1
|
Afrasiabi S, Partoazar A, Goudarzi R, Dehpour AR. Carbon-Based Nanomaterials Alter the Behavior and Gene Expression Patterns of Bacteria. J Basic Microbiol 2025; 65:e2400545. [PMID: 39895035 DOI: 10.1002/jobm.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/14/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025]
Abstract
One of the most dangerous characteristics of bacteria is their propensity to form biofilms and their resistance to the drugs used in clinical practice today. The total number of genes that can be categorized as virulence genes ranges from a few hundred to more than a thousand. The bacteria employ a variety of mechanisms to regulate the expression of these genes in a coordinated manner during infection. The search for new agents with anti-virulence capacity is therefore crucial. Nanotechnology provides safe platforms for targeted therapies to combat a broad spectrum of microbial infections. As a new class of innovative materials, carbon-based nanomaterials (CBNs), which include carbon dots, carbon nanotubes, graphene, and fullerenes can have strong antibacterial activity. Exposure to CBNs has been shown to affect bacterial gene expression patterns. This study investigated the effect of CBNs on the repression of specific genes related to bacterial virulence/pathogenicity.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, California, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wu KY, Yao FH, Ren XM, Hang XD, Bai YF, Qi SH. Multi-target anti-MRSA mechanism and antibiotic synergistic effect of marine alkaloid Ascomylactam A in vitro and in vivo against clinical MRSA strains. Biochem Pharmacol 2025; 232:116697. [PMID: 39643122 DOI: 10.1016/j.bcp.2024.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), as a kind of multi-drug resistant bacteria, often causes serious sanitary infection problems. Marine fungi are seen as a promising source of lead compounds for antibiotics. In this research, the antibacterial activity, antibiotic synergistic effect and mechanism of the alkaloid Ascomylactam A (AsA) derived from the marine fungus Microascus sp. SCSIO 41821 were investigated in vivo and in vitro. Antibacterial assays showed that AsA had excellent antibacterial activity and inhibition of biofilm formation against MRSA SC41993, and exhibitted synergistic antibacterial effects with clinical antibiotics. Transcriptomics revealed the potential mechanism that AsA affected the formation of MRSA biofilm, cell wall synthesis and virulence through LytSR, VraSR, ArgAC and KdpDE two-component system (TCS). In addition, by treatment with AsA, it was found that AdhE protein was a potential target for oxidative stress and lipid peroxidation in MRSA, and the resistance of MRSA was reversed by regulating some genes. In vivo experiments showed that AsA combined with gentamicin sulfate (GMS) had a better therapeutic effect than alone against clinical MRSA USA300, especially in the heart. In this study, the antibacterial mechanism of decahydrofluorene-class alkaloids was preliminarily investigated, supporting the potence of AsA as a promising therapeutic agent to combat MASA infections.
Collapse
Affiliation(s)
- Ke-Yue Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei-Hua Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
| | - Xu-Meng Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Dong Hang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yue-Fan Bai
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China.
| |
Collapse
|
3
|
Tawiah PO, Gaessler LF, Anderson GM, Oladokun EP, Dahl JU. A Novel Silver-Ruthenium-Based Antimicrobial Kills Gram-Negative Bacteria Through Oxidative Stress-Induced Macromolecular Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631245. [PMID: 39803548 PMCID: PMC11722212 DOI: 10.1101/2025.01.03.631245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal Escherichia coli (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed. These include silver nanoparticles, which have been used as antimicrobial surface-coatings on catheters to eliminate biofilm-forming uropathogens and reduce the risk of nosocomial infections. AGXX® is a promising silver coating that presumably kills bacteria through the generation of reactive oxygen species (ROS) but is more potent than silver. However, neither is AGXX®'s mode of action fully understood, nor have its effects on Gram-negative bacteria or bacterial response and defense mechanisms towards AGXX® been studied in detail. Here, we report that the bactericidal effects of AGXX® are primarily based on ROS formation, as supplementation of the media with a ROS scavenger completely abolished AGXX®-induced killing. We further show that AGXX® impairs the integrity of the bacterial cell envelope and causes substantial protein aggregation and DNA damage already at sublethal concentrations. ExPEC strains appear to be more resistant to the proteotoxic effects of AGXX® compared to non-pathogenic E. coli, indicating improved defense capabilities of the uropathogen. Global transcriptomic studies of AGXX®-stressed ExPEC revealed a strong oxidative stress response, perturbations in metal homeostasis, as well as the activation of heat shock and DNA damage responses. Finally, we present evidence that ExPEC counter AGXX® damage through the production of the chaperone polyphosphate.
Collapse
Affiliation(s)
- Patrick Ofori Tawiah
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790
| | - Luca Finn Gaessler
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790
| | - Greg M. Anderson
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790
| | | | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790
| |
Collapse
|
4
|
Hua Z, Tang L, Li L, Wu M, Fu J. Environmental biotechnology and the involving biological process using graphene-based biocompatible material. CHEMOSPHERE 2023; 339:139771. [PMID: 37567262 DOI: 10.1016/j.chemosphere.2023.139771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Biotechnology is a promising approach to environmental remediation but requires improvement in efficiency and convenience. The improvement of biotechnology has been illustrated with the help of biocompatible materials as biocarrier for environmental remediations. Recently, graphene-based materials (GBMs) have become promising materials in environmental biotechnology. To better illustrate the principle and mechanisms of GBM application in biotechnology, the comprehension of the biological response of microorganisms and enzymes when facing the GBMs is needed. The review illustrated distinct GBM-microbe/enzyme composites by providing the GBM-microbe/enzyme interaction and the determining factors. There are diverse GBM modifications for distinct biotechnology applications. Each of these methods and applications depends on the physicochemical properties of GBMs. The applications of these composites were mainly categorized as pollutant adsorption, anaerobic digestion, microbial fuel cells, and organics degradation. Where information was available, the strategies and mechanisms of GBMs in improving application efficacies were also demonstrated. In addition, the biological response, from microbial community changes, extracellular polymeric substances changes to biological pathway alteration, may become important in the application of these composites. Furthermore, we also discuss challenges facing the environmental application of GBMs, considering their fate and toxicity in the ecosystem, and offer potential solutions. This research significantly enhances our comprehension of the fundamental principles, underlying mechanisms, and biological pathways for the in-situ utilization of GBMs.
Collapse
Affiliation(s)
- Zilong Hua
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| | - Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Jing Fu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| |
Collapse
|
5
|
Jawaharraj K, Peta V, Dhiman SS, Gnimpieba EZ, Gadhamshetty V. Transcriptome-wide marker gene expression analysis of stress-responsive sulfate-reducing bacteria. Sci Rep 2023; 13:16181. [PMID: 37758719 PMCID: PMC10533852 DOI: 10.1038/s41598-023-43089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) are terminal members of any anaerobic food chain. For example, they critically influence the biogeochemical cycling of carbon, nitrogen, sulfur, and metals (natural environment) as well as the corrosion of civil infrastructure (built environment). The United States alone spends nearly $4 billion to address the biocorrosion challenges of SRB. It is important to analyze the genetic mechanisms of these organisms under environmental stresses. The current study uses complementary methodologies, viz., transcriptome-wide marker gene panel mapping and gene clustering analysis to decipher the stress mechanisms in four SRB. Here, the accessible RNA-sequencing data from the public domains were mined to identify the key transcriptional signatures. Crucial transcriptional candidate genes of Desulfovibrio spp. were accomplished and validated the gene cluster prediction. In addition, the unique transcriptional signatures of Oleidesulfovibrio alaskensis (OA-G20) at graphene and copper interfaces were discussed using in-house RNA-sequencing data. Furthermore, the comparative genomic analysis revealed 12,821 genes with translation, among which 10,178 genes were in homolog families and 2643 genes were in singleton families were observed among the 4 genomes studied. The current study paves a path for developing predictive deep learning tools for interpretable and mechanistic learning analysis of the SRB gene regulation.
Collapse
Affiliation(s)
- Kalimuthu Jawaharraj
- Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- 2D-Materials for Biofilm Engineering, Science and Technology (2D BEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
| | - Vincent Peta
- Biomedical Engineering, University of South Dakota, 4800 N Career Ave, Sioux Falls, SD, 57107, USA
| | - Saurabh Sudha Dhiman
- Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- Chemistry, Biology and Health Sciences, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
| | - Etienne Z Gnimpieba
- 2D-Materials for Biofilm Engineering, Science and Technology (2D BEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
- Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
- Biomedical Engineering, University of South Dakota, 4800 N Career Ave, Sioux Falls, SD, 57107, USA.
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
- 2D-Materials for Biofilm Engineering, Science and Technology (2D BEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
- Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
| |
Collapse
|
6
|
Hazarika B, Singh VP. Macrocyclic supramolecular biomaterials in anti-cancer therapeutics. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Huang S, Zhong Y, Fu Y, Zheng X, Feng Z, Mo A. Graphene and its derivatives: "one stone, three birds" strategy for orthopedic implant-associated infections. Biomater Sci 2023; 11:380-399. [PMID: 36453143 DOI: 10.1039/d2bm01507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Orthopedic implants provide an avascular surface for microbial attachment and biofilm formation, impeding the entry of immune cells and the diffusion of antibiotics. The above is an important cause of dental and orthopedic implant-associated infection (IAI). For the prevention and treatment of IAI, the drawbacks of antibiotic resistance and surgical treatment are increasingly apparent. Due to their outstanding biological properties such as biocompatibility, immunomodulatory effects, and antibacterial properties, graphene-based nanomaterials (GBNs) have been applied to bone tissue engineering to deal with IAI, and in particular have great potential application in drug/gene carriers, multi-functional platforms, and coating forms. Here we review the latest research progress and achievements in GBNs for the prevention and treatment of IAI, mainly including their biomedical applications for antibacterial and immunomodulation effects, and for inducing osteogenesis. Furthermore, the biosafety of graphene family materials in bone tissue regeneration and the feasibility of clinical application are critically analyzed and discussed.
Collapse
Affiliation(s)
- Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongjin Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaofei Zheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Jampilek J, Kralova K. Advances in Biologically Applicable Graphene-Based 2D Nanomaterials. Int J Mol Sci 2022; 23:6253. [PMID: 35682931 PMCID: PMC9181547 DOI: 10.3390/ijms23116253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Climate change and increasing contamination of the environment, due to anthropogenic activities, are accompanied with a growing negative impact on human life. Nowadays, humanity is threatened by the increasing incidence of difficult-to-treat cancer and various infectious diseases caused by resistant pathogens, but, on the other hand, ensuring sufficient safe food for balanced human nutrition is threatened by a growing infestation of agriculturally important plants, by various pathogens or by the deteriorating condition of agricultural land. One way to deal with all these undesirable facts is to try to develop technologies and sophisticated materials that could help overcome these negative effects/gloomy prospects. One possibility is to try to use nanotechnology and, within this broad field, to focus also on the study of two-dimensional carbon-based nanomaterials, which have excellent prospects to be used in various economic sectors. In this brief up-to-date overview, attention is paid to recent applications of graphene-based nanomaterials, i.e., graphene, graphene quantum dots, graphene oxide, graphene oxide quantum dots, and reduced graphene oxide. These materials and their various modifications and combinations with other compounds are discussed, regarding their biomedical and agro-ecological applications, i.e., as materials investigated for their antineoplastic and anti-invasive effects, for their effects against various plant pathogens, and as carriers of bioactive agents (drugs, pesticides, fertilizers) as well as materials suitable to be used in theranostics. The negative effects of graphene-based nanomaterials on living organisms, including their mode of action, are analyzed as well.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
9
|
Linzner N, Antelmann H. The Antimicrobial Activity of the AGXX® Surface Coating Requires a Small Particle Size to Efficiently Kill Staphylococcus aureus. Front Microbiol 2021; 12:731564. [PMID: 34456898 PMCID: PMC8387631 DOI: 10.3389/fmicb.2021.731564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) isolates are often resistant to multiple antibiotics and pose a major health burden due to limited treatment options. The novel AGXX® surface coating exerts strong antimicrobial activity and successfully kills multi-resistant pathogens, including MRSA. The mode of action of AGXX® particles involves the generation of reactive oxygen species (ROS), which induce an oxidative and metal stress response, increased protein thiol-oxidations, protein aggregations, and an oxidized bacillithiol (BSH) redox state in S. aureus. In this work, we report that the AGXX® particle size determines the effective dose and time-course of S. aureus USA300JE2 killing. We found that the two charges AGXX®373 and AGXX®383 differ strongly in their effective concentrations and times required for microbial killing. While 20–40 μg/ml AGXX®373 of the smaller particle size of 1.5–2.5 μm resulted in >99.9% killing after 2 h, much higher amounts of 60–80 μg/ml AGXX®383 of the larger particle size of >3.2 μm led to a >99% killing of S. aureus USA300JE2 within 3 h. Smaller AGXX® particles have a higher surface/volume ratio and therefore higher antimicrobial activity to kill at lower concentrations in a shorter time period compared to the larger particles. Thus, in future preparations of AGXX® particles, the size of the particles should be kept at a minimum for maximal antimicrobial activity.
Collapse
Affiliation(s)
- Nico Linzner
- Freie Universität Berlin, Institute for Biology-Microbiology, Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Berlin, Germany
| |
Collapse
|
10
|
Pinheiro MJF, Costa JP, Marques F, Mira NP, Carvalho MFNN, Alves MM. Bioactive Coatings with Ag-Camphorimine Complexes to Prevent Surface Colonization by the Pathogenic Yeast Candida albicans. Antibiotics (Basel) 2021; 10:antibiotics10060638. [PMID: 34073375 PMCID: PMC8227220 DOI: 10.3390/antibiotics10060638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Currently there is a gap between the rate of new antifungal development and the emergence of resistance among Candida clinical strains, particularly threatened by the extreme adhesiveness of C. albicans to indwelling medical devices. Two silver camphorimine complexes, [Ag(OH){OC10H14N(C6H4)2NC10H14O}] (compound P) and [{Ag(OC10H14NC6H4CH3-p)}2(μ-O)] (compound Q), are herein demonstrated as having high inhibiting activity towards the growth of Candida albicans and Candida glabrata clinical strains resistant to azoles, the frontline antifungals used in clinical practice. Compounds P and Q were also explored as bioactive coatings to prevent colonization by C. albicans and colonize the surface of indwelling medical devices, resulting in persistent infections. Functionalization of stainless steel with polycaprolactone (PCL) matrix embedded with compounds P or Q was reported for the first time to inhibit the colonization of C. albicans by 82% and 75%, respectively. The coating of PCL loaded with Q or P did not cause cytotoxic effects in mammalian cells, demonstrating the biocompatibility of the explored approach. The identification and further exploration of new approaches for surface engineering based on new molecules that can sensitize resistant strains, as herein demonstrated for complexes P and Q, is a significant step forward to improve the successful treatment of candidiasis.
Collapse
Affiliation(s)
- M. Joana F. Pinheiro
- Department of Bioengineering, Instituto de Bioengenharia e Biociências (iBB), Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Joana P. Costa
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares (CTN), Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal;
| | - Nuno P. Mira
- Department of Bioengineering, Instituto de Bioengenharia e Biociências (iBB), Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal;
- Correspondence: (N.P.M.); (M.F.N.N.C.); (M.M.A.)
| | - M. Fernanda N. N. Carvalho
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Correspondence: (N.P.M.); (M.F.N.N.C.); (M.M.A.)
| | - Marta M. Alves
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Correspondence: (N.P.M.); (M.F.N.N.C.); (M.M.A.)
| |
Collapse
|