1
|
Jadhav K, Jhilta A, Singh R, Negi S, Singhal N, Mishra A, Singh AK, Verma RK. Targeted Nasal Route Delivery of Cationic Anti-TB Drug-Loaded Nano-embedded Microparticles for Mycobacterial Elimination in the CNS. Mol Pharm 2025. [PMID: 40340385 DOI: 10.1021/acs.molpharmaceut.5c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Central nervous system tuberculosis (CNS-TB) is a severe and insidious form of extrapulmonary tuberculosis (TB) associated with a high mortality rate, often leading to fatal outcomes or debilitating neurological impairments. The therapeutic regimen for CNS-TB follows an approach similar to that of pulmonary TB but faces significant challenges in effectively reaching the cerebrospinal fluid and achieving therapeutic drug levels in the brain and surrounding fluids. A major obstacle in CNS-TB treatment is the difficulty in permeating the blood-brain barrier (BBB). The nasal route of drug delivery offers a promising approach for targeting anti-TB drugs directly to the infection sites, enabling higher drug concentrations while bypassing the BBB. The present study focused on the development of cationic poly(lactic-co-glycolic) acid (PLGA) nanoparticles (CS-PLGA NPs) loaded with anti-TB drugs (ATDs), namely, isoniazid (INH) and rifampicin (RIF). These CS-PLGA NPs were then processed into dynamic microsized nanoembedded microparticles (NEMs) using spray drying. The ATD-NEMs formulation demonstrated significantly enhanced permeation across RPMI 2650 nasal septum monolayers compared with free ATDs. Intranasal delivery of the NEM formulation to TB-infected mice over a four-week period resulted in a substantial reduction in colony-forming units (CFUs) (1.53 ± 0.50 log10 CFU/gram) compared to the untreated group (4.45 ± 0.67 log10 CFU/gram). Furthermore, the NEM formulation showed improved recovery in histopathological analysis, consistent with CFU reduction. Preclinical data support the feasibility of intranasally administering the NEMs formulation, demonstrating high therapeutic efficacy and the potential to address brain inflammation in the murine CNS-TB model.
Collapse
Affiliation(s)
- Krishna Jadhav
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, Punjab, India
| | - Agrim Jhilta
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, Punjab, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, Punjab, India
| | - Swarnima Negi
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, Punjab, India
| | - Nitin Singhal
- National Agri-Food and Bio-manufacturing Institute (NABI), Sector 81, Sahibzada Ajit Singh Nagar 140308, Punjab, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur 342011, Rajasthan, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
2
|
Suresh A, Suresh D, Li Z, Sansalone J, Aluru N, Upendran A, Kannan R. Self-Assembled Multilayered Concentric Supraparticle Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502055. [PMID: 40285599 DOI: 10.1002/adma.202502055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Supraparticles (SPs) with unique properties are emerging as versatile platforms for applications in catalysis, photonics, and medicine. However, the synthesis of novel SPs with complex internal structures remains a challenge. Self-Assembled Multilayered Supraparticles (SAMS) presented here are composed of concentric lamellar spherical structures made from metallic nanoparticles, formed from a synergistic three-way interaction phenomenon between gold nanoparticles, lipidoid, and gelatin, exhibiting interlayer spacing of 3.5 ± 0.2 nm within a self-limited 156.8 ± 56.6 nm diameter. The formation is critically influenced by both physical (including nanoparticle size, lipidoid chain length) and chemical factors (including elemental composition, nanoparticle cap, and organic material), which collectively modulate the surface chemistry and hydrophobicity, affecting interparticle interactions. SAMS can efficiently deliver labile payloads such as siRNA, achieving dose-dependent silencing in vivo, while also showing potential for complex payloads such as mRNA. This work not only advances the field of SP design by introducing a new structure and interaction phenomenon but also demonstrates its potential in nanomedicine.
Collapse
Affiliation(s)
- Agasthya Suresh
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, 65211, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA
| | - Dhananjay Suresh
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - Zhaohui Li
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - John Sansalone
- Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Narayana Aluru
- Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anandhi Upendran
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, 65211, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
3
|
Khandal J, Dohare S, Dongsar TS, Gupta G, Alsayari A, Wahab S, Kesharwani P. Gelatin nanocarriers in oncology: A biocompatible strategy for targeted drug delivery. Int J Biol Macromol 2025; 310:143244. [PMID: 40250682 DOI: 10.1016/j.ijbiomac.2025.143244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Cancer persists as a formidable global health crisis, with conventional therapies often compromised by systemic toxicity, poor tumor specificity, and therapeutic resistance. Nanotechnology has emerged as a transformative approach, leveraging nanoscale materials to enhance drug bioavailability, enable targeted delivery, and mitigate off-target effects. Among these innovations, gelatin-based nanoparticles (GNPs), derived from collagen and endorsed by the FDA have garnered significant attention as biocompatible, biodegradable nanocarriers uniquely suited for oncology applications. GNPs address critical extracellular barriers such as inefficient tumor penetration, rapid clearance, and nonspecific biodistribution by capitalizing on gelatin's intrinsic advantages: low immunogenicity, tumor microenvironment responsiveness (pH, enzymes, redox gradients), and tunable surface functionalization. This review highlights the versatility of GNPs in overcoming these challenges through advanced strategies like ligand-mediated targeting, combinatorial therapies, and size-transformable systems that enhance tumor accumulation and therapeutic precision. Case studies across lung, breast, skin, liver, colorectal, brain, and head/neck cancers demonstrate GNPs' ability to reduce IC50 values by 2 to 4-fold, achieve >90 % apoptosis in malignant cells, and minimize damage to healthy tissues. Despite the challenges in translating gelatin-based nanocarriers from preclinical studies to clinical applications in cancer therapy, their promising preclinical performance highlights their potential as patient-centric platforms capable of advancing precision oncology. Further their adaptability, multifunctionality, and capacity for stimuli-responsive drug release underscore their potential to improve clinical outcomes, offering a targeted, low-toxicity paradigm for managing diverse malignancies.
Collapse
Affiliation(s)
- Jayesh Khandal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shubham Dohare
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
4
|
Jhilta A, Jadhav K, Sharma R, Singh R, Negi S, Sharma N, Singh AK, Verma RK. Host-Directed Therapy with Inhalable Lovastatin Microspheres for Matrix Metalloproteinase Inhibition in Tuberculosis. ACS APPLIED BIO MATERIALS 2025; 8:1533-1546. [PMID: 39832798 DOI: 10.1021/acsabm.4c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Tuberculosis (TB) triggers a robust immune response, which leads to significant destruction of the lung tissue at the site of infection, aiding in the transmission of Mycobacterium tuberculosis (Mtb) to the hosts. The excessive inflammatory response contributes heavily to extracellular matrix (ECM) damage, which is linked to high mortality rates among TB patients. Matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, are pivotal in the breakdown of the ECM, worsening tissue destruction. In the context of host-directed therapy (HDT), a strategy aimed at modulating the immune response rather than directly targeting the pathogen, we evaluated the potential of lovastatin (LOV). LOV has shown promise in reducing MMP activity and inflammation, which could alleviate the immune-mediated pathology in TB. However, its clinical use has been limited due to poor solubility and biocompatibility, reducing its therapeutic efficacy. To overcome these limitations, we designed inhalable gelatin microspheres (GA-MS) loaded with LOV using the spray-drying technology. This approach improved the solubility and allowed for the controlled release of the drug. The resulting LOV-loaded gelatin microspheres (LOV/GA-MS) had an optimal particle size of 2.395 ± 0.67 μm, facilitating macrophage uptake due to their aerodynamic properties. In in vitro studies using Mtb-infected macrophages, LOV/GA-MS effectively suppressed MMP expression and reduced levels of pro-inflammatory cytokines at a concentration of 20 μg/mL, demonstrating substantial anti-inflammatory potential. Moreover, these microspheres showed a synergistic effect when combined with standard anti-TB drugs, enhancing the overall therapeutic efficacy in in vitro experiments. The findings suggest that inhalable LOV/GA-MS microspheres represent a promising adjunctive host-directed therapy for TB. By modulating the host's immune response and targeting key inflammatory mediators such as MMPs, this approach could mitigate lung tissue damage, improve clinical outcomes, and provide a more holistic treatment option for TB.
Collapse
Affiliation(s)
- Agrim Jhilta
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
| | - Krishna Jadhav
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
| | - Rahul Sharma
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Swarnima Negi
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu ,J&K 180009, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
5
|
Jadhav K, Jhilta A, Singh R, Sharma S, Negi S, Ahirwar K, Shukla R, Singh AK, Verma RK. Trans-nasal brain delivery of anti-TB drugs by methyl-β-cyclodextrin microparticles show efficient mycobacterial clearance from central nervous system. J Control Release 2025; 378:671-686. [PMID: 39689814 DOI: 10.1016/j.jconrel.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Central nervous system tuberculosis (CNS-TB) is the most severe extra-pulmonary manifestation of tuberculosis (TB), facing significant challenges due to the limited penetration of anti-TB drugs (ATDs) across the blood-brain barrier (BBB) and their insufficient concentrations at the site of infection. This study aimed to enhance the efficacy of ATDs by encapsulating them in methyl-β-cyclodextrin (M-β-CD) microparticles (ATD-MP) using spray drying, intended for intranasal delivery to manage CNS-TB. M-β-CD microparticles loaded with isoniazid (INH) and rifampicin (RIF) exhibited spherical shapes with slightly deflated surfaces and particle sizes of 6.24 ± 0.77 μm and 5.97 ± 0.50 μm, respectively. M-β-CD improved the permeation of ATDs through RPMI-2650 cell monolayers while reducing drug cytotoxicity. Pharmacokinetic and biodistribution analysis demonstrated that intranasal administration of ATD-MP significantly enhanced the trans-nasal brain delivery of ATDs and their distribution in the brain, achieving the minimum inhibitory concentration. In a murine model of CNS-TB, intranasal insufflation of ATD-MP for four weeks led to a significant reduction (∼0.78 Log10 CFU) in mycobacterial burden in the brain compared to the untreated group (∼3.60 Log10 CFU). These preclinical results underscore the potential of intranasal administration of M-β-CD microparticles as an effective therapeutic strategy for combating brain inflammation in CNS-TB.
Collapse
Affiliation(s)
- Krishna Jadhav
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
| | - Agrim Jhilta
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Shweta Sharma
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Swarnima Negi
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Lucknow, UP 226002, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
6
|
Liu X, Yuan H. Responsive nanomaterials in biomedicine, patent path and prospect analysis. Front Bioeng Biotechnol 2025; 13:1539991. [PMID: 39968009 PMCID: PMC11832473 DOI: 10.3389/fbioe.2025.1539991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
In recent years, responsive nanomaterials have demonstrated tremendous potential in biomedical applications due to their unique advantages in precise drug delivery and controlled release. For complex diseases such as cancer, chronic inflammation, and genetic disorders, traditional treatment methods are often limited by insufficient targeting and significant side effects. Responsive nanotechnology, by sensing specific internal or external stimuli, has significantly enhanced the precision and efficiency of treatments. This study systematically summarizes the technological trajectory and emerging research directions of responsive nanomaterials through global patent and literature data, employing main path analysis, derivative path analysis, and keyword co-occurrence analysis. The results reveal the evolution of this field, from the optimization of early single-stimulus-responsive nano delivery systems to the rise of theranostics integration, followed by advancements in multi-stimuli-responsive synergistic therapies, and finally, the innovation in biomimetic material design. Each developmental phase has increasingly focused on adapting to complex biological environments, achieving superior targeting performance, and enhancing therapeutic efficacy. Keyword co-occurrence analysis highlights key research hotspots, including biomimetic design, multimodal synergistic therapies, and emerging response mechanisms. In the future, responsive nanomaterials are expected to play a pivotal role in personalized medicine, multifunctional carrier design, and complex disease management, providing novel insights and technological support for precision medicine.
Collapse
Affiliation(s)
| | - Hongmei Yuan
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Yu Y, Tao Y, Ma J, Li J, Song Z. Targeting the tumor microenvironment with mesenchymal stem cells based delivery approach for efficient delivery of anticancer agents: An updated review. Biochem Pharmacol 2025; 232:116725. [PMID: 39746456 DOI: 10.1016/j.bcp.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/14/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Drug delivery to cancer cells continues to present a major therapeutic challenge. Mesenchymal stem cells (MSCs) possess an intrinsic ability to migrate specifically to tumor tissues, making them promising candidates for targeted drug delivery. Evidence from preclinical studies indicates that MSCs loaded with therapeutic anti-cancer agents exhibit considerable anti-tumor activity. Moreover, several clinical trials are currently evaluating their effectiveness in cancer patients. The integration of MSCs with synthetic nanoparticles (NPs) enhances their therapeutic potential, particularly through the use of cell membrane-coated NPs, which represent a significant advancement in the field. This review systematically investigates the tumor microenvironment, the sources of MSCs, the tumor homing mechanisms, and the methods of loading and releasing anticancer drugs from MSCs. Furthermore, cutting-edge strategies to improve the efficacy of MSCs based drug delivery systems (DDS) including the innovative use of MSC membrane coated nanoparticles have been discussed. The study concludes with an overview of the therapeutic use of MSCs as drug carriers, including a detailed analysis of the mechanisms by which MSCs deliver therapeutics to cancer cells, enabling targeted drug delivery. It aims to elucidate the current state of this approach, identify key areas for development, and outline potential future directions for advancing MSCs based cancer therapies.
Collapse
Affiliation(s)
- Yang Yu
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun 130000, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Jian Li
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun 130000, China
| | - Zhidu Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
8
|
Zhang C, Fan J, Wu L. Application of nanomaterials in precision treatment of lung cancer. iScience 2025; 28:111704. [PMID: 39886464 PMCID: PMC11780121 DOI: 10.1016/j.isci.2024.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Lung cancer remains one of the most prevalent and lethal malignancies worldwide, characterized by high mortality rates due to its aggressive nature, metastatic potential, and drug resistance. Despite advancements in conventional therapies, their efficacy is often limited by systemic toxicity, poor tumor specificity, and the emergence of resistance mechanisms. Nanomedicine has emerged as a promising approach to address these challenges, leveraging the unique physicochemical properties of nanomaterials to enhance drug delivery, reduce off-target effects, and enable combination therapies. This review provides a comprehensive overview of the applications of nanomaterials in lung cancer treatment, focusing on advancements in chemotherapy, phototherapy, and immunotherapy. Key strategies include the development of stimuli-responsive nanoparticles, active targeting mechanisms, and multifunctional platforms for co-delivery of therapeutic agents. Notable successes, such as liposomal formulations and polymeric nanoparticles, highlight the potential to overcome biological barriers and improve therapeutic outcomes. However, significant challenges remain, including limited tumor penetration, immunogenicity, scalability in manufacturing, and regulatory complexities. Addressing these limitations through innovative design, advanced manufacturing technologies, and interdisciplinary collaboration will be critical to translating nanomedicine from bench to bedside. Overall, nanomedicine represents a transformative frontier in lung cancer therapy, offering the potential to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| |
Collapse
|
9
|
Kole E, Jadhav K, Singh R, Mandpe S, Abhang A, Verma RK, Naik J. Recent Developments in Tyrosine Kinase Inhibitor-based Nanotherapeutics for EGFR-resistant Non-small Cell Lung Cancer. Curr Drug Deliv 2025; 22:249-260. [PMID: 38275043 DOI: 10.2174/0115672018278617231207051907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
The advent of drug resistance in response to epidermal growth factor receptor (EGFR)- tyrosine kinase inhibitor (TKI) targeted therapy represents a serious challenge in the management of non-small cell lung cancer (NSCLC). These acquired resistance mutations, attributed to several advanced EGFR mutations and, necessitated the development of new-generation TKIs. Nanomedicine approaches provide a plausible way to address these problems by providing targeted delivery and sustained release, which have demonstrated success in preclinical trials. This review article provides a summary of nano-formulations designed for EGFR-TKI-resistant NSCLC, highlighting their efficacy in both in vitro and in vivo models. These findings reveal insights into the design of nanoparticles and multifunctional nanosystems, offering a potential avenue for efficacious treatment of EGFR-TKIresistant NSCLC.
Collapse
Affiliation(s)
- Eknath Kole
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon M.S., 425001, India
| | - Krishna Jadhav
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology, Sahibzada Ajit Singh Nagar (Mohali), Punjab, 140306, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology, Sahibzada Ajit Singh Nagar (Mohali), Punjab, 140306, India
| | - Shilpa Mandpe
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon M.S., 425001, India
| | - Ashwin Abhang
- Department of Biopharmaceutics, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India
| | - Rahul K Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology, Sahibzada Ajit Singh Nagar (Mohali), Punjab, 140306, India
| | - Jitendra Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon M.S., 425001, India
| |
Collapse
|
10
|
Madikonda AK, Ajayakumar A, Nadendla S, Banothu J, Muripiti V. Esterase-responsive nanoparticles (ERN): A targeted approach for drug/gene delivery exploits. Bioorg Med Chem 2024; 116:118001. [PMID: 39556942 DOI: 10.1016/j.bmc.2024.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Nanoparticles are being developed to enhance drug delivery to cancer tumors, leveraging advantages such as the enhanced permeability and retention (EPR) effect. However, traditional nanoparticles often face challenges with low specificity for cancer cells, leading to inefficient delivery and unwanted side effects. Esterase-responsive nanoparticles offer a maximum targeted approach to tumor cells because they release their therapeutic payload at the tumor site under the influence of esterase activity. This review explores the role of esterase-responsive nanoparticles in drug and gene delivery, examines esterase prodrug therapy, and discusses prostate-specific membrane antigen (PSMA) targets esterase-responsive nanoparticles in prostate cancer treatment. Additionally, we reviewed the current research progress and future potential of esterase-responsive nanoparticles in enhancing drug and gene delivery.
Collapse
Affiliation(s)
- Ashok Kumar Madikonda
- Department of Biochemistry & Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod 671320, Kerala, India
| | - Amritha Ajayakumar
- Department of Biochemistry & Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod 671320, Kerala, India
| | - Sudeena Nadendla
- Department of Chemistry, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod 671320, Kerala, India
| | - Janardhan Banothu
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Venkanna Muripiti
- Department of Education, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod 671320, Kerala, India.
| |
Collapse
|
11
|
Singh R, Panghal A, Jadhav K, Thakur A, Verma RK, Singh C, Goyal M, Kumar J, Namdeo AG. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer's Disease. Mol Neurobiol 2024; 61:10916-10940. [PMID: 38809370 DOI: 10.1007/s12035-024-04256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer's disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.
Collapse
Affiliation(s)
- Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institutes of Nano Science and Technology (INST), Sector 81. Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Krishna Jadhav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, ICFAI University, Baddi, Distt. Solan, Himachal Pradesh, 174103, India
| | - Rahul Kumar Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Charan Singh
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India.
| | - Ajay G Namdeo
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| |
Collapse
|
12
|
Abtahi MS, Fotouhi A, Rezaei N, Akalin H, Ozkul Y, Hossein-Khannazer N, Vosough M. Nano-based drug delivery systems in hepatocellular carcinoma. J Drug Target 2024; 32:977-995. [PMID: 38847573 DOI: 10.1080/1061186x.2024.2365937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/19/2024]
Abstract
The high recurrence rate of hepatocellular carcinoma (HCC) and poor prognosis after medical treatment reflects the necessity to improve the current chemotherapy protocols, particularly drug delivery methods. Development of targeted and efficient drug delivery systems (DDSs), in all active, passive and stimuli-responsive forms for selective delivery of therapeutic drugs to the tumour site has been extended to improve efficacy and reduce the severe side effects. Recent advances in nanotechnology offer promising breakthroughs in the diagnosis, treatment and monitoring of cancer cells. In this review, the specific design of DDSs based on the different nano-particles and their surface engineering is discussed. In addition, the innovative clinical studies in which nano-based DDS was used in the treatment of HCC were highlighted.
Collapse
Affiliation(s)
- Maryam Sadat Abtahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Ray E, Jadhav K, Kadian M, Sharma G, Sharma K, Jhilta A, Singh R, Kumar A, Verma RK. Inhalable chitosan-coated nano-assemblies potentiate niclosamide for targeted abrogation of non-small-cell lung cancer through dual modulation of autophagy and apoptosis. Int J Biol Macromol 2024; 279:135411. [PMID: 39245099 DOI: 10.1016/j.ijbiomac.2024.135411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Lung carcinoma, particularly non-small-cell lung cancer (NSCLC), accounts for a significant portion of cancer-related deaths, with a fatality rate of approximately 19 %. Niclosamide (NIC), originally an anthelmintic drug, has attracted attention for its potential in disrupting cancer cells through various intracellular signaling pathways. However, its effectiveness is hampered by limited solubility, reducing its bioavailability. This study investigates the efficacy of NIC against lung cancer using inhalable hybrid nano-assemblies with chitosan-functionalized Poly (ε-caprolactone) (PCL) as a carrier for pulmonary delivery. The evaluation encompasses various aspects such as aerodynamic and physicochemical properties, drug release kinetics, cellular uptake, biocompatibility, cell migration, autophagic flux, and apoptotic cell death in A549 lung cancer cells. Increasing NIC dosage correlates with enhanced inhibition of cell proliferation, showing a dose-dependent profile (approximately 75 % inhibition efficiency at 20 μg/mL of NIC). Optimization of inhaled dosage and efficacy is conducted in a murine model of NNK-induced tumor-bearing lung cancer. Following inhalation, NIC-CS-PCL-NA demonstrates significant lung deposition, retention, and metabolic stability. Inhalable nano-assemblies promote autophagy flux and induce apoptotic cell death. Preclinical trials reveal substantial tumor regression with minimal adverse effects, underscoring the potential of inhalable NIC-based nano-formulation as a potent therapeutic approach for NSCLC, offering effective tumor targeting and killing capabilities.
Collapse
Affiliation(s)
- Eupa Ray
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Krishna Jadhav
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Monika Kadian
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Garima Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kritika Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Agrim Jhilta
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
14
|
Ray E, Jadhav K, Kadian M, Sharma G, Sharma K, Jhilta A, Singh R, Kumar A, Verma RK. Targeted delivery of the metastasis-specific tumour homing TMTP1 peptide to non-small-cell lung cancer (NSCLC) using inhalable hybrid nano-assemblies. J Mater Chem B 2024; 12:9740-9759. [PMID: 39229638 DOI: 10.1039/d4tb00694a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lung cancer is one of the most fatal malignancies, with the highest death rate (∼19%), and the NSCLC type accounts for ∼85% of lung cancers. In the search for new treatments, antimicrobial peptides have received much attention due to their propensity for selective destruction of cancer cells. In the current study, we evaluated the efficacy of the metastasis-specific tumour-homing-TMTP1 peptide against lung cancer using inhalable hybrid nano-assemblies of the PEG-PLGA copolymer as a carrier for pulmonary delivery which was assessed for aerodynamic and physicochemical properties, along with the peptide-release profile, physical stability, cellular uptake and biocompatibility, generation of reactive oxygen species, cell migration, autophagic flux, and apoptotic cell death in A549 lung cancer cells. Optimization of inhaled dose, lung retention, and efficacy studies was conducted to evaluate the formulation in an NNK (nicotine-derived nitrosamine ketone) induced tumour-bearing lung cancer murine model. After inhalation, the formulation with nano-scale physiognomies showed good lung deposition, retention, and metabolic stability. The inhalable nano-assemblies have shown enhanced generation of reactive oxygen species with increased autophagy flux and apoptotic cell death. Pre-clinical animal trials show substantial tumour regression by inhalable TMTP1-based nano-formulation with limited side effects. Our results on metastasis targeting and tumour-homing peptide TMTP1 demonstrate its effective tumour targeting and tumour-killing efficacy and provide a reference for the development of new therapeutics for NSCLC.
Collapse
Affiliation(s)
- Eupa Ray
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Krishna Jadhav
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Monika Kadian
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Garima Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kritika Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Agrim Jhilta
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| |
Collapse
|
15
|
Jadhav K, Jhilta A, Singh R, Ray E, Kumar V, Yadav AB, Singh AK, Verma RK. Effective cerebral tuberculosis treatment via nose-to-brain transport of anti-TB drugs using mucoadhesive nano-aggregates. NANOSCALE 2024; 16:16485-16499. [PMID: 39135488 DOI: 10.1039/d4nr02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Central nervous system tuberculosis (CNS-TB) is a severe form of extra-pulmonary tuberculosis with high mortality and morbidity rates. The standard treatment regimen for CNS-TB parallels that of pulmonary TB, despite the challenge posed by the blood-brain barrier (BBB), which limits the efficacy of first-line anti-TB drugs (ATDs). Nose-to-brain (N2B) drug delivery offers a promising solution for achieving high ATD concentrations directly at infection sites in the brain while bypassing the BBB. This study aimed to develop chitosan nanoparticles encapsulating ATDs, specifically isoniazid (INH) and rifampicin (RIF). These nanoparticles were further processed into micro-sized chitosan nano-aggregates (NA) via spray drying. Both INH-NA and RIF-NA showed strong mucoadhesion and significantly higher permeation rates across RPMI 2650 cells compared to free ATDs. Intranasal administration of these NAs to TB-infected mice for four weeks resulted in a significant reduction of mycobacterial load by approximately ∼2.86 Log 10 CFU compared to the untreated group. This preclinical data highlights the efficacy of intranasal chitosan nano-aggregates in treating CNS-TB, demonstrating high therapeutic potential, and addressing brain inflammation challenges. To our knowledge, this study is the first to show nasal delivery of ATD nano-formulations for CNS-TB management.
Collapse
Affiliation(s)
- Krishna Jadhav
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Agrim Jhilta
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Eupa Ray
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| | - Vimal Kumar
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Awadh Bihari Yadav
- Center of Biotechnology, Nehru Science Centre, University of Allahabad, Prayagraj-211002, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India.
| |
Collapse
|
16
|
Geszke-Moritz M, Moritz M. Biodegradable Polymeric Nanoparticle-Based Drug Delivery Systems: Comprehensive Overview, Perspectives and Challenges. Polymers (Basel) 2024; 16:2536. [PMID: 39274168 PMCID: PMC11397980 DOI: 10.3390/polym16172536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
In the last few decades, there has been a growing interest in the use of biodegradable polymeric nanoparticles (BPNPs) as the carriers for various therapeutic agents in drug delivery systems. BPNPs have the potential to improve the efficacy of numerous active agents by facilitating targeted delivery to a desired site in the body. Biodegradable polymers are especially promising nanocarriers for therapeutic substances characterized by poor solubility, instability, rapid metabolism, and rapid system elimination. Such molecules can be efficiently encapsulated and subsequently released from nanoparticles, which greatly improves their stability and bioavailability. Biopolymers seem to be the most suitable candidates to be used as the nanocarriers in various delivery platforms, especially due to their biocompatibility and biodegradability. Other unique properties of the polymeric nanocarriers include low cost, flexibility, stability, minimal side effects, low toxicity, good entrapment potential, and long-term and controlled drug release. An overview summarizing the research results from the last years in the field of the successful fabrication of BPNPs loaded with various therapeutic agents is provided. The possible challenges involving nanoparticle stability under physiological conditions and the possibility of scaling up production while maintaining quality, as well as the future possibilities of employing BPNPs, are also reviewed.
Collapse
Affiliation(s)
- Małgorzata Geszke-Moritz
- Department of Pharmacognosy and Natural Medicines, Pomeranian Medical University in Szczecin, Plac Polskiego Czerwonego Krzyża 1, 71-251 Szczecin, Poland
| | - Michał Moritz
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Plac Polskiego Czerwonego Krzyża 1, 71-251 Szczecin, Poland
| |
Collapse
|
17
|
Gao X, Li Y, Li J, Xiang X, Wu J, Zeng S. Stimuli-responsive materials in oral diseases: a review. Clin Oral Investig 2024; 28:497. [PMID: 39177681 DOI: 10.1007/s00784-024-05884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Oral diseases, such as dental caries, periodontitis, and oral cancers, are highly prevalent worldwide. Many oral diseases are typically associated with bacterial infections or the proliferation of malignant cells, and they are usually located superficially. MATERIALS AND METHODS Articles were retrieved from PubMed/Medline, Web of Science. All studies focusing on stimuli-responsive materials in oral diseases were included and carefully evaluated. RESULTS Stimulus-responsive materials are innovative materials that selectively undergo structural changes and trigger drug release based on shifts at the molecular level, such as changes in pH, electric field, magnetic field, or light in the surrounding environment. These changes lead to alterations in the properties of the materials at the macro- or microscopic level. Consequently, stimuli-responsive materials are particularly suitable for treating superficial site diseases and have found extensive applications in antibacterial and anticancer therapies. These characteristics make them convenient and effective for addressing oral diseases. CONCLUSIONS This review aimed to summarize the classification, mechanism of action, and application of stimuli-responsive materials in the treatment of oral diseases, point out the existing limitations, and speculate the prospects for clinical applications. CLINICAL RELEVANCE Our findings may provide useful information of stimuli-responsive materials in oral diseases for dental clinicians.
Collapse
Affiliation(s)
- Xuguang Gao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Yunyang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Jianwen Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Xi Xiang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Jingwen Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Sujuan Zeng
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China.
| |
Collapse
|
18
|
Chenab KK, Malektaj H, Nadinlooie AAR, Mohammadi S, Zamani-Meymian MR. Intertumoral and intratumoral barriers as approaches for drug delivery and theranostics to solid tumors using stimuli-responsive materials. Mikrochim Acta 2024; 191:541. [PMID: 39150483 DOI: 10.1007/s00604-024-06583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The solid tumors provide a series of biological barriers in cellular microenvironment for designing drug delivery methods based on advanced stimuli-responsive materials. These intertumoral and intratumoral barriers consist of perforated endotheliums, tumor cell crowding, vascularity, lymphatic drainage blocking effect, extracellular matrix (ECM) proteins, hypoxia, and acidosis. Triggering opportunities have been drawn for solid tumor therapies based on single and dual stimuli-responsive drug delivery systems (DDSs) that not only improved drug targeting in deeper sites of the tumor microenvironments, but also facilitated the antitumor drug release efficiency. Single and dual stimuli-responsive materials which are known for their lowest side effects can be categorized in 17 main groups which involve to internal and external stimuli anticancer drug carriers in proportion to microenvironments of targeted solid tumors. Development of such drug carriers can circumvent barriers in clinical trial studies based on their superior capabilities in penetrating into more inaccessible sites of the tumor tissues. In recent designs, key characteristics of these DDSs such as fast response to intracellular and extracellular factors, effective cytotoxicity with minimum side effect, efficient permeability, and rate and location of drug release have been discussed as core concerns of designing paradigms of these materials.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Department of Chemistry, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
- Department of Physics, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220, Aalborg, Denmark
| | | | | | | |
Collapse
|
19
|
Jhilta A, Jadhav K, Singh R, Ray E, Kumar A, Singh AK, Verma RK. Breaking the Cycle: Matrix Metalloproteinase Inhibitors as an Alternative Approach in Managing Tuberculosis Pathogenesis and Progression. ACS Infect Dis 2024; 10:2567-2583. [PMID: 39038212 DOI: 10.1021/acsinfecdis.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Mycobacterium tuberculosis (Mtb) has long posed a significant challenge to global public health, resulting in approximately 1.6 million deaths annually. Pulmonary tuberculosis (TB) instigated by Mtb is characterized by extensive lung tissue damage, leading to lesions and dissemination within the tissue matrix. Matrix metalloproteinases (MMPs) exhibit endopeptidase activity, contributing to inflammatory tissue damage and, consequently, morbidity and mortality in TB patients. MMP activities in TB are intricately regulated by various components, including cytokines, chemokines, cell receptors, and growth factors, through intracellular signaling pathways. Primarily, Mtb-infected macrophages induce MMP expression, disrupting the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thereby impairing extracellular matrix (ECM) deposition in the lungs. Recent research underscores the significance of immunomodulatory factors in MMP secretion and granuloma formation during Mtb pathogenesis. Several studies have investigated both the activation and inhibition of MMPs using endogenous MMP inhibitors (i.e., TIMPs) and synthetic inhibitors. However, despite their promising pharmacological potential, few MMP inhibitors have been explored for TB treatment as host-directed therapy. Scientists are exploring novel strategies to enhance TB therapeutic regimens by suppressing MMP activity to mitigate Mtb-associated matrix destruction and reduce TB induced lung inflammation. These strategies include the use of MMP inhibitor molecules alone or in combination with anti-TB drugs. Additionally, there is growing interest in developing novel formulations containing MMP inhibitors or MMP-responsive drug delivery systems to suppress MMPs and release drugs at specific target sites. This review summarizes MMPs' expression and regulation in TB, their role in immune response, and the potential of MMP inhibitors as effective therapeutic targets to alleviate TB immunopathology.
Collapse
Affiliation(s)
- Agrim Jhilta
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Krishna Jadhav
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Eupa Ray
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India 226014
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India 282004
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| |
Collapse
|
20
|
Zhang Y, Wang J. Current status and prospects of gelatin and its derivatives in oncological applications: Review. Int J Biol Macromol 2024; 274:133590. [PMID: 38996884 DOI: 10.1016/j.ijbiomac.2024.133590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Treating cancer remains challenging due to the substantial side effects and unfavourable pharmacokinetic characteristics of antineoplastic medications, despite the progress made in comprehending the properties and actions of tumour cells in recent years. The advancement of biomaterials, such as stents, implants, personalised drug delivery systems, tailored grafts, cell sheets, and other transplantable materials, has brought about a significant transformation in healthcare and medicine in recent years. Gelatin is a very adaptable natural polymer that finds extensive application in healthcare-related industries owing to its favourable characteristics, including biocompatibility, biodegradability, affordability, and the presence of accessible chemical groups. Gelatin is used as a biomaterial in the biomedical sector for the creation of drug delivery systems (DDSs) since it may be applied to various synthetic procedures. Gelatin nanoparticles (NPs) have been extensively employed as carriers for drugs and genes, specifically targeting diseased tissues such as cancer, tuberculosis, and HIV infection, as well as treating vasospasm and restenosis. This is mostly due to their biocompatibility and ability to degrade naturally. Gelatins possess a diverse array of potential applications that require more elucidation. This review focuses on the use of gelatin and its derivatives in the diagnosis and treatment of cancer. The advancement of biomaterials and bioreactors, coupled with the increasing understanding of emerging applications for biomaterials, has enabled progress in enhancing the efficacy of tumour treatment.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jia Wang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| |
Collapse
|
21
|
Wang M, Jia L, Dai X, Zhang X. Advanced strategies in improving the immunotherapeutic effect of CAR-T cell therapy. Mol Oncol 2024; 18:1821-1848. [PMID: 38456710 PMCID: PMC11306536 DOI: 10.1002/1878-0261.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Chimeric antigen receptor (CAR-T) cell therapy is a newly developed immunotherapy strategy and has achieved satisfactory outcomes in the treatment of hematological malignancies. However, some adverse effects related to CAR-T cell therapy have to be resolved before it is widely used in clinics as a cancer treatment. Furthermore, the application of CAR-T cell therapy in the treatment of solid tumors has been hampered by numerous limitations. Therefore, it is essential to explore novel strategies to improve the therapeutic effect of CAR-T cell therapy. In this review, we summarized the recently developed strategies aimed at optimizing the generation of CAR-T cells and improving the anti-tumor efficiency of CAR-T cell therapy. Furthermore, the discovery of new targets for CAR-T cell therapy and the combined treatment strategies of CAR-T cell therapy with chemotherapy, radiotherapy, cancer vaccines and nanomaterials are highlighted.
Collapse
Affiliation(s)
- Minmin Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationFirst Hospital of Jilin UniversityChangchunChina
- National‐Local Joint Engineering Laboratory of Animal Models for Human DiseaseFirst Hospital of Jilin UniversityChangchunChina
| | - Linzi Jia
- Department of General MedicineShanxi Province Cancer HospitalTaiyuanChina
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationFirst Hospital of Jilin UniversityChangchunChina
- National‐Local Joint Engineering Laboratory of Animal Models for Human DiseaseFirst Hospital of Jilin UniversityChangchunChina
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationFirst Hospital of Jilin UniversityChangchunChina
- National‐Local Joint Engineering Laboratory of Animal Models for Human DiseaseFirst Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
22
|
Fan Z, Iqbal H, Ni J, Khan NU, Irshad S, Razzaq A, Alfaifi MY, Elbehairi SEI, Shati AA, Zhou J, Cheng H. Rationalized landscape on protein-based cancer nanomedicine: Recent progress and challenges. Int J Pharm X 2024; 7:100238. [PMID: 38511068 PMCID: PMC10951516 DOI: 10.1016/j.ijpx.2024.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical advancement of protein-based nanomedicine has revolutionized medical professionals' perspectives on cancer therapy. Protein-based nanoparticles have been exploited as attractive vehicles for cancer nanomedicine due to their unique properties derived from naturally biomacromolecules with superior biocompatibility and pharmaceutical features. Furthermore, the successful translation of Abraxane™ (paclitaxel-based albumin nanoparticles) into clinical application opened a new avenue for protein-based cancer nanomedicine. In this mini-review article, we demonstrate the rational design and recent progress of protein-based nanoparticles along with their applications in cancer diagnosis and therapy from recent literature. The current challenges and hurdles that hinder clinical application of protein-based nanoparticles are highlighted. Finally, future perspectives for translating protein-based nanoparticles into clinic are identified.
Collapse
Affiliation(s)
- Zhechen Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Naveed Ullah Khan
- Department of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Shahla Irshad
- Department of Allied Health Sciences, Faculty of Health and Medical Sciences, Mirpur University of Science and Technology (MUST), Mirpur, Azad Jammu and Kashmir 10250, Pakistan
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mohammad Y. Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | | | - Ali A. Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
23
|
Park S, Sharma H, Safdar M, Lee J, Kim W, Park S, Jeong HE, Kim J. Micro/nanoengineered agricultural by-products for biomedical and environmental applications. ENVIRONMENTAL RESEARCH 2024; 250:118490. [PMID: 38365052 DOI: 10.1016/j.envres.2024.118490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Agriculturally derived by-products generated during the growth cycles of living organisms as secondary products have attracted increasing interest due to their wide range of biomedical and environmental applications. These by-products are considered promising candidates because of their unique characteristics including chemical stability, profound biocompatibility and offering a green approach by producing the least impact on the environment. Recently, micro/nanoengineering based techniques play a significant role in upgrading their utility, by controlling their structural integrity and promoting their functions at a micro and nano scale. Specifically, they can be used for biomedical applications such as tissue regeneration, drug delivery, disease diagnosis, as well as environmental applications such as filtration, bioenergy production, and the detection of environmental pollutants. This review highlights the diverse role of micro/nano-engineering techniques when applied on agricultural by-products with intriguing properties and upscaling their wide range of applications across the biomedical and environmental fields. Finally, we outline the future prospects and remarkable potential that these agricultural by-products hold in establishing a new era in the realms of biomedical science and environmental research.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, 50463, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeongryun Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
24
|
Singh R, Jadhav K, Kamboj R, Malhotra H, Ray E, Jhilta A, Dhir V, Verma RK. Self-actuating inflammation responsive hydrogel microsphere formulation for controlled drug release in rheumatoid arthritis (RA): Animal trials and study in human fibroblast like synoviocytes (hFLS) of RA patients. BIOMATERIALS ADVANCES 2024; 160:213853. [PMID: 38636119 DOI: 10.1016/j.bioadv.2024.213853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Patients with rheumatoid arthritis (RA) often have one or more painfuljoints despite adequate medicine. Local drug delivery to the synovial cavity bids for high drug concentration with minimal systemic adverse effects. However, anti-RA drugs show short half-lives in inflamed joints after intra-articular delivery. To improve the therapeutic efficacy, it is essential to ensure that a drug is only released from the formulation when it is needed. In this work, we developed an intelligent "Self-actuating" drug delivery system where Disease-modifying anti-rheumatic Drug (DMARD) methotrexate is incorporated within a matrix intended to be injected directly into joints. This formulation has the property to sense the need and release medication only when joints are inflamed in response to inflammatory enzyme Matrix metalloproteinases (MMP). These enzymes are important proteases in RA pathology, and several MMP are present in augmented levels in synovial fluid and tissues. A high level of MMP present in synovial tissues of RA patients would facilitate the release of drugs in response and ascertain controlled drug release. The formulation is designed to be stable within the joint environment, but to dis-assemble in response to inflammation. The synthesized enzyme-responsive methotrexate (Mtx) encapsulated micron-sized polymer-lipid hybrid hydrogel microspheres (Mtx-PLHM) was physiochemically characterized and tested in synovial fluid, Human Fibroblast like synoviocytes (h-FLS) (derived from RA patients) and a rat arthritic animal model. Mtx-PLHM can self-actuate and augment the release of Mtx drug upon contact with either exogenously added MMP or endogenous MMP present in the synovial fluid of patients with RA. The drug release from the prepared formulation is significantly amplified to several folds in the presence of MMP-2 and MMP-9 enzymes. In the rat arthritic model, Mtx-PLHM showed promising therapeutic results with the significant alleviation of RA symptoms through decrease in joint inflammation, swelling, bone erosion, and joint damage examined by X-ray analysis, histopathology and immune-histology. This drug delivery system would be nontoxic as it releases more drug only during the period of exacerbation of inflammation. This will simultaneously protect patients from unwanted side effects when the disease is inactive and lower the need for repeated joint injections.
Collapse
Affiliation(s)
- Raghuraj Singh
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Krishna Jadhav
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India
| | - Rohit Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana 135001, India
| | - Hitesh Malhotra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana 135001, India
| | - Eupa Ray
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India
| | - Agrim Jhilta
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India
| | - Varun Dhir
- Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India.
| |
Collapse
|
25
|
Ding L, Agrawal P, Singh SK, Chhonker YS, Sun J, Murry DJ. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers (Basel) 2024; 16:843. [PMID: 38543448 PMCID: PMC10974363 DOI: 10.3390/polym16060843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
Chemotherapy together with surgery and/or radiotherapy are the most common therapeutic methods for treating cancer. However, the off-target effects of chemotherapy are known to produce side effects and dose-limiting toxicities. Novel delivery platforms based on natural and synthetic polymers with enhanced pharmacokinetic and therapeutic potential for the treatment of cancer have grown tremendously over the past 10 years. Polymers can facilitate selective targeting, enhance and prolong circulation, improve delivery, and provide the controlled release of cargos through various mechanisms, including physical adsorption, chemical conjugation, and/or internal loading. Notably, polymers that are biodegradable, biocompatible, and physicochemically stable are considered to be ideal delivery carriers. This biomimetic and bio-inspired system offers a bright future for effective drug delivery with the potential to overcome the obstacles encountered. This review focuses on the barriers that impact the success of chemotherapy drug delivery as well as the recent developments based on natural and synthetic polymers as platforms for improving drug delivery for treating cancer.
Collapse
Affiliation(s)
- Ling Ding
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Prachi Agrawal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
| | - Sandeep K. Singh
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Yashpal S. Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Jingjing Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
26
|
Zong L, Xu H, Zhang H, Tu Z, Zhang X, Wang S, Li M, Feng Y, Wang B, Li L, Xie X, He Z, Pu X. A review of matrix metalloproteinase-2-sensitive nanoparticles as a novel drug delivery for tumor therapy. Int J Biol Macromol 2024; 262:130043. [PMID: 38340921 DOI: 10.1016/j.ijbiomac.2024.130043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Matrix metalloproteinase-2 (MMP-2)-responsive nanodrug vehicles have garnered significant attention as antitumor drug delivery systems due to the extensive research on matrix metalloproteinases (MMPs) within the tumor extracellular matrix (ECM). These nanodrug vehicles exhibit stable circulation in the bloodstream and accumulate specifically in tumors through various mechanisms. Upon reaching tumor tissues, their structures are degraded in response to MMP-2 within the ECM, resulting in drug release. This controlled drug release significantly increases drug concentration within tumors, thereby enhancing its antitumor efficacy while minimizing side effects on normal organs. This review provides an overview of MMP-2 characteristics, enzyme-sensitive materials, and current research progress regarding their application as MMP-2-responsive nanodrug delivery system for anti-tumor drugs, as well as considering their future research prospects. In conclusion, MMP-2-sensitive drug delivery carriers have a broad application in all kinds of nanodrug delivery systems and are expected to become one of the main means for the clinical development and application of nanodrug delivery systems in the future.
Collapse
Affiliation(s)
- Lanlan Zong
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China; Huaihe Hospital of Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Hongliang Xu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Huiqi Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Ziwei Tu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xiao Zhang
- Department of Pharmacy, Hebei Provincial Clinical Research Center for Eye Diseases, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai City, Hebei Province 054001, China
| | - Shumin Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Meigui Li
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Yu Feng
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Binke Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Luhui Li
- Medical School, Henan Technical Institute, Kaifeng, Henan 475004, China
| | - Xinmei Xie
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China.
| | - Zhonggui He
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaohui Pu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China; Huaihe Hospital of Henan University, N. Jinming Ave., Kaifeng 475004, China.
| |
Collapse
|
27
|
Safaiee R, Aminzadeh H, Sardarian AR, Nasresfahani S, Sheikhi MH. A high loading nanocarrier for the 5-fluorouracil anticancer drug based on chloromethylated graphene. Phys Chem Chem Phys 2024; 26:6410-6419. [PMID: 38315790 DOI: 10.1039/d3cp04211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In the present work, we report a facile and simple strategy to functionalize graphene with the chloromethyl (CH2Cl) functional group as a nanoplatform for effectual loading of the 5-fluorouracil (5-FU) anticancer drug. To achieve the highest loading capacity, hydrochloric acid concentration, the quantity of paraformaldehyde, ultrasonic treatment time, and stirring duration were all carefully optimized. The results revealed that the optimum conditions for functionalizing graphene were obtained at 70 mL of hydrochloric acid, 700 mg of paraformaldehyde, and times of 35 min and 2 h of ultrasonication and stirring. Later, the drug (5-FU) was loaded onto CH2Cl-functionalized graphene through hydrogen bonding and π-π interactions. The chemical structure of the functionalized material and the loading of the 5-FU drug were confirmed by FTIR analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The 5-FU loading capacity of as-prepared materials was determined using the ion chromatography instrument. Our findings demonstrate that chloromethylated graphene is a very excellent nano-platform for high-efficiency drug loading, yielding a loading capacity of 52.3%, comparatively higher than pure graphene (36.54%).
Collapse
Affiliation(s)
- R Safaiee
- Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
| | - H Aminzadeh
- Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
| | - A R Sardarian
- Chemistry Department, College of Sciences, Shiraz University, Shiraz 7146713565, Iran
| | - Sh Nasresfahani
- Electrical and Computer Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| | - M H Sheikhi
- School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
28
|
Jia X, Fan X, Chen C, Lu Q, Zhou H, Zhao Y, Wang X, Han S, Ouyang L, Yan H, Dai H, Geng H. Chemical and Structural Engineering of Gelatin-Based Delivery Systems for Therapeutic Applications: A Review. Biomacromolecules 2024; 25:564-589. [PMID: 38174643 DOI: 10.1021/acs.biomac.3c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As a biodegradable and biocompatible protein derived from collagen, gelatin has been extensively exploited as a fundamental component of biological scaffolds and drug delivery systems for precise medicine. The easily engineered gelatin holds great promise in formulating various delivery systems to protect and enhance the efficacy of drugs for improving the safety and effectiveness of numerous pharmaceuticals. The remarkable biocompatibility and adjustable mechanical properties of gelatin permit the construction of active 3D scaffolds to accelerate the regeneration of injured tissues and organs. In this Review, we delve into diverse strategies for fabricating and functionalizing gelatin-based structures, which are applicable to gene and drug delivery as well as tissue engineering. We emphasized the advantages of various gelatin derivatives, including methacryloyl gelatin, polyethylene glycol-modified gelatin, thiolated gelatin, and alendronate-modified gelatin. These derivatives exhibit excellent physicochemical and biological properties, allowing the fabrication of tailor-made structures for biomedical applications. Additionally, we explored the latest developments in the modulation of their physicochemical properties by combining additive materials and manufacturing platforms, outlining the design of multifunctional gelatin-based micro-, nano-, and macrostructures. While discussing the current limitations, we also addressed the challenges that need to be overcome for clinical translation, including high manufacturing costs, limited application scenarios, and potential immunogenicity. This Review provides insight into how the structural and chemical engineering of gelatin can be leveraged to pave the way for significant advancements in biomedical applications and the improvement of patient outcomes.
Collapse
Affiliation(s)
- Xiaoyu Jia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Cheng Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongfeng Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Yanming Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Sanyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Liliang Ouyang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongji Yan
- Department of Medical Cell Biology (MCB), Uppsala University (UU), 751 05 Uppsala, Sweden
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| |
Collapse
|
29
|
Wang W, Zhong Z, Huang Z, Hiew TN, Huang Y, Wu C, Pan X. Nanomedicines for targeted pulmonary delivery: receptor-mediated strategy and alternatives. NANOSCALE 2024; 16:2820-2833. [PMID: 38289362 DOI: 10.1039/d3nr05487j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pulmonary drug delivery of nanomedicines is promising for the treatment of lung diseases; however, their lack of specificity required for targeted delivery limit their applications. Recently, a variety of pulmonary delivery targeting nanomedicines (PDTNs) has been developed for enhancing drug accumulation in lung lesions and reducing systemic side effects. Furthermore, with the increasing profound understanding of the specific microenvironment of different local lung diseases, multiple targeting strategies have been employed to promote drug delivery efficiency, which can be divided into the receptor-mediated strategy and alternatives. In this review, the current publication trend on PDTNs is analyzed and discussed, revealing that the research in this area has been attracting much attention. According to the different unique microenvironments of lung lesions, the reported PDTNs based on the receptor-mediated strategy for lung cancer, lung infection, lung inflammation and pulmonary fibrosis are listed and summarized. In addition, several other well-established strategies for the design of these PDTNs, such as charge regulation, mucus delivery enhancement, stimulus-responsive drug delivery and magnetic force-driven targeting, are introduced and discussed. Besides, bottlenecks in the development of PDTNs are discussed. Finally, we highlight the challenges and opportunities in the development of PDTNs. We hope that this review will provide an overview of the available PDTNs for guiding the treatment of lung diseases.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Ziqiao Zhong
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Tze Ning Hiew
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa 52242, USA
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
30
|
Zhou W, Lew B, Choi H, Kim K, Anakk S. Chenodeoxycholic Acid-Loaded Nanoparticles Are Sufficient to Decrease Adipocyte Size by Inducing Mitochondrial Function. NANO LETTERS 2024; 24:1642-1649. [PMID: 38278518 PMCID: PMC10854752 DOI: 10.1021/acs.nanolett.3c04352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
Excess fat accumulation is not only associated with metabolic diseases but also negatively impacts physical appearance and emotional well-being. Bile acid, the body's natural emulsifier, is one of the few FDA-approved noninvasive therapeutic options for double chin (submental fat) reduction. Synthetic sodium deoxycholic acid (NaDCA) causes adipose cell lysis; however, its side effects include inflammation, bruising, and necrosis. Therefore, we investigated if an endogenous bile acid, chenodeoxycholic acid (CDCA), a well-known signaling molecule, can be beneficial without many of the untoward effects. We first generated CDCA-loaded nanoparticles to achieve sustained and localized delivery. Then, we injected them into the subcutaneous fat depot and monitored adipocyte size and mitochondrial function. Unlike NaDCA, CDCA did not cause cytolysis. Instead, we demonstrate that a single injection of CDCA-loaded nanoparticles into the subcutaneous fat reduced the adipocyte size by promoting fat burning and mitochondrial respiration, highlighting their potential for submental fat reduction.
Collapse
Affiliation(s)
- Weinan Zhou
- Department
of Molecular and Integrative Physiology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Benjamin Lew
- Department
of Electrical and Computer Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hyungsoo Choi
- Department
of Electrical and Computer Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kyekyoon Kim
- Department
of Electrical and Computer Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sayeepriyadarshini Anakk
- Department
of Molecular and Integrative Physiology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Division
of Nutritional Sciences, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer Center
at Illinois, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Wu M, Wang Q, Peng Y, Liang X, Lv X, Wang S, Zhong C. Enhancing Targeted Therapy in Hepatocellular Carcinoma through a pH-Responsive Delivery System: Folic Acid-Modified Polydopamine-Paclitaxel-Loaded Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Nanoparticles. Mol Pharm 2024; 21:581-595. [PMID: 38131328 DOI: 10.1021/acs.molpharmaceut.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Currently, there is an inherent contradiction between the multifunctionality and excellent biocompatibility of anticancer drug nanocarriers, which limits their application. Therefore, to overcome this limitation, we aimed to develop a biocompatible drug delivery system for the treatment of hepatocellular carcinoma (HCC). In this study, we employed poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as the fundamental framework of the nanocarrier and utilized the emulsion solvent evaporation method to fabricate nanoparticles loaded with paclitaxel (PTX), known as PTX-PHBV NPs. To enhance the tumor-targeting capability, a dopamine self-polymerization strategy was employed to form a pH-sensitive coating on the surface of the nanoparticles. Then, folic acid (FA)-targeting HCC was conjugated to the nanoparticles with a polydopamine (PDA) coating by using the Michael addition reaction, resulting in the formation of HCC-targeted nanoparticles (PTX-PHBV@PDA-FA NPs). The PTX-PHBV@PDA-FA NPs were characterized and analyzed by using dynamic light scattering, scanning electron microscopy, fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. Encouragingly, PTX-PHBV@PDA-FA NPs exhibited remarkable anticancer efficacy in an HCC xenograft mouse model. Furthermore, compared to raw PTX, PTX-PHBV@PDA-FA NPs showed less toxicity in vivo. In conclusion, these results demonstrate the potential of PTX-PHBV@PDA-FA NPs for HCC treatment and biocompatibility.
Collapse
Affiliation(s)
- Mingfang Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology of Zhejiang Province, Hangzhou 310023, Zhejiang, China
| | - Qi Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yaya Peng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Xiaohui Liang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Xiaofeng Lv
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Siying Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Chen Zhong
- School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
32
|
Paurević M, Šrajer Gajdošik M, Ribić R. Mannose Ligands for Mannose Receptor Targeting. Int J Mol Sci 2024; 25:1370. [PMID: 38338648 PMCID: PMC10855088 DOI: 10.3390/ijms25031370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. This review provides a detailed account of the most relevant and recent aspects of the synthesis and application of mannosylated bioactive formulations for MR-mediated delivery in treatments of cancer and other infectious diseases. It further highlights recent findings related to the necessary structural features of the mannose-containing ligands for successful binding to the MR.
Collapse
Affiliation(s)
- Marija Paurević
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Martina Šrajer Gajdošik
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Rosana Ribić
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, HR-42000 Varaždin, Croatia
| |
Collapse
|
33
|
Zaer M, Moeinzadeh A, Abolhassani H, Rostami N, Tavakkoli Yaraki M, Seyedi SA, Nabipoorashrafi SA, Bashiri Z, Moeinabadi-Bidgoli K, Moradbeygi F, Farmani AR, Hossein-Khannazer N. Doxorubicin-loaded Niosomes functionalized with gelatine and alginate as pH-responsive drug delivery system: A 3D printing approach. Int J Biol Macromol 2023; 253:126808. [PMID: 37689301 DOI: 10.1016/j.ijbiomac.2023.126808] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Despite many efforts, breast cancer remains one of the deadliest cancers and its treatment faces challenges related to cancer drug side effects and metastasis. Combining 3D printing and nanocarriers has created new opportunities in cancer treatment. In this work, 3D-printed gelatin-alginate nanocomposites containing doxorubicin-loaded niosomes (Nio-DOX@GT-AL) were recruited as an advanced potential pH-sensitive drug delivery system. Morphology, degradation, drug release, flow cytometry, cell cytotoxicity, cell migration, caspase activity, and gene expression of nanocomposites and controls (Nio-DOX and Free-DOX) were evaluated. Results show that the obtained niosome has a spherical shape and size of 60-80 nm. Sustained drug release and biodegradability were presented by Nio-DOX@GT-AL and Nio-DOX. Cytotoxicity analysis revealed that the engineered Nio-DOX@GT-AL scaffold had 90 % cytotoxicity against breast cancer cells (MCF-7), whereas exhibited <5 % cytotoxicity against the non-tumor breast cell line (MCF-10A), which was significantly more than the antitumor effect of the control samples. Scratch-assay as an indicator cell migration demonstrated a reduction of almost 60 % of the covered surface. Gene expression could provide an explanation for the antitumor effect of engineered nanocarriers, which significantly reduced metastasis-promoting genes (Bcl2, MMP-2, and MMP-9), and significantly enhanced the expression and activity of genes that promote apoptosis (CASP-3, CASP-8, and CASP-9). Also, considerable inhibition of metastasis-associated genes (Bax and p53) was observed. Moreover, flow-cytometry data demonstrated that Nio-DOX@GT-AL decreased necrosis and enhanced apoptosis drastically. The findings of this research can confirm that employing 3D-printing and niosomal formulation can be an effective strategy in designing novel nanocarriers for efficient drug delivery applications.
Collapse
Affiliation(s)
- Mohammad Zaer
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Abolhassani
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Neda Rostami
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Jadhav K, Jhilta A, Singh R, Ray E, Sharma N, Shukla R, Singh AK, Verma RK. Clofazimine nanoclusters show high efficacy in experimental TB with amelioration in paradoxical lung inflammation. BIOMATERIALS ADVANCES 2023; 154:213594. [PMID: 37657277 DOI: 10.1016/j.bioadv.2023.213594] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
The rise of tuberculosis (TB) superbugs has impeded efforts to control this infectious ailment, and new treatment options are few. Paradoxical Inflammation (PI) is another major problem associated with current anti-TB therapy, which can complicate the treatment and leads to clinical worsening of disease despite a decrease in bacterial burden in the lungs. TB infection is generally accompanied by an intense local inflammatory response which may be critical to TB pathogenesis. Clofazimine (CLF), a second-line anti-TB drug, delineated potential anti-mycobacterial effects in-vitro and in-vivo and also demonstrated anti-inflammatory potential in in-vitro experiments. However, clinical implications may be restricted owing to poor solubility and low bioavailability rendering a suboptimal drug concentration in the target organ. To unravel these issues, nanocrystals of CLF (CLF-NC) were prepared using a microfluidizer® technology, which was further processed into micro-sized CLF nano-clusters (CLF-NCLs) by spray drying technique. This particle engineering offers combined advantages of micron- and nano-scale particles where micron-size (∼5 μm) promise optimum aerodynamic parameters for the finest lung deposition, and nano-scale dimensions (∼600 nm) improve the dissolution profile of apparently insoluble clofazimine. An inhalable formulation was evaluated against virulent mycobacterium tuberculosis in in-vitro studies and in mice infected with aerosol TB infection. CLF-NCLs resulted in the significant killing of virulent TB bacteria with a MIC value of ∼0.62 μg/mL, as demonstrated by Resazurin microtiter assay (REMA). In TB-infected mice, inhaled doses of CLF-NCLs equivalent to ∼300 μg and ∼ 600 μg of CLF administered on every alternate day over 30 days significantly reduced the number of bacteria in the lung. With an inhaled dose of ∼600 μg/mice, reduction of mycobacterial colony forming units (CFU) was achieved by ∼1.95 Log10CFU times compared to CLF administered via oral gavage (∼1.18 Log10CFU). Lung histology scoring showed improved pathogenesis and inflammation in infected animals after 30 days of inhalation dosing of CLF-NCLs. The levels of pro-inflammatory mediators, including cytokines, TNF-α & IL-6, and MMP-2 in bronchoalveolar lavage fluid (BAL-F) and lung tissue homogenates, were attenuated after inhalation treatment. These pre-clinical data suggest inhalable CLF-NCLs are well tolerated, show significant anti-TB activity and apparently able to tackle the challenge of paradoxical chronic lung inflammation in murine TB model.
Collapse
Affiliation(s)
- Krishna Jadhav
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Agrim Jhilta
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Eupa Ray
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Neleesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J&K, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Lucknow, UP 226002, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India.
| |
Collapse
|
35
|
Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, Behl T, Rani R, Gupta M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2769-2792. [PMID: 37219615 DOI: 10.1007/s00210-023-02522-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, 250103, UP, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology, Jabalpur, M.P, 483001, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, MP, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong,, Brunei, Darussalam
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Radha Rani
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India.
| |
Collapse
|
36
|
Gowtham P, Arumugam VA, Harini K, Pallavi P, Thirumalai A, Girigoswami K, Girigoswami A. Nanostructured proteins for delivering drugs to diseased tissues. BIOINSPIRED, BIOMIMETIC AND NANOBIOMATERIALS 2023; 12:115-129. [DOI: 10.1680/jbibn.23.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
During the last few years, nanostructures based on proteins have been playing a vital role in revolutionizing the nanomedicine era. Since protein nanoparticles are smaller and have a greater surface area, they retain a better capacity to interact with other molecules, resulting in carrying payloads efficiently to diseased tissues. Besides having attractive biocompatibility and biodegradability, protein nanoparticles can also be modified on their surfaces. For the fabrication of these nanostructures, there are several processes involved, including emulsification, desolvation, a combination of complex coacervation and electrospray. This can be achieved by using different proteins such as albumin, gelatin, elastin, gliadin, collagen, legumin and zein, as well as a combination of these proteins. It is possible to functionalize protein nanoparticles by altering their internal and external interfaces so that they can encapsulate drugs, release them in a controlled manner, disassemble them systematically and target tumors. This review highlights the physicochemical properties and engineering of several proteins to nano-dimensions used to deliver drugs to diseased tissues.
Collapse
Affiliation(s)
- Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Anbazhagan Thirumalai
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| |
Collapse
|
37
|
Jin M, He B, Cai X, Lei Z, Sun T. Research progress of nanoparticle targeting delivery systems in bacterial infections. Colloids Surf B Biointerfaces 2023; 229:113444. [PMID: 37453264 DOI: 10.1016/j.colsurfb.2023.113444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Bacterial infection is a huge threat to the health of human beings and animals. The abuse of antibiotics have led to the occurrence of bacterial multidrug resistance, which have become a difficult problem in the treatment of clinical infections. Given the outstanding advantages of nanodrug delivery systems in cancer treatment, many scholars have begun to pay attention to their application in bacterial infections. However, due to the similarity of the microenvironment between bacterial infection lesions and cancer sites, the targeting and accuracy of traditional microenvironment-responsive nanocarriers are questionable. Therefore, finding new specific targets has become a new development direction of nanocarriers in bacterial prevention and treatment. This article reviews the infectious microenvironment induced by bacteria and a series of virulence factors of common pathogenic bacteria and their physiological functions, which may be used as potential targets to improve the targeting accuracy of nanocarriers in lesions.
Collapse
Affiliation(s)
- Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
38
|
Sreena R, Nathanael AJ. Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062364. [PMID: 36984244 PMCID: PMC10058375 DOI: 10.3390/ma16062364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
Biopolymers are polymers obtained from either renewable or non-renewable sources and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility, biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have been gaining wide interest in biomedical applications such as tissue engineering, drug delivery, imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles employed for medical applications; this review is an attempt to explore the possibilities of using these materials for various biomedical applications. This review highlights protein based (albumin, gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic (Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many applications. The fabrication strategies of different BPn are also being highlighted. The future perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
39
|
Xiao R, Ye J, Li X, Wang X. Dual size/charge-switchable and multi-responsive gelatin-based nanocluster for targeted anti-tumor therapy. Int J Biol Macromol 2023; 238:124032. [PMID: 36921812 DOI: 10.1016/j.ijbiomac.2023.124032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Biopolymers with excellent biocompatibility and biodegradability show great potential for designing drug nanocarriers, while it's difficult to fabricate smart vehicles with multiple switching (size, surface, shape) based on biopolymers alone. Here, we report a dual size/charge-switchable and multi-responsive doxorubicin-loaded gelatin-based nanocluster (DOX-icluster) for improved tumor penetration and targeted anti-tumor therapy. The DOX-icluster was electrostatically assembled from folic acid and dimethylmaleic anhydride modified gelatin (FA-GelDMA) and small-sized DOX-loaded NH2 modified hollow mesoporous organosilicon nanoparticles (DOX-HMON-NH2). DOX-icluster had an initial size of about 199 nm at neutral pH. After accumulation in tumor tissue, the DMA bond of FA-GelDMA was cleaved and gelatin was degraded by matrix metalloproteinase (MMP-2), thus 48 nm and positively charged DOX-HMON-NH2 was released to facilitate penetration and cell internalization. DOX-HMON-NH2 was further degraded by intracellular glutathione (GSH) with releasing 48.1 % of DOX. The cellular uptake results indicated that the fabricated icluster promoted the uptake of DOX by 4T1 cells. With enhanced penetration efficacy, the tumor spheroids volume treated with DOX-icluster was reduced to 15.1 % on day 7. This cytocompatible multi-responsive gelatin-based icluster with size-shrinking and charge-reversible characteristics may be used as a significant drug carrier for tumor therapy.
Collapse
Affiliation(s)
- Renhua Xiao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Junhu Ye
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
40
|
Kole E, Jadhav K, Sirsath N, Dudhe P, Verma RK, Chatterjee A, Naik J. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
41
|
Role and Application of Biocatalysts in Cancer Drug Discovery. Catalysts 2023. [DOI: 10.3390/catal13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A biocatalyst is an enzyme that speeds up or slows down the rate at which a chemical reaction occurs and speeds up certain processes by 108 times. It is used as an anticancer agent because it targets drug activation inside the tumor microenvironment while limiting damage to healthy cells. Biocatalysts have been used for the synthesis of different heterocyclic compounds and is also used in the nano drug delivery systems. The use of nano-biocatalysts for tumor-targeted delivery not only aids in tumor invasion, angiogenesis, and mutagenesis, but also provides information on the expression and activity of many markers related to the microenvironment. Iosmapinol, moclobemide, cinepazide, lysine dioxygenase, epothilone, 1-homophenylalanine, and many more are only some of the anticancer medicines that have been synthesised using biocatalysts. In this review, we have highlighted the application of biocatalysts in cancer therapies as well as the use of biocatalysts in the synthesis of drugs and drug-delivery systems in the tumor microenvironment.
Collapse
|
42
|
Xu DZ, Sun XY, Liang YX, Huang HW, Liu R, Lu ZL, He L. Esterase-Responsive Polymeric Micelles Containing Tetraphenylethene and Poly(ethylene glycol) Moieties for Efficient Doxorubicin Delivery and Tumor Therapy. Bioconjug Chem 2023; 34:248-256. [PMID: 36621834 DOI: 10.1021/acs.bioconjchem.2c00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enzyme-responsive drug delivery systems have drawn much attention in the field of cancer theranostics due to their high sensitivity and substrate specificity under mild conditions. In this study, an amphiphilic polymer T1 is reported, which contains a tetraphenylethene unit and a poly(ethylene glycol) chain linked by an esterase-responsive phenolic ester bond. In aqueous solution, T1 formed stable micelles via self-assembly, which showed an aggregation-induced emission enhancement of 32-fold at 532 nm and a critical micelle concentration of 0.53 μM as well as esterase-responsive activity. The hydrophobic drug doxorubicin (DOX) was efficiently encapsulated into the micelles with a drug loading of 21%. In the presence of the esterase, the selective decomposition of drug-loaded T1 micelles was observed, and DOX was subsequently released with a half-life of 5 h. In vitro antitumor studies showed that T1@DOX micelles exhibited good therapeutic effects on HeLa cells, while normal cells remained mostly intact. In vivo anticancer experiments revealed that T1@DOX micelles indeed suppressed tumor growth and had reduced side effects compared to DOX·HCl. The present work showed the potential clinical application of esterase-responsive drug delivery in cancer therapy.
Collapse
Affiliation(s)
- De-Zhong Xu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China.,Institute of Chemical Drug Control, China National Institute for Food and Drug Control, TianTanXiLi 2, Beijing100050, China
| | - Xue-Yi Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Ya-Xuan Liang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Hai-Wei Huang
- Institute of Chemical Drug Control, China National Institute for Food and Drug Control, TianTanXiLi 2, Beijing100050, China
| | - Rui Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Lan He
- Institute of Chemical Drug Control, China National Institute for Food and Drug Control, TianTanXiLi 2, Beijing100050, China
| |
Collapse
|
43
|
Valencia-Lazcano AA, Hassan D, Pourmadadi M, Shamsabadipour A, Behzadmehr R, Rahdar A, Medina DI, Díez-Pascual AM. 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. Eur J Med Chem 2023; 246:114995. [PMID: 36493619 DOI: 10.1016/j.ejmech.2022.114995] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
5-Fluorouracil (5-FU) is amongst the most commonly used antimetabolite chemotherapeutic agents in recent decades. However, its low bioavailability, short half-life, rapid metabolism and the development of drug resistance after chemotherapy limit its therapeutic efficiency. In this study, 5-FU applications as an anti-cancer drug for treating diverse types of cancers (e.g. colon, pancreatic and breast) have been reviewed. Different approaches lately designed to circumvent the drawbacks of 5-FU therapy are described herein, including 5-FU-loaded lipid-based nanoparticles (NPs), polymeric NPs (both stimuli and non-stimuli responsive), carbon-based nanostructures and inorganic NPs. Furthermore, co-delivery systems of 5-FU with other drugs (e.g. paclitaxel, gelatin-doxorubicin and naproxen) have been reviewed, which aid to attain better bioavailability, higher effectiveness at a lower concentration and lower toxicity. This review provides researchers with the latest progress on 5-FU-loaded nanocarriers, which show great potential as an advanced tool for cancer therapy.
Collapse
Affiliation(s)
| | - Dilawar Hassan
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico.
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Amin Shamsabadipour
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran.
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615, Zabol, Iran.
| | - Dora I Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Nuevo Leon 64849, Monterrey, Mexico.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
44
|
Jiang X, Du Z, Zhang X, Zaman F, Song Z, Guan Y, Yu T, Huang Y. Gelatin-based anticancer drug delivery nanosystems: A mini review. Front Bioeng Biotechnol 2023; 11:1158749. [PMID: 37025360 PMCID: PMC10070861 DOI: 10.3389/fbioe.2023.1158749] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Drug delivery nanosystems (DDnS) is widely developed recently. Gelatin is a high-potential biomaterial originated from natural resources for anticancer DDnS, which can effectively improve the utilization of anticancer drugs and reduce side effects. The hydrophilic, amphoteric behavior and sol-gel transition of gelatin can be used to fulfill various requirements of anticancer DDnS. Additionally, the high number of multifunctional groups on the surface of gelatin provides the possibility of crosslinking and further modifications. In this review, we focus on the properties of gelatin and briefly elaborate the correlation between the properties and anticancer DDnS. Furthermore, we discuss the applications of gelatin-based DDnS in various cancer treatments. Overall, we have summarized the excellent properties of gelatin and correlated with DDnS to provide a manual for the design of gelatin-based materials for DDnS.
Collapse
Affiliation(s)
- Xianchao Jiang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhen Du
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Xinran Zhang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Fakhar Zaman
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zihao Song
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Yuepeng Guan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| |
Collapse
|
45
|
Dinakar YH, Karole A, Parvez S, Jain V, Mudavath SL. Organ-restricted delivery through stimuli-responsive nanocarriers for lung cancer therapy. Life Sci 2022; 310:121133. [DOI: 10.1016/j.lfs.2022.121133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|
46
|
Yuan CS, Teng Z, Yang S, He Z, Meng LY, Chen XG, Liu Y. Reshaping hypoxia and silencing CD73 via biomimetic gelatin nanotherapeutics to boost immunotherapy. J Control Release 2022; 351:255-271. [PMID: 36165836 DOI: 10.1016/j.jconrel.2022.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
The ubiquitous hypoxic microenvironment at the tumor site helps to regulate hypoxic inducible factor (HIF-1α), up-regulate downstream CD73-adenosine (CD73-ADO) pathways, and further result in effector T cell function exhaustion, which is regarded as a crucial adverse factor in the poor clinical efficacy of immune checkpoint blockade therapy (ICB). How to reshape hypoxic microenvironment and silence CD73 remains a huge challenge to improve ICB therapeutic outcomes. In this study, cancer cell membrane-camouflaged gelatin nanoparticles (CSG@B16F10) were designed to co-deliver oxygen-generating agent catalase (CAT) and CD73siRNA, thus enhancing tumor oxygenation and alleviating CD73-ADO pathway-mediated T cell immunosuppression. The fabricated biomimetic nanoparticles could efficiently achieve immune evading and homologous targeting by virtue of the retention of cancer cell membrane protein. Matrix metalloproteinases (MMP)-responsive gelatin nanoparticles were gradually disintegrated to accelerate the release of payloads. Rapidly released CAT was found to relieve tumor hypoxia by generating endogenous oxygen, while CD73siRNA effectively silenced target gene, synergically inhibiting CD73 protein expression and facilitating T-cell-specific immunity. Upon introduction of CSG@B16F10 in melanoma-bearing mice, PD-L1 checkpoint blockade achieved optimal tumor suppression (∼83%). The enhanced immune efficacy was mainly manifested by enhanced cytotoxic T cell (CTL), reduced regulatory T cells (Tregs), and increased anti-tumor cytokine secretion. This work presents a new paradigm for the ideal design of biomimetic nanoplatforms and the synergistic treatment of hypoxia alleviation and CD73 silence, greatly promising for enhancing clinical immune potency of PD-1/PD-L1 immune checkpoint blockade.
Collapse
Affiliation(s)
- Cong-Shan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zhuang Teng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Shuang Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zheng He
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ling-Yang Meng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
47
|
Leung KS, Shirazi S, Cooper LF, Ravindran S. Biomaterials and Extracellular Vesicle Delivery: Current Status, Applications and Challenges. Cells 2022; 11:2851. [PMID: 36139426 PMCID: PMC9497093 DOI: 10.3390/cells11182851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
In this review, we will discuss the current status of extracellular vesicle (EV) delivery via biopolymeric scaffolds for therapeutic applications and the challenges associated with the development of these functionalized scaffolds. EVs are cell-derived membranous structures and are involved in many physiological processes. Naïve and engineered EVs have much therapeutic potential, but proper delivery systems are required to prevent non-specific and off-target effects. Targeted and site-specific delivery using polymeric scaffolds can address these limitations. EV delivery with scaffolds has shown improvements in tissue remodeling, wound healing, bone healing, immunomodulation, and vascular performance. Thus, EV delivery via biopolymeric scaffolds is becoming an increasingly popular approach to tissue engineering. Although there are many types of natural and synthetic biopolymers, the overarching goal for many tissue engineers is to utilize biopolymers to restore defects and function as well as support host regeneration. Functionalizing biopolymers by incorporating EVs works toward this goal. Throughout this review, we will characterize extracellular vesicles, examine various biopolymers as a vehicle for EV delivery for therapeutic purposes, potential mechanisms by which EVs exert their effects, EV delivery for tissue repair and immunomodulation, and the challenges associated with the use of EVs in scaffolds.
Collapse
Affiliation(s)
- Kasey S. Leung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lyndon F. Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
48
|
Kutoka PT, Seidu TA, Baye V, Khamis AM, Omonova CTQ, Wang B. Current nano-strategies to target tumor microenvironment (TME) to improve anti-tumor efficiency. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Khan MI, Zahra QUA, Batool F, Kalsoom F, Gao S, Ali R, Wang W, Kazmi A, Lianliang L, Wang G, Bilal M. Current Nano-Strategies to Improve Therapeutic Efficacy Across Special Structures. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Gonzalez-Avila G, Sommer B, García-Hernandez AA, Ramos C, Flores-Soto E. Nanotechnology and Matrix Metalloproteinases in Cancer Diagnosis and Treatment. Front Mol Biosci 2022; 9:918789. [PMID: 35720130 PMCID: PMC9198274 DOI: 10.3389/fmolb.2022.918789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is still one of the leading causes of death worldwide. This great mortality is due to its late diagnosis when the disease is already at advanced stages. Although the efforts made to develop more effective treatments, around 90% of cancer deaths are due to metastasis that confers a systemic character to the disease. Likewise, matrix metalloproteinases (MMPs) are endopeptidases that participate in all the events of the metastatic process. MMPs’ augmented concentrations and an increased enzymatic activity have been considered bad prognosis markers of the disease. Therefore, synthetic inhibitors have been created to block MMPs’ enzymatic activity. However, they have been ineffective in addition to causing considerable side effects. On the other hand, nanotechnology offers the opportunity to formulate therapeutic agents that can act directly on a target cell, avoiding side effects and improving the diagnosis, follow-up, and treatment of cancer. The goal of the present review is to discuss novel nanotechnological strategies in which MMPs are used with theranostic purposes and as therapeutic targets to control cancer progression.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
- *Correspondence: Georgina Gonzalez-Avila,
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - A. Armando García-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Carlos Ramos
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|