1
|
Koohi-Hosseinabadi O, Shahriarirad R, Dehghanian A, Amini L, Barzegar S, Daneshparvar A, Alavi O, Khazraei SP, Hosseini S, Arabi Monfared A, Khorram R, Tanideh N, Ashkani-Esfahani S. In-vitro and in-vivo assessment of biocompatibility and efficacy of ostrich eggshell membrane combined with platelet-rich plasma in Achilles tendon regeneration. Sci Rep 2025; 15:841. [PMID: 39755875 PMCID: PMC11700202 DOI: 10.1038/s41598-025-85131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025] Open
Abstract
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role. Ostrich eggshell membrane (ESM), characterized by a strong preferential orientation of calcite crystals, forms a semipermeable polymer network with excellent mechanical properties compared to membranes from other bird species, emerging as a potential natural scaffold candidate. Coupled with platelet-rich plasma (PRP), known for its regenerative properties, ESM holds promise for improving tendon repair. This study aims to evaluate the biocompatibility and efficacy of an ESM-PRP scaffold in treating Achilles tendon ruptures, employing in vitro and in vivo assessments to gauge its potential in tendon regeneration in living organisms. Ostrich ESM was prepared from pathogen-free ostrich eggs, sterilized with UV radiation and prepared in desired dimensions before implantation (1.5 × 1 cm). High-resolution scanning electron microscopy (HRSEM) was utilized to visualize the sample morphology and fiber bonding. In vitro biocompatibility was assessed using the MTT assay and DAPI staining, while in vivo biocompatibility was evaluated in a rat model. For the in vivo Achilles tendinopathy assay, rats were divided into groups and subjected to AT rupture followed by treatment with ESM, PRP, or a combination. SEM was employed to evaluate tendon morphology, and real-time PCR was conducted to analyze gene expression levels. The in vivo assay indicated that the ESM scaffold was safe for an extended period of 8 weeks, showing no signs of inflammation based on histopathological analysis. In the Achilles tendon rupture model, combining ESM with PRP enhanced tendon healing after 14 weeks post-surgery. This finding was supported by histopathological, morphological, and mechanical evaluations of tendon tissues compared to normal tendons, untreated tendinopathy, and injured tendons treated with the ESM scaffold. Gene expression analysis revealed significantly increased expression of Col1a1, Col3a1, bFGF, Scleraxis (Scx), and tenomodulin in the ESM-PRP groups. The findings of our study demonstrate that the combination of Ostrich ESM with PRP significantly enhances AT repair and is a biocompatible scaffold for the application in living organisms.
Collapse
Affiliation(s)
- Omid Koohi-Hosseinabadi
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amireza Dehghanian
- Department of Pathology, School of Medicine, Shiraz University, Shiraz, Iran
| | - Laleh Amini
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sajjad Barzegar
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Afrooz Daneshparvar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Alavi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Ali Arabi Monfared
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, P. O. Box: 7134845794, Shiraz, Iran.
- Pharmacology Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Soheil Ashkani-Esfahani
- Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Foot and Ankle Division, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Kim JU, Ko J, Kim YS, Jung M, Jang MH, An YH, Hwang NS. Electrical Stimulating Redox Membrane Incorporated with PVA/Gelatin Nanofiber for Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2400170. [PMID: 38989721 DOI: 10.1002/adhm.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Chronic wounds adversely affect the quality of life. Although electrical stimulation has been utilized to treat chronic wounds, there are still limitations to practicing it due to the complicated power system. Herein, an electrostimulating membrane incorporated with electrospun nanofiber (M-sheet) to treat diabetic wounds is developed. Through the screen printing method, the various alternate patterns of both Zn and AgCl on a polyurethane substrate, generating redox-mediated electrical fields are introduced. The antibacterial ability of the patterned membrane against both E. coli and S. aureus is confirmed. Furthermore, the poly(vinyl alcohol) (PVA)/gelatin electrospun fiber is incorporated into the patterned membrane to enhance biocompatibility and maintain the wet condition in the wound environment. The M-sheet can improve cell proliferation and migration in vitro and has an immune regulatory effect by inducing the polarization of macrophage to the M2 phenotype. Finally, when applied to a diabetic skin wound model, the M-sheet displays an accelerated wound healing rate and enhances re-epithelialization, collagen synthesis, and angiogenesis. It suggests that the M-sheet is a simple and portable system for the spontaneous generation of electrical stimulation and has great potential to be used in the practical wound and other tissue engineering applications.
Collapse
Affiliation(s)
- Jeong-Uk Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-Sol Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minwoong Jung
- Biosensor Laboratories Inc, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Myoung-Hoon Jang
- Biosensor Laboratories Inc, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Esmaeili S, Rahmati M, Zamani S, Djalilian AR, Arabpour Z, Salehi M. A comparison of several separation processes for eggshell membrane powder as a natural biomaterial for skin regeneration. Skin Res Technol 2024; 30:e70038. [PMID: 39256190 PMCID: PMC11387111 DOI: 10.1111/srt.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Numerous studies have focused on skin damage, the most prevalent physical injury, aiming to improve wound healing. The exploration of biomaterials, specifically eggshell membranes (ESMs), is undertaken to accelerate the recovery of skin injuries. The membrane must be separated from the shell to make this biomaterial usable. Hence, this investigation aimed to identify more about the methods for membrane isolation and determine the most efficient one for usage as a biomaterial. METHODS AND MATERIALS For this purpose, ESM was removed from eggs using different protocols (with sodium carbonate, acetic acid, HCl, calcium carbonate, and using forceps for separation). Consequently, we have examined the membranes' mechanical and morphological qualities. RESULTS According to the analysis of microscopic surface morphology, the membranes have appropriate porosity. MTT assay also revealed that the membranes have no cytotoxic effect on 3T3 cells. The results indicated that the ESM had acquired acceptable coagulation and was compatible with blood. Based on the obtained results, Provacol 4 (0.5-mol HCl and neutralized with 0.1-mol NaOH) was better than other methods of extraction and eggshell separation because it was more cell-compatible and more compatible with blood. CONCLUSION This study demonstrates that ESMs can be used as a suitable biomaterial in medical applications.
Collapse
Affiliation(s)
- Samaneh Esmaeili
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Majid Rahmati
- Department of Medical BiotechnologySchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Sepehr Zamani
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research CenterShahroud University of Medical SciencesShahroudIran
- Department of Tissue EngineeringSchool of MedicineShahroud University of Medical SciencesShahroudIran
| |
Collapse
|
4
|
Moustafa MH, Turkey MS, Mohamedin NS, Darwish AA, Elshal AAM, Yehia MAH, El Safwany MM, Mohamed EI. Eggshell membrane and green seaweed (Ulva lactuca) micronized powders for in vivo diabetic wound healing in albino rats: a comparative study. J Pharm Health Care Sci 2024; 10:43. [PMID: 39044300 PMCID: PMC11265442 DOI: 10.1186/s40780-024-00345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Nonhealing diabetic wounds are a serious complication associated with extremely lethargic wound closure and a high risk of infection, leading to amputation or limb loss, as well as substantial health care costs and a poor quality of life for the patient. The effects of either eggshell membrane (ESM) and green seaweed (Ulva lactuca) extracts alone or in combination were evaluated for in vivo skin wound healing in a rat model of induced diabetes. METHODS Micronized powders of waste hen ESM, Ulva lactuca, and their 1:1 mixture were prepared using regular procedures. The mechanical, electrical, and surface morphology characteristics of powders were examined using direct compression, LCR-impedancemetry, and scanning electron microscopy. The effect of ESM, Ulva lactuca, and their mixture as compared to standard Dermazin treatments were evaluated on wounds inflicted on male Wistar Albino rats with induced diabetes. Quantitative wound healing rates at baseline and at 3, 7, 14, and 21 days of treatments among all rat groups were conducted using ANOVA. Qualitative histological analysis of epidermal re-epithelization, keratinocytes, basement membrane, infiltrating lymphocytes, collagen fibrines, and blood vessels at day 21 were performed using Image J processing program. RESULTS Compressive strength measurements of tablets showed a Young's modulus of 44.14 and 27.17 MPa for the ESM and ESM + Ulva lactuca mixture, respectively. Moreover, both samples exhibited relatively low relative permittivity values of 6.62 and 6.95 at 1 MHz, respectively, due to the porous surface morphology of ESM shown by scanning electron microscopy. On day 21, rats treated with ESM had a complete diabetic wound closure, hair regrowth, and a healing rate of 99.49%, compared to 96.79% for Dermazin, 87.05% for Ulva lactuca, 90.23% for the mixture, and only 36.44% for the negative controls. A well-formed basement membrane, well-differentiated epithelial cells, and regular thick keratinocytes lining the surface of the epidermal cells accompanied wound healing in rats treated with ESM, which was significantly better than in control rats. CONCLUSION Ground hen ESM powder, a low-cost effective biomaterial, is better than Ulva lactuca or their mixture for preventing tissue damage and promoting diabetic wound healing, in addition to various biomedical applications.
Collapse
Affiliation(s)
- Moustafa H Moustafa
- Medical Biophysics Department, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, Alexandria, 21561, Egypt
| | - Mohamed S Turkey
- Microbiology and Immunology Department, Faculty of Pharmacy, October 6 University, Sixth of October City, Giza, Egypt
| | - Noha S Mohamedin
- Medical Biophysics Department, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, Alexandria, 21561, Egypt
| | - Amira A Darwish
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | - Amira A M Elshal
- Medical Biophysics Department, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, Alexandria, 21561, Egypt
| | - Mona A H Yehia
- Histochemistry and Cell Biology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed M El Safwany
- Radiological Sciences and Medical Imaging Department, Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | - Ehab I Mohamed
- Medical Biophysics Department, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, Alexandria, 21561, Egypt.
| |
Collapse
|
5
|
Zhang Z, Li N, Sun L, Liu Z, Jin Y, Xue Y, Li B, Xuan H, Yuan H. Eggshell membrane powder reinforces adhesive polysaccharide hydrogels for wound repair. Int J Biol Macromol 2024; 269:131879. [PMID: 38692527 DOI: 10.1016/j.ijbiomac.2024.131879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Multifunctional polysaccharide hydrogels with strong tissue adhesion, and antimicrobial and hemostatic properties are attractive wound healing materials. In this study, a chitosan-based hydrogel (HCS) was designed, and its properties were enhanced by incorporating oxidized eggshell membrane (OEM). Hydrogel characterization and testing results showed that the hydrogel had excellent antimicrobial properties, cytocompatibility, satisfactory adhesion properties on common substrates, and wet-state adhesion capacity. A rat liver injury model confirmed the significant hemostatic effect of the hydrogel. Finally, the ability of the hydrogel to promote wound healing was verified using rat skin wound repair experiments. Our findings indicate that HCS/OEM hydrogels with added eggshell membrane fibers have better self-healing properties, mechanical strength, adhesion, hemostatic properties, and biocompatibility than HCS hydrogels, in addition to having superior repair performance in wound repair experiments. Overall, the multifunctional polysaccharide hydrogels fabricated in this study are ideal for wound repair.
Collapse
Affiliation(s)
- Zhuojun Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Nianci Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Li Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Zihao Liu
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Yan Jin
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Ye Xue
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Biyun Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Hongyun Xuan
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China.
| | - Huihua Yuan
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
6
|
Banu SA, Pawde AM, Sharun K, Kalaiselvan E, Shivaramu S, Mathesh K, Chandra V, Kumar R, Maiti SK, Verma MR, Singh KP, Amarpal. Evaluation of bone marrow-derived mesenchymal stem cells with eggshell membrane for full-thickness wound healing in a rabbit model. Cell Tissue Bank 2024; 25:493-508. [PMID: 37542003 DOI: 10.1007/s10561-023-10105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Biomaterials capable of managing wounds should have essential features like providing a natural microenvironment for wound healing and as support material for stimulating tissue growth. Eggshell membrane (ESM) is a highly produced global waste due to increased egg consumption. The unique and fascinating properties of ESM allow their potential application in tissue regeneration. The wound healing capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs), ESM, and their combination in rabbits with full-thickness skin defect (2 × 2 cm2) was evaluated. Twenty-five clinically healthy New Zealand White rabbits were divided into five groups of five animals each, with group A receiving no treatment (control group), group B receiving only fibrin glue (FG), group C receiving FG and ESM as a dressing, group D receiving FG and BM-MSCs, and group E receiving a combination of FG, ESM, and BM-MSCs. Wound healing was assessed using clinical, macroscopical, photographic, histological, histochemical, hematological, and biochemical analysis. Macroscopic examination of wounds revealed that healing was exceptional in group E, followed by groups D and C, compared to the control group. Histopathological findings revealed improved quality and a faster rate of healing in group E compared to groups A and B. In addition, healing in group B treated with topical FG alone was nearly identical to that in control group A. However, groups C and D showed improved and faster recovery than control groups A and B. The macroscopic, photographic, histological, and histochemical evaluations revealed that the combined use of BM-MSCs, ESM, and FG had superior and faster healing than the other groups.
Collapse
Affiliation(s)
- S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - E Kalaiselvan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Shivaraju Shivaramu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karikalan Mathesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikas Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Med Ram Verma
- Division of Livestock Economics, Statistics and Information Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
7
|
Liang X, Xu H, Cong H, Wan X, Liu L, Li Y, Liu C, Chen C, Jiang G, Asadi K, He H. Robust Piezoelectric Biomolecular Membranes from Eggshell Protein for Wearable Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55790-55802. [PMID: 38009467 DOI: 10.1021/acsami.3c12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Flexible and wearable devices are drawing increasing attention due to their promising applications in energy harvesting and sensing. However, the application of wearable devices still faces great challenges, such as flexibility, repeatability, and biodegradability. Biopiezoelectric materials have been regarded as favorable energy-harvesting sources due to their nontoxicity and biocompatibility. Here, a wearable and biodegradable sensor is proposed to monitor human activities. The proposed sensor is fabricated via a low-cost, facile, and scalable electrospinning technology from nanofibers composed of eggshell membranes mixed with polyethylene oxide. It is shown that the sensor exhibits excellent flexibility, outstanding degradability, and mechanical stability over 3000 cycles under periodic stimulation. The device displays multiple potential applications, including the recognition of different objects, human motion monitoring, and active voice recognition. Finally, it is shown that the composite nanofiber membrane has good degradability and breathability. With excellent sensing performance, environmental friendliness, and ease of processing, the eggshell membrane-based sensor could be a promising candidate for greener and more environmentally friendly devices for application in implantable and wearable electronics.
Collapse
Affiliation(s)
- Xinhua Liang
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Xu
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Honglian Cong
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoqian Wan
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lu Liu
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Li
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Chaoyu Chen
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gaoming Jiang
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kamal Asadi
- Department of Physics, University of Bath, Bath BA2 7AY, U.K
| | - Haijun He
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Torres-Mansilla A, Álvarez-Lloret P, Voltes-Martínez A, López-Ruiz E, Baldión PA, Marchal JA, Gómez-Morales J. Apatite-coated outer layer eggshell membrane: A novel osteoinductive biohybrid composite for guided bone/tissue regeneration. BIOMATERIALS ADVANCES 2023; 154:213605. [PMID: 37651964 DOI: 10.1016/j.bioadv.2023.213605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Hybrid biomimetic materials aim to replicate the organic-inorganic constructs of mineralized tissues. During eggshell formation, the outer surface of the eggshell membrane (ESM) promotes calcium carbonate nucleation, while the inner one prevents mineralization toward the egg white and yolk. In the current study, the outer surface of the ESM acted as a heteronucleant in calcium phosphate precipitation by the vapor diffusion sitting drop method, while the inner one remained unmineralized. The aim was to fabricate a 2D biomaterial with dual functions, osteoinductive on one side and protective against cell invasion on the other side. The microstructural, physicochemical, morphological, and mechanical properties of the mineralized ESM were characterized by XRD, TGA, XPS, FTIR/Raman, HR-SEM, and mechanical testing techniques. The cytocompatibility and osteoinductive ability were assessed by biological assays of cell viability, proliferation, and osteogenic differentiation on human mesenchymal stromal cells (hMSCs). Results indicate that the outer surface of the ESM induces the heterogeneous precipitation of carbonate-apatite phase depicting biomimetic features. In addition, the apatite/ESM shows a much higher cytocompatibility than the pristine ESM and promotes the osteogenic differentiation of hMSCs more efficiently. Overall, the apatite/ESM composite exhibits compositional, crystalline, mechanical, and biological properties that resemble those of mineralized tissues, rendering it an approachable and novel material especially useful in guided tissue/bone regeneration.
Collapse
Affiliation(s)
| | - Pedro Álvarez-Lloret
- Department of Geology, Faculty of Geology, University of Oviedo, 33005 Oviedo, Spain.
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; BioFab i3D-Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18100 Granada, Spain; Department of Health Science, Faculty of Experimental Science, University of Jaen, 23071 Jaen, Spain; Excellence Research Unit "Modelling Nature" (MNat), University of Granada, 18100 Granada, Spain.
| | - Paula Alejandra Baldión
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, 111321 Bogotá, Colombia.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; BioFab i3D-Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain; Excellence Research Unit "Modelling Nature" (MNat), University of Granada, 18100 Granada, Spain.
| | - Jaime Gómez-Morales
- Laboratory of Crystallographic Studies, IACT-CSIC-University of Granada. Avda. Las Palmeras, 4, 18100 Armilla, Spain.
| |
Collapse
|
9
|
Mensah RA, Cook MT, Kirton SB, Hutter V, Chau DYS. A drug-incorporated-microparticle-eggshell-membrane-scaffold (DIMES) dressing: A novel biomaterial for localised wound regeneration. Eur J Pharm Biopharm 2023; 190:258-269. [PMID: 37463633 DOI: 10.1016/j.ejpb.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
Chronic wounds affect millions of people annually and have emotional and financial implications in addition to health issues. The current treatment for chronic wounds involves the repeated use of bandages and drugs such as antibiotics over an extended period. A cost-effective and convenient solution for wound healing is the development of drug-incorporated bandages. This study aimed to develop a biocompatible bandage made of drug-incorporated poly (lactic-co-glycolic acid) (PLGA) microparticles (MPs) and eggshell membrane (ESM) for cornea wound healing. ESM has desirable properties for wound healing and can be isolated from eggshells using acetic acid or ethylenediaminetetraacetic acid (EDTA) protocols. Fluorescein isothiocyanate-labelled Bovine Serum Albumin (FITC-BSA) was used as a model drug, and the PLGA MPs were fabricated using a solvent extraction method. The MPs were successfully attached to the fibrous layer of the ESM using NaOH. The surface features of the ESM samples containing MPs were studied using a field emission scanning electron microscope (FESEM) and compared with blank ESM images. The findings indicated that the MPs were attached to the ESM fibres and had similar shapes and sizes as the control MPs. The fibre diameters of the MPs samples were assessed using Fiji-ImageJ software, and no significant changes were observed compared to the blank ESM. The surface roughness, Ra values, of the MPs incorporated ESM samples were evaluated and compared to the blank ESM, and no significant changes were found. Fourier transform infrared (FTIR) spectroscopy was used to analyse the chemical Composition of the bandage, and the spectra showed that the FBM were effectively incorporated into the ESM. The FTIR spectra identified the major peaks of the natural ESM and the PLGA polymer in the bandage. The bandage was transparent but had a reduced visibility in the waterproof test card method. The bandage achieved sustained drug release up to 10 days and was found to be biocompatible and non-toxic in a chorioallantoic membrane (CAM) assay. Overall, the drug-incorporated PLGA MPs-ESM bandage has great potential for treating chronic wounds.
Collapse
Affiliation(s)
- Rosemond A Mensah
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK; Eastman Dental Institute, University College London, London, UK
| | - Michael T Cook
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK; School of Pharmacy, University College London, London, UK
| | - Stewart B Kirton
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - Victoria Hutter
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - David Yi San Chau
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK; Eastman Dental Institute, University College London, London, UK.
| |
Collapse
|
10
|
Mensah RA, Trotta F, Briggs E, Sharifulden NS, Silva LVB, Keskin-Erdogan Z, Diop S, Kureshi AK, Chau DYS. A Sustainable, Green-Processed, Ag-Nanoparticle-Incorporated Eggshell-Derived Biomaterial for Wound-Healing Applications. J Funct Biomater 2023; 14:450. [PMID: 37754864 PMCID: PMC10531947 DOI: 10.3390/jfb14090450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
The eggshell membrane (ESM) is a natural biomaterial with unique physical and mechanical properties that make it a promising candidate for wound-healing applications. However, the ESM's inherent properties can be enhanced through incorporation of silver nanoparticles (AgNPs), which have been shown to have antimicrobial properties. In this study, commercially produced AgNPs and green-processed AgNPs were incorporated into ESM and evaluated for their physical, biological, and antimicrobial properties for potential dermal application. The ESM was extracted using various techniques, and then treated with either commercially produced AgNPs (Sigma-Aldrich, Poole, UK) or green-synthesized AgNPs (Metalchemy, London, UK) to produce AgNPs-ESM samples. The physical characteristics of the samples were evaluated using scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, and the biological properties were assessed through in vitro studies using human dermal fibroblasts (HDFs) and BJ cells. The SEM analysis of the AgNPs-ESM samples showed localization of AgNPs on the ESM surface, and that the ESM maintained its structural integrity following AgNP incorporation. The FTIR confirmed loading of AgNPs to ESM samples. The biological studies showed that the 5 μg/mL AgNPs-ESM samples were highly biocompatible with both HDFs and BJ cells, and had good viability and proliferation rates. Additionally, the AgNPs-ESM samples demonstrated pro-angiogenic properties in the CAM assay, indicating their potential for promoting new blood vessel growth. Assessment of the antimicrobial activity of the enhanced AgNPs/ESMs was validated using the International Standard ISO 16869:2008 methodology and exploited Cladosporium, which is one of the most commonly identified fungi in wounds, as the test microorganism (≥5 × 106 cells/mL). The AgNPs-ESM samples displayed promising antimicrobial efficacy as evidenced by the measured zone of inhibition. Notably, the green-synthesized AgNPs demonstrated greater zones of inhibition (~17 times larger) compared to commercially available AgNPs (Sigma-Aldrich). Although both types of AgNP exhibited long-term stability, the Metalchemy-modified samples demonstrated a slightly stronger inhibitory effect. Overall, the AgNPs-ESM samples developed in this study exhibited desirable physical, biological, and antimicrobial properties for potential dermal wound-dressing applications. The use of green-processed AgNPs in the fabrication of the AgNPs-ESM samples highlights the potential for sustainable and environmentally friendly wound-healing therapies. Further research is required to assess the long-term biocompatibility and effectiveness of these biomaterials in vivo.
Collapse
Affiliation(s)
- Rosemond A. Mensah
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Federico Trotta
- Metalchemy Limited, 71-75 Shelton Street, London WC2H 9JQ, UK
| | - Emily Briggs
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
- Department of Materials, Henry Royce Institute, The University of Manchester, Rumford Street, Manchester M13 9PL, UK
| | - Nik San Sharifulden
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Lady V. Barrios Silva
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Zalike Keskin-Erdogan
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
- Chemical Engineering Department, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK
| | - Seyta Diop
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Alvena K. Kureshi
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, Foley Street, London W1W 7TY, UK
| | - David Y. S. Chau
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
11
|
Yang C, Zhang Z, Gan L, Zhang L, Yang L, Wu P. Application of Biomedical Microspheres in Wound Healing. Int J Mol Sci 2023; 24:7319. [PMID: 37108482 PMCID: PMC10138683 DOI: 10.3390/ijms24087319] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue injury, one of the most common traumatic injuries in daily life, easily leads to secondary wound infections. To promote wound healing and reduce scarring, various kinds of wound dressings, such as gauze, bandages, sponges, patches, and microspheres, have been developed for wound healing. Among them, microsphere-based tissue dressings have attracted increasing attention due to the advantage of easy to fabricate, excellent physicochemical performance and superior drug release ability. In this review, we first introduced the common methods for microspheres preparation, such as emulsification-solvent method, electrospray method, microfluidic technology as well as phase separation methods. Next, we summarized the common biomaterials for the fabrication of the microspheres including natural polymers and synthetic polymers. Then, we presented the application of the various microspheres from different processing methods in wound healing and other applications. Finally, we analyzed the limitations and discussed the future development direction of microspheres in the future.
Collapse
Affiliation(s)
- Caihong Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lexiang Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
12
|
Torres-Mansilla A, Hincke M, Voltes A, López-Ruiz E, Baldión PA, Marchal JA, Álvarez-Lloret P, Gómez-Morales J. Eggshell Membrane as a Biomaterial for Bone Regeneration. Polymers (Basel) 2023; 15:polym15061342. [PMID: 36987123 PMCID: PMC10057008 DOI: 10.3390/polym15061342] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The physicochemical features of the avian eggshell membrane play an essential role in the process of calcium carbonate deposition during shell mineralization, giving rise to a porous mineralized tissue with remarkable mechanical properties and biological functions. The membrane could be useful by itself or as a bi-dimensional scaffold to build future bone-regenerative materials. This review focuses on the biological, physical, and mechanical properties of the eggshell membrane that could be useful for that purpose. Due to its low cost and wide availability as a waste byproduct of the egg processing industry, repurposing the eggshell membrane for bone bio-material manufacturing fulfills the principles of a circular economy. In addition, eggshell membrane particles have has the potential to be used as bio-ink for 3D printing of tailored implantable scaffolds. Herein, a literature review was conducted to ascertain the degree to which the properties of the eggshell membrane satisfy the requirements for the development of bone scaffolds. In principle, it is biocompatible and non-cytotoxic, and induces proliferation and differentiation of different cell types. Moreover, when implanted in animal models, it elicits a mild inflammatory response and displays characteristics of stability and biodegradability. Furthermore, the eggshell membrane possesses a mechanical viscoelastic behavior comparable to other collagen-based systems. Overall, the biological, physical, and mechanical features of the eggshell membrane, which can be further tuned and improved, make this natural polymer suitable as a basic component for developing new bone graft materials.
Collapse
Affiliation(s)
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Ana Voltes
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Department of Health Sciences, Campus de las Lagunillas S/N, University of Jaén, 23071 Jaén, Spain
| | - Paula Alejandra Baldión
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
| | - Pedro Álvarez-Lloret
- Departamento de Geología, Universidad de Oviedo, 33005 Asturias, Spain
- Correspondence: (P.Á.-L.); (J.G.-M.)
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos IACT–CSIC–UGR, Avda. Las Palmeras, No. 4, Armilla, 18100 Granada, Spain
- Correspondence: (P.Á.-L.); (J.G.-M.)
| |
Collapse
|
13
|
Xia L, Chen F, Chao J, Zhang D, Tian Y, Zhang D. Femtosecond laser engineered eggshell membrane for durable oil/water separation under harsh conditions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Chen X, Chen Y, Fu B, Li K, Huang D, Zheng C, Liu M, Yang DP. Eggshell membrane-mimicking multifunctional nanofiber for in-situ skin wound healing. Int J Biol Macromol 2022; 210:139-151. [PMID: 35537580 DOI: 10.1016/j.ijbiomac.2022.04.212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
Abstract
Eggshell membrane is a naturally-occurring protective barrier layer for chickens' incubation and shows the close similarity with extracellular matrix. To fully explore and utilize its' structure and active components via a mimicking way will be of great interest for wounds healing. Herein, the well-dispersed CuS nanoparticles were prepared by using eggshell membranes as templates with strong near-infrared absorption and photothermal properties. Furthermore, the as-prepared solution was combined with polyvinyl pyrrolidone and chitosan-derived fluorescent carbon dots for the mimetic synthesis of multifunctional nanofibrous membrane by a hand-held electrospinning device, which has the merits of in-situ operation, the extracellular matrix (ECM)-like architecture, hemostatic, radical scavenging, antibacterial, as well as accelerated healing of skin injury, etc. The electrospun-nanofiber membrane with optimal addition of 100 mg/L CuS nanoparticles was confirmed to be noncytotoxic on human fibroblasts and showed strong antibacterial activities against S. aureus and E. coli under NIR irradiation (980 nm). In addition, the radical scavenging ability was also proved by DPPH experiments. The animal experiments revealed that the nanofiber membrane could accelerate the wound healing process. The work lays down a simple and environmentally-friendly approach for the fabrication and development of promising wound healing materials in skin tissue engineering applications.
Collapse
Affiliation(s)
- Xiaofang Chen
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yaqin Chen
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China
| | - Bofei Fu
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China
| | - Kunjie Li
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Donghong Huang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Chaohui Zheng
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Minghuan Liu
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China.
| | - Da-Peng Yang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China.
| |
Collapse
|
15
|
Sun P, Yan S, Zhang L, Zhang C, Wu H, Wei S, Xie B, Wang X, Bai H. Egg Shell Membrane as an Alternative Vascular Patch for Arterial Angioplasty. Front Bioeng Biotechnol 2022; 10:843590. [PMID: 35372291 PMCID: PMC8971674 DOI: 10.3389/fbioe.2022.843590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: The egg shell membrane (ESM) is always considered as waste, but recent studies have shown that it has the potential to yield rapid re-endothelialization in vitro. We hypothesized that ESM and heparin-conjugated ESM (HESM) can be used as arterial patch in a rat aortic angioplasty model.Method: Sprague-Dawley rat (200 g) abdominal aortic patch angioplasty model was used. Decellularized rat thoracic aorta (TA) patch was used as the control; ESM patch was made of raw chicken egg; heparin-coated ESM (HESM) patch was made by using dopamine; anticoagulation properties were verified using platelet adhesion tests; the TA, ESM, and HESM patches were implanted to the rat aorta and harvested at day 14; and the samples were examined by immunohistochemistry and immunofluorescence.Result: The ESM patch showed a similar healing process to the TA patch; the cells could migrate and infiltrate into both patches; there was a neointima with von Willebrand factor-positive endothelial cells; the endothelial cells acquired arterial identity with Ephrin-B2- and dll-4-positive cells; there were proliferating cell nuclear antigen (PCNA)-positive cells, and PCNA and alpha smooth muscle actin dual-positive cells in the neointima in both groups. Heparin was conjugated to the patch successfully and showed a strong anticoagulation property in vitro. HESM could decrease mural thrombus formation after rat aortic patch angioplasty.Conclusion: The ESM is a natural scaffold that can be used as a vascular patch; it showed a similar healing process to decellularized TA patch; HESM showed anticoagulation property both in vitro and in vivo; and the ESM may be a promising vascular graft in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| | - Shujie Yan
- National Center for International Research of Micro-Nano Molding Technology, Key Laboratory of Henan Province for Micro Molding Technology, Zhengzhou, China
- School of Mechanics Science and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoliang Wu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Wang
- National Center for International Research of Micro-Nano Molding Technology, Key Laboratory of Henan Province for Micro Molding Technology, Zhengzhou, China
- School of Mechanics Science and Safety Engineering, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaofeng Wang, ; Hualong Bai,
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
- *Correspondence: Xiaofeng Wang, ; Hualong Bai,
| |
Collapse
|