1
|
Cengiz-Yanardag E, Karakaya I, Ozverel CS. The effect of hydrogen peroxide and subsequent resveratrol application to CAD-CAM blocks on the cell viability of fibroblasts. Odontology 2025; 113:568-576. [PMID: 39207585 DOI: 10.1007/s10266-024-00990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The aim is to assess viability of fibroblasts exposed to 2 CAD-CAM blocks and a nanohybrid resin after application of hydrogen peroxide (HP) and resveratrol with 2 extraction media at 24 h, 48 h, and 72 h. Eighteen specimens were obtained from Lava Ultimate (LU), Vita Enamic (VE), and Grandio (GR). Specimens of each material were divided into 3 groups (material only, bleached, resveratrol applied) for 2 extraction media as artificial saliva (AS) and phosphate buffer saline (PBS) (n = 3). For bleached group, 40% HP was applied to specimens for 20 min twice. For resveratrol group, 0.5 µM resveratrol was applied after bleaching for 10 min. Mouse fibroblast cells were exposed to extracts of each group. The viability of cells was determined with MTT assay at 24 h, 48 h, and 72 h. Cell viability data (%) were analyzed statistically using one-way ANOVA, and post hoc Tukey test. Bleached materials showed the lowest cell viability (PBS; p < 0.01/ AS; p < 0.001). There is no statistically significant difference between resveratrol applied and bleached groups (PBS; p = 0.14/ AS; p = 0.072). Regardless of period of time and procedure, GR showed lower viable cell numbers than LU and VE (p < 0.001). Viable cell numbers were higher at 24 h than at 72 h (p < 0.001). There was no statistically difference between AS and PBS (p > 0.05). For all materials, the application of resveratrol did not affect the cell viability which decreased after bleaching over time. The decrease in nanohybrid resin was more critical than hybrid CAD-CAM blocks. The type of extraction media had no effect on cell viability results.
Collapse
Affiliation(s)
- Esra Cengiz-Yanardag
- Department of Restorative Dentistry, Faculty of Dentistry, Mersin University, Mersin, Turkey.
| | - Izgen Karakaya
- Department of Restorative Dentistry, Faculty of Dentistry, European University of Lefke, Nicosia, Cyprus
| | - Cenk Serhan Ozverel
- Department of Basic Medical Sciences, Faculty of Dentistry, Near East University, Nicosia, Cyprus
| |
Collapse
|
2
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Hosseini NM, Valian N, Esfahaniani M, Nabi Afjadi M. Promising potential effects of resveratrol on oral and dental health maintenance: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1367-1389. [PMID: 39305330 DOI: 10.1007/s00210-024-03457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/24/2024] [Indexed: 02/14/2025]
Abstract
Resveratrol (RV-3, 5, 4'-trihydroxystilbene) is a natural compound found in plants like red grapes, berries, and peanuts, with promising effects on dental health. It helps strengthen tooth enamel by promoting remineralization, making the teeth more resistant to decay caused by acid-producing bacteria. RV also shields dentin, a vulnerable layer beneath the enamel, from erosion and sensitivity. Its anti-inflammatory properties can reduce inflammation associated with dental conditions such as pulpitis and endodontic diseases. Moreover, RV's antimicrobial activity inhibits the growth of bacteria involved in dental plaque and biofilm formation, preventing their accumulation on the tooth surface. This contributes to a healthier oral environment and prolongs the lifespan of dental restorative materials. However, the research on RV's impact on dental health is in its early stages, and further studies are needed to confirm potential benefits. Important factors such as determining the optimal dosage, understanding its bioavailability, and assessing potential side effects require further investigation. This review focuses on the important role of RV in promoting dental health. It delves into various aspects, including its impact on root health, maintenance of the dental pulp, care for tooth enamel, effectiveness of dental restorative materials, and health of dentin.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Narges Mohammad Hosseini
- Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Neda Valian
- Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Issa S, Karpukhina N, Sleibi A. Effect of rosmarinic acid on microtensile bond strength of 1-step self-etch adhesive on artificial caries-affected dentine with or without NaOCl treatment: An in-vitro study. Dent Mater J 2024; 43:805-812. [PMID: 39462610 DOI: 10.4012/dmj.2024-024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This study investigated the effect of rosmarinic acid (RA) on the immediate microtensile bond strength (µTBS) of 1-step self-etch adhesive to artificial caries-affected dentine (CAD), with or without NaOCl treatment. Dentine surfaces of 60 premolars were subjected to pH-cycling for artificial caries induction. Samples were randomly categorized into: NaOClRA group treated with 6% NaOCl and RA, RA group treated with RA solution, NaOCl group treated with 6% NaOCl, and untreated control group. Surface morphology was evaluated using SEM. Following bonding and composite placement, the specimens were sectioned into 1 mm2 beams after 24 h of water storage, then µTBS test was done. Failure modes were assessed under stereomicroscope. There was significant increase in the µTBS of NaOClRA compared to NaOCl group (p=0.001). RA group showed significant increase in µTBS compared to NaOCl and control groups, (p<0.001, p=0.009 respectively). In conclusion, RA improved the µTBS to CAD with or without NaOCl treatment.
Collapse
Affiliation(s)
- Shatha Issa
- Department of Conservative Dentistry, College of Dentistry, Mustansiriyah University
| | - Natalia Karpukhina
- Dental Physical Sciences Unit, Institute of Dentistry, Queen Mary University of London
| | - Ahmed Sleibi
- Department of Conservative Dentistry, College of Dentistry, Mustansiriyah University
| |
Collapse
|
4
|
Li X, Vandooren J, Pedano MS, De Munck J, Perdigão J, Van Landuyt K, Van Meerbeek B. Gelatinolytic activity in dentin upon adhesive treatment. Sci Rep 2024; 14:26618. [PMID: 39496727 PMCID: PMC11535179 DOI: 10.1038/s41598-024-78042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
In this multi-parameter study, the effect of diverse factors related to adhesive application on the activation of host-derived gelatinases was investigated by gelatin zymography, in-situ zymography, fluorogenic DQ-gelatin assay and micro-tensile bond-strength (μTBS) testing. Gelatin zymography disclosed the presence of gelatinases in phosphoric acid-etched dentin powder, while two gold-standard adhesives generated no measurable MMP activation. In-situ zymography revealed that the interfacial gelatinolytic activity from specimens treated with the two adhesives appeared similar as that of the EDTA negative control, indicating no detectable gelatinases were activated upon adhesive treatment. In solution, MMP-2/9 activity significantly decreased upon interaction with both adhesives (two-way linear mixed effects model [LMEM]: p < 0.05); gelatinases were almost completely deactivated upon 1-week incubation at 37 °C (general linear model: p < 0.05); light-curing adhesives increased temperature up to 55 °C, which appeared sufficient to dramatically decrease MMP-2/9 activity (two-way ANOVA: p < 0.05). Finally, challenging adhesive-dentin interfaces with highly concentrated MMP-9 (at a much higher concentration than present in saliva) for 1 m did not significantly affect μTBS (two-way LMEM: p > 0.05). Taken together, the two adhesives did not activate but rather inhibited the release and activation of dentinal gelatinases.
Collapse
Affiliation(s)
- Xin Li
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mariano Simón Pedano
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium
| | - Jan De Munck
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium
| | - Jorge Perdigão
- Department of Restorative Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kirsten Van Landuyt
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Liu T, Xie H, Chen C. A comparison of different cleaning approaches for blood contamination after curing universal adhesives on the dentine surface. Dent Mater 2024; 40:1786-1797. [PMID: 39129078 DOI: 10.1016/j.dental.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE This study compared the effectiveness of various cleaning approaches, including spray rinsing, repreparing with diamond burs, and using phosphoric acid or sodium hypochlorite alone or with polyphenols (resveratrol or myricetin), in removing blood contamination from the dentine after adhesive light-curing. METHODS The contact angles of the treated surfaces were measured and scanning electron microscopy/ energy dispersive X-ray spectroscopy observation was performed. The bond strength and nanoleakage were assessed, and in situ zymography was performed before and after aging. Interactions between matrix metalloproteinase (MMP)-9 and polyphenols were evaluated using molecular dynamics and rhMMP-9 inhibition analyses. The destruction of sodium hypochlorite on collagen and the resistance of polyphenols-treated dentine collagen to enzymolysis were evaluated using the hydroxyproline (HYP) assay. The effect of polyphenols on dentine collagen crosslinking was assessed by Fourier Transform Infrared Spectroscopy. RESULTS The repreparation group had the lowest contact angle compared to the other groups. The spray rinsing group had the lowest bond strength and highest amounts of nanoleakage. Cleaning with phosphoric acid or sodium hypochlorite alone removed the blood contaminants and parts of the adhesive; moreover, applying polyphenols further improved the bond strength and decreased nanoleakage and MMP activity after aging. Both polyphenols inhibited rhMMP-9 activity and promoted collagen crosslinking. Sodium hypochlorite showed the maximum HYP release when used alone, which was decreased after adding polyphenols. SIGNIFICANCE Phosphoric acid or sodium hypochlorite cleaning can remove blood contamination from the dentine surface after adhesive curing, and the addition of polyphenols can improve the durability of dentine bonding.
Collapse
Affiliation(s)
- Ting Liu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Haifeng Xie
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chen Chen
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
| |
Collapse
|
6
|
Cengiz-Yanardag E, Karakaya I. The effect of resveratrol application on the micro-shear bond strength of adhesive to bleached enamel. Sci Rep 2024; 14:24201. [PMID: 39406800 PMCID: PMC11480448 DOI: 10.1038/s41598-024-75024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The aim is to investigate the effect of resveratrol on micro-shear bond strength (µSBS) of adhesive to enamel after 40% hydrogen peroxide application. For µSBS test, 50 teeth were obtained, 2/3 of crowns were embedded into acrylic resin. After application of hydrogen peroxide twice, teeth were randomly allocated to control group and 9 groups (n = 15) according to concentrations (0.5, 1, 2 µM) and application periods (10, 30, 60 min) of resveratrol. Following, composite resin was placed onto enamel surfaces using 3 tygon tubes for each tooth. µSBS test was performed and failure modes were displayed. To analyze µSBS values, Kruskal Wallis and Mann-Whitney U tests were performed. µSBS values of 1 µM resveratrol for 10 min applied group were statistically higher than control group (p < 0.05). 1 µM resveratrol showed higher µSBS values than 0.5 µM and 2 µM (p < 0.05). No significant difference was detected between application periods (p > 0.05). The improvement of µSBS values with 1 µM resveratrol application may be promising for clinical problems related to reduced bond strength after bleaching.
Collapse
Affiliation(s)
- Esra Cengiz-Yanardag
- Department of Restorative Dentistry, Faculty of Dentistry, Mersin University, Mersin, Turkey.
| | - Izgen Karakaya
- Department of Restorative Dentistry, Faculty of Dentistry, European University of Lefke, Lefke, Cyprus
| |
Collapse
|
7
|
Prasad T, Pawar R, Ganiger C, Ronad Y, Phaphe S, Mane P, Patil S. The Impact of Orthodontic Adhesive Containing Resveratrol, Silver, and Zinc Oxide Nanoparticles on Shear Bond Strength: An In Vitro Study. Cureus 2024; 16:e68346. [PMID: 39355084 PMCID: PMC11442637 DOI: 10.7759/cureus.68346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/31/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction The goal of orthodontic treatment is to provide patients with esthetic smiles and functional occlusion. Despite best efforts and continuous evolution of materials, white spot lesions present a persistent hindrance to the desired treatment outcome. Nanoparticles have shown efficacy in reducing microbial activity; however, currently, there is a need for natural anti-cariogenic compounds with minimal side effects. Resveratrol is a natural compound belonging to the polyphenol group and has shown promising anti-microbial efficacy. This study aimed to evaluate the influence of dentin bonding agents incorporated with the following three different nanoparticles on shear bond strength: silver nanoparticles (Ag-Np), zinc oxide nanoparticles (ZnO-Np), and resveratrol nanoparticles (RSV-Np). Materials and methods A total of 40 premolar teeth therapeutically extracted were assigned to four equal groups of n=10 each. Groups 1, 2, and 3 used experimental adhesives doped with silver, zinc oxide, and resveratrol nanoparticles, respectively. Group 4 was bonded using unmodified adhesive. The bonded teeth were then subjected to shear bond strength (SBS) testing which was measured using a Universal Testing Machine (model no. UNITEST-10; Pune, India: ACME Engineers). Statistical analyses were performed using SPSS version 21 (Armonk, NY: IBM Corp.), employing one-way ANOVA and Tukey's post-hoc test for pairwise comparisons. Results Shear bond strength testing revealed that the control group with unmodified adhesive (8.6 MPa) had the highest SBS, followed by RSV-Np (7.6 MPa), Ag-Np (6.3 MPa), and ZnO-Np (5.65 MPa). Although the experimental groups demonstrated decreased SBS compared to the control, the values for Ag-Np and RSV-Np fell within the acceptable range. Conclusion Resveratrol nanoparticles had the least impact on shear bond strength among the experimental groups. These findings suggest that the incorporation of resveratrol nanoparticles in dentin bonding agents can provide anti-cariogenic effect without significantly impacting the adhesive's mechanical properties thereby providing a new and promising alternative to synthetic nanoparticles. Further studies are recommended to optimize the balance between anti-microbial efficacy and bond strength in clinical applications.
Collapse
Affiliation(s)
- Tanya Prasad
- Orthodontics and Dentofacial Orthopedics, School of Dental Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Renuka Pawar
- Orthodontics and Dentofacial Orthopedics, School of Dental Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Chanamallappa Ganiger
- Orthodontics and Dentofacial Orthopedics, School of Dental Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Yusuf Ronad
- Orthodontics and Dentofacial Orthopedics, School of Dental Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Sandesh Phaphe
- Orthodontics and Dentofacial Orthopedics, School of Dental Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Pratap Mane
- Orthodontics and Dentofacial Orthopedics, School of Dental Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Seema Patil
- Orthodontics and Dentofacial Orthopedics, School of Dental Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
8
|
Gao X, Wang Z, Yang H, Huang C. Rapid Intrafibrillar Mineralization Strategy Enhances Adhesive-Dentin Interface. J Dent Res 2024; 103:42-50. [PMID: 37990799 DOI: 10.1177/00220345231205492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Biomimetic mineralization of dentin collagen appears to be a promising strategy to optimize dentin bonding durability. However, traditional postbonding mineralization strategies based on Ca/P ion release still have some drawbacks, such as being time-consuming, having a spatiotemporal mismatch, and having limited intrafibrillar minerals. To tackle these problems, a prebonding rapid intrafibrillar mineralization strategy was developed in the present study. Specifically, polyacrylic acid-stabilized amorphous calcium fluoride (PAA-ACF) was found to induce rapid intrafibrillar mineralization of the single-layer collagen model and dentin collagen at just 1 min and 10 min, as identified by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. This strategy has also been identified to strengthen the mechanical properties of demineralized dentin within a clinically acceptable timeframe. Significantly, the bonding strength of the PAA-ACF-treated groups outperformed the control group irrespective of aging modes. In addition, the endogenous matrix metalloproteinases as well as exogenous bacterial erosion were inhibited, thus reducing the degradation of dentin collagen. High-quality integration of the hybrid layer and the underlying dentin was also demonstrated. On the basis of the present results, the concept of "prebonding rapid intrafibrillar mineralization" was proposed. This user-friendly scheme introduced PAA-ACF-based intrafibrillar mineralization into dentin bonding for the first time. As multifunctional primers, PAA-ACF precursors have the potential to shed new light on prolonging the service life of adhesive restorations, with promising significance.
Collapse
Affiliation(s)
- X Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Z Wang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, China
| | - H Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - C Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Wang B, Han F, You R, Chen C, Xie H. Polyphenols Can Improve Resin-Dentin Bond Durability by Promoting Amorphous Calcium Phosphate Nanoparticles to Backfill the Dentin Matrix. Int J Nanomedicine 2023; 18:1491-1505. [PMID: 36998600 PMCID: PMC10046144 DOI: 10.2147/ijn.s395631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Objective To investigate the effects of proanthocyanidins (PA), myricetin, resveratrol, and kaempferol on the modification of dentin collagen and the inhibition of matrix metalloproteinase (MMP) activity, and to evaluate their contributions to the biomimetic remineralization and resin-dentin bonding performance. Methods Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and in situ zymography were applied to verify the collagen modification and MMP activity inhibition induced by these four polyphenols. Scanning electron microscopy/energy dispersive spectrometer (SEM/EDS) analysis, X-ray diffraction (XRD), ATR-FTIR, Vickers hardness numbers (VHN), and micro-computed tomography (micro-CT) were performed to characterize the remineralized dentin. Microtensile bond strength (μTBS) and nanoleakage were investigated to evaluate the effects of the four polyphenols on resin-dentin bonding durability. Results ATR-FTIR and in situ zymography confirmed that these four polyphenols could modify dentin collagen and inhibit MMP activity, respectively. Chemoanalytic characterization exhibited the efficacies of the four polyphenols in promoting dentin biomimetic remineralization. The surface hardness of PA-pretreated dentin was the greatest. Micro-CT results demonstrated that the PAs group possessed the highest amount of dentin surface minerals and the lowest amount of deep-layer minerals. The surface and deep-layer mineral contents of the Myr group were higher than Res and Kae groups. Treatment with these four polyphenols significantly increased the initial μTBS compared with the control group without primer conditioning. μTBS decreased significantly during aging, and the decrease was more severe in the PAs and Kae groups than in the Myr and Res groups. With or without aging, the polyphenol groups exhibited relatively less fluorescence. However, the Myr and Res groups showed less serious nanoleakage after aging. Conclusion PA, myricetin, resveratrol, and kaempferol can modify dentin collagen, inhibit MMP activity, promote biomimetic remineralization, and improve resin-dentin bond durability. Compared with PA and kaempferol, myricetin and resveratrol are more effective in improving resin-dentin bonding.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Prosthodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Fei Han
- Department of Prosthodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Ran You
- Department of Prosthodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Chen Chen
- Department of Endodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Haifeng Xie
- Department of Prosthodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
10
|
Eusufzai SZ, Barman A, Jamayet NB, Ahmad WMAW, Mahdi SS, Sheikh Z, Daood U. Effects of Riboflavin Collagen Crosslinker on Dentin Adhesive Bonding Efficiency: A Systematic Review and Meta-Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1701. [PMID: 36837334 PMCID: PMC9963098 DOI: 10.3390/ma16041701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to evaluate published data regarding riboflavin (RF) as a cross-linker for improved adhesive bond strength to dentin and to analyze previous studies for optimal concentration of riboflavin range suitable for dentin bond. Saliva and distilled water were used as storage media and aging time was 24 h and 6 months. Results of meta-analysis were synthesized using a statistical method of inverse variance in random effects with a 95% Confidence Interval (CI). Cochrane review manager 5.4.1 was used to determine results of the meta-analysis. In total, 3172 articles were found from search databases "PubMed", "Scopus", and "Google Scholar". Six of the fifteen studies were eligible for meta-analysis. Micro tensile strength shows significant improvement with the addition of riboflavin (p < 0.05) compared to without the addition of riboflavin from with 95% CI. A significant difference has been found in micro tensile bond strength between use of the riboflavin cross-linker and without use of the riboflavin crosslinker in the dentin adhesive system. With a 95% confidence interval (CI), the I2 for micro tensile strength was 89% with strong heterogeneity, Chi2 = 44.76, df = 5 (p < 0.00001), and overall effect size is Z = 2.22 (p = 0.03) after immediate aging. Chiang et al. 2013 shows maximum mean differences which is 38.50 [17.93-59.07]. After 6 months of aging in distilled water or artificial saliva micro tensile bond strength has been increased with the addition of riboflavin (p < 0.05). It can be clearly seen that pooled effect and 95% CI did not cross the line of no effect. With a 95% confidence interval (CI), the I2 for micro tensile strength was 96% with strong heterogeneity, Chi2 = 117.56, df = 5 (p < 0.00001), and overall effect size is Z = 2.30 (p = 0.02). Subgroup analysis proved a similar effect of distilled water and artificial saliva as storage media on micro tensile bond strength after incorporating riboflavin as a collagen crosslinker. An artificial saliva aged forest plot also showed considerable heterogeneity with I2 = 96%; Tau2 = 257.32; Chi2 = 94.37; df = 2 (p < 0.00001); test for overall effect, Z = 1.06 (p = 0.29). Riboflavin prior to or with bonding is recommended to improve the bonding of different adhesive systems.
Collapse
Affiliation(s)
- Sumaiya Zabin Eusufzai
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia
| | - Aparna Barman
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia
| | - Nafij Bin Jamayet
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Wilayah Persekutuan Kuala Lumpur, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Wan Muhamad Amir W Ahmad
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia
| | - Syed Sarosh Mahdi
- Division of Clinical Oral Health Sciences, School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia
- Faculty of Dentistry, Dalhousie University, 5981 University Ave, Halifax, NS B3H 1W2, Canada
| | - Zeeshan Sheikh
- Faculty of Dentistry, Dalhousie University, 5981 University Ave, Halifax, NS B3H 1W2, Canada
| | - Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Wilayah Persekutuan Kuala Lumpur, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
11
|
Sodium carboxymethyl cellulose-based extrafibrillar demineralization to optimize dentin bonding durability. Dent Mater 2022; 38:2096-2114. [DOI: 10.1016/j.dental.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/02/2022] [Accepted: 11/06/2022] [Indexed: 11/27/2022]
|
12
|
You X, Chen L, Xu J, Li S, Zhang Z, Guo L. Effects of carbodiimide combined with ethanol-wet bonding pretreatment on dentin bonding properties: an in vitro study. PeerJ 2022; 10:e14238. [PMID: 36299505 PMCID: PMC9590415 DOI: 10.7717/peerj.14238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
Purpose This study evaluated the combined effects of Carbodiimide (EDC) and ethanol-wet bonding (EWB) pretreatment on the bond strength and resin-dentin surface. Methods Phosphoric acid-etched dentin specimens were randomly divided into five groups based on the following pretreatments: deionized water (control), EWB, 0.3M EDC in water (EDCw), EDC water solution combined EWB (EDCw + EWB), and 0.3M EDC in ethanol (EDCe). A scanning electron microscope (SEM) was used to observe the morphology of collagen fibrils on the demineralized dentin matrix in each group after pretreatment. The adhesives Prime & Bond NT (PB) (Dentsply De trey, Konstanz, Germany) or Single bond 2 (SB) (3M ESPE, St. Paul, MN, USA) was applied after pretreatments, and a confocal laser scanning microscope (CLSM) was used to evaluate the quality of resin tags. The degree of conversion (DC) of the adhesive was investigated by Fourier transform infrared spectroscopy (ATR-FTIR). The dentin was first bonded with resin and bathed in water at 37 °C for 24 h. Half of them were subjected to 10, 000 cycles in a thermocycler between 5 °C and 55 °C before a microshear bond strength (µSBS) test. The statistical methods were Analysis of Variance (ANOVA) and a Tukey post hoc test at α = 0.05. Results The µSBS was significantly affected by pretreatments (p < 0.001), adhesives (p < 0.001), and aging conditions (p < 0.001) as revealed by the three-way ANOVA. The EDCw, EDCw + EWB, and EDCe groups significantly increased the µSBS; the EDCw + EWB and EDCe groups produced the highest µSBS. In the EDC-containing groups, the SEM showed at the collagen fibrils in the dentin matrix formed a three-dimensional network structure in the tubules after cross-linking into sheets, and the hybrid layer formed thicker resin tags under a CLSM. In the EDC-containing groups, the CLSM observed an increase in the length of resin tags. PB showed a higher DC and bonding strength than SB, and the five pretreatment groups tested did not affect the DC of the two adhesives. Conclusions In etch-and-rinse bonding system, EDC combined with EWB pretreatment can improve the quality of the hybrid layer and enhance the mechanical properties of demineralized dentin matrix. Pretreatment with EDC-ethanol solution may be a new clinically friendly option for enhancing dentin bonding durability.
Collapse
Affiliation(s)
- Xiaoxiao You
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Long Chen
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jie Xu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Sihui Li
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Zhenghao Zhang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Ling Guo
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Zhao Y, He X, Wang H, Wang H, Shi Z, Zhu S, Cui Z. Polyphenol-Enriched Extract of Lacquer Sap Used as a Dentine Primer with Benefits of Improving Collagen Cross-Linking and Antibacterial Functions. ACS Biomater Sci Eng 2022; 8:3741-3753. [PMID: 35793160 PMCID: PMC9472228 DOI: 10.1021/acsbiomaterials.1c01287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Commercial dentin adhesive systems are applied to restorations due to their resistant bonding properties, but they suffer from the lack of bioactivity and are prone to hydrolysis. Therefore, to overcome these limitations, an eco-friendly natural monomer, urushiol, was adopted to be a primer in dentin bonding due to its interaction with collagen and antibacterial activity, preventing further hydrolysis development. First, urushiol was determined to be capable of improving the biological stability of dentin collagen through cross-linking. Using high-fidelity analytical chemistry techniques, such as Fourier transform infrared spectroscopy, we quantified the effects of urushiol on collagen molecules. It could also effectively decrease weight loss after collagenase ingestion by improving the stability of dentin. Moreover, urushiol inhibited Streptococcus mutans growth as well as its biofilm formation. Finally, we demonstrated that the urushiol primer could improve the bonding strength, particularly after aging. The cross-linking and antibacterial functions of urushiol have provided promising developmental prospects for biomaterials in dentin adhesion.
Collapse
Affiliation(s)
- Ying Zhao
- Department
of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xi He
- Department
of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Han Wang
- Department
of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huimin Wang
- Department
of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Zuosen Shi
- State
Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, P. R.
China
| | - Song Zhu
- Department
of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Zhanchen Cui
- State
Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, P. R.
China
| |
Collapse
|
14
|
Hardan L, Daood U, Bourgi R, Cuevas-Suárez CE, Devoto W, Zarow M, Jakubowicz N, Zamarripa-Calderón JE, Radwanski M, Orsini G, Lukomska-Szymanska M. Effect of Collagen Crosslinkers on Dentin Bond Strength of Adhesive Systems: A Systematic Review and Meta-Analysis. Cells 2022; 11:cells11152417. [PMID: 35954261 PMCID: PMC9368291 DOI: 10.3390/cells11152417] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to identify the role of crosslinking agents in the resin–dentin bond strength (BS) when used as modifiers in adhesives or pretreatments to the dentin surface through a systematic review and meta-analysis. This paper was conducted according to the directions of the PRISMA 2020 statement. The research question of this review was: “Would the use of crosslinkers agents improve the BS of resin-based materials to dentin?” The literature search was conducted in the following databases: Embase, PubMed, Scielo, Scopus, and Web of Science. Manuscripts that reported the effect on the BS after the use of crosslinking agents were included. The meta-analyses were performed using Review Manager v5.4.1. The comparisons were performed by comparing the standardized mean difference between the BS values obtained using the crosslinker agent or the control group. The subgroup comparisons were performed based on the adhesive strategy used (total-etch or self-etch). The immediate and long-term data were analyzed separately. A total of 50 articles were included in the qualitative analysis, while 45 articles were considered for the quantitative analysis. The meta-analysis suggested that pretreatment with epigallocatechin-3-gallate (EGCG), carbodiimide, ethylenediaminetetraacetic acid (EDTA), glutaraldehyde, and riboflavin crosslinking agents improved the long-term BS of resin composites to dentin (p ≤ 0.02). On the other hand, the use of proanthocyanidins as a pretreatment improved both the immediate and long-term BS values (p ≤ 0.02). When incorporated within the adhesive formulation, only glutaraldehyde, riboflavin, and EGCG improved the long-term BS to dentin. It could be concluded that the application of different crosslinking agents such as carbodiimide, EDTA, glutaraldehyde, riboflavin, and EGCG improved the long-term BS of adhesive systems to dentin. This effect was observed when these crosslinkers were used as a separate step and when incorporated within the formulation of the adhesive system.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur 57000, Malaysia
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: (C.E.C.-S.); (M.L.-S.); Tel.: +52-(771)-72000 (C.E.C.-S.); +48-42-675-74-61 (M.L.-S.)
| | | | - Maciej Zarow
- “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland
| | - Natalia Jakubowicz
- “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland
| | - Juan Eliezer Zamarripa-Calderón
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico
| | - Mateusz Radwanski
- Department of Endodontics, Chair of Conservative Dentistry and Endodontics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Giovana Orsini
- Department of Clinical Sciences and Stomatology, School of Medicine, Polytechnic University of Marche, Via Tronto 10, 60126 Ancona, Italy
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
- Correspondence: (C.E.C.-S.); (M.L.-S.); Tel.: +52-(771)-72000 (C.E.C.-S.); +48-42-675-74-61 (M.L.-S.)
| |
Collapse
|
15
|
Interactions of two phosphate ester monomers with hydroxyapatite and collagen fibers and their contributions to dentine bond performance. J Dent 2022; 122:104159. [PMID: 35550398 DOI: 10.1016/j.jdent.2022.104159] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/24/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES To evaluate the interactions of two phosphate ester monomers [10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) and dipentaerythritol penta-acrylate phosphate (PENTA)] with hydroxyapatite and collagen and understand their influence on dentine bonding. METHODS Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, nuclear magnetic resonance, ultraviolet-visible, and molecular docking were applied for separately evaluating the interactions of two monomers with hydroxyapatite and collagen. Hydrophilicity tests and morphological observation were employed to characterize pretreated dentine. Microtensile bond strength (μTBS) and nanoleakage were investigated to evaluate the bonding performance. Hydroxyproline assay, in situ zymography, and matrix metalloproteinase-9 (MMP-9) activity assay were used to confirm the MMP inhibition. RESULTS Chemoanalytic characterization confirmed the interactions of 10-MDP and PENTA with hydroxyapatite and collagen. The interactions of PENTA were weaker than 10-MDP. PENTA possessed better dentine tubule sealing after etching than 10-MDP. Dentine treated with PENTA was more hydrophilic than 10-MDP. 10-MDP and PENTA treating significantly increased the initial μTBS than the control group without primer conditioning. μTBS decreased significantly during aging, and the decrease was more severe in the PENTA group than 10-MDP. The 10-MDP and PENTA groups exhibited relatively less fluorescence than the control. The relative inhibition percentages of MMP-9 decreased in the order of 10-MDP-Ca salt, 10-MDP and PENTA. The 10-MDP, PENTA, and 10-MDP-Ca salt groups showed significantly lower hydroxyproline contents than the control. CONCLUSIONS Although PENTA adsorbed on hydroxyapatite, it did not form a stable calcium salt. The interactions of 10-MDP with hydroxyapatite and collagen are different than those of PENTA. CLINICAL SIGNIFICANCE The sealing of dentinal tubules by PENTA and the inhibition of MMP by 10-MDP and its calcium salts contribute to improving the dentine bonding durability.
Collapse
|
16
|
Zhao Q, Gao Y, Jin X, Han F, Chen K, Chen C. Influence of Acidic Environment on Hydrolytic Stability of MDP-Ca Salts with Nanolayered and Amorphous Structures. Int J Nanomedicine 2022; 17:1695-1709. [PMID: 35444417 PMCID: PMC9014115 DOI: 10.2147/ijn.s357823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to investigate the hydrolytic stability of 10-methacryloyloxydecyl dihydrogen phosphate calcium (MDP-Ca) salts with nanolayered and amorphous structures in different pH environments. Methods The MDP-Ca salts were synthesized from MDP and calcium chloride and characterized by X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM). Inductively coupled plasma-mass spectrometry (ICP-MS) was used to quantify the release of calcium from the synthesized MDP-Ca salt, MDP-treated hydroxyapatite (MDP-HAp), and untreated HAp after soaking in acidic and neutral solutions for 1, 7, and 30 days. To study the hydrolytic process, we carried out molecular dynamics (MD) simulations of the nanolayered MCS-MD (monocalcium salt of the MDP dimer) and DCS-MD (dicalcium salt of the MDP dimer) structures, as well as of the amorphous-phase MCS-MM (monocalcium salt of the MDP monomer). Results The TEM images showed that the nanolayered structures were partially degraded by acid attack. Based on the ICP-MS results, the hydrolysis rate of the MDP-Ca salt in acidic and neutral environments followed the order HAp > MDP-HAp > MDP-Ca salt. The MD simulations showed that, in acidic environments, clusters of MDP remained aggregated and all Ca2+ ions separated from the MDP monomer to interact with water molecules in aqueous solution. In neutral environments, Ca2+ ions always interacted with phosphate groups, OH− ions, and water molecules to form clusters centered on Ca2+ ions. Conclusion MDP-Ca presented higher hydrolysis rates in acidic than neutral environments. Nanolayered MCS-MD possessed the highest resistance to acidic hydrolysis, followed by amorphous MCS-MM and DCS-MD.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Yixue Gao
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Xin Jin
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Fei Han
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, People’s Republic of China
| | - Chen Chen
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
- Correspondence: Chen Chen, Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China, Tel +8625 6959 3031, Fax +8625 8651 6414, Email
| |
Collapse
|
17
|
Zhao S, Hua F, Yan J, Yang H, Huang C. Effects of Plant Extracts on Dentin Bonding Strength: A Systematic Review and Meta-Analysis. Front Bioeng Biotechnol 2022; 10:836042. [PMID: 35284411 PMCID: PMC8908204 DOI: 10.3389/fbioe.2022.836042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Objective: To systematically review in vitro studies that evaluated the effects of plant extracts on dentin bonding strength. Materials and Methods: Six electronic databases (PubMed, Embase, VIP, CNKI, Wanfang and The Cochrane Library) were searched from inception to September 2021 in accordance with the Preferred Reporting Items for Systematic Reviews (PRISMA). In vitro studies that compared the performance of dental adhesives with and without the plant extracts participation were included. The reference lists of the included studies were manually searched. Two researchers carried out study screening, data extraction and risk of bias assessment, independently and in duplicate. Meta-analysis was conducted using Review Manager 5.3. Results: A total of 62 studies were selected for full-text analysis. 25 articles used the plant extracts as primers, while five added the plant extracts into adhesives. The meta-analysis included 14 articles of in vitro studies investigating the effects of different plant extract primers on dentin bonding strength of etch-and-rinse and self-etch adhesives, respectively. The global analysis showed statistically significant difference between dental adhesives with and without plant extract primers. It showed that the immediate bond strength of dental adhesives was improved with the application of plant extract primers. Conclusion: The application of proanthocyanidin (PA) primers have positive effect on the in vitro immediate bonding strength of dental adhesives irrespective of etch-and-rinse or self-etch modes.
Collapse
Affiliation(s)
- Shikai Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Hua
- Department of Orthodontics, Center for Evidence-Based Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jiarong Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Hongye Yang, ; Cui Huang,
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Hongye Yang, ; Cui Huang,
| |
Collapse
|
18
|
A mussel glue-inspired monomer-etchant cocktail for improving dentine bonding. J Dent 2021; 116:103888. [PMID: 34762990 DOI: 10.1016/j.jdent.2021.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES The humid oral environment adversely affects the interaction between a functionalised primer and dentine collagen after acid-etching. Robust adhesion of marine mussels to their wet substrates instigates the quest for a strategy that improves the longevity of resin-dentine bonds. In the present study, an etching strategy based on the incorporation of biomimetic dopamine methacrylamide (DMA) as a functionalised primer into phosphoric acid etchant was developed. The mechanism and effect of this DMA-containing acid-etching strategy on bond durability were examined. METHODS Etchants with different concentrations of DMA (1, 3 or 5 mM) were formulated and tested for their demineralisation efficacy. The interaction between DMA and dentine collagen, the effect of DMA on collagen stability and the collagenase inhibition capacity of the DMA-containing etchants were evaluated. The effectiveness of this new etching strategy on resin-dentine bond durability was investigated. RESULTS All etchants were capable of demineralising dentine and exposing the collagen matrix. The latter strongly integrated with DMA via covalent bond, hydrogen bond and Van der Waals' forces. These interactions significantly improve collagen stability and inhibited collagenase activity. Application of the etchant containing 5 mM DMA achieved the most durable bonding interface. CONCLUSION Dopamine methacrylamide interacts with dentine collagen in a humid environment and improves collagen stability. The monomer effectively inactivates collagenase activity. Acid-etching with 5 mM DMA-containing phosphoric acid has the potential to prolong the longevity of bonded dental restorations without compromising clinical operation time. CLINICAL SIGNIFICANCE The use of 5 mM dopamine methacrylamide-containing phosphoric acid for etching dentine does not require an additional clinical step and has potential to improve the adhesive performance of bonded dental restorations.
Collapse
|
19
|
Guo R, Peng W, Yang H, Yao C, Yu J, Huang C. Evaluation of resveratrol-doped adhesive with advanced dentin bond durability. J Dent 2021; 114:103817. [PMID: 34560226 DOI: 10.1016/j.jdent.2021.103817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES This paper aimed to evaluate the influence of resveratrol-doped adhesive on the durability and antibiofilm capability of dentin bonding. METHODS Experimental adhesives were prepared by incorporating resveratrol into a universal adhesive at concentrations of 0 (control), 0.1, 1, and 10 mg/mL. The microtensile bond strength, fracture modes, and adhesive-dentin interface nanoleakage were assessed after 24 h of water storage, 10,000 times of thermocycling or 1-month of collagenase ageing. Relevant antibiofilm capability on Streptococcus mutans (S. mutans), in situ zymography, degree of conversion, and cytotoxicity of resveratrol-doped adhesives were also determined. RESULTS Irrespective of thermocycled or collagenase ageing, the resveratrol-doped adhesive (1 mg/mL) maintained the bond strength and reduced the nanoleakage expression. Meanwhile, the inhibitory ability on endogenous protease activity and S. mutans biofilm formation with acceptable biocompatibility were obtained. CONCLUSIONS This study suggested that the resveratrol-doped adhesive achieved effective improvement on dentin bond durability and secondary caries management. CLINICAL SIGNIFICANCE The application of the resveratrol-doped adhesive indicates promising benefits to increase the lifetime of composite restorations.
Collapse
Affiliation(s)
- Rui Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wenan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chenmin Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
20
|
Distinct effects of polyphenols and solvents on dentin collagen crosslinking interactions and biostability. Dent Mater 2021; 37:1794-1805. [PMID: 34579958 DOI: 10.1016/j.dental.2021.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effects of different polyphenols and solvents on dentin collagen's crosslinking interactions and biostabilization against MMPs and collagenase degradation. METHODS Two polyphenols [proanthocyanidin (PA) and quercetin (QC)] with different water solubility were prepared as treatment solutions using ethanol (EtOH) or dimethyl sulfoxide (DMSO) as solvents. 6-um-thick dentin films were microtomed from dentin slabs of third molars. Following demineralization, films or slabs were subject to 60-s treatment (PA or QC) or no treatment (control) with subsequent extended-rinse with original solvent (EtOH or DMSO) or distilled water (DW). Collagen crosslinking interactions were assessed by FTIR. Biostability was assessed through endogenous MMPs activity via confocal laser scanning microscopy, and exogenous collagenase degradation via weight loss, hydroxyproline release and SEM. Finally, direct collagenase inactivation was also evaluated. Data were analyzed by three-way ANOVA and post-hoc tests (α=0.05%). RESULTS Distinct effects of two polyphenols and solvents on collagen crosslinking and biostabilization were observed. Higher crosslinking and biostability efficacy occurred with PA than QC (p<0.001) that demonstrated negligible collagen interactions. With DMSO solvent, efficacy results were significantly reduced with both polyphenols (p<0.05). DMSO-rinse further weakened interactions of PA with collagen, diminishing biostability (p<0.05). Low biostability was detected with QC and DW-rinse, suggesting direct enzymatic inhibition due to physical presence in collagen. SIGNIFICANCE Collagen crosslinking interactions and biostability depend on polyphenol chemical characteristics. Treatment-solution solvents may affect interactions between polyphenols and collagen, specifically, DMSO showed detrimental effects on collagen crosslinking and biostability and should be used with caution.
Collapse
|
21
|
Hardan L, Bourgi R, Cuevas-Suárez CE, Zarow M, Kharouf N, Mancino D, Villares CF, Skaba D, Lukomska-Szymanska M. The Bond Strength and Antibacterial Activity of the Universal Dentin Bonding System: A Systematic Review and Meta-Analysis. Microorganisms 2021; 9:1230. [PMID: 34204100 PMCID: PMC8227198 DOI: 10.3390/microorganisms9061230] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Streptococcus mutans (S. mutans) is a group of viridans mostly located in oral flora among the wide and biodiverse biofilm. It plays a significant role not only in caries formation but also triggering intracerebral haemorrhage. The durable and stable bond interface, besides bacteria elimination, is one of the crucial factors influencing the resin composite restoration performance. This study aimed to evaluate universal adhesives (UAs) with regard to in vitro bond strength to dentin, and the inhibition of the S. mutans growth and compare them with UAs modified with antimicrobial agents through a systematic review and meta-analysis. Two reviewers performed a literature search up to April 2021 in 5 electronic databases: PubMed MedLine, Scielo, ISI Web of Science, Scopus, and EMBASE. Only in vitro studies reporting the effect of modifying UAs with antimicrobial agents on the bond strength to dentin and/or on the inhibition of the S. mutans were included. Analyses were carried out using Review Manager Software version 5.3.5 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark). The methodological quality of each in vitro study was evaluated following the parameters of a previous systematic review. A total of 1716 potentially relevant publications were recognized. After reviewing the title and abstract, 16 studies remained in the systematic review. From these, a total of 3 studies were included in the meta-analysis. Since data from the studies included in the antimicrobial outcome included zero values, they could not be meta-analysed. Including 0 values in the analysis will lead to several biases in the analysis, so these data were discarded. The antibacterial effect against S. mutans of UAs modified with antimicrobial agents was higher than the non-modified adhesive systems. Within the limitations of the present study, the bond strength of UAs to dentin could be improved by using antimicrobial agents. The UAs modified with antibacterial agents showed a decrease in the viability of S. mutans biofilm, among the adhesives tested. However, there are not enough valid data on antibacterial properties of modified UAs; therefore, more well-designed research on these materials is needed.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (L.H.); (R.B.)
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (L.H.); (R.B.)
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico;
| | - Maciej Zarow
- Private Practice, “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre—pl. Inwalidow 7/5, 30-033 Cracow, Poland;
| | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (N.K.); (D.M.)
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (N.K.); (D.M.)
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
| | | | - Dariusz Skaba
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | | |
Collapse
|
22
|
Hardan L, Bourgi R, Kharouf N, Mancino D, Zarow M, Jakubowicz N, Haikel Y, Cuevas-Suárez CE. Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis. Polymers (Basel) 2021; 13:814. [PMID: 33799923 PMCID: PMC7961712 DOI: 10.3390/polym13050814] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, the availability of a wide variety of universal adhesives makes it difficult for clinicians to choose the correct system for specific bonding situations to dentin substrate. This study aimed to determine whether there are any alternative techniques or additional strategies available to enhance the bond strength of universal adhesives to dentin through a systematic review and meta-analysis. Two reviewers executed a literature search up to September 2020 in four electronic databases: PubMed, ISI Web of Science, Scopus, and EMBASE. Only in vitro studies that reported the dentin bond strength of universal adhesives using additional strategies were included. An analysis was carried out using Review Manager Software version 5.3.5 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark). The methodological quality of each in vitro study was assessed according to the parameters of a previous systematic. A total of 5671 potentially relevant studies were identified. After title and abstract examination, 74 studies remained in systematic review. From these, a total of 61 studies were included in the meta-analysis. The bond strength of universal adhesives to dentin was improved by the use of one of the following techniques: Previous application of matrix metalloproteinases (MMP) inhibitors (p < 0.001), prolonged application time (p = 0.007), scrubbing technique (p < 0.001), selective dentin etching (p < 0.001), non-atmospheric plasma (p = 0.01), ethanol-wet bonding (p < 0.01), prolonged blowing time (p = 0.02), multiple layer application (p = 0.005), prolonged curing time (p = 0.006), and hydrophobic layer coating (p < 0.001). On the other hand, the use of a shortened application time (p = 0.006), and dentin desensitizers (p = 0.01) impaired the bond strength of universal adhesives to dentin. Most of the analyses performed showed a high heterogenicity. The in vitro evidence suggests that the application of universal adhesives using some alternative techniques or additional strategies may be beneficial for improving their bonding performance to dentin. This research received no external funding. Considering that this systematic review was carried out only with in vitro studies, registration was not performed.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, 1107 2180 Beirut, Lebanon; (L.H.); (R.B.)
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, 1107 2180 Beirut, Lebanon; (L.H.); (R.B.)
| | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (D.M.); (Y.H.)
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (D.M.); (Y.H.)
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
| | - Maciej Zarow
- Private Practice, “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland; (M.Z.); (N.J.)
| | - Natalia Jakubowicz
- Private Practice, “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland; (M.Z.); (N.J.)
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (D.M.); (Y.H.)
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca, Hidalgo 42160, Mexico
| |
Collapse
|
23
|
The application of mussel-inspired molecule in dentin bonding. J Dent 2020; 99:103404. [DOI: 10.1016/j.jdent.2020.103404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 11/21/2022] Open
|