1
|
Yue R, Zhu R, Wang S, Li L, Zuo Y, Chen J, Sheng S. The role of pH on structure, corrosion behavior and biocompatibility of MgFe layered double hydroxide coating on Mg-Nd-Zn-Zr alloy. Sci Rep 2025; 15:14842. [PMID: 40295569 PMCID: PMC12037841 DOI: 10.1038/s41598-025-98555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
In the present study, MgFe layered double hydroxide (LDHs) coatings were prepared on the surface of Mg-Nd-Zn-Zr (JDBM) alloy by a chemical conversion method, and the effects of the pH value (pH = 8, 10 and 12) of the prepared solution on the morphology, corrosion resistance and biocompatibility of the coatings were studied. The thickness of the Mg-Fe LDHs coatings was 43.79 ± 3.65 μm (pH = 8), 46.18 ± 1.05 μm (pH = 10) and 28.71 ± 4.05 μm (pH = 12), respectively. The corrosion rate of the JDBM matrix in simulated body fluid was 3.1 ± 0.1 mm/year, the LDHs coating significantly slowed down the corrosion process. When the pH of the mixed solution was 10, the Mg-Fe LDHs coatings exhibited the lowest corrosion rate (0.07 ± 0.008 mm/year). The cell experiment results indicate the Mg-Fe LDHs coating significantly enhances the cell viability of both EA.hy926 cells and A7r5 cells. At a 50% extract concentration, the cell viability for the JDBM alloy was 70% (EA.hy926) and 61% (A7r5), respectively, while the cell viability for the Mg-Fe LDHs coatings exceeded 95% for both EA.hy926 cells and A7r5 cells. In addition, the hemolysis ratio of the coated sample is about 1.7%, much lower than that of the JDBM alloy (46.7%), meeting the clinical requirements for medical materials with a hemolysis ratio below 5%. Based on the above results, the corrosion resistance and in vitro biocompatibilities of the JDBM alloy are significantly improved by the Mg-Fe LDHs coatings.
Collapse
Affiliation(s)
- Rui Yue
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huai Nan, 232001, China.
- Postdoctoral Workstation, Wuhu Yingri Technology Co. Ltd., Wuhu, 241000, China.
| | - Ruotong Zhu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huai Nan, 232001, China
| | - Suqin Wang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huai Nan, 232001, China
| | - Lingyu Li
- Shandong Key Laboratory for Magnetic Field-Free Medicine & Functional Imaging, Institute of Magnetic Field-free Medicine &·Functional Imaging, Jinan, 250012, China.
- Department·of Emergency·Medicine, Qilu Hospital·of Shandong·University, Shandong Provincial Clinical Research·Center for·Emergency and Critical Care Medicine, Jinan, 250012, China.
| | - Yusheng Zuo
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huai Nan, 232001, China
| | - Jianzhao Chen
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huai Nan, 232001, China
| | - Shaoding Sheng
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huai Nan, 232001, China
| |
Collapse
|
2
|
Sousa AM, Branco R, Morais PV, Pereira MF, Amaro AM, Piedade AP. Evaluation of the interface of metallic-coated biodegradable polymeric stents with prokaryotic and eukaryotic cells. Bioact Mater 2025; 46:55-81. [PMID: 39737210 PMCID: PMC11683264 DOI: 10.1016/j.bioactmat.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Polymeric coronary stents, like the ABSORB™, are commonly used to treat atherosclerosis due to their bioresorbable and cell-compatible polymer structure. However, they face challenges such as high strut thickness, high elastic recoil, and lack of radiopacity. This study aims to address these limitations by modifying degradable stents produced by additive manufacturing with poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) with degradable metallic coatings, specifically zinc (Zn) and magnesium (Mg), deposited via radiofrequency (rf) magnetron sputtering. The characterisation included the evaluation of the degradation of the coatings, antibacterial, anti-thrombogenicity, radiopacity, and mechanical properties. The results showed that the metallic coatings inhibited bacterial growth, though Mg exhibited a high degradation rate. Thrombogenicity studies showed that Zn-coated stents had anticoagulant properties, while Mg-coated and controls were thrombogenic. Zn coatings significantly improved radiopacity, enhancing contrast by 43 %. Mechanical testing revealed that metallic coatings reduced yield strength and, thus, diminished elastic recoil after stent expansion. Zn-coated stents improved cyclic compression resistance by 270 % for PCL stents, with PLA-based stents showing smaller improvements. The coatings also enhanced crush resistance, particularly for Zn-coated PCL stents. Overall, Zn-coated polymers have emerged as the premier prototype due to their superior biological and mechanical performance, appropriate degradation during the stent life, and ability to provide the appropriate radiopacity to medical devices.
Collapse
Affiliation(s)
- Ana M. Sousa
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788, Coimbra, Portugal
| | - Rita Branco
- University of Coimbra, CEMMPRE, Department of Life Sciences, 3000-456, Coimbra, Portugal
| | - Paula V. Morais
- University of Coimbra, CEMMPRE, Department of Life Sciences, 3000-456, Coimbra, Portugal
| | - Manuel F. Pereira
- University of Lisbon, CERENA, Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| | - Ana M. Amaro
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788, Coimbra, Portugal
| | - Ana P. Piedade
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788, Coimbra, Portugal
| |
Collapse
|
3
|
Cheng X, Lin Q, Jin H, Han F, Dou X, Zhang X, He Z, He C, Zhao S, Zhang D. Effect of Mn content on the corrosion behavior and biocompatibility of biodegradable Zn-Mn alloys. Sci Rep 2025; 15:8958. [PMID: 40089608 PMCID: PMC11910562 DOI: 10.1038/s41598-025-93296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Zinc-based alloys have attracted increasing attention as biodegradable metals by virtue of their excellent mechanical, degradable and biocompatible properties. By introducing different levels of manganese (0.1, 0.3, 0.5 and 0.8 wt%), the properties of pure zinc were improved. The obtained zinc-manganese alloys consisted mainly of a zinc matrix and a MnZn13 phase, which led to a significant improvement of the mechanical properties with ultimate tensile strength (UTS), yield strength (YS) and elongation up to 117.3 MPa, 110.4 MPa, and 14%, respectively, and a Vickers hardness of 78 HV. After immersion in simulated body fluid (SBF), the addition of manganese slightly slowed down the corrosion rate of pure zinc, with an average corrosion rate of approximately 0.12 mm/y. Subsequent electrochemical tests and scanning Kelvin probe tests further confirmed this observation. In addition, the zinc-manganese alloys showed better resistance to E. coli and Staphylococcus aureus than pure zinc according to antimicrobial and in vitro cytotoxicity tests. Cell viability in the alloy extraction solution was higher than that of pure zinc and remained within acceptable limits (> 75%). In summary, Zn-Mn alloy has excellent performance, the promoting effect of Mn element on osteogenesis, and the excellent mechanical properties of the alloy itself, making it a potential biodegradable material for orthopedics.
Collapse
Affiliation(s)
- Xin Cheng
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Qiuju Lin
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Hongxi Jin
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fufang Han
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaohui Dou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xinwei Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zonghao He
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chuan He
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Songnan Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Dalei Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
4
|
Lin J, Chen Y, Dai Y, Zhang X, Zhang D, Li Y, Wen C. Mechanical properties, degradation action, and biocompatibility of in situ nanoparticle-reinforced Mg xZn y/Zn composite prepared via roll bonding. Acta Biomater 2025; 194:514-529. [PMID: 39884523 DOI: 10.1016/j.actbio.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Zinc (Zn)-based alloys and composites are anticipated to emerge as a category of degradable metallic biomaterials with exceptional prospects for bone-implant applications owing to their superior biocompatibility and biofunctionality. Unfortunately, the limited strength of Zn alloys in their as-cast state restricts their use in clinical applications. In this study, we started with pure magnesium (Mg) powders and Zn sheets, and successfully fabricated MgxZny/Zn composites using accumulative roll bonding (ARB). The influence of varying ARB cycle numbers on their microstructures, performance in relation to mechanical parameters, corrosion resistance, and cytotoxicity was comprehensively studied. Following 15 ARB cycles, the composites demonstrated a refined Zn matrix phase with grains of 0.3 μm and uniformly distributed in situ nanoparticle reinforcements of Mg2Zn11 and MgZn2. The composites after 15 ARB cycles exhibited an ultimate tensile strength of 560 MPa, yield strength of 540 MPa, and elongation of 12 %, significantly better than the mechanical properties of most Zn alloys reported to date. The significant improvement in the composites' strength is primarily attributable to refinement of grain size and dispersion strengthening, both of which are facilitated by the in situ incorporation of nanoparticles. The corrosion rate reduced with more ARB cycles and after 15 ARB cycles the composites had an electrochemical corrosion rate of 150.2 μm/y and an immersion degradation rate of 50.6 μm/y. Further, an extract at 12.5 % concentration had a cell viability of 92.2 % toward MG-63 cells, indicating good biocompatibility. STATEMENT OF SIGNIFICANCE: This work reports on MgxZny/Zn composites fabricated by accumulative roll bonding (ARB). The composite after 15 ARB cycles exhibited an ultimate tensile strength of 560 MPa, yield strength of 540 MPa, and elongation of 12 %, significantly higher than the mechanical properties of most Zn alloys published in the literature to date. The corrosion rate of the composites decreased with increasing number of ARB cycles and after 15 ARB cycles they showed an electrochemical corrosion rate of 150.2 μm/y and immersion degradation rate of 50.6 μm/y. Further, a 12.5 % concentration extract showed a cell viability of 92.2 % in relation to MG-63 cells, indicating good biocompatibility.
Collapse
Affiliation(s)
- Jianguo Lin
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yingzhong Chen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yilong Dai
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Xiaokai Zhang
- Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University, Xiangtan, 411105, China; APT Medical Inc., Xiangtan 411105, China
| | - Dechuang Zhang
- Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University, Xiangtan, 411105, China.
| | - Yuncang Li
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
5
|
Palai D, Roy T, De A, Mukherjee S, Bandyopadhyay S, Dhara S, Das S, Das K. Study on the Bioactivity Response of the Newly Developed Zn-Cu-Mn/Mg Alloys for Biodegradable Implant Application. ACS Biomater Sci Eng 2024; 10:6167-6190. [PMID: 39230934 DOI: 10.1021/acsbiomaterials.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Scaffolds play a crucial role in bone tissue engineering to support the defect area through bone regeneration and defect reconstruction. Promising tissue regeneration without negative repercussions and avoidance of the lifelong presence inside the body make bioresorbable metals prosper in the field of regenerative medicine. Recently, Zn and its alloys have emerged as promising biodegradable materials for their moderate degradation rate and satisfactory biocompatibility. Nevertheless, it is very challenging for cells to adhere and grow over the Zn surface alone, which influences the tissue-implant integration. In this study, an attempt has been made to systematically investigate the bioactivity responses in terms of in vitro hemocompatibility, cytotoxicity, antibacterial activity, and in vivo biocompatibility of newly developed Zn-2Cu-0.5Mn/Mg alloy scaffolds with different surface roughness. The rough surface of Zn-2Cu-0.5Mg shows the highest degradation rate of 0.16 mm/yr. The rough surface exhibits a prominent role in the adsorption of protein, further enhancing cell adhesion. Concentration-dependent alloy extract shows the highest cell proliferation for 12.5% of the extract with a maximum cell viability of 101% in Zn-2Cu-0.5Mn and 108% in Zn-2Cu-0.5Mg after 3 d. Acceptable hemolysis percentages (less than 5%) with promising anticoagulation properties are observed for all of the conditions. Enhanced antibacterial (Staphylococcus aureus and Escherichia coli) activity due to a significant effect of ions illustrates the maximum killing effect on the bacterial colony for the rough Zn-2Cu-0.5Mg alloy. In addition, it is observed that for rough Zn-2Cu-0.5Mn/Mg alloys, the inflammatory response is minimal after subcutaneous implantation, and neo-bone tissue forms in the defect areas of the rat femur with satisfactory biosafety response. The osseointegration property of the Zn-2Cu-0.5Mg alloy is comparable to that of the Zn-2Cu-0.5Mn alloy. Therefore, the rough surface of the Zn-2Cu-0.5Mg alloy has the potential to enhance biocompatibility and promote better osseointegration activity with host tissues for various biomedical applications.
Collapse
Affiliation(s)
- Debajyoti Palai
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amiyangshu De
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayan Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sharba Bandyopadhyay
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Siddhartha Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Karabi Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
6
|
Alka, Singh P, Pal RR, Mishra N, Singh N, Verma A, Saraf SA. Development of pH-Sensitive hydrogel for advanced wound Healing: Graft copolymerization of locust bean gum with acrylamide and acrylic acid. Int J Pharm 2024; 661:124450. [PMID: 38986968 DOI: 10.1016/j.ijpharm.2024.124450] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Wounds pose a formidable challenge in healthcare, necessitating the exploration of innovative tissue-healing solutions. Traditional wound dressings exhibit drawbacks, causing tissue damage and impeding natural healing. Using a Microwave (MW)-)-assisted technique, we envisaged a novel hydrogel (Hg) scaffold to address these challenges. This hydrogel scaffold was created by synthesizing a pH-responsive crosslinked material, specifically locust bean gum-grafted-poly(acrylamide-co-acrylic acid) [LBG-g-poly(AAm-co-AAc)], to enable sustained release of c-phycocyanin (C-Pc). Synthesized LBG-g-poly(AAm-co-AAc) was fine-tuned by adjusting various synthetic parameters, including the concentration of monomers, duration of reaction, and MW irradiation intensity, to maximize the yield of crosslinked LBG grafted product and enhance encapsulation efficiency of C-Pc. Following its synthesis, LBG-g-poly(AAm-co-AAc) was thoroughly characterized using advanced techniques, like XRD, TGA, FTIR, NMR, and SEM, to analyze its structural and chemical properties. Moreover, the study examined the in-vitro C-Pc release profile from LBG-g-poly(AAm-co-AAc) based hydrogel (HgCPcLBG). Findings revealed that the maximum release of C-Pc (64.12 ± 2.69 %) was achieved at pH 7.4 over 48 h. Additionally, HgCPcLBG exhibited enhanced antioxidant performance and compatibility with blood. In vivo studies confirmed accelerated wound closure, and ELISA findings revealed reduced inflammatory markers (IL-6, IL-1β, TNF-α) within treated skin tissue, suggesting a positive impact on injury repair. A low-cost and eco-friendly approach for creating LBG-g-poly(AAm-co-AAc) and HgCPcLBG has been developed. This method achieved sustained release of C-Pc, which could be a significant step forward in wound care technology.
Collapse
Affiliation(s)
- Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India; School of Pharmacy, GITAM (Deemed-to-be) University, Rudraram, Patancheru Mandal, Hyderabad, 502329 Telangana, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India; National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, 226002 Uttar Pradesh, India.
| |
Collapse
|
7
|
Palai D, Siva Prasad P, Satpathy B, Das S, Das K. Development of Zn-2Cu- xMn/Mg Alloys for Orthopedic Applications: Mechanical Performance to In Vitro Degradation under Different Physiological Environments. ACS Biomater Sci Eng 2023; 9:6058-6083. [PMID: 37774322 DOI: 10.1021/acsbiomaterials.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Zinc (Zn) and its alloys are considered futuristic biodegradable materials for their acceptable mechanical properties, suitable corrosion rate, and good biocompatibility. In this study, we report newly developed biodegradable Zn-2Cu-xMn/Mg (x = 0, 0.1, and 0.5) alloys, aiming to achieve good mechanical strength with excellent elongation, desirable wear resistance, and suitable corrosion rate. The effect of Mn/Mg addition on the structural, mechanical, wear, and degradation behaviors of the Zn-2Cu-xMn/Mg alloys was thoroughly investigated. Degradation and tribological behaviors of the alloys were explored in the presence of simulated body fluid (SBF), Dulbecco's modified Eagle medium (DMEM), and DMEM with a 10% fetal bovine serum (FBS) solution. Alloy elements and hot rolling improve their mechanical properties significantly due to precipitation hardening, grain refinement, and solid solution strengthening owing to the formation of MnZn13 and Mg2Zn11 phases. Among all the alloys, the Zn-2Cu-0.5Mn alloy achieved the highest ultimate tensile strength (UTS) of ∼405 MPa and yield strength (YS) of ∼293 MPa with an excellent elongation of ∼51%. The corrosion behavior of the alloys as determined by a potentiodynamic polarization study under different solutions follows the sequence Zn-2Cu < Zn-2Cu-0.5Mn < Zn-2Cu-0.1Mn < Zn-2Cu-0.1Mg < Zn-2Cu-0.5Mg. The corrosion rate by immersion testing for 30 and 90 days also follows the same sequence. The corrosion rate in different solutions follows the order SBF > DMEM + 10%FBS > DMEM. The addition of Mn/Mg also improves the wear resistance and slows the wear rate under wet conditions. The bending test results also indicate the highest bending strength of ∼375 MPa for the Zn-2Cu-0.5Mn alloy, among all the alloys. The bending and tensile strengths deteriorate continuously after the immersion for 30 and 90 days in the solution of SBF, DMEM, and DMEM + 10%FBS. Therefore, the Zn-2Cu-xMn/Mg (x = 0.1 and 0.5) alloys can be considered potential biodegradable implant materials.
Collapse
Affiliation(s)
- Debajyoti Palai
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - P Siva Prasad
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Bangmaya Satpathy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Siddhartha Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Karabi Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
8
|
Lei J, Sun W, Sheng D, Wang S, Liu X, Zhao T, Chen H. Effect of Structural Elements of Heparin-Mimicking Polymers on Vascular Cell Distribution and Functions: Chemically Homogeneous or Heterogeneous? ACS Biomater Sci Eng 2023; 9:5304-5311. [PMID: 37582232 DOI: 10.1021/acsbiomaterials.3c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Heparin-mimicking polymers (HMPs) are artificially synthesized alternatives to heparin with comparable regulatory effects on protein adsorption and cell behavior. By introducing two major structural elements of HMPs (sulfonate- and glyco-containing units) to different areas of material surfaces, heterogeneous surfaces patterned with different HMPs and homogeneous surfaces patterned with the same HMPs can be obtained. In this work, heterogeneous HMP-patterned poly(dimethylsiloxane) (PDMS) surfaces with sulfonate-containing polySS (pS) and glyco-containing polyMAG (pM) distributed in circular patterns (with a diameter of 300 μm) were prepared (S-M and M-S). Specifically, pS and pM were distributed inside and outside the circles on S-M, respectively, and exchanged their distribution on M-S. Homogeneous HMP-patterned silicone surfaces (SM-SM) where sulfonate- and glyco-containing poly(SS-co-MAG) (pSM) were distributed uniformly were prepared. Vascular cells showed interestingly different behaviors between chemically homogeneous and heterogeneous surfaces. They tended to grow in the sulfonate-modified area on S-M and M-S and were distributed uniformly on SM-SM. Compared with M-S, S-M showed a better promoting effect on the growth of vascular cells. Among all the samples, SM-SM exhibited the highest proliferation density and an optimum spreading state of vascular cells, as well as the highest human umbilical vein endothelial cell (HUVEC) viability (∼99%) and relatively low human umbilical vein smooth muscle cell (HUVSMC) viability (∼72%). By heterogeneous or homogeneous patterning with different structural elements of HMPs, the modified silicone surfaces spatially guided vascular cell distribution and functions. This strategy provides a new surface engineering approach to the study of cell-HMP interactions.
Collapse
Affiliation(s)
- Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Denghai Sheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Sujian Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Tingting Zhao
- Jiangsu Biosurf Biotech Company Ltd., Building 26, Dongjing Industrial Square, No. 1, Jintian Road, Suzhou Industrial Park, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| |
Collapse
|
9
|
Sahu RA, Nashine A, Mudey A, Sahu SA, Prasad R. Cardiovascular Stents: Types and Future Landscape. Cureus 2023; 15:e43438. [PMID: 37711918 PMCID: PMC10499059 DOI: 10.7759/cureus.43438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023] Open
Abstract
One of the prominent reasons for mortality and morbidity worldwide is coronary artery disease (CAD), an ailment that manifests itself by the narrowing of the artery with the deposition of plaque. The definitive mode of action for dealing with this condition is using a medical device known as a stent at the affected location. This extremely important tubular equipment helps tremendously with vessel support. It also helps by keeping the path of blood flow clear for the heart muscle masses, its crucial nutrients, and oxygen supply. Several generations of stents have been continuously developed to improve patient outcomes and reduce side effects post-stent implantation. As we move from bare metal stents (BMSs) to drug-eluting stents (DESs) and, more recently, to bioabsorbable stents, the research area continues to develop. The use of this biomedical device has increased the standard of living in many cases; therefore, it is much needed to work on the possible growth areas in the cardiovascular stents and improve them to such an extent that the patients suffering from cardiovascular ailments get to live a comfortable life. Most articles deal with stents that are available for current use and their various types. They also cover the topic of stent optimization, as it is one of the key factors in enhancing stent usability and plays a prominent role in optimizing stent placement in the vessels of the body. To keep in touch with advances in stent technology over the past few decades, this article reviews advances in the devices, working on how available stents can be optimized to create new stents.
Collapse
Affiliation(s)
- Rohit A Sahu
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aparna Nashine
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Abhay Mudey
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shreya A Sahu
- Obstretics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
10
|
Liu Q, Li A, Liu S, Fu Q, Xu Y, Dai J, Li P, Xu S. Cytotoxicity of Biodegradable Zinc and Its Alloys: A Systematic Review. J Funct Biomater 2023; 14:206. [PMID: 37103296 PMCID: PMC10144193 DOI: 10.3390/jfb14040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Zinc-based biodegradable metals (BMs) have been developed for biomedical implant materials. However, the cytotoxicity of Zn and its alloys has caused controversy. This work aims to investigate whether Zn and its alloys possess cytotoxic effects and the corresponding influence factors. According to the guidelines of the PRISMA statement, an electronic combined hand search was conducted to retrieve articles published in PubMed, Web of Science, and Scopus (2013.1-2023.2) following the PICOS strategy. Eighty-six eligible articles were included. The quality of the included toxicity studies was assessed utilizing the ToxRTool. Among the included articles, extract tests were performed in 83 studies, and direct contact tests were conducted in 18 studies. According to the results of this review, the cytotoxicity of Zn-based BMs is mainly determined by three factors, namely, Zn-based materials, tested cells, and test system. Notably, Zn and its alloys did not exhibit cytotoxic effects under certain test conditions, but significant heterogeneity existed in the implementation of the cytotoxicity evaluation. Furthermore, there is currently a relatively lower quality of current cytotoxicity evaluation in Zn-based BMs owing to the adoption of nonuniform standards. Establishing a standardized in vitro toxicity assessment system for Zn-based BMs is required for future investigations.
Collapse
Affiliation(s)
- Qian Liu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - An Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shizhen Liu
- The School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK
| | - Qingyun Fu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingtao Dai
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
11
|
Yang N, Venezuela J, Zhang J, Wang A, Almathami S, Dargusch M. Evolution of degradation mechanism and fixation strength of biodegradable Zn-Cu wire as sternum closure suture: An in vitro study. J Mech Behav Biomed Mater 2023; 138:105658. [PMID: 36610283 DOI: 10.1016/j.jmbbm.2023.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
This work reports the first in vitro study on the in-situ biodegradation behaviour and the evolution of fixation strength of Zn-Cu alloy wires in a simulated sternum closure environment. Zn-Cu wires were used to reapproximate the partial bisected sternum models, and their fixation effect was compared with traditional surgical grade 316 L stainless steel (SS) wires in terms of fixation rigidity, critical load, first/ultimate failure characteristics. The metal sutures were then immersed in Hank's balanced salt solution for 12 weeks immersion period, and their corrosion behaviours assessed. Zn-Cu wires showed similar fixation rigidity at 70.89 ± 6.97 N/mm as SS, but the critical load, first failure and ultimate failure characteristics were inferior to SS. The key challenges that limited the fixation effect of the Zn-Cu wires were poor mechanical strength, short elastic region, and strain softening behaviours, which resulted in poor load-bearing capabilities and reduced the knot security of the sutures. The in-situ biodegradation of the Zn-Cu suture was accompanied by the early onset of localised corrosion within the twisted knot and the section located next to the incision line. Crevice corrosion and strain-induced corrosion were the dominant mechanisms in the observed localised corrosion. The localised corrosion on the Zn-Cu sutures did not lead to a significant shift in fixation rigidity, critical load and the first failure characteristics. The findings suggest that the Zn-based biodegradable metallic wires could be a promising sternum closure suture material once the limitations in mechanical characteristics are addressed.
Collapse
Affiliation(s)
- Nan Yang
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Jeffrey Venezuela
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Jingqi Zhang
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Anguo Wang
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Sharifah Almathami
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Matthew Dargusch
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
12
|
Mulik BB, Sapner VS, Khan A, Priya Rolla K, Shelke A, Sathe BR. Impact of variable pH on the stability and aggregate kinetics of Bidri handicraft surface patina. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio 2022; 16:100368. [PMID: 35937578 PMCID: PMC9352968 DOI: 10.1016/j.mtbio.2022.100368] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases. Bioresorbable stents can overcome the limitations of non-degradable stents. 3D printing of shape-memory polymeric stents can lead to better clinical outcomes. Advances in Mg-, Fe- and Zn-based stents from a translational perspective. Electronic stents integrated with biosensors can covey stent status in real time. Development in the assessment of stent performance in vivo.
Collapse
Affiliation(s)
- Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
14
|
Sun Z, Khlusov IA, Evdokimov KE, Konishchev ME, Kuzmin OS, Khaziakhmatova OG, Malashchenko VV, Litvinova LS, Rutkowski S, Frueh J, Kozelskaya AI, Tverdokhlebov SI. Nitrogen-doped titanium dioxide films fabricated via magnetron sputtering for vascular stent biocompatibility improvement. J Colloid Interface Sci 2022; 626:101-112. [DOI: 10.1016/j.jcis.2022.06.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 10/31/2022]
|
15
|
Fan M, Zhao F, Peng S, Dai Q, Liu Y, Yin S, Zhang Z. Biocompatibility of Zinc Matrix Biodegradable Composites Reinforced by Graphene Nanosheets. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186481. [PMID: 36143793 PMCID: PMC9502503 DOI: 10.3390/ma15186481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 05/17/2023]
Abstract
As a new type of biodegradable implant material, zinc matrix composites have excellent potential in the application of biodegradable implants because of their better corrosion resistance than magnesium matrix materials. Our previous studies have shown that graphene nanosheet reinforced zinc matrix composites (Zn-GNS) prepared by spark plasma sintering (SPS) have good mechanical properties and suitable degradation rate. However, the biocompatibility of zinc matrix composites is still a problem of concern. The cytocompatibility and blood compatibility of pure zinc and Zn-GNS composites in vitro were studied. The results showed that Zn-GNS composites had acceptable toxicity to MG-63 human osteosarcoma cells. In addition, the hemolysis rate of pure zinc and its composites were less than 3%, which has no adverse effect on adhered platelets, and has good antithrombotic and antiadhesion platelets properties. In conclusion, the addition of GNS did not adversely affect the biocompatibility of Zn-GNS composites, which indicated that Zn-GNS composites are a promising candidate for bone implantation.
Collapse
Affiliation(s)
- Mei Fan
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- Key Laboratory for Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
| | - Fei Zhao
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- Key Laboratory for Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
- Correspondence: (F.Z.); (Z.Z.)
| | - Shanshan Peng
- Hospital of Guizhou University, Guiyang 550025, China
| | - Qianfei Dai
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- Key Laboratory for Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
| | - Yuan Liu
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- Key Laboratory for Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
| | - Sheng Yin
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- Key Laboratory for Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
| | - Zongkui Zhang
- Hospital of Guizhou University, Guiyang 550025, China
- Correspondence: (F.Z.); (Z.Z.)
| |
Collapse
|
16
|
Yao R, Han S, Sun Y, Zhao Y, Shan R, Liu L, Yao X, Hang R. Fabrication and characterization of biodegradable Zn scaffold by vacuum heating-press sintering for bone repair. BIOMATERIALS ADVANCES 2022; 138:212968. [PMID: 35913245 DOI: 10.1016/j.bioadv.2022.212968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Bone repair materials with excellent mechanical properties are highly desirable, especially in load-bearing sits. However, the currently used ceramic- and polymer-based ones mainly show poor mechanical properties. Recently, biodegradable metals have attracted extensive attention due to their reliable mechanical strength and degradability. As biodegradable metals, zinc-based materials are promising due to their suitable degradation rate and good biocompatibility. Here, we fabricated biodegradable porous Zn scaffolds with relatively high mechanical properties by vacuum heating-press sintering using NaCl particles as space holders. The microstructure, actual porosity, compressive mechanical properties, in vitro degradation behavior and the vitality of osteoblasts of porous Zn scaffolds were tested and investigated. The results show the porosities of the prepared porous Zn scaffolds are ranging from 11.3 % to 63.3 %, and the pore sizes are similar to the size range of the screened NaCl particles (200-500 μm). Compressive yield strength of 14.2-73.7 MPa and compressive elastic modulus of 1.9-6.7 GPa are shown on porous Zn scaffolds, some of which approach to that of cancellous bone (2-12 MPa and 0.1-5 GPa). Compared to bulk Zn, although the porous structures cause a partial loss of strength, the reliable mechanical properties are still retained. In addition, the porous structures not only greatly increase the degradation rate, but also promote the proliferation of osteoblasts. Based on these results, biodegradable porous Zn scaffolds (porosity in the 40 %-50 %) fabricated by vacuum heating-press sintering method show high application potential for clinical bone repair.
Collapse
Affiliation(s)
- Runhua Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shuyang Han
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yonghua Sun
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuyu Zhao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruifeng Shan
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lin Liu
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
17
|
Xu Y, Xu Y, Zhang W, Li M, Wendel HP, Geis-Gerstorfer J, Li P, Wan G, Xu S, Hu T. Biodegradable Zn-Cu-Fe Alloy as a Promising Material for Craniomaxillofacial Implants: An in vitro Investigation into Degradation Behavior, Cytotoxicity, and Hemocompatibility. Front Chem 2022; 10:860040. [PMID: 35734444 PMCID: PMC9208203 DOI: 10.3389/fchem.2022.860040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Zinc-based nanoparticles, nanoscale metal frameworks and metals have been considered as biocompatible materials for bone tissue engineering. Among them, zinc-based metals are recognized as promising biodegradable materials thanks to their moderate degradation rate ranging between magnesium and iron. Nonetheless, materials’ biodegradability and the related biological response depend on the specific implant site. The present study evaluated the biodegradability, cytocompatibility, and hemocompatibility of a hot-extruded zinc-copper-iron (Zn-Cu-Fe) alloy as a potential biomaterial for craniomaxillofacial implants. Firstly, the effect of fetal bovine serum (FBS) on in vitro degradation behavior was evaluated. Furthermore, an extract test was used to evaluate the cytotoxicity of the alloy. Also, the hemocompatibility evaluation was carried out by a modified Chandler-Loop model. The results showed decreased degradation rates of the Zn-Cu-Fe alloy after incorporating FBS into the medium. Also, the alloy exhibited acceptable toxicity towards RAW264.7, HUVEC, and MC3T3-E1 cells. Regarding hemocompatibility, the alloy did not significantly alter erythrocyte, platelet, and leukocyte counts, while the coagulation and complement systems were activated. This study demonstrated the predictable in vitro degradation behavior, acceptable cytotoxicity, and appropriate hemocompatibility of Zn-Cu-Fe alloy; therefore, it might be a candidate biomaterial for craniomaxillofacial implants.
Collapse
Affiliation(s)
- Yan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ming Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Materials Engineering, Sichuan Engineering Technical College, Deyang, China
| | - Hans-Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Tao Hu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Wang Z, Yin C, Gao Y, Liao Z, Li Y, Wang W, Sun D. Novel functionalized selenium nanowires as antibiotic adjuvants in multiple ways to overcome drug resistance of multidrug-resistant bacteria. BIOMATERIALS ADVANCES 2022; 137:212815. [PMID: 35929231 DOI: 10.1016/j.bioadv.2022.212815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Methicillin-resistant Staphylococcus (MRS) is a multi-drug resistant bacteria that pose a serious threat to human health. Antibacterial nanomaterials are becoming a promising antibiotic substitute or antibiotic adjuvants. In this work, selenium nanowires were modified with nano‑silver (Ag NPs) with antibacterial activity and [Ru(bpy)2dppz]2+ with fluorescent labeling of DNA (SRA), and the antibacterial activity, antibacterial mechanism and biological toxicity of SRA synergistic antibiotics were studied. In vitro, antibacterial results show that SRA (12 μg/mL) improves the antibacterial activity of various antibiotics against resistant bacteria and significantly slows the development of bacterial resistance to antibiotics. Studies on antibacterial mechanisms have shown that SRA synergistic antibiotics destroy drug-resistant bacteria through a combination of physical (physical damage) and chemical pathways (destruction of biofilm, membrane depolarization, cell membrane destruction, adenosine triphosphate consumption and reactive oxygen species production). Transcriptomics analysis found that SRA affects bacterial activity by affecting bacterial biosynthesis, ATP synthesis and biofilm formation. Furthermore, SRA synergistic antibiotics can accelerate wound healing of bacterial infection by reducing the inflammatory response. The toxicity evaluation results show that SRA has extremely low cellular and in vivo toxicity. SRA has the potential of clinical application as multiple antibiotic adjuvants to deal with resistant bacterial infections.
Collapse
Affiliation(s)
- Zekun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yin Gao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ziyu Liao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weiyu Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Bao G, Wang K, Yang L, He J, He B, Xu X, Zheng Y. Feasibility evaluation of a Zn-Cu alloy for intrauterine devices: In vitro and in vivo studies. Acta Biomater 2022; 142:374-387. [PMID: 35108602 DOI: 10.1016/j.actbio.2022.01.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 01/21/2023]
Abstract
The comprehensively adopted copper-containing intrauterine devices (Cu-IUDs) present typical adverse effects such as bleeding and pain at the initial stage of post-implantation. The replacement of Cu material is demanded. Zinc and its alloys, the emerging biodegradable materials, exhibited contraceptive effects since 1969. In this work, we evaluated the feasibility of bulk Zn alloys as IUD active material. Using pure Cu and pure Zn as control groups, we investigated the contraceptive performance of Zn-0.5Cu and Zn-1Cu alloys via in vitro and in vivo tests. The results showed that the main corrosion product of Zn-Cu alloys is ZnO from both in vitro and in vivo studies. CaZn2(PO4)2·2H2O is formed atop after long-term immersion in simulated uterine fluid, whereas CaCO3 is generally formed atop after implantation in the rat uterine environment. The cytocompatibility of the Zn-1Cu alloy was significantly higher than that of the pure Zn and pure Cu to the human endometrial epithelial cell lines. Furthermore, the in vivo results showed that the Zn-1Cu alloy presented much improved histocompatibility, least damage and the fastest recovery on endometrium structure in comparison to pure Zn, Zn-0.5Cu and pure Cu. The systematic and comparing studies suggest that Zn-1Cu alloy can be considered as a possible candidate for IUD with great biochemical and biocompatible properties as well as high contraceptive effectiveness. STATEMENT OF SIGNIFICANCE: The existing adverse effects with the intrinsic properties of copper materials for copper-containing intrauterine devices (Cu-IUD) are of concerns in their employment. Such as burst release of cupric ions (Cu2+) at the initial stage of the Cu-IUD. Zinc and its alloys which have been emerging as a potential biodegradable material exhibited contraceptive effects since 1969. In this study, Zn-1Cu alloys displayed significantly improved biocompatibility with human uterus cells and a decreased inflammatory response within the uterus. Therefore, high antifertility efficacy of the Zn-1Cu alloy was well maintained, while the adverse effects are significantly eased, suggesting that the Zn-1Cu alloy is promising for IUD.
Collapse
Affiliation(s)
- Guo Bao
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Kun Wang
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing 100081, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Lijun Yang
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing 100081, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Jialing He
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Bin He
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing 100081, China.
| | - Xiaoxue Xu
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, No.5 Yi-He-Yuan Road, Hai-Dian District, Beijing 100871, China; International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
20
|
Effects of Extrusion and Rolling Processes on the Microstructure and Mechanical Properties of Zn-Li-Ag Alloys. METALS 2022. [DOI: 10.3390/met12030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
In this work, a novel Zn-0.5%Li-0.1%Ag alloy was cast and extruded into rods, which were rolled into a plate, and the effects of extrusion and rolling on the microstructure and mechanical properties of the Zn-0.5%Li-0.1%Ag alloy were evaluated. The results show that grain strengthening occurs in all of the alloys because of the presence of nano-LiZn4 precipitates. The extrusion and rolling processes promote grain size refinement and orientation order, and the microstructure and mechanical properties of the Zn-0.5%Li-0.1%Ag alloy can be significantly improved by secondary processing. The elastic modulus and tensile strength of the processed alloy increased to 83.1 GPa and 251.6 MPa, respectively, compared to 75.6 GPa and 185.8 MPa, respectively, for the as-cast Zn-0.5%Li-0.1%Ag alloy. More importantly, elongation was greatly improved, from 16.9% to 92.6%, which is an increase of up to 448%, and there were transgranular cleavage planes and intergranular cleavage planes in the fracture surfaces. The intergranular cleavage planes were dominant, and they showed ductile fracture characteristics.
Collapse
|
21
|
Jiang J, Qian Y, Huang H, Niu J, Yuan G. Biodegradable Zn-Cu-Mn alloy with suitable mechanical performance and in vitro degradation behavior as a promising candidate for vascular stents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112652. [PMID: 35034818 DOI: 10.1016/j.msec.2022.112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Recently, zinc (Zn) alloy has been considered as a promising biodegradable material due to its excellent physiological degradable behavior and acceptable biocompatibility. However, poor mechanical performance limits its application as vascular stents. In this study, novel biodegradable Zn-2.2Cu-xMn (x = 0.4, 0.7, and 1.0 wt%) alloys with suitable mechanical performance were investigated. The effects of Mn addition on microstructure, mechanical properties, and in vitro degradation of Zn-2.2Cu-xMn alloys were systematically investigated. After adding Mn, dynamic recrystallization (DRX) during hot extrusion was promoted, resulting in slightly finer grain size, higher DRXed regions ratio, and weaker texture. And volume fraction and number density of second phase precipitates (micron, submicron, and nano-sized ε and MnZn13 phase) and the concentration of (Cu, Mn) in the matrix were increased. Therefore, Zn-2.2Cu-xMn alloys exhibited suitable mechanical performances (strength >310 MPa, elongation >30%) mainly due to the combination effects of grain refinement, solid solution strengthening, second phase precipitation hardening, and texture weakening. Moreover, the alloys maintained good stability of mechanical properties within 18 months and good elongation over 15% even at a high strain rate of 0.1 s-1. In addition, the alloys presented appropriate in vitro degradation rates in a basically uniform degradation mode and acceptable in vitro cytocompatibility. The above results indicated that the newly designed biodegradable Zn-2.2Cu-0.4Mn alloy with suitable comprehensive mechanical properties, appropriate degradation behavior, and acceptable cytocompatibility is a promising candidate for vascular stents.
Collapse
Affiliation(s)
- Jimiao Jiang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Qian
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Hua Huang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
22
|
Bian Q, Chen J, Weng Y, Li S. Endothelialization strategy of implant materials surface: The newest research in recent 5 years. J Appl Biomater Funct Mater 2022; 20:22808000221105332. [PMID: 35666145 DOI: 10.1177/22808000221105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, more and more metal or non-metal materials have been used in the treatment of cardiovascular diseases, but the vascular complications after transplantation are still the main factors restricting the clinical application of most grafts, such as acute thrombosis and graft restenosis. Implant materials have been extensively designed and surface optimized by researchers, but it is still too difficult to avoid complications. Natural vascular endodermis has excellent function, anti-coagulant and anti-intimal hyperplasia, and it is also the key to maintaining the homeostasis of normal vascular microenvironment. Therefore, how to promote the adhesion of endothelial cells (ECs) on the surface of cardiovascular materials to achieve endothelialization of the surface is the key to overcoming the complications after implant materialization. At present, the surface endothelialization design of materials based on materials surface science, bioactive molecules, and biological function intervention and feedback has attracted much attention. In this review, we summarize the related research on the surface modification of materials by endothelialization in recent years, and analyze the advantages and challenges of current endothelialization design ideas, explain the relationship between materials, cells, and vascular remodeling in order to find a more ideal endothelialization surface modification strategy for future researchers to meet the requirements of clinical biocompatibility of cardiovascular materials.
Collapse
Affiliation(s)
- Qihao Bian
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
23
|
Yuan W, Xia D, Wu S, Zheng Y, Guan Z, Rau JV. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact Mater 2022; 7:192-216. [PMID: 34466727 PMCID: PMC8379348 DOI: 10.1016/j.bioactmat.2021.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, zinc and its alloys have been proposed as promising candidates for biodegradable metals (BMs), owning to their preferable corrosion behavior and acceptable biocompatibility in cardiovascular, bone and gastrointestinal environments, together with Mg-based and Fe-based BMs. However, there is the desire for surface treatment for Zn-based BMs to better control their biodegradation behavior. Firstly, the implantation of some Zn-based BMs in cardiovascular environment exhibited intimal activation with mild inflammation. Secondly, for orthopedic applications, the biodegradation rates of Zn-based BMs are relatively slow, resulting in a long-term retention after fulfilling their mission. Meanwhile, excessive Zn2+ release during degradation will cause in vitro cytotoxicity and in vivo delayed osseointegration. In this review, we firstly summarized the current surface modification methods of Zn-based alloys for the industrial applications. Then we comprehensively summarized the recent progress of biomedical bulk Zn-based BMs as well as the corresponding surface modification strategies. Last but not least, the future perspectives towards the design of surface bio-functionalized coatings on Zn-based BMs for orthopedic and cardiovascular applications were also briefly proposed.
Collapse
Affiliation(s)
- Wei Yuan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Dandan Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Zhenpeng Guan
- Orthopedics Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Rd, Shijingshan District, Beijing, 100144, China
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133, Rome, Italy
- Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991, Moscow, Russia
| |
Collapse
|
24
|
Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects. Biomaterials 2021; 280:121301. [PMID: 34922270 DOI: 10.1016/j.biomaterials.2021.121301] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
Abstract
The need for the development of load-bearing, absorbable wound closure devices is driving the research for novel materials that possess both good biodegradability and superior mechanical characteristics. Biodegradable metals (BMs), namely: magnesium (Mg), zinc (Zn) and iron (Fe), which are currently being investigated for absorbable vascular stent and orthopaedic implant applications, are slowly gaining research interest for the fabrication of wound closure devices. The current review presents an overview of the traditional and novel BM-based intracutaneous and transcutaneous wound closure devices, and identifies Zn as a promising substitute for the traditional materials used in the fabrication of absorbable load-bearing sutures, internal staples, and subcuticular staples. In order to further strengthen Zn to be used in highly stressed situations, nutrient elements (NEs), including calcium (Ca), Mg, Fe, and copper (Cu), are identified as promising alloying elements for the strengthening of Zn-based wound closure device material that simultaneously provide potential therapeutic benefit to the wound healing process during implant biodegradation process. The influence of NEs on the fundamental characteristics of biodegradable Zn are reviewed and critically assessed with regard to the mechanical properties and biodegradability requirements of different wound closure devices. The opportunities and challenges in the development of Zn-based wound closure device materials are presented to inspire future research on this rapidly growing field.
Collapse
|
25
|
Gamboa-Solana CDC, Chuc-Gamboa MG, Aguilar-Pérez FJ, Cauich-Rodríguez JV, Vargas-Coronado RF, Aguilar-Pérez DA, Herrera-Atoche JR, Pacheco N. Zinc Oxide and Copper Chitosan Composite Films with Antimicrobial Activity. Polymers (Basel) 2021; 13:3861. [PMID: 34833159 PMCID: PMC8619498 DOI: 10.3390/polym13223861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
The role of the oral microbiome and its effect on dental diseases is gaining interest. Therefore, it has been sought to decrease the bacterial load to fight oral cavity diseases. In this study, composite materials based on chitosan, chitosan crosslinked with glutaraldehyde, chitosan with zinc oxide particles, and chitosan with copper nanoparticles were prepared in the form of thin films, to evaluate a new alternative with a more significant impact on the oral cavity bacteria. The chemical structures and physical properties of the films were characterized using by Fourier transform infrared spectroscopy (FTIR,) Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), elemental analysis (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and contact angle measurements. Subsequently, the antimicrobial activity of each material was evaluated by agar diffusion tests. No differences were found in the hydrophilicity of the films with the incorporation of ZnO or copper particles. Antimicrobial activity was found against S. aureus in the chitosan film crosslinked with glutaraldehyde, but not in the other compositions. In contrast antimicrobial activity against S. typhimurium was found in all films. Based on the data of present investigation, chitosan composite films could be an option for the control of microorganisms with potential applications in various fields, such as medical and food industry.
Collapse
Affiliation(s)
- Candy del Carmen Gamboa-Solana
- Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61 A #492 A x 90 y Av. Itzáes, Centro., Mérida C.P. 97000, Mexico; (C.d.C.G.-S.); (F.J.A.-P.); (D.A.A.-P.); (J.R.H.-A.)
| | - Martha Gabriela Chuc-Gamboa
- Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61 A #492 A x 90 y Av. Itzáes, Centro., Mérida C.P. 97000, Mexico; (C.d.C.G.-S.); (F.J.A.-P.); (D.A.A.-P.); (J.R.H.-A.)
| | - Fernando Javier Aguilar-Pérez
- Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61 A #492 A x 90 y Av. Itzáes, Centro., Mérida C.P. 97000, Mexico; (C.d.C.G.-S.); (F.J.A.-P.); (D.A.A.-P.); (J.R.H.-A.)
| | - Juan Valerio Cauich-Rodríguez
- Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (J.V.C.-R.); (R.F.V.-C.)
| | - Rossana Faride Vargas-Coronado
- Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (J.V.C.-R.); (R.F.V.-C.)
| | - David Alejandro Aguilar-Pérez
- Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61 A #492 A x 90 y Av. Itzáes, Centro., Mérida C.P. 97000, Mexico; (C.d.C.G.-S.); (F.J.A.-P.); (D.A.A.-P.); (J.R.H.-A.)
| | - José Rubén Herrera-Atoche
- Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61 A #492 A x 90 y Av. Itzáes, Centro., Mérida C.P. 97000, Mexico; (C.d.C.G.-S.); (F.J.A.-P.); (D.A.A.-P.); (J.R.H.-A.)
| | - Neith Pacheco
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, km 5.5 Carretera, Sierra Papacal-Chuburná, Chuburná C.P. 97302, Mexico;
| |
Collapse
|
26
|
Development of QDs-based nanosensors for heavy metal detection: A review on transducer principles and in-situ detection. Talanta 2021; 239:122903. [PMID: 34857381 DOI: 10.1016/j.talanta.2021.122903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Heavy metal pollution has severe threats to the ecological environment and human health. Thus, it is urgent to achieve the rapid, selective, sensitive and portable detection of heavy metal ions. To overcome the defects of traditional methods such as time-consuming, low sensitivity, high cost and complicated operation, QDs (Quantum dots)-based nanomaterials have been used in sensors to significantly improve the sensing performance. Due to their excellent physicochemical properties, high specific surface area, high adsorption and reactive capacity, nanomaterials could act as potential probes or offer enhanced sensitivity and create a promising nanosensors platform. In this review, the rapidly advancing types of QDs for heavy metal ions detection are first summarized. Modified with ligands, nanomaterials, or biomaterials, QDs are assembled on sensors by the interaction of electrostatic adsorption, chemical bonding, steric hindrance, and base-pairing. The stability of QDs-based nanosensors is improved by doping the elements to QDs, providing the reference substance, optimizing the assemble strategies and so on. Then, according to transducer principles, the two most typical sensor categories based on QDs: optical and electrochemical sensors are highlighted to be discussed. In the meanwhile, portable devices combining with QDs to adapt the practical detection in complex situations are summarized. The deficiencies and future challenges of QDs in toxicity, specificity, portability, multi-metal co-detection and degradation during the detection are also pointed out. In the end, the development trends of QDs-based nanosensors for heavy metal ions detection are discussed. This review presents an overall understanding, recent advances, current challenges and future outlook of QDs-based nanosensors for heavy metal detection.
Collapse
|
27
|
Liu L, Lu L, Zhang HJ, Wang LN. Influence of bovine serum albumin on corrosion behaviour of pure Zn in phosphate buffered saline. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:95. [PMID: 34406479 PMCID: PMC8373726 DOI: 10.1007/s10856-021-06567-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 07/21/2021] [Indexed: 05/31/2023]
Abstract
Zinc (Zn) and its alloys have received increasing attention as new alternative biodegradable metals. However, consensus has not been reached on the corrosion behaviour of Zn. As cardiovascular artery stent material, Zn is supposed to contact with plasma that contains inorganic salts and organic components. Protein is one of the most important constitute in the plasma and could adsorb on the material surface. In this paper, bovine serum albumin (BSA) was used as a typical protein. Influences of BSA on pure Zn corrosion in phosphate buffered saline is investigated as a function of BSA concentrations and immersion durations by electrochemical techniques and surface analysis. Results showed that pure Zn corrosion was progressively accelerated with BSA concentrations (ranging from 0.05 to 5 g L-1) at 0.5 h. With time evolves, formation of phosphates as corrosion product was delayed by BSA adsorption, especially at concentration of 2 g L-1. Within 48 h, the corrosion of pure Zn was alleviated by BSA at concentration of 0.1 g L-1, whereas the corrosion was enhanced after 168 h. Addition of 2 g L-1 BSA has opposite influence on the pure Zn corrosion. Furthermore, schematic corrosion behaviour at protein/Zn interfaces was proposed. This work encourages us to think more about the influence of protein on the material corrosion and helps us to better understand the corrosion behaviour of pure Zn.
Collapse
Affiliation(s)
- Lijun Liu
- Beijing Advanced Innovation Centre for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lili Lu
- Beijing Advanced Innovation Centre for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai-Jun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Qihe, Shandong, 251100, China
| | - Lu-Ning Wang
- Beijing Advanced Innovation Centre for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- State Key Laboratory of Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
28
|
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 2021; 6:2569-2612. [PMID: 33615045 PMCID: PMC7876544 DOI: 10.1016/j.bioactmat.2021.01.030] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.
Collapse
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Ruoxian Wang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Shan Fu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
29
|
Jiao J, Zhang S, Qu X, Yue B. Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Front Cell Infect Microbiol 2021; 11:693939. [PMID: 34277473 PMCID: PMC8283567 DOI: 10.3389/fcimb.2021.693939] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Implants are widely used in orthopedic surgery and are gaining attention of late. However, their use is restricted by implant-associated infections (IAI), which represent one of the most serious and dangerous complications of implant surgeries. Various strategies have been developed to prevent and treat IAI, among which the closest to clinical translation is designing metal materials with antibacterial functions by alloying methods based on existing materials, including titanium, cobalt, tantalum, and biodegradable metals. This review first discusses the complex interaction between bacteria, host cells, and materials in IAI and the mechanisms underlying the antibacterial effects of biomedical metals and alloys. Then, their applications for the prevention and treatment of IAI are highlighted. Finally, new insights into their clinical translation are provided. This review also provides suggestions for further development of antibacterial metals and alloys.
Collapse
Affiliation(s)
- Juyang Jiao
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Pal RR, Kumar D, Raj V, Rajpal V, Maurya P, Singh S, Mishra N, Singh N, Singh P, Tiwari N, Saraf SA. Synthesis of pH-sensitive crosslinked guar gum-g-poly(acrylic acid-co-acrylonitrile) for the delivery of thymoquinone against inflammation. Int J Biol Macromol 2021; 182:1218-1228. [PMID: 33991556 DOI: 10.1016/j.ijbiomac.2021.05.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022]
Abstract
The present work aims to synthesize the pH-sensitive crosslinked guar gum-g-poly(acrylic acid-co-acrylonitrile) [guar-g-(AA-co-ACN)] via microwave-assisted technique for the sustained release of thymoquinone. The synthesized material [guar-g-(AA-co-ACN)] was optimized by varying synthetic parameters viz. monomer concentration, reaction time, and microwave power to obtain the maximum yield of the crosslinked guar gum grafted product as well as maximum encapsulation of thymoquinone. The synthesized material [guar-g-poly(AA-co-ACN)] was characterized by FT-IR, SEM, XRD, NMR, zeta potential, and thermal techniques. This synthesized material was used to encapsulate thymoquinone (TQ) for effective nanotherapeutic delivery. In-vitro thymoquinone release behavior of guar-g-poly(AA-co-ACN) based nanoparticles (NpTGG) was investigated. The maximum thymoquinone release (78%) was achieved at pH 7.4 and time (6 h). The NpTGG also exhibited better antioxidant activity and hemocompatibility as compared to thymoquinone. Cytotoxicity of uar-g-(AA-co-ACN) and NpTGG was also evaluated against the human kidney VERO cell line and found to be nontoxic. Current research provides a cost-effective and green approach for the synthesis of guar-g-(AA-co-ACN) and NpTGG for sustained release of thymoquinone.
Collapse
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Deepak Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Vinit Raj
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Vasundhara Rajpal
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Samipta Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Raibarelly Road, U.P., Lucknow 226014, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India.
| |
Collapse
|
31
|
Scafa Udriște A, Niculescu AG, Grumezescu AM, Bădilă E. Cardiovascular Stents: A Review of Past, Current, and Emerging Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2498. [PMID: 34065986 PMCID: PMC8151529 DOI: 10.3390/ma14102498] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
One of the leading causes of morbidity and mortality worldwide is coronary artery disease, a condition characterized by the narrowing of the artery due to plaque deposits. The standard of care for treating this disease is the introduction of a stent at the lesion site. This life-saving tubular device ensures vessel support, keeping the blood-flow path open so that the cardiac muscle receives its vital nutrients and oxygen supply. Several generations of stents have been iteratively developed towards improving patient outcomes and diminishing adverse side effects following the implanting procedure. Moving from bare-metal stents to drug-eluting stents, and recently reaching bioresorbable stents, this research field is under continuous development. To keep up with how stent technology has advanced in the past few decades, this paper reviews the evolution of these devices, focusing on how they can be further optimized towards creating an ideal vascular scaffold.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.S.U.); (E.B.)
- Cardiology Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Elisabeta Bădilă
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.S.U.); (E.B.)
- Internal Medicine Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
32
|
Zhu W, Zhang R, Liu S, Tian J, Lv X, Yu F, Xin H. The effect of nanoparticles of cobalt-chromium on human aortic endothelial cells in vitro. J Appl Toxicol 2021; 41:1966-1979. [PMID: 33959985 DOI: 10.1002/jat.4177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/19/2021] [Indexed: 11/08/2022]
Abstract
Despite advances in stent technology for vascular interventions, in-stent restenosis (ISR) remains a main complication. The corrosion of cobalt-chromium (CoCr) alloy coronary stents has been identified to be associated with ISR, whereas its role in ISR has not been elucidated. In the current work, CoCr nanoparticles, simulated corrosion products of CoCr alloy, were used to investigate their effect on the endothelial cells. It has been demonstrated that the cell viability declines and the cell membrane is damaged, indicating the cytotoxicity of CoCr nanoparticles. The expression of GRP78, CHOP, and cleaved-caspase12 proteins has increased when exposed to CoCr nanoparticles, suggesting that CoCr nanoparticles induced cell apoptosis through endoplasmic reticulum (ER) stress-mediated apoptotic pathway. An increased release of adhesion and inflammatory mediators was also induced by CoCr nanoparticles, including ICAM-1, VCAM-1, IL-1β, IL-6, and TNF-α. Our results demonstrated that CoCr nanoparticles could trigger apoptosis, adhesion, and inflammation. These findings indicated potential damaging effects of CoCr nanoparticles on the vascular endothelium, which suggested corrosion of CoCr alloy may promote the progression and development of ISR.
Collapse
Affiliation(s)
- Wenxiu Zhu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Song Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiawei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaobing Lv
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Kabir H, Munir K, Wen C, Li Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact Mater 2021; 6:836-879. [PMID: 33024903 PMCID: PMC7530311 DOI: 10.1016/j.bioactmat.2020.09.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Biodegradable metals (BMs) gradually degrade in vivo by releasing corrosion products once exposed to the physiological environment in the body. Complete dissolution of biodegradable implants assists tissue healing, with no implant residues in the surrounding tissues. In recent years, three classes of BMs have been extensively investigated, including magnesium (Mg)-based, iron (Fe)-based, and zinc (Zn)-based BMs. Among these three BMs, Mg-based materials have undergone the most clinical trials. However, Mg-based BMs generally exhibit faster degradation rates, which may not match the healing periods for bone tissue, whereas Fe-based BMs exhibit slower and less complete in vivo degradation. Zn-based BMs are now considered a new class of BMs due to their intermediate degradation rates, which fall between those of Mg-based BMs and Fe-based BMs, thus requiring extensive research to validate their suitability for biomedical applications. In the present study, recent research and development on Zn-based BMs are reviewed in conjunction with discussion of their advantages and limitations in relation to existing BMs. The underlying roles of alloy composition, microstructure, and processing technique on the mechanical and corrosion properties of Zn-based BMs are also discussed.
Collapse
Affiliation(s)
- Humayun Kabir
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Khurram Munir
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
34
|
Colino CI, Lanao JM, Gutierrez-Millan C. Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111843. [PMID: 33579480 DOI: 10.1016/j.msec.2020.111843] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023]
Abstract
The growing problem of resistant infections due to antibiotic misuse is a worldwide concern that poses a grave threat to healthcare systems. Thus, it is necessary to discover new strategies to combat infectious diseases. In this review, we provide a selective overview of recent advances in the use of nanocomposites as alternatives to antibiotics in antimicrobial treatments. Metals and metal oxide nanoparticles (NPs) have been associated with inorganic and organic supports to improve their antibacterial activity and stability as well as other properties. For successful antibiotic treatment, it is critical to achieve a high drug concentration at the infection site. In recent years, the development of stimuli-responsive systems has allowed the vectorization of antibiotics to the site of infection. These nanomaterials can be triggered by various mechanisms (such as changes in pH, light, magnetic fields, and the presence of bacterial enzymes); additionally, they can improve antibacterial efficacy and reduce side effects and microbial resistance. To this end, various types of modified polymers, lipids, and inorganic components (such as metals, silica, and graphene) have been developed. Applications of these nanocomposites in diverse fields ranging from food packaging, environment, and biomedical antimicrobial treatments to diagnosis and theranosis are discussed.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain.
| | - Carmen Gutierrez-Millan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain
| |
Collapse
|
35
|
Bai J, Xu Y, Fan Q, Cao R, Zhou X, Cheng Z, Dong Q, Xue F. Mechanical Properties and Degradation Behaviors of Zn-xMg Alloy Fine Wires for Biomedical Applications. SCANNING 2021; 2021:4831387. [PMID: 35024086 PMCID: PMC8720005 DOI: 10.1155/2021/4831387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 11/30/2021] [Indexed: 05/17/2023]
Abstract
Zn and Zn-based alloys exhibit biosafety and biodegradation, considered as candidates for biomedical implants. Zn-0.02 wt.% Mg (Zn-0.02 Mg), Zn-0.05 wt.% Mg (Zn-0.05 Mg), and Zn-0.2 wt.% Mg (Zn-0.2 Mg) wires (Φ 0.3 mm) were prepared for precision biomedical devices in this work. With the addition of Mg in Zn-xMg alloys, the grain size decreased along with the occurrence of Mg2Zn11 at the grain boundaries. Hot extrusion, cold drawing, and annealing treatment were introduced to further refining the grain size. Besides, the hot extrusion and cold drawing improved the tensile strength of Zn-xMg alloys to 240-270 MPa while elongation also increased but remained under 10%. Annealing treatment could improve the elongation of Zn alloys to 12% -28%, but decrease the tensile strength. Furthermore, Zn-xMg wires displayed an increase in degradation rate with Mg addition. The findings might provide a potential possibility of Zn-xMg alloy wires for biomedical applications.
Collapse
Affiliation(s)
- Jing Bai
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215000, China
| | - Yan Xu
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Qizhou Fan
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Ruihua Cao
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Xingxing Zhou
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Zhaojun Cheng
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215000, China
| | - Qiangsheng Dong
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215000, China
| | - Feng Xue
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215000, China
| |
Collapse
|