1
|
Asakura T, Hayashi T, Tanaka T, Tatematsu KI, Sezutsu H. Promotion of endothelialization of silk functionalized with IKVAV peptide and production of silk containing IKVAV-REDV sequence by transgenic silkworms. J Biomater Appl 2025:8853282251345003. [PMID: 40391668 DOI: 10.1177/08853282251345003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Early endothelialization and the prevention of platelet adhesion are crucial in the development of small-diameter vascular grafts to prevent thrombus formation and intimal thickening. Silk fibroin (SF) from Bombyx mori is commonly used for such grafts. In our previous study, we found that silk vascular grafts coated with sponge-like transgenic (TG) silk incorporating the arginine-glutamic acid-aspartate-valine (REDV) peptide and transplanted into rats yielded favorable results. In this study, we aimed to achieve even better results by incorporating additional peptides into TG silk containing REDV and coating silk vascular grafts with this sponge. Initially, we sought to identify such peptides. We attempted to immobilize several peptides containing REDV onto silk using cyanuric chloride. Cell culture experiments with normal human umbilical vein endothelial cells (HUVECs) were performed on SF, SF+REDV, SF + arginine-glycine- aspartate (RGD), SF+cysteine-alanine-glycine (CAG), and SF + isoleucine-lysine- valine- alanine-valine (IKVAV) films to assess adhesion, proliferation, and extensibility; SF+RGD and SF+IKVAV films demonstrated high adhesion behavior of HUVECs. In addition, platelet adhesion on these SF+peptide films was evaluated. Platelet adhesion strength was much higher on SF+RGD films than on other SF+peptide films. These results suggest that IKVAV may be the most suitable peptide for coating SF vascular grafts. Subsequently, we successfully produced TG silk incorporating IKVAV+REDV. We then coated small-diameter silk vascular grafts with sponge-like TG silk incorporating IKVAV+REDV and measured its physical properties.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology - Kaganei Campus, Koganei, Japan
| | - Tatsuya Hayashi
- Department of Biotechnology, Tokyo University of Agriculture and Technology - Kaganei Campus, Koganei, Japan
| | - Takashi Tanaka
- Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ken-Ichiro Tatematsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
2
|
Peng P, Ding S, Liang M, Zheng W, Kang Y, Liu W, Shi H, Gao C. A self-sacrificing anti-inflammatory coating promotes simultaneous cardiovascular repair and reendothelialization of implanted devices. Bioact Mater 2025; 47:502-512. [PMID: 40026826 PMCID: PMC11872464 DOI: 10.1016/j.bioactmat.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
During interventional surgeries of implantable cardiovascular devices in addressing cardiovascular diseases (CVD), the inevitable tissue damage will trigger host inflammation and vascular lumen injury, leading to delayed re-endothelization and intimal hyperplasia. Endowing cardiovascular implants with anti-inflammatory and endothelialization functions is conducive to the target site, offering significant tissue repair and regeneration benefits. Herein, inspired by the snake's molting process, a ShedWise device was developed by using the poly(propylene fumarate) polyurethane (PPFU) as the foundational material, which was clicked with hyperbranched polylysine (HBPL) and followed by conjugation with pro-endothelial functional Arg-Glu-Asp-Val peptide (REDV), and finally coated with a "self-sacrificing" layer having reactive oxygen species (ROS)-scavenging ability and degradability. During the acute inflammation in the initial stage of implantation, the ROS-responsive hyperbranched poly(acrylate-capped thioketone-containing ethylene glycol (HBPAK) coating effectively modulated the level of environmental inflammation and resisted initial protein adsorption, showcasing robust tissue protection. As the coating gradually "sacrificed", the exposed hyperbranched HBPL-REDV layer recruited specifically endothelial cells and promoted surface endothelialization. In a rat vascular injury model, the ShedWise demonstrated remarkable efficiency in reducing vascular restenosis, protecting the injured tissue, and fostering re-endothelization of the target site. This innovative design will introduce a novel strategy for surface engineering of cardiovascular implants and other medical devices.
Collapse
Affiliation(s)
- Pai Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shili Ding
- Department of Hand Surgery, First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310003, China
| | - Min Liang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Haifei Shi
- Department of Hand Surgery, First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310003, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
- The State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
3
|
Nasiri B, Das A, Ramachandran K, Bhamidipati SH, Wu Y, Venkatesan S, Gunawan R, Swartz DD, Andreadis ST. Immune-mediated regeneration of cell-free vascular grafts in an ovine model. NPJ Regen Med 2025; 10:13. [PMID: 40108187 PMCID: PMC11923281 DOI: 10.1038/s41536-025-00400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
We developed acellular tissue engineered vessels (ATEV) using small intestine submucosa (SIS) incorporating heparin and a novel protein named H2R5. ATEVs were implanted into the arterial circulation of an ovine animal model, demonstrating high primary patency rates over a period of three months. Implanted grafts were infiltrated by host cells, the majority of which were monocytes/macrophages (MC/MΦ), as demonstrated by scRNA sequencing and immunostaining. They also developed functional endothelial and medial layers that deposited new extracellular matrix leading to matrix remodeling and acquisition of mechanical properties that were similar to those of native arteries. Notably, during this short implantation time, ATEVs turned into functional neo-arteries, as evidenced by the development of the vascular contractile function. Our findings underscore the potential of H2R5-functionalized ATEVs as promising candidates for tissue replacement grafts in a large pre-clinical animal model and highlight the contribution of macrophages in vascular regeneration.
Collapse
Affiliation(s)
- Bita Nasiri
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Arundhati Das
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Karthik Ramachandran
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Sai Harsha Bhamidipati
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Yulun Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shriramprasad Venkatesan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Amherst, NY, USA
| | | | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Amherst, NY, USA.
- Angiograft LLC, Amherst, NY, USA.
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA.
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
| |
Collapse
|
4
|
Rodríguez-Soto MA, Riveros-Cortés A, Orjuela-Garzón IC, Fernández-Calderón IM, Rodríguez CF, Vargas NS, Ostos C, Camargo CM, Cruz JC, Kim S, D’Amore A, Wagner WR, Briceño JC. Redefining vascular repair: revealing cellular responses on PEUU-gelatin electrospun vascular grafts for endothelialization and immune responses on in vitro models. Front Bioeng Biotechnol 2024; 12:1410863. [PMID: 38903186 PMCID: PMC11188488 DOI: 10.3389/fbioe.2024.1410863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) poised for regenerative applications are central to effective vascular repair, with their efficacy being significantly influenced by scaffold architecture and the strategic distribution of bioactive molecules either embedded within the scaffold or elicited from responsive tissues. Despite substantial advancements over recent decades, a thorough understanding of the critical cellular dynamics for clinical success remains to be fully elucidated. Graft failure, often ascribed to thrombogenesis, intimal hyperplasia, or calcification, is predominantly linked to improperly modulated inflammatory reactions. The orchestrated behavior of repopulating cells is crucial for both initial endothelialization and the subsequent differentiation of vascular wall stem cells into functional phenotypes. This necessitates the TEVG to provide an optimal milieu wherein immune cells can promote early angiogenesis and cell recruitment, all while averting persistent inflammation. In this study, we present an innovative TEVG designed to enhance cellular responses by integrating a physicochemical gradient through a multilayered structure utilizing synthetic (poly (ester urethane urea), PEUU) and natural polymers (Gelatin B), thereby modulating inflammatory reactions. The luminal surface is functionalized with a four-arm polyethylene glycol (P4A) to mitigate thrombogenesis, while the incorporation of adhesive peptides (RGD/SV) fosters the adhesion and maturation of functional endothelial cells. The resultant multilayered TEVG, with a diameter of 3.0 cm and a length of 11 cm, exhibits differential porosity along its layers and mechanical properties commensurate with those of native porcine carotid arteries. Analyses indicate high biocompatibility and low thrombogenicity while enabling luminal endothelialization and functional phenotypic behavior, thus limiting inflammation in in-vitro models. The vascular wall demonstrated low immunogenicity with an initial acute inflammatory phase, transitioning towards a pro-regenerative M2 macrophage-predominant phase. These findings underscore the potential of the designed TEVG in inducing favorable immunomodulatory and pro-regenerative environments, thus holding promise for future clinical applications in vascular tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carlos Ostos
- Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Juan C. Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Department of Congenital Heart Disease and Cardiovascular Surgery, Fundación CardioInfantil Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
5
|
Mayer K, Ruhoff A, Chan NJ, Waterhouse A, O'Connor AJ, Scheibel T, Heath DE. REDV-Functionalized Recombinant Spider Silk for Next-Generation Coronary Artery Stent Coatings: Hemocompatible, Drug-Eluting, and Endothelial Cell-Specific Materials. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470984 DOI: 10.1021/acsami.3c17861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Coronary artery stents are life-saving devices, and millions of these devices are implanted annually to treat coronary heart disease. The current gold standard in treatment is drug-eluting stents, which are coated with a biodegradable polymer layer that elutes antiproliferative drugs to prevent restenosis due to neointimal hyperplasia. Stenting is commonly paired with systemic antiplatelet therapy to prevent stent thrombosis. Despite their clinical success, current stents have significant limitations including inducing local inflammation that drives hyperplasia; a lack of hemocompatibility that promotes thrombosis, increasing need for antiplatelet therapy; and limited endothelialization, which is a critical step in the healing process. In this research, we designed a novel material for use as a next-generation coating for drug-eluting stents that addresses the limitations described above. Specifically, we developed a recombinant spider silk material that is functionalized with an REDV cell-adhesive ligand, a peptide motif that promotes specific adhesion of endothelial cells in the cardiovascular environment. We illustrated that this REDV-modified spider silk variant [eADF4(C16)-REDV] is an endothelial-cell-specific material that can promote the formation of a near-confluent endothelium. We additionally performed hemocompatibility assays using human whole blood and demonstrated that spider silk materials exhibit excellent hemocompatibility under both static and flow conditions. Furthermore, we showed that the material displayed slow enzyme-mediated degradation. Finally, we illustrated the ability to load and release the clinically relevant drug everolimus from recombinant spider silk coatings in a quantity and at a rate similar to that of commercial devices. These results support the use of REDV-functionalized recombinant spider silk as a coating for drug-eluting stents.
Collapse
Affiliation(s)
- Kai Mayer
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Chair for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Alexander Ruhoff
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - Nicholas J Chan
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anna Waterhouse
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Thomas Scheibel
- Chair for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof. Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Materialzentrum (BayMat), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayrisches Polymerinstitut (BPI), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
6
|
Zhang W, Fukazawa K, Mahara A, Jiang H, Yamaoka T. Photo-induced universal modification of small-diameter decellularized blood vessels with a hemocompatible peptide improves in vivo patency. Acta Biomater 2024; 176:116-127. [PMID: 38232911 DOI: 10.1016/j.actbio.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Decellularized vessels (DVs) have the potential to serve as available grafts for small-diameter vascular (<6 mm) reconstruction. However, the absence of functional endothelia makes them likely to trigger platelet aggregation and thrombosis. Luminal surface modification is an efficient approach to prevent thrombosis and promote endothelialization. Previously, we identified a hemocompatible peptide, HGGVRLY, that showed endothelial affinity and antiplatelet ability. By conjugating HGGVRLY with a phenylazide group, we generated a photoreactive peptide that can be modified onto multiple materials, including non-denatured extracellular matrices. To preserve the natural collagen of DVs as much as possible, we used a lower ultrahydrostatic pressure than that previously reported to prepare decellularized grafts. The photoreactive HGGVRLY peptide could be modified onto DV grafts via UV exposure for only 2 min. Modified DVs showed improved endothelial affinity and antiplatelet ability in vitro. When rat abdominal aortas were replaced with DVs, modified DVs with more natural collagen demonstrated the highest patent rate after 10 weeks. Moreover, the photoreactive peptide remained on the lumen surface of DVs over two months after implantation. Therefore, the photoreactive peptide could be efficiently and sustainably modified onto DVs with more natural collagens, resulting in improved hemocompatibility. STATEMENT OF SIGNIFICANCE: We employed a relatively lower ultrahydrostatic pressure to prepare decellularized vessels (DVs) with less denatured collagens to provide a more favorable environment for cell migration and proliferation. The hemocompatibility of DV luminal surface can be enhanced by peptide modification, but undenatured collagens are difficult to modify. We innovatively introduce a phenylazide group into the hemocompatible peptide HGGVRLY, which we previously identified to possess endothelial affinity and antiplatelet ability, to generate a photoreactive peptide. The photoreactive peptide can be efficiently and stably modified onto DVs with more natural collagens. DV grafts modified with photoreactive peptide exhibit enhanced in vivo patency. Furthermore, the sustainability of photoreactive peptide modification on DV grafts within bloodstream is evident after two months of transplantation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan; Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing China
| | - Kyoko Fukazawa
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing China
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan.
| |
Collapse
|
7
|
Asakura T, Shimokawatoko H, Nakazawa Y. Characterization and promotion of endothelialization of Bombyx mori silk fibroin functionalized with REDV peptide. Int J Biol Macromol 2024; 261:129746. [PMID: 38302025 DOI: 10.1016/j.ijbiomac.2024.129746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
In the development of small-diameter vascular grafts, it is crucial to achieve early-stage endothelialization to prevent thrombus formation and intimal hyperplasia. Silk fibroin (SF) from Bombyx mori is commonly used for such grafts. However, there is a need to expedite endothelialization post-implantation. In this study, we functionalized SF with Arg-Glu-Asp-Val (REDV) (SF + REDV) using cyanuric chloride to enhance endothelialization. The immobilization of REDV onto SF was confirmed and the amount of immobilized REDV could be calculated by 1H NMR. Furthermore, the conformational changes in Tyr, Ser, and Ala residues in [3-13C]Tyr- and [3-13C]Ser-SF due to REDV immobilization were monitored using 13C solid-state NMR. The REDV immobilized onto the SF film was found to be exposed on the film's surface, as confirmed by biotin-avidin system. Cell culture experiments, including adhesiveness, proliferation, and extensibility, were conducted using normal human umbilical vein endothelial cells (HUVEC) and normal human aortic smooth muscle cells (HAoSMC) on both SF and SF + REDV films to evaluate the impact of REDV on endothelialization. The results indicated a trend towards promoting HUVEC proliferation while inhibiting HAoSMC proliferation. Therefore, these findings suggest that SF + REDV may be more suitable than SF alone for coating small-diameter SF knitted tubes made of SF threads.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Haruka Shimokawatoko
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yasumoto Nakazawa
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
8
|
Mahara A, Shirai M, Soni R, Le HT, Shimizu K, Hirano Y, Yamaoka T. Vascular tissue reconstruction by monocyte subpopulations on small-diameter acellular grafts via integrin activation. Mater Today Bio 2023; 23:100847. [PMID: 37953756 PMCID: PMC10632538 DOI: 10.1016/j.mtbio.2023.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Although the clinical application of cell-free tissue-engineered vascular grafts (TEVGs) has been proposed, vascular tissue regeneration mechanisms have not been fully clarified. Here, we report that monocyte subpopulations reconstruct vascular-like tissues through integrin signaling. An Arg-Glu-Asp-Val peptide-modified acellular long-bypass graft was used as the TEVG, and tissue regeneration in the graft was evaluated using a cardiopulmonary pump system and porcine transplantation model. In 1 day, the luminal surface of the graft was covered with cells that expressed CD163, CD14, and CD16, which represented the monocyte subpopulation, and they exhibited proliferative and migratory abilities. RNA sequencing showed that captured cells had an immune-related phenotype similar to that of monocytes and strongly expressed cell adhesion-related genes. In vitro angiogenesis assay showed that tube formation of the captured cells occurred via integrin signal activation. After medium- and long-term graft transplantation, the captured cells infiltrated the tunica media layer and constructed vascular with a CD31/CD105-positive layer and an αSMA-positive structure after 3 months. This finding, including multiple early-time observations provides clear evidence that blood-circulating monocytes are directly involved in vascular remodeling.
Collapse
Affiliation(s)
- Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shimmachi, Suita Osaka, 564-8565, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shimmachi, Suita Osaka, 564-8565, Japan
| | - Raghav Soni
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shimmachi, Suita Osaka, 564-8565, Japan
| | - Hue Thi Le
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shimmachi, Suita Osaka, 564-8565, Japan
| | - Kaito Shimizu
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka, 565-8680, Japan
| | - Yoshiaki Hirano
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka, 565-8680, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shimmachi, Suita Osaka, 564-8565, Japan
| |
Collapse
|
9
|
Tang Y, Yin L, Gao S, Long X, Du Z, Zhou Y, Zhao S, Cao Y, Pan S. A small-diameter vascular graft immobilized peptides for capturing endothelial colony-forming cells. Front Bioeng Biotechnol 2023; 11:1154986. [PMID: 37101749 PMCID: PMC10123284 DOI: 10.3389/fbioe.2023.1154986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
Combining synthetic polymers and biomacromolecules prevents the occurrence of thrombogenicity and intimal hyperplasia in small-diameter vascular grafts (SDVGs). In the present study, an electrospinning poly (L)-lactic acid (PLLA) bilayered scaffold is developed to prevent thrombosis after implantation by promoting the capture and differentiation of endothelial colony-forming cells (ECFCs). The scaffold consists of an outer PLLA scaffold and an inner porous PLLA biomimetic membrane combined with heparin (Hep), peptide Gly-Gly-Gly-Arg-Glu-Asp-Val (GGG-REDV), and vascular endothelial growth factor (VEGF). Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle goniometry were performed to determine successful synthesis. The tensile strength of the outer layer was obtained using the recorded stress/strain curves, and hemocompatibility was evaluated using the blood clotting test. The proliferation, function, and differentiation properties of ECFCs were measured on various surfaces. Scanning electronic microscopy (SEM) was used to observe the morphology of ECFCs on the surface. The outer layer of scaffolds exhibited a similar strain and stress performance as the human saphenous vein via the tensile experiment. The contact angle decreased continuously until it reached 56° after REDV/VEGF modification, and SEM images of platelet adhesion showed a better hemocompatibility surface after modification. The ECFCs were captured using the REDV + VEGF + surface successfully under flow conditions. The expression of mature ECs was constantly increased with the culture of ECFCs on REDV + VEGF + surfaces. SEM images showed that the ECFCs captured by the REDV + VEGF + surface formed capillary-like structures after 4 weeks of culture. The SDVGs modified by REDV combined with VEGF promoted ECFC capture and rapid differentiation into ECs, forming capillary-like structures in vitro. The bilayered SDVGs could be used as vascular devices that achieved a high patency rate and rapid re-endothelialization.
Collapse
Affiliation(s)
- Yaqi Tang
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Lu Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Shuai Gao
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, China
| | - Zhanhui Du
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Yingchao Zhou
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Shuiyan Zhao
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Yue Cao
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Silin Pan
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Nasiri B, Yi T, Wu Y, Smith RJ, Podder AK, Breuer CK, Andreadis ST. Monocyte Recruitment for Vascular Tissue Regeneration. Adv Healthc Mater 2022; 11:e2200890. [PMID: 36112115 PMCID: PMC9671850 DOI: 10.1002/adhm.202200890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/05/2022] [Indexed: 01/28/2023]
Abstract
A strategy to recruit monocytes (MCs) from blood to regenerate vascular tissue from unseeded (cell-free) tissue engineered vascular grafts is presented. When immobilized on the surface of vascular grafts, the fusion protein, H2R5 can capture blood-derived MC under static or flow conditions in a shear stress dependent manner. The bound MC turns into macrophages (Mϕ) expressing both M1 and M2 phenotype specific genes. When H2R5 functionalized acellular-tissue engineered vessels (A-TEVs) are implanted into the mouse aorta, they remain patent and form a continuous endothelium expressing both endothelial cell (EC) and MC specific proteins. Underneath the EC layer, multiple cells layers are formed coexpressing both smooth muscle cell (SMC) and MC specific markers. Lineage tracing analysis using a novel CX3CR1-confetti mouse model demonstrates that fluorescently labeled MC populates the graft lumen by two and four weeks postimplantation, providing direct evidence in support of MC/Mϕ recruitment to the graft lumen. Given their abundance in the blood, circulating MCs may be a great source of cells that contribute directly to the endothelialization and vascular wall formation of acellular vascular grafts under the right chemical and biomechanical cues.
Collapse
Affiliation(s)
- Bita Nasiri
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Tai Yi
- Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Yulun Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Randall J. Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Ashis Kumar Podder
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | | | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| |
Collapse
|
11
|
Tian Y, Seeto WJ, Páez-Arias MA, Hahn MS, Lipke EA. Endothelial colony forming cell rolling and adhesion supported by peptide-grafted hydrogels. Acta Biomater 2022; 152:74-85. [PMID: 36031035 DOI: 10.1016/j.actbio.2022.08.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 01/13/2023]
Abstract
The aim of this study was to investigate the ability of peptides and peptide combinations to support circulating endothelial colony forming cell (ECFC) rolling and adhesion under shear flow, informing biomaterial design in moving toward rapid cardiovascular device endothelialization. ECFCs have high proliferative capability and can differentiate into endothelial cells, making them a promising cell source for endothelialization. Both single peptides and peptide combinations designed to target integrins α4β1 and α5β1 were coupled to poly(ethylene glycol) hydrogels, and their performance was evaluated by monitoring velocity patterns during the ECFC rolling process, in addition to firm adhesion (capture). Tether percentage and velocity fluctuation, a parameter newly defined here, were found to be valuable in assessing cell rolling velocity patterns and when used in combination were able to predict cell capture. REDV-containing peptides binding integrin α4β1 have been previously shown to reduce ECFC rolling velocity but not to support firm adhesion. This study finds that the performance of REDV-containing peptides in facilitating ECFC dynamic adhesion and capture can be improved by combination with α5β1 integrin-binding peptides, which support ECFC static adhesion. Moreover, when similar in length, the peptide combinations may have synergistic effects in capturing ECFCs. With matching lengths, the peptide combinations including CRRETAWAC(cyclic)+REDV, P_RGDS+KSSP_REDV, and P_RGDS+P_REDV showed high values in both tether percentage and velocity fluctuation and improvement in ECFC capture compared to the single peptides at the shear rate of 20 s-1. These newly identified peptide combinations have the potential to be used as vascular device coatings to recruit ECFCs. STATEMENT OF SIGNIFICANCE: Restoration of functional endothelium following placement of stents and vascular grafts is critical for maintaining long-term patency. Endothelial colony forming cells (ECFCs) circulating in blood flow are a valuable cell source for rapid endothelialization. Here we identify and test novel peptides and peptide combinations that can potentially be used as coatings for vascular devices to support rolling and capture of ECFCs from flow. In addition to the widely used assessment of final ECFC adhesion, we also recorded the rolling process to quantitatively evaluate the interaction between ECFCs and the peptides, obtaining detailed performance of the peptides and gaining insight into effective capture molecule design. Peptide combinations targeting both integrin α4β1 and integrin α5β1 showed the highest percentages of ECFC capture.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Wen J Seeto
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Mayra A Páez-Arias
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Mariah S Hahn
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA.
| |
Collapse
|
12
|
Bian Q, Chen J, Weng Y, Li S. Endothelialization strategy of implant materials surface: The newest research in recent 5 years. J Appl Biomater Funct Mater 2022; 20:22808000221105332. [PMID: 35666145 DOI: 10.1177/22808000221105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, more and more metal or non-metal materials have been used in the treatment of cardiovascular diseases, but the vascular complications after transplantation are still the main factors restricting the clinical application of most grafts, such as acute thrombosis and graft restenosis. Implant materials have been extensively designed and surface optimized by researchers, but it is still too difficult to avoid complications. Natural vascular endodermis has excellent function, anti-coagulant and anti-intimal hyperplasia, and it is also the key to maintaining the homeostasis of normal vascular microenvironment. Therefore, how to promote the adhesion of endothelial cells (ECs) on the surface of cardiovascular materials to achieve endothelialization of the surface is the key to overcoming the complications after implant materialization. At present, the surface endothelialization design of materials based on materials surface science, bioactive molecules, and biological function intervention and feedback has attracted much attention. In this review, we summarize the related research on the surface modification of materials by endothelialization in recent years, and analyze the advantages and challenges of current endothelialization design ideas, explain the relationship between materials, cells, and vascular remodeling in order to find a more ideal endothelialization surface modification strategy for future researchers to meet the requirements of clinical biocompatibility of cardiovascular materials.
Collapse
Affiliation(s)
- Qihao Bian
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
13
|
Patel DK, Menon DV, Patel DH, Dave G. Linkers: A synergistic way for the synthesis of chimeric proteins. Protein Expr Purif 2021; 191:106012. [PMID: 34767950 DOI: 10.1016/j.pep.2021.106012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/15/2022]
Abstract
In the cell, the protein domains are attached with the short oligopeptide, commonly known as linker peptide. Besides bridging, the linker assists in the domain-domain interaction and protein folding into the peculiar conformations. Linkers allow or control the movement of protein domains in the dynamic cellular environment. The recent advances in the recombinant DNA technology enable the construction of multiple gene constructs in an open reading frame. The express sequences can work in a cascade to cater for myriad functions. This trend has given momentum to incorporating bridge sequences (linker) that essentially separates the independent domains. According to the cellular need, the bridging partner can be spaced at a secure gap or requires attaching or interacting physically. The flexible or rigid linker can help to achieve such conformations in chimeric fusion proteins. The linker can improve solubility, proteolytic resistance and stability of such fusion proteins. Recently, linker aided protein switches and antibody-drug conjugates are gaining the attention of researchers worldwide. Here, we thoroughly reviewed the types of the linker, strategies for linker engineering and the composition of a linker.
Collapse
Affiliation(s)
- Dharti Keyur Patel
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, 388421, Gujarat, India
| | - Dhanya V Menon
- Tata Institute of Fundamental Research, NCBS, Bangalore, 560065, India
| | - Darshan H Patel
- Charotar Institute of Paramedical Sciences, CHARUSAT, Changa, 388421, Gujarat, India
| | - Gayatri Dave
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, 388421, Gujarat, India.
| |
Collapse
|