds light on the design and preparation of an improved active targeting nanodrug delivery system.
Collapse
Affiliation(s)
- Mingyang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China.,Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Jicheng Dong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China.,Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China.,Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China.,Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Huanan Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Tao Sun
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China.,Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Qing Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China.,Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| |
Collapse
|
28
|
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front Cell Dev Biol 2021. [PMID: 33855017 DOI: 10.3389/fcell.2021.626910/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Paclitaxel (PTX) has been used for cancer treatment for decades and has become one of the most successful chemotherapeutics in the clinic and financially. However, serious problems with its use still exist, owing to its poor solubility and non-selective toxicity. With respect to these issues, recent advances have addressed the water solubility and tumor specificity related to PTX application. Many measures have been proposed to remedy these limitations by enhancing tumor recognition via ligand-receptor-mediated targeting as well as other associated strategies. In this review, we investigated various kinds of ligands that have emerged as PTX tumor-targeting tools. In particular, this article highlights small molecule-, protein-, and aptamer-functionalized conjugates and nanoparticles (NPs), providing a promising approach for PTX-based individualized treatment prospects.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Baoxian Zhang
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Angela Chun Fai Kung
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Jin Gao
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hengqin) Institute Co. Limited, Zhuhai, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
29
|
Wang HY, Hou L, Li HL, Wang X, Cao Y, Zhang BY, Wang JT, Wei SJ, Dang HW, Ran HT. A nanosystem loaded with perfluorohexane and rose bengal coupled upconversion nanoparticles for multimodal imaging and synergetic chemo-photodynamic therapy of cancer. Biomater Sci 2021; 8:2488-2506. [PMID: 32211626 DOI: 10.1039/c9bm02081k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Theranostics is a new trend integrating diagnostic and therapeutic functions in tumour research. Theranostic nanoparticles enabling both tumour imaging and drug delivery are a promising platform for image-guided cancer therapy. Photodynamic therapy (PDT) has great potential in synergy with traditional chemotherapy but faces great challenges due to hypoxia, poor targeting ability and the limited penetration depth of visible light. To solve these problems, we presented a novel nanosystem of FA/UCNPs-RB/HCPT/PFH@lipid (denoted as FURH-PFH-NPs), with a perfluorohexane (PFH) carrying rich oxygen core and a folic acid-modified lipid shell. The shell contains 10-hydroxycamptothecin (HCPT) and self-fluorescing photosensitizer compounds, namely, upconversion nanoparticles and rose bengal (UCNPs-RB). In this study, FURH-PFH-NPs aggregated in SKOV3 cells (in vitro) and the nude xenograft tumour region when combined with folic acid receptors. When triggered by low-intensity focused ultrasound (LIFU), FURH-PFH-NPs released PFH, UCNPs-RB and HCPT. The above procedure was monitored through multimodal imaging, which simultaneously guided the tumour therapy. UCNPs-RB and PFH promoted the PDT effect under LIFU. Through PDT and HCPT, we obtained better therapeutic effects and good biosafety against SKOV3 nude xenograft tumours. FURH-PFH-NPs combined with LIFU and laser irradiation might be a promising strategy for ovarian cancer.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China. and Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, People's Republic of China. and Department of Gynaecology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Li Hou
- Department of Otolaryngology, Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Hai-Liang Li
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Xu Wang
- Department of Neurosurgery, 1st Hospital of Yin Chuan, 2nd Affiliated Hospital of Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Yang Cao
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China. and Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, People's Republic of China.
| | - Bo-Yu Zhang
- School of Clinical Medicine Fujian Medical University, Fuzhou, 350000, P.R. China
| | - Jing-Tao Wang
- School of Pharmaceutical Science, Southwest University, Chongqing, 40071, P. R. China
| | - Shi-Jie Wei
- Institute of Clinical Pharmacology and Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Hong-Wan Dang
- Institute of Clinical Pharmacology and Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Hai-Tao Ran
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China. and Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, People's Republic of China.
| |
Collapse
|
30
|
Hashemi M, Shamshiri A, Saeedi M, Tayebi L, Yazdian-Robati R. Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs. Arch Biochem Biophys 2020; 691:108485. [PMID: 32712288 DOI: 10.1016/j.abb.2020.108485] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Most problems associated with chemotherapeutic agents involve non-specific cytotoxicity, low intratumoral accumulation and drug resistance. Targeted drug delivery systems (TDDS) based on nanoparticles (NPs) are a new strategy for better therapeutic efficiency, along with reduction of side effects commonly seen with cancer drugs. Poly (lactic-co-glycolic acid) (PLGA), as one of the furthest developed synthetic polymer, has gained significant attention because of excellent properties-including biodegradability and biocompatibility, controlled release of drug, protection of drug or gene from decomposition and ability to modify surface with targeting agents for both cancer diagnosis and therapy. Aptamers are single-stranded RNA or DNA that can fold through intramolecular interactions into specific three-dimensional structures to selectively and exclusively bind with interested biomarkers. In this review, we explain the latest developments regarding the application of aptamer-decorated PLGA NPs in delivery of therapeutic agents or cancer-related genes into cancer cells. Additionally, we discuss the most recent efforts in the field of aptamer-grafted PLGA-based NPs as theranostics and stimuli-responsive agents.
Collapse
Affiliation(s)
- Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad, University of Medical Sciences, Mashhad, Iran
| | | | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|