1
|
Sarac B, Yücer S, Ciftci F. MXenes in microbiology and virology: from pathogen detection to antimicrobial applications. NANOSCALE 2025; 17:9619-9651. [PMID: 40135595 DOI: 10.1039/d5nr00477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
MXenes, a rapidly emerging class of two-dimensional materials, have demonstrated exceptional versatility and functionality across various domains, including microbiology and virology. Recent advancements in MXene synthesis techniques, encompassing both top-down and bottom-up approaches, have expanded their potential applications in pathogen detection, antimicrobial treatments, and biomedical platforms. This review highlights the unique physicochemical properties of MXenes, including their large surface area, tunable surface chemistry, and high biocompatibility, which contribute to their antimicrobial efficacy against bacteria, fungi, and viruses, such as SARS-CoV-2. The antibacterial mechanisms of MXenes, including membrane disruption, reactive oxygen species (ROS) generation, and photothermal inactivation, are discussed alongside hybridization strategies that enhance their bioactivity. Additionally, the challenges and future prospects of MXenes in developing advanced antimicrobial coatings, diagnostic tools, and therapeutic systems are outlined. By addressing current limitations and exploring innovative solutions, this study underscores the transformative potential of MXenes in microbiology, virology, and biomedical applications.
Collapse
Affiliation(s)
- Begüm Sarac
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
| | - Seydanur Yücer
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
| | - Fatih Ciftci
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey
| |
Collapse
|
2
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
3
|
Gayathri VG, Richard B, Chacko JT, Bayry J, Rasheed PA. Non-Ti MXenes: new biocompatible and biodegradable candidates for biomedical applications. J Mater Chem B 2025; 13:1212-1228. [PMID: 39688533 DOI: 10.1039/d4tb01904k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
MXenes are a class of two-dimensional nanomaterials with the general formula Mn+1XnTx, where M denotes a transition metal, X denotes either carbon or nitrogen and Tx refers to surface terminations, such as -OH, -O, -F or -Cl. The unique properties of MXenes, including their tunable surface chemistry and high surface area-to-volume ratio, make them promising candidates for various biomedical applications, such as targeted drug delivery, photothermal therapy and so on. Among the family of MXenes, titanium (Ti)-based MXenes, especially Ti3C2Tx, have been extensively explored for biomedical applications. However, despite their potential, Ti-based MXenes have shown some limitations, such as low biocompatibility. Recent studies have also indicated that Ti MXenes may disrupt spermatogenesis and accumulate in the uterus. Non-Ti MXenes are emerging as promising alternatives to Ti-based MXenes due to their superior biodegradability and enhanced biocompatibility. Recently, non-Ti MXenes have been explored for a range of biomedical applications, including drug delivery, photothermal therapy, chemodynamic therapy and sonodynamic therapy. In addition, some non-Ti MXenes exhibit enzyme-mimicking activity, such as superoxide dismutase and peroxidase-like functions, which play a major role in scavenging reactive oxygen species (ROS). This review discusses the properties of non-Ti MXenes, such as biocompatibility, biodegradability, antibacterial activity, and neuroprotective effects, highlighting their potential in various biomedical applications. These properties can be leveraged to mitigate oxidative stress and develop safe and innovative strategies for managing chronic diseases. This review provides a comprehensive analysis of the various biomedical applications of non-Ti MXenes, including their use in drug delivery and combinatorial therapies and as nanozymes for sensing and therapeutic purposes. The theranostic applications of non-Ti MXenes are also discussed. Finally, the antibacterial properties of non-Ti MXenes and the proposed mechanisms are discussed. The review concludes with a summary of the key findings and future perspectives. In short, this review provides a thorough analysis of the biomedical applications of non-Ti MXenes, emphasizing their unique properties, potential opportunities and challenges in the field.
Collapse
Affiliation(s)
- Vijayakumar G Gayathri
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India.
| | - Bartholomew Richard
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India
| | - Jithin Thomas Chacko
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India
| | - Jagadeesh Bayry
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India.
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India.
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India
| |
Collapse
|
4
|
Koyappayil A, Chavan SG, Lee MH. MXenes in photothermal cancer therapy: applications and advances. NANOPHOTOTHERAPY 2025:283-298. [DOI: 10.1016/b978-0-443-13937-6.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Farasatkia A, Maeso L, Gharibi H, Dolatshahi-Pirouz A, Stojanovic GM, Edmundo Antezana P, Jeong JH, Federico Desimone M, Orive G, Kharaziha M. Design of nanosystems for melanoma treatment. Int J Pharm 2024; 665:124701. [PMID: 39278291 DOI: 10.1016/j.ijpharm.2024.124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Melanoma is a prevalent and concerning form of skin cancer affecting millions of individuals worldwide. Unfortunately, traditional treatments can be invasive and painful, prompting the need for alternative therapies with improved efficacy and patient outcomes. Nanosystems offer a promising solution to these obstacles through the rational design of nanoparticles (NPs) which are structured into nanocomposite forms, offering efficient approaches to cancer treatment procedures. A range of NPs consisting of polymeric, metallic and metal oxide, carbon-based, and virus-like NPs have been studied for their potential in treating skin cancer. This review summarizes the latest developments in functional nanosystems aimed at enhancing melanoma treatment. The fundamentals of these nanosystems, including NPs and the creation of various functional nanosystem types, facilitating melanoma treatment are introduced. Then, the advances in the applications of functional nanosystems for melanoma treatment are summarized, outlining both their benefits and the challenges encountered in implementing nanosystem therapies.
Collapse
Affiliation(s)
- Asal Farasatkia
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Hamidreza Gharibi
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Goran M Stojanovic
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Pablo Edmundo Antezana
- Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA, CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jee-Heon Jeong
- Laboratory of Drug Delivery and Cell Therapy (LDDCT). Department of Precision Medicine. School of Medicine, Sungkyunkwan University. South Korea
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA, CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain.
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
6
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
7
|
Zhang S, Meng L, Hu Y, Yuan Z, Li J, Liu H. Green Synthesis and Biosafety Assessment of MXene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308600. [PMID: 37974554 DOI: 10.1002/smll.202308600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The rise of MXene-based materials with fascinating physical and chemical properties has attracted wide attention in the field of biomedicine, because it can be exploited to regulate a variety of biological processes. The biomedical applications of MXene are still in its infancy, nevertheless, the comprehensive evaluation of MXene's biosafety is desperately needed. In this review, the composition and the synthetic methods of MXene materials are first introduced from the view of biosafety. The evaluation of the interaction between MXene and cells, as well as the safety of different forms of MXene applied in vivo are then discussed. This review provides a basic understanding of MXene biosafety and may bring new inspirations to the future applications of MXene-based materials in biomedicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
- Department of Stomatology, Cangzhou Medical College, Jinan, 061001, China
| | - Ling Meng
- Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Ying Hu
- Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Zihan Yuan
- State Key Laboratory of Crystal Materials Shandong University, Jinan, Shandong, 250100, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
- State Key Laboratory of Crystal Materials Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
8
|
Li N, Wang Y, Li Y, Zhang C, Fang G. Recent Advances in Photothermal Therapy at Near-Infrared-II Based on 2D MXenes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305645. [PMID: 37775938 DOI: 10.1002/smll.202305645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/12/2023] [Indexed: 10/01/2023]
Abstract
The use of photothermal therapy (PTT) with the near-infrared II region (NIR-II: 1000-1700 nm) is expected to be a powerful cancer treatment strategy. It retains the noninvasive nature and excellent temporal and spatial controllability of the traditional PTT, and offers significant advantages in terms of tissue penetration depth, background noise, and the maximum permissible exposure standards for skin. MXenes, transition-metal carbides, nitrides, and carbonitrides are emerging inorganic nanomaterials with natural biocompatibility, wide spectral absorption, and a high photothermal conversion efficiency. The PTT of MXenes in the NIR-II region not only provides a valuable reference for exploring photothermal agents that respond to NIR-II in 2D inorganic nanomaterials, but also be considered as a promising biomedical therapy. First, the synthesis methods of 2D MXenes are briefly summarized, and the laser light source, mechanism of photothermal conversion, and evaluation criteria of photothermal performance are introduced. Second, the latest progress of PTT based on 2D MXenes in NIR-II are reviewed, including titanium carbide (Ti3 C2 ), niobium carbide (Nb2 C), and molybdenum carbide (Mo2 C). Finally, the main problems in the PTT application of 2D MXenes to NIR-II and future research directions are discussed.
Collapse
Affiliation(s)
- Nan Li
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, Guangdong, 510700, China
| | - Yisen Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, Guangdong, 510700, China
| | - Yang Li
- Cell Department, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Chenchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, China
| | - Guangyou Fang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, Guangdong, 510700, China
| |
Collapse
|
9
|
Ye S, Zhang H, Lai H, Xu J, Yu L, Ye Z, Yang L. MXene: A wonderful nanomaterial in antibacterial. Front Bioeng Biotechnol 2024; 12:1338539. [PMID: 38361792 PMCID: PMC10867285 DOI: 10.3389/fbioe.2024.1338539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Increasing bacterial infections and growing resistance to available drugs pose a serious threat to human health and the environment. Although antibiotics are crucial in fighting bacterial infections, their excessive use not only weakens our immune system but also contributes to bacterial resistance. These negative effects have caused doctors to be troubled by the clinical application of antibiotics. Facing this challenge, it is urgent to explore a new antibacterial strategy. MXene has been extensively reported in tumor therapy and biosensors due to its wonderful performance. Due to its large specific surface area, remarkable chemical stability, hydrophilicity, wide interlayer spacing, and excellent adsorption and reduction ability, it has shown wonderful potential for biopharmaceutical applications. However, there are few antimicrobial evaluations on MXene. The current antimicrobial mechanisms of MXene mainly include physical damage, induced oxidative stress, and photothermal and photodynamic therapy. In this paper, we reviewed MXene-based antimicrobial composites and discussed the application of MXene in bacterial infections to guide further research in the antimicrobial field.
Collapse
Affiliation(s)
- Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huichao Zhang
- Stomatology College of Chifeng University, Chifeng, China
| | - Huiyan Lai
- College of Chemistry and Chemical Engineering, Xiamen University, and Discipline of Intelligent Instrument and Equipment, Xiamen, China
| | - Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
10
|
Farasati Far B, Rabiee N, Iravani S. Environmental implications of metal-organic frameworks and MXenes in biomedical applications: a perspective. RSC Adv 2023; 13:34562-34575. [PMID: 38024989 PMCID: PMC10668918 DOI: 10.1039/d3ra07092a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Metal-organic frameworks (MOFs) and MXenes have demonstrated immense potential for biomedical applications, offering a plethora of advantages. MXenes, in particular, exhibit robust mechanical strength, hydrophilicity, large surface areas, significant light absorption potential, and tunable surface terminations, among other remarkable characteristics. Meanwhile, MOFs possess high porosity and large surface area, making them ideal for protecting active biomolecules and serving as carriers for drug delivery, hence their extensive study in the field of biomedicine. However, akin to other (nano)materials, concerns regarding their environmental implications persist. The number of studies investigating the toxicity and biocompatibility of MXenes and MOFs is growing, albeit further systematic research is needed to thoroughly understand their biosafety issues and biological effects prior to clinical trials. The synthesis of MXenes often involves the use of strong acids and high temperatures, which, if not properly managed, can have adverse effects on the environment. Efforts should be made to minimize the release of harmful byproducts and ensure proper waste management during the production process. In addition, it is crucial to assess the potential release of MXenes into the environment during their use in biomedical applications. For the biomedical applications of MOFs, several challenges exist. These include high fabrication costs, poor selectivity, low capacity, the quest for stable and water-resistant MOFs, as well as difficulties in recycling/regeneration and maintaining chemical/thermal/mechanical stability. Thus, careful consideration of the biosafety issues associated with their fabrication and utilization is vital. In addition to the synthesis and manufacturing processes, the ultimate utilization and fate of MOFs and MXenes in biomedical applications must be taken into account. While numerous reviews have been published regarding the biomedical applications of MOFs and MXenes, this perspective aims to shed light on the key environmental implications and biosafety issues, urging researchers to conduct further research in this field. Thus, the crucial aspects of the environmental implications and biosafety of MOFs and MXenes in biomedicine are thoroughly discussed, focusing on the main challenges and outlining future directions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology Tehran 1684611367 Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University Sydney New South Wales 2109 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University Perth WA 6150 Australia
| | | |
Collapse
|
11
|
Zarepour A, Karasu Ç, Mir Y, Nematollahi MH, Iravani S, Zarrabi A. Graphene- and MXene-based materials for neuroscience: diagnostic and therapeutic applications. Biomater Sci 2023; 11:6687-6710. [PMID: 37646462 DOI: 10.1039/d3bm01114c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
MXenes and graphene are two-dimensional materials that have gained increasing attention in neuroscience, particularly in sensing, theranostics, and biomedical engineering. Various composites of graphene and MXenes with fascinating thermal, optical, magnetic, mechanical, and electrical properties have been introduced to develop advanced nanosystems for diagnostic and therapeutic applications, as exemplified in the case of biosensors for neurotransmitter detection. These biosensors display high sensitivity, selectivity, and stability, making them promising tools for neuroscience research. MXenes have been employed to create high-resolution neural interfaces for neuroelectronic devices, develop neuro-receptor-mediated synapse devices, and stimulate the electrophysiological maturation of neural circuits. On the other hand, graphene/derivatives exhibit therapeutic applicability in neuroscience, as exemplified in the case of graphene oxide for targeted delivery of therapeutic agents to the brain. While MXenes and graphene have potential benefits in neuroscience, there are also challenges/limitations associated with their use, such as toxicity, environmental impacts, and limited understanding of their properties. In addition, large-scale production and commercialization as well as optimization of reaction/synthesis conditions and clinical translation studies are very important aspects. Thus, it is important to consider the use of these materials in neuroscience research and conduct further research to obtain an in-depth understanding of their properties and potential applications. By addressing issues related to biocompatibility, long-term stability, targeted delivery, electrical interfaces, scalability, and cost-effectiveness, MXenes and graphene have the potential to greatly advance the field of neuroscience and pave the way for innovative diagnostic and therapeutic approaches for neurological disorders. Herein, recent advances in therapeutic and diagnostic applications of graphene- and MXene-based materials in neuroscience are discussed, focusing on important challenges and future prospects.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06500 Ankara, Turkey
| | - Yousof Mir
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| |
Collapse
|
12
|
Shen S, Yang K, Lin D. Biomacromolecular and Toxicity Responses of Bacteria upon the Nano-Bio Interfacial Interactions with Ti 3C 2T x Nanosheets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12991-13003. [PMID: 37608586 DOI: 10.1021/acs.est.3c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The biomolecular responses of bacteria to 2D nanosheets that result from nano-bio interfacial interactions remain to be thoroughly examined. Herein, Fourier transform infrared (FTIR) multivariate and 2D correlation analyses were performed to assess the composition and conformational changes in bacterial biomacromolecules (lipids, polysaccharides, and carbohydrates) upon exposure to Ti3C2Tx nanosheets. General toxicity assays, 3D excitation-emission matrix fluorescence analyses, extended Derjaguin-Landau-Verwey-Overbeek theory interaction calculations, and isothermal titration calorimetry were also performed. Our results demonstrate that Ti3C2Tx nanosheets considerably impact Gram-positive bacteria (Bacillus subtilis), causing oxidative damage and inactivation by preferentially interacting with and disrupting the cell walls. The bilayer membrane structure of Gram-negative bacteria (Escherichia coli) endows them with increased resistance to Ti3C2Tx nanosheets. The unmodified nanosheets had a higher affinity to bacterial protein components with lower toxicity due to their susceptibility to oxidation. Surface modification with KOH or hydrazine (HMH), particularly HMH, induced stronger dispersion, antioxidation, and affinity to bacterial phospholipids, which resulted in severe cell membrane lipid peroxidation and bacterial inactivation. These findings provide valuable insight into nano-bio interfacial interactions, which can facilitate the development of antimicrobial and antifouling surfaces and contribute to the evaluation of the environmental risks of nanomaterials.
Collapse
Affiliation(s)
- Shuyi Shen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
Bury D, Jakubczak M, Purbayanto MAK, Wojciechowska A, Moszczyńska D, Jastrzębska AM. Photocatalytic Activity of the Oxidation Stabilized Ti 3 C 2 T x MXene in Decomposing Methylene Blue, Bromocresol Green and Commercial Textile Dye. SMALL METHODS 2023; 7:e2201252. [PMID: 36879487 DOI: 10.1002/smtd.202201252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional MXenes are excellent photocatalysts. However, their low oxidation stability makes controlling photocatalytic processes challenging. For the first time, this work elucidates the influence of the oxidation stabilization of model 2D Ti3 C2 Tx MXene on its optical and photocatalytic properties. The delaminated MXene is synthesized via two well-established approaches: hydrofluoric acid/tetramethylammonium hydroxide (TMAOH-MXene) and minimum intensive layer delamination with hydrochloric acid/lithium fluoride (MILD-MXene) and then stabilized by L-ascorbic acid. Both MXenes at a minimal concentration of 32 mg L-1 show almost 100% effectiveness in the 180-min photocatalytic decomposition of 25 mg L-1 model methylene blue and bromocresol green dyes. Industrial viability is achieved by decomposing a commercial textile dye having 100 times higher concentration than that of model dyes. In such conditions, MILD-MXene is the most efficient due to less wide optical band gap than TMAOH-MXene. The MILD-MXene required only few seconds of UV light, simulated white light, or 500 nm (cyan) light irradiation to fully decompose the dye. The photocatalytic mechanism of action is associated with the interplay between surface dye adsorption and the reactive oxygen species generated by MXene under light irradiation. Importantly, both MXenes are successfully reused and retained approximately 70% of their activity.
Collapse
Affiliation(s)
- Dominika Bury
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| | - Michał Jakubczak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| | | | - Anita Wojciechowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| | - Dorota Moszczyńska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| | - Agnieszka Maria Jastrzębska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| |
Collapse
|
15
|
Janica I, Montes-García V, Urban F, Hashemi P, Nia AS, Feng X, Samorì P, Ciesielski A. Covalently Functionalized MXenes for Highly Sensitive Humidity Sensors. SMALL METHODS 2023; 7:e2201651. [PMID: 36808898 DOI: 10.1002/smtd.202201651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Transition metal carbides and nitrides (MXenes) are an emerging class of 2D materials, which are attracting ever-growing attention due to their remarkable physicochemical properties. The presence of various surface functional groups on MXenes' surface, e.g., F, O, OH, Cl, opens the possibility to tune their properties through chemical functionalization approaches. However, only a few methods have been explored for the covalent functionalization of MXenes and include diazonium salt grafting and silylation reactions. Here, an unprecedented two-step functionalization of Ti3 C2 Tx MXenes is reported, where (3-aminopropyl)triethoxysilane is covalently tethered to Ti3 C2 Tx and serves as an anchoring unit for subsequent attachment of various organic bromides via the formation of CN bonds. Thin films of Ti3 C2 Tx functionalized with linear chains possessing increased hydrophilicity are employed for the fabrication of chemiresistive humidity sensors. The devices exhibit a broad operation range (0-100% relative humidity), high sensitivity (0.777 or 3.035), a fast response/recovery time (0.24/0.40 s ΔH-1 , respectively), and high selectivity to water in the presence of saturated vapors of organic compounds. Importantly, our Ti3 C2 Tx -based sensors display the largest operating range and a sensitivity beyond the state of the art of MXenes-based humidity sensors. Such outstanding performance makes the sensors suitable for real-time monitoring applications.
Collapse
Affiliation(s)
- Iwona Janica
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | | | - Francesca Urban
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Payam Hashemi
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Ali Shaygan Nia
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Artur Ciesielski
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
16
|
Asaro GA, Solazzo M, Suku M, Spurling D, Genoud K, Gonzalez JG, Brien FJO, Nicolosi V, Monaghan MG. MXene functionalized collagen biomaterials for cardiac tissue engineering driving iPSC-derived cardiomyocyte maturation. NPJ 2D MATERIALS AND APPLICATIONS 2023; 7:44. [PMID: 38665478 PMCID: PMC11041746 DOI: 10.1038/s41699-023-00409-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/15/2023] [Indexed: 04/28/2024]
Abstract
Electroconductive biomaterials are gaining significant consideration for regeneration in tissues where electrical functionality is of crucial importance, such as myocardium, neural, musculoskeletal, and bone tissue. In this work, conductive biohybrid platforms were engineered by blending collagen type I and 2D MXene (Ti3C2Tx) and afterwards covalently crosslinking; to harness the biofunctionality of the protein component and the increased stiffness and enhanced electrical conductivity (matching and even surpassing native tissues) that two-dimensional titanium carbide provides. These MXene platforms were highly biocompatible and resulted in increased proliferation and cell spreading when seeded with fibroblasts. Conversely, they limited bacterial attachment (Staphylococcus aureus) and proliferation. When neonatal rat cardiomyocytes (nrCMs) were cultured on the substrates increased spreading and viability up to day 7 were studied when compared to control collagen substrates. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were seeded and stimulated using electric-field generation in a custom-made bioreactor. The combination of an electroconductive substrate with an external electrical field enhanced cell growth, and significantly increased cx43 expression. This in vitro study convincingly demonstrates the potential of this engineered conductive biohybrid platform for cardiac tissue regeneration.
Collapse
Affiliation(s)
- Giuseppe A. Asaro
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, 2 Ireland
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin, 2 Ireland
| | - Matteo Solazzo
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, 2 Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, 2 Ireland
| | - Meenakshi Suku
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, 2 Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, 2 Ireland
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland
| | - Dahnan Spurling
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin, 2 Ireland
- School of Chemistry, Trinity College Dublin, Dublin, 2 Ireland
| | - Katelyn Genoud
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin, 2 Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, 2 Ireland
| | - Javier Gutierrez Gonzalez
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin, 2 Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, 2 Ireland
| | - Fergal J. O’ Brien
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin, 2 Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, 2 Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, 2 Ireland
| | - Valeria Nicolosi
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin, 2 Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, 2 Ireland
- School of Chemistry, Trinity College Dublin, Dublin, 2 Ireland
| | - Michael G. Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, 2 Ireland
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin, 2 Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, 2 Ireland
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland
| |
Collapse
|
17
|
Seidi F, Arabi Shamsabadi A, Dadashi Firouzjaei M, Elliott M, Saeb MR, Huang Y, Li C, Xiao H, Anasori B. MXenes Antibacterial Properties and Applications: A Review and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206716. [PMID: 36604987 DOI: 10.1002/smll.202206716] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The mutations of bacteria due to the excessive use of antibiotics, and generation of antibiotic-resistant bacteria have made the development of new antibacterial compounds a necessity. MXenes have emerged as biocompatible transition metal carbide structures with extensive biomedical applications. This is related to the MXenes' unique combination of properties, including multifarious elemental compositions, 2D-layered structure, large surface area, abundant surface terminations, and excellent photothermal and photoelectronic properties. The focus of this review is the antibacterial application of MXenes, which has attracted the attention of researchers since 2016. A quick overview of the synthesis strategies of MXenes is provided and then summarizes the effect of various factors (including structural properties, optical properties, surface charges, flake size, and dispersibility) on the biocidal activity of MXenes. The main mechanisms for deactivating bacteria by MXenes are discussed in detail including rupturing of the bacterial membrane by sharp edges of MXenes nanoflakes, generating the reactive oxygen species (ROS), and photothermal deactivating of bacteria. Hybridization of MXenes with other organic and inorganic materials can result in materials with improved biocidal activities for different applications such as wound dressings and water purification. Finally, the challenges and perspectives of MXene nanomaterials as biocidal agents are presented.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | | | - Mostafa Dadashi Firouzjaei
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Mark Elliott
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, Gdańsk, 11/12 80-233, Poland
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Babak Anasori
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
18
|
Setyawan D, Amrillah T, Abdullah CAC, Ilhami FB, Dewi DMM, Mumtazah Z, Oktafiani A, Adila FP, Putra MFH. Crafting two-dimensional materials for contrast agents, drug, and heat delivery applications through green technologies. J Drug Target 2023; 31:369-389. [PMID: 36721905 DOI: 10.1080/1061186x.2023.2175833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of two-dimensional (2D) materials for biomedical applications has accelerated exponentially. Contrary to their bulk counterparts, the exceptional properties of 2D materials make them highly prospective for contrast agents for bioimage, drug, and heat delivery in biomedical treatment. Nevertheless, empty space in the integration and utilisation of 2D materials in living biological systems, potential toxicity, as well as required complicated synthesis and high-cost production limit the real application of 2D materials in those advance medical treatments. On the other hand, green technology appears to be one of strategy to shed a light on the blurred employment of 2D in medical applications, thus, with the increasing reports of green technology that promote advanced technologies, here, we compile, summarise, and synthesise information on the biomedical technology of 2D materials through green technology point of view. Beginning with a fundamental understanding, of crystal structures, the working mechanism, and novel properties, this article examines the recent development of 2D materials. As well as 2D materials made from natural and biogenic resources, a recent development in green-related synthesis was also discussed. The biotechnology and biomedical-related application constraints are also discussed. The challenges, solutions, and prospects of the so-called green 2D materials are outlined.
Collapse
Affiliation(s)
- Dwi Setyawan
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- Green Nanotechnology Laboratory Center, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Tahta Amrillah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
- Green Nanotechnology Laboratory Center, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang, Selangor, Malaysia
- Nanomaterial Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Diva Meisya Maulina Dewi
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Zuhra Mumtazah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Agustina Oktafiani
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Fayza Putri Adila
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Moch Falah Hani Putra
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
19
|
Zarei M, Lee G, Lee SG, Cho K. Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human-Machine Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203193. [PMID: 35737931 DOI: 10.1002/adma.202203193] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of the electronics industry and proliferation of electronic materials and telecommunications technologies has led to the release of a massive amount of untreated electronic waste (e-waste) into the environment. Consequently, catastrophic environmental damage at the microbiome level and serious human health diseases threaten the natural fate of the planet. Currently, the demand for wearable electronics for applications in personalized medicine, electronic skins (e-skins), and health monitoring is substantial and growing. Therefore, "green" characteristics such as biodegradability, self-healing, and biocompatibility ensure the future application of wearable electronics and e-skins in biomedical engineering and bioanalytical sciences. Leveraging the biodegradability, sustainability, and biocompatibility of natural materials will dramatically influence the fabrication of environmentally friendly e-skins and wearable electronics. Here, the molecular and structural characteristics of biological skins and artificial e-skins are discussed. The focus then turns to the biodegradable materials, including natural and synthetic-polymer-based materials, and their recent applications in the development of biodegradable e-skin in wearable sensors, robotics, and human-machine interfaces (HMIs). Finally, the main challenges and outlook regarding the preparation and application of biodegradable e-skins are critically discussed in a near-future scenario, which is expected to lead to the next generation of biodegradable e-skins.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Giwon Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
20
|
Amrillah T, Abdullah CAC, Hermawan A, Sari FNI, Alvani VN. Towards Greener and More Sustainable Synthesis of MXenes: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4280. [PMID: 36500902 PMCID: PMC9793760 DOI: 10.3390/nano12234280] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The unique properties of MXenes have been deemed to be of significant interest in various emerging applications. However, MXenes provide a major drawback involving environmentally harmful and toxic substances for its general fabrication in large-scale production and employing a high-temperature solid-state reaction followed by selective etching. Meanwhile, how MXenes are synthesized is essential in directing their end uses. Therefore, making strategic approaches to synthesize greener, safer, more sustainable, and more environmentally friendly MXenes is imperative to commercialize at a competitive price. With increasing reports of green synthesis that promote advanced technologies and non-toxic agents, it is critical to compile, summarize, and synthesize the latest development of the green-related technology of MXenes. We review the recent progress of greener, safer, and more sustainable MXene synthesis with a focus on the fundamental synthetic process, the mechanism, and the general advantages, and the emphasis on the MXene properties inherited from such green synthesis techniques. The emerging use of the so-called green MXenes in energy conversion and storage, environmental remediation, and biomedical applications is presented. Finally, the remaining challenges and prospects of greener MXene synthesis are discussed.
Collapse
Affiliation(s)
- Tahta Amrillah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, East Java, Indonesia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Nanomaterial Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang 15315, Banten, Indonesia
| | - Fitri Nur Indah Sari
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Vani Novita Alvani
- Graduate School of Environmental Studies, Tohoku University, Sendai 9808579, Japan
| |
Collapse
|
21
|
Bioactive inorganic compound MXene and its application in tissue engineering and regenerative medicine. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Jakubczak M, Bury D, Purbayanto MAK, Wójcik A, Moszczyńska D, Prenger K, Naguib M, Jastrzębska AM. Understanding the mechanism of Nb-MXene bioremediation with green microalgae. Sci Rep 2022; 12:14366. [PMID: 35999240 PMCID: PMC9399251 DOI: 10.1038/s41598-022-18154-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Rapidly developing nanotechnologies and their integration in daily applications may threaten the natural environment. While green methods of decomposing organic pollutants have reached maturity, remediation of inorganic crystalline contaminants is major problem due to their low biotransformation susceptibility and the lack of understanding of material surface-organism interactions. Herein, we have used model inorganic 2D Nb-based MXenes coupled with a facile shape parameters analysis approach to track the mechanism of bioremediating 2D ceramic nanomaterials with green microalgae Raphidocelis subcapitata. We have found that microalgae decomposed the Nb-based MXenes due to surface-related physicochemical interactions. Initially, single and few-layered MXene nanoflakes attached to microalgae surfaces, which slightly reduced algal growth. But with prolonged surface interaction, the microalgae oxidized MXene nanoflakes and further decomposed them into NbO and Nb2O5. Since these oxides were nontoxic to microalgal cells, they consumed Nb-oxide nanoparticles by an uptake mechanism thus enabling further microalgae recovery after 72 h of water treatment. The uptake-associated nutritional effects were also reflected by cells’ increased size, smoothed shape and changed growth rates. Based on these findings, we conclude that short- and long-term presence of Nb-based MXenes in freshwater ecosystems might cause only negligible environmental effects. Notably, by using 2D nanomaterials as a model system, we show evidence of the possibility of tracking even fine material shape transformations. In general, this study answers an important fundamental question about the surface interaction-associated processes that drive the mechanism of 2D nanomaterials’ bioremediation as well as provides the fundamental basis for further short- and long-term investigations on the environmental effects of inorganic crystalline nanomaterials.
Collapse
Affiliation(s)
- Michał Jakubczak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland.
| | - Dominika Bury
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | | | - Anna Wójcik
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, W. Reymonta 25, 30-059, Cracow, Poland
| | - Dorota Moszczyńska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Kaitlyn Prenger
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| | - Michael Naguib
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
| | - Agnieszka Maria Jastrzębska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland.
| |
Collapse
|
23
|
Yang L, Hu L, Tang H, Chen X, Liu X, Zhang Y, Wen Y, Yang Y, Geng Y. The disruption of human trophoblast functions by autophagy activation through PI3K/AKT/mTOR pathway induced by exposure to titanium carbide (Ti 3C 2) MXene. Food Chem Toxicol 2022; 165:113128. [PMID: 35569596 DOI: 10.1016/j.fct.2022.113128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Ti3C2 MXene, as a novel nanomaterial, has attracted great attention due to its promising properties in biomedical applications. However, the potential effects of Ti3C2 MXene on trophoblast functions have not been investigated. Here, we found that Ti3C2 MXene exposure weakened the extension ability of villus explants in vitro. We employed human trophoblast HTR-8/SVneo cells to reveal the underlying molecular mechanisms by which Ti3C2 MXene exposure affected trophoblast functions. Results showed that Ti3C2 MXene entered cells and mostly deposited in the cytoplasm, inhibiting cell migration and invasion abilities. Furthermore, we found that Ti3C2 MXene exposure elevated autophagy through the inhibition of the PI3K/AKT/mTOR pathway. Meanwhile, the application of an autophagy inhibitor (3-MA) prevented autophagy and restored cell viability, resulting in the recovery of cell migration and invasion abilities. These indicated that the cellular dysfunction induced by Ti3C2 MXene may be mediated by autophagy activation. Our results indicated that autophagy is a key factor in eliciting HTR-8/SVneo dysfunction after Ti3C2 MXene exposure, which could therefore damage placental development. Autophagy inhibition is a potential therapeutic strategy for alleviating the placental toxicity of nanoparticles.
Collapse
Affiliation(s)
- Limei Yang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Le Hu
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology of Gansu Province, Lanzhou, China
| | - Hongyu Tang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China; College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xueqing Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yue Zhang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China; College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yixian Wen
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology of Gansu Province, Lanzhou, China.
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China; College of Basic Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
24
|
Szuplewska A, Kulpińska D, Jakubczak M, Dybko A, Chudy M, Olszyna A, Brzózka Z, Jastrzębska AM. The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward future biotechnological applications. Adv Drug Deliv Rev 2022; 182:114099. [PMID: 34990793 DOI: 10.1016/j.addr.2021.114099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023]
Abstract
A broad family of two-dimensional (2D) materials - carbides, nitrides, and carbonitrides of early transition metals, called MXenes, became a newcomer in the flatland at the turn of 2010 and 2011 (over ten years ago). Their unique physicochemical properties made them attractive for many applications, highly boosting the development of various fields, including biotechnological. However, MXenes' functional features that impact their bioactivity and toxicity are still not fully well understood. This study discusses the essentials for MXenes's surface modifications toward their application in modern biotechnology and nanomedicine. We survey modification strategies in context of cytotoxicity, biocompatibility, and most prospective applications ready to implement in medical practice. We put the discussion on the material-structure-chemistry-property relationship into perspective and concentrate on overarching challenges regarding incorporating MXenes into nanostructured organic/inorganic bioactive architectures. It is another emerging group of materials that are interesting from the biomedical point of view as well. Finally, we present an influential outlook on the growing demand for future research in this field.
Collapse
Affiliation(s)
- Aleksandra Szuplewska
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland.
| | - Dominika Kulpińska
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland
| | - Michał Jakubczak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Wołoska 141, Poland
| | - Artur Dybko
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland
| | - Michał Chudy
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland
| | - Andrzej Olszyna
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Wołoska 141, Poland
| | - Zbigniew Brzózka
- Warsaw University of Technology, Faculty of Chemistry, 00-664 Warsaw, Noakowskiego 3, Poland
| | - Agnieszka M Jastrzębska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 02-507 Warsaw, Wołoska 141, Poland.
| |
Collapse
|
25
|
Wu J, Yu Y, Su G. Safety Assessment of 2D MXenes: In Vitro and In Vivo. NANOMATERIALS 2022; 12:nano12050828. [PMID: 35269317 PMCID: PMC8912767 DOI: 10.3390/nano12050828] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
Abstract
MXenes, representing a new class of two-dimensional nanomaterial, have attracted intense interest in a variety of fields as supercapacitors, catalysts, and sensors, and in biomedicine. The assessment of the safety of MXenes and related materials in biological systems is thus an issue that requires significant attention. In this review, the toxic effects of MXenes and their derivatives are summarized through the discussion of current research into their behaviors in mammalian cells, animals and plants. Numerous studies have shown that MXenes have generally low cytotoxicity and good biocompatibility. However, a few studies have indicated that MXenes are toxic to stem cells and embryos. These in vitro and in vivo toxic effects are strongly associated with the dose of material, the cell type, the mode of exposure, and the specific type of MXene. In addition, surface modifications alter the toxic effects of MXenes. The stability of MXenes must be considered during toxicity evaluation, as degradation can lead to potentially toxic byproducts. Although research concerning the toxicity of MXenes is limited, this review provides an overview of the current understanding of interactions of MXenes with biological systems and suggests future research directions.
Collapse
Affiliation(s)
- Jialong Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China;
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong 226001, China
- Correspondence: (Y.Y.); (G.S.)
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
- Correspondence: (Y.Y.); (G.S.)
| |
Collapse
|
26
|
Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021; 10:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The development of next-generation of bioinks aims to fabricate anatomical size 3D scaffold with high printability and biocompatibility. Along with the progress in 3D bioprinting, 2D nanomaterials (2D NMs) prove to be emerging frontiers in the development of advanced materials owing to their extraordinary properties. Harnessing the properties of 2D NMs in 3D bioprinting technologies can revolutionize the development of bioinks by endowing new functionalities to the current bioinks. First the main contributions of 2D NMS in 3D bioprinting technologies are categorized here into six main classes: 1) reinforcement effect, 2) delivery of bioactive molecules, 3) improved electrical conductivity, 4) enhanced tissue formation, 5) photothermal effect, 6) and stronger antibacterial properties. Next, the recent advances in the use of each certain 2D NMs (1) graphene, 2) nanosilicate, 3) black phosphorus, 4) MXene, 5) transition metal dichalcogenides, 6) hexagonal boron nitride, and 7) metal-organic frameworks) in 3D bioprinting technology are critically summarized and evaluated thoroughly. Third, the role of physicochemical properties of 2D NMSs on their cytotoxicity is uncovered, with several representative examples of each studied 2D NMs. Finally, current challenges, opportunities, and outlook for the development of nanocomposite bioinks are discussed thoroughly.
Collapse
Affiliation(s)
- Hadi Rastin
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Negar Mansouri
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- School of Electrical and Electronic Engineering The University of Adelaide South Australia 5005 Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Kamrul Hassan
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Arash Mazinani
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Mahnaz Ramezanpour
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| |
Collapse
|
27
|
Lim GP, Soon CF, Ma NL, Morsin M, Nayan N, Ahmad MK, Tee KS. Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review. ENVIRONMENTAL RESEARCH 2021; 201:111592. [PMID: 34175291 DOI: 10.1016/j.envres.2021.111592] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
MXene based nanomaterial is an uprising two-dimensional material gaining tremendous scientific attentions due to its versatile properties for the applications in electronic devices, power generation, sensors, drug delivery, and biomedicine. However, the cytotoxic effects of MXene still remained a huge concern. Therefore, stringent analysis of biocompatibility of MXene is an essential requirement before introduction to human physiological system. Several in vitro and in vivo toxicological studies have been reported to investigate the interactions between MXenes with living organisms such as microbes, mammalian cells and animal models. The biological response and cytotoxicity reported were dependent on the physicochemical properties of MXene. The biocompatibility and cytotoxicity of MXene were dependent on size, dose, and surface coating. This review demystifies the in vitro and in vivo biocompatibility studies associated with MXene. Various methods proposed to mitigate the cytotoxicity of MXene for in vivo applications were revealed. The machine learning methods were developed to predict the cytotoxicity of experimentally synthesized MXene compounds. Finally, we also discussed the current research gaps of applying MXenes in biomedical interventions.
Collapse
Affiliation(s)
- Gim Pao Lim
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Center, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Chin Fhong Soon
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Center, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Nyuk Ling Ma
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Marlia Morsin
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Center, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Nafarizal Nayan
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Center, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Mohd Khairul Ahmad
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Center, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
28
|
Influence of MXene Particles with a Stacked-Lamellar Structure on Osteogenic Differentiation of Human Mesenchymal Stem Cells. MATERIALS 2021; 14:ma14164453. [PMID: 34442976 PMCID: PMC8401813 DOI: 10.3390/ma14164453] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022]
Abstract
MXenes with a two-dimensional (2D) structure have attracted attention as potential biomedical materials. In this study, Ti3C2 MXene particles with 2D-lamellar structures were intercalated and their potential as a biomaterial was evaluated using human mesenchymal stem cells. Intercalated MXene was characterized in terms of microstructure, phase composition, and size. Cell proliferation experiments with MXene particles confirmed that concentrations >50 μg/mL were cytotoxic, while concentrations <20 μg/mL promoted osteogenic differentiation. Moreover, MXene effectively facilitated the early and late osteogenic gene expression.
Collapse
|
29
|
Fatima M, Zahra SA, Khan SA, Akinwande D, Minár J, Rizwan S. Experimental and Computational Analysis of MnO 2@V 2C-MXene for Enhanced Energy Storage. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1707. [PMID: 34209519 PMCID: PMC8308169 DOI: 10.3390/nano11071707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022]
Abstract
Herein, we studied the novel and emerging group of 2D materials namely MXene along with its nanocomposites. This work entails detailed experimental as well as computational study of the electrochemical behavior of vanadium carbide (V2CTx) MXene and MnO2-V2C nanocomposite with varying percentages of MnO2. A specific capacitance of 551.8 F/g was achieved for MnO2-V2C nanocomposite in 1 M KOH electrolyte solution, which is more than two times higher than the gravimetric capacitance of 196.5 F/g obtained for V2C. The cyclic stability achieved for the MnO2-V2C nanocomposite resulted in a retentivity of 96.5% until 5000 cycles. The c-lattice parameter achieved for MXene is 22.6 Å, which was 13.01 Å for MAX phase. The nanocomposite resulted in a c-lattice parameter of 27.2 Å, which showed that the spatial distance between the MXene layers was efficiently obtained. The method of wet etching was used for the preparation of pristine MXene and the liquid phase precipitation method was opted for the synthesis of the MnO2-V2C nanocomposite. Density functional theory calculation was exercised so as to complement the experimental results and to understand the microscopic details, such as structure stability and electronic structure. The current report presents a comprehensive experimental and computational study on 2D MXenes for future energy storage applications.
Collapse
Affiliation(s)
- Mahjabeen Fatima
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (M.F.); (S.A.Z.)
| | - Syedah Afsheen Zahra
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (M.F.); (S.A.Z.)
| | - Saleem Ayaz Khan
- New Technologies Research Centre, University of West Bohemia, Univerzitni 2732, 306 14 Pilsen, Czech Republic;
| | - Deji Akinwande
- Microelectronics Research Centre, The University of Texas at Austin, Austin, TX 78758, USA;
| | - Jan Minár
- New Technologies Research Centre, University of West Bohemia, Univerzitni 2732, 306 14 Pilsen, Czech Republic;
| | - Syed Rizwan
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (M.F.); (S.A.Z.)
| |
Collapse
|
30
|
Amante C, De Sousa-Coelho AL, Aureliano M. Vanadium and Melanoma: A Systematic Review. METALS 2021; 11:828. [DOI: 10.3390/met11050828] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of metals in biological systems has been a rapidly growing branch of science. Vanadium has been investigated and reported as an anticancer agent. Melanoma is the most aggressive type of skin cancer, the incidence of which has been increasing annually worldwide. It is of paramount importance to identify novel pharmacological agents for melanoma treatment. Herein, a systematic review of publications including “Melanoma and Vanadium” was performed. Nine vanadium articles in several melanoma cells lines such as human A375, human CN-mel and murine B16F10, as well as in vivo studies, are described. Vanadium-based compounds with anticancer activity against melanoma include: (1) oxidovanadium(IV); (2) XMenes; (3) vanadium pentoxide, (4) oxidovanadium(IV) pyridinonate compounds; (5) vanadate; (6) polysaccharides vanadium(IV/V) complexes; (7) mixed-metal binuclear ruthenium(II)–vanadium(IV) complexes; (8) pyridoxal-based oxidovanadium(IV) complexes and (9) functionalized nanoparticles of yttrium vanadate doped with europium. Vanadium compounds and/or vanadium materials show potential anticancer activities that may be used as a useful approach to treat melanoma.
Collapse
Affiliation(s)
- Cristina Amante
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- CCMAR, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|