1
|
Deng YL, Chi BT, Lu SY, Xiong DD, He RQ, Qin DY, Huang WY, Yang X, Chen G, Peng W, Luo J. How has the field of immunogenic cell death in breast cancer evolved and impacted clinical practice over the past eleven years? Hum Vaccin Immunother 2025; 21:2505349. [PMID: 40418649 PMCID: PMC12118423 DOI: 10.1080/21645515.2025.2505349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/20/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
This study elucidates the research landscape of immunogenic cell death (ICD) in breast cancer through a bibliometric analysis of 457 Web of Science articles. Contributions from China and the USA are particularly prominent, with notable international collaborations. Core journals such as Biomaterials published influential studies, while researchers like Huang Y made impactful contributions. High-frequency keyword analysis identified key research hotspots, including immunotherapy, the tumor microenvironment, and nanomedicine. The integration of chemotherapy with immunotherapy and the identification of key proteins have driven recent advancements. Fundamental research on immunotherapy, photodynamic therapy (PDT), and triple-negative breast cancer (TNBC) points to future trends and potential breakthroughs. This study offers a strategic overview of ICD in breast cancer, providing insights into clinical practice and guiding future research in the field.
Collapse
Affiliation(s)
- Yu-Long Deng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Bang-Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Shang-Yi Lu
- Department of Hepatological and Gland Surgery, Wuzhou Gongren Hospital/The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, P. R. China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Di-Yuan Qin
- Department of Computer Science and Technology, School of Computer and Electronic Information, Guangxi University, Nanning, P. R. China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Wei Peng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jiayuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
2
|
Abdelsalam AM, Balash A, Khedr SM, Amin MU, Engelhardt KH, Preis E, Bakowsky U. Improved Photodynamic Therapy of Hepatocellular Carcinoma via Surface-Modified Protein Nanoparticles. Pharmaceutics 2025; 17:370. [PMID: 40143033 PMCID: PMC11944767 DOI: 10.3390/pharmaceutics17030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Photodynamic therapy (PDT) has evolved as a reliable therapeutic modality for cancer. However, the broad application of the technique is still limited because of poor bioavailability and the non-selective distribution of photosensitizers within host tissues. Herein, zein, a natural corn protein, was functionalized with glycyrrhetinic acid (GA) and polyethylene glycol (Z-PEG-GA) as a targeting platform for liver cancer cells. Parietin, as novel photosensitizer, was successfully encapsulated into zein via nanoprecipitation and used for the therapy of hepatocellular carcinoma. Methods: The in vitro phototoxicity of Z-PEG-GA nanoparticles and their non-functionalized control (Z-PEG) were assessed against hepatocellular carcinoma (HepG2 cells) and the In vivo biodistribution was determined in an adult male CD-1 Swiss albino mice model. Results: The formulated Z-PEG and Z-PEG-GA showed spherical shapes with average sizes of 82.8 and 94.7 nm for unloaded nanoparticles, respectively, and 109.7 and 111.5 nm for loaded nanoparticles carrying more than 70% of parietin, and Quantum yield measurements show that parietin's photodynamic potential is conserved. Moreover, parietin-loaded Z-PEG-GA exhibited three-fold higher toxicity against liver cancer cells than its non-functionalized control and attained more than an eleven-fold enhancement in the generated intracellular reactive oxygen species (ROS) at a 9 J/cm2 radiant exposure. The generated intracellular ROS led to mitochondrial disruption and the release of cytochrome c. In vivo biodistribution studies revealed that fluorescence signals of Z-PEG-GA can persist in the excised animal liver for up to 24 h post-administration. Conclusions: Consequently, tailored zein can hold great potential for delivering several hydrophobic photosensitizers in anticancer PDT.
Collapse
Affiliation(s)
- Ahmed M. Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Amir Balash
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 10, 35032 Marburg, Germany;
| | - Shaimaa M. Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technology Applications (SRTA-City), New Borg El Arab 21111, Egypt;
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
| | - Konrad H. Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
| |
Collapse
|
3
|
Ghazizadeh Y, Sharifi-Ardani SE, Tajik N, Mirzaei R, Pourahmad J. Exploring the Potential of Mitochondria-Targeted Drug Delivery for Enhanced Breast Cancer Therapy. Int J Breast Cancer 2025; 2025:3013009. [PMID: 40224721 PMCID: PMC11991819 DOI: 10.1155/ijbc/3013009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/11/2025] [Indexed: 04/15/2025] Open
Abstract
Breast cancer stands as the utmost prevalent malignancy in women, impacting the epithelial tissue of the breast and often displaying resistance to effective treatment due to its diverse molecular and histological features. Current treatment modalities may exhibit decreasing efficacy over time and can lead to disease progression. The mitochondria, a crucial organelle responsible for cellular metabolism and energy supply, stand highly sensitive to both heat and reactive oxygen species, presenting an assuring target for photodynamic and photothermal therapies (PTTs) in cancer cure. The employment of nanodrug carriers for combination deliveries holds promise in addressing challenges related to drug degradation and off-target toxicity. By circumventing the reticuloendothelial system, nanocarriers bolster the drug's bioavailability at the intended site and ensure controlled codelivery of multiple drugs, thereby maintaining the normal pharmacokinetic features and the regular pharmacodynamic characteristics of different therapeutic mechanisms. The precision and efficacy of this innovative technology have revolutionized drug delivery, substantially enhancing treatment effectiveness. In the pursuit of targeting mitochondrial modifications in cancer cells, various combination therapies such as photodynamic therapy (PDT), PTT, and chemodynamic therapy (CDT) have been explored. These therapies have improved the efficiency of mitochondria-targeted cancer treatment due to their advantageous properties of minimal toxicity, noninvasiveness, reduced drug resistance, and a safer profile. Our review article provides an exhaustive overview of alterations in the mitochondrial environment in BC, their impact on BC development, potential mitochondrial targets for BC treatment, nanotherapeutic approaches for targeting mitochondria, and the limitations of these approaches.
Collapse
Affiliation(s)
- Yalda Ghazizadeh
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Negin Tajik
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Mirzaei
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Gupta M, Sahu A, Mukherjee T, Mohanty S, Das P, Nayak N, Kumari S, Singh RP, Pattnaik A. Divulging the potency of naturally derived photosensitizers in green PDT: an inclusive review Of mechanisms, advantages, and future prospects. Photochem Photobiol Sci 2025; 24:191-214. [PMID: 39654006 DOI: 10.1007/s43630-024-00669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025]
Abstract
Photodynamic Therapy (PDT) offers a minimally invasive approach for treating various health conditions, employing a photosensitizer (PS) and specific light. Recent enhancements make PDT outpatient-friendly and less discomforting. Effectiveness hinges on selecting the appropriate PS. This article delves into natural and synthetic PSs, emphasizing the rising interest in natural alternatives for their safety. It explores their mechanisms, characteristics, and applications, offering insights into their potential contributions to advancing PDT. This extensive review delves into the preclinical and clinical landscape of natural PSs for PDT, shedding light on their diverse applications and promising outcomes. Compounds like curcumin, piperine, riboflavin, psoralen, hypericin, and others show significant potential in preclinical in vitro studies across various cell lines. In vivo, these photosensitizers prove effective against skin tumors, carcinomas, and sarcomas, inducing apoptosis, autophagy, and ROS generation for therapeutic efficacy. The review underscores the critical role of proper dosing and monitoring in balancing therapeutic benefits and risks. It highlights the advantages and limitations of natural PSs, emphasizing their specific targeting, bioavailability, and limited side effects. The future of PDT holds promising breakthroughs, taking from some evidence like Bergamot oil in nanostructured lipid carriers for dermatological conditions. Second-generation photosensitizer Tookad shows potential in prostate cancer treatment, while Tripterygium wilfordii Hook. F. emerges as an antimicrobial PDT source etc. Thus, environmental concerns in PDT prompt a shift to plant extracts for PS purification. The evidence-supported focus on natural PSs establishes this article as a key resource for advancing natural compounds in PDT and their therapeutic applications.
Collapse
Affiliation(s)
- Muskan Gupta
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Anwesha Sahu
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Tuhin Mukherjee
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Satyajit Mohanty
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Priyamjeet Das
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Nikita Nayak
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Shivangi Kumari
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ravi Pratap Singh
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ashok Pattnaik
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
5
|
Umair Amin M, Ali S, Engelhardt KH, Nasrullah U, Preis E, Schaefer J, Pfeilschifter J, Bakowsky U. Enhanced photodynamic therapy of curcumin using biodegradable PLGA coated mesoporous silica nanoparticles. Eur J Pharm Biopharm 2024; 204:114503. [PMID: 39303950 DOI: 10.1016/j.ejpb.2024.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Since the available treatments are not highly effective to combat cancer, therefore, the alternative strategies are unavoidable. Photodynamic therapy (PDT) is one of the emerging approaches which is target specific and minimally invasive. This study explores the successful development of Poly (D,L-lactide-co-glycolide) (PLGA) coated mesoporous silica nanoparticles (MSNs) and their augmented effects achieved by integrating curcumin (Cur) and cetyltrimethylammonium bromide (CTAB) in the polymeric layer and silica's pores, respectively. The synthesized nanocarriers (Cur-PLGA-cMSNs) have shown preferential targeting to the cellular organelles facilitated by CTAB's and Cur's affinity to mitochondria. CTAB and Cur-based PDT induced oxidative stress and generation of reactive oxygen species (ROS), resulting in dysfunctional mitochondria and triggered apoptotic pathways. PLGA coating has produced multifunctional effects, including; gatekeeping effects at pore openings, providing an extra loading site, enhancing the hemocompatibility of MSNs, and masking the free cur-related prolonged coagulation time. Cur-PLGA-cMSNs, as a multifaceted and combative approach with synergistic effects demonstrate promising potential to enhance outcomes in cancer treatment.
Collapse
Affiliation(s)
- Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg, Germany.
| | - Sajid Ali
- Department of Chemistry, Ångstr¨ om Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Konrad H Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg, Germany
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt am Main, Germany
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg, Germany
| | - Jens Schaefer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt am Main, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg, Germany
| |
Collapse
|
6
|
Roschenko V, Schorr D, Wojcik M, Amin MU, Bakowsky U, Preis E. An innovative approach to detect circulating tumor cells. Colloids Surf B Biointerfaces 2024; 241:114059. [PMID: 38941652 DOI: 10.1016/j.colsurfb.2024.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
In cancer research, circulating tumor cells (CTCs) were identified as the main drivers of metastasis. They are vital for early detection and prevention of metastasis during cancer treatment. Even though continuous progress in research offers more and more tools to combat cancer, we still lack a proper arsenal of therapeutics. Especially in tumors with close to no targeting options, like triple-negative breast cancer, early detection is often the main difference between successful and failed therapy. When such tumors are detected too late, they may have already produced plenty of CTCs, likely causing metastasis, which is the primary reason for tumor-associated deaths. Detecting those CTCs early on could substantially impact therapy outcomes and the 5-year survival rate. In our study, we developed and evaluated a reliable and affordable CTC screening method based on flow cytometry and 5-aminolevulinic acid (5-ALA) staining. We successfully established a circulation model for 5-ALA and CTCs research and demonstrated that the method can detect an average of 11 ± 3.3 CTCs out of 10,000 peripheral blood mononuclear cells, representing as low as approximately 0.1 % with a reasonable number of false positive events. Additionally, we present initial results on a theranostic approach using 5-ALA converted to protoporphyrin IX. The outcomes of this study might contribute significantly to the further development of CTC detection and the overall detection and treatment of cancer.
Collapse
Affiliation(s)
- Valeri Roschenko
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| | - David Schorr
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| |
Collapse
|
7
|
Pourhajibagher M, Javanmard Z, Bahador A. Molecular docking and antimicrobial activities of photoexcited inhibitors in antimicrobial photodynamic therapy against Enterococcus faecalis biofilms in endodontic infections. AMB Express 2024; 14:94. [PMID: 39215887 PMCID: PMC11365891 DOI: 10.1186/s13568-024-01751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) is a promising approach to combat antibiotic resistance in endodontic infections. It eliminates residual bacteria from the root canal space and reduces the need for antibiotics. To enhance its effectiveness, an in silico and in vitro study was performed to investigate the potential of targeted aPDT using natural photosensitizers, Kojic acid and Parietin. This approach aims to inhibit the biofilm formation of Enterococcus faecalis, a frequent cause of endodontic infections, by targeting the Ace and Esp proteins. After determining the physicochemical characteristics of Ace and Esp proteins and model quality assessment, the molecular dynamic simulation was performed to recognize the structural variations. The stability and physical movement of the protein-ligand complexes were evaluated. In silico molecular docking was conducted, followed by ADME/Tox profiling, pharmacokinetics characteristics, and assessment of drug-likeness properties of the natural photosensitizers. The study also investigated the changes in the expression of genes (esp and ace) involved in E. faecalis biofilm formation. The results showed that both Kojic acid and Parietin complied with Lipinski's rule of five and exhibited drug-like properties. In silico analysis indicated stable complexes between Ace and Esp proteins and the natural photosensitizers. The molecular docking studies demonstrated good binding affinity. Additionally, the expression of the ace and esp genes was significantly downregulated in aPDT using Kojic acid and Parietin with blue light compared to the control group. This investigation concluded that Kojic acid and Parietin with drug-likeness could efficiently interact with Ace and Esp proteins with a strong binding affinity. Hence, natural photosensitizers-mediated aPDT can be considered a promising adjunctive treatment against endodontic infections.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
8
|
Samaei SS, Daryab M, Gholami S, Rezaee A, Fatehi N, Roshannia R, Hashemi S, Javani N, Rahmanian P, Amani-Beni R, Zandieh MA, Nabavi N, Rashidi M, Malgard N, Hashemi M, Taheriazam A. Multifunctional and stimuli-responsive liposomes in hepatocellular carcinoma diagnosis and therapy. Transl Oncol 2024; 45:101975. [PMID: 38692195 PMCID: PMC11070928 DOI: 10.1016/j.tranon.2024.101975] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer, mainly occurring in Asian countries with an increased incidence rate globally. Currently, several kinds of therapies have been deployed for HCC therapy including surgical resection, chemotherapy, radiotherapy and immunotherapy. However, this tumor is still incurable, requiring novel strategies for its treatment. The nanomedicine has provided the new insights regarding the treatment of cancer that liposomes as lipid-based nanoparticles, have been widely applied in cancer therapy due to their biocompaitiblity, high drug loading and ease of synthesis and modification. The current review evaluates the application of liposomes for the HCC therapy. The drugs and genes lack targeting ability into tumor tissues and cells. Therefore, loading drugs or genes on liposomes can increase their accumulation in tumor site for HCC suppression. Moreover, the stimuli-responsive liposomes including pH-, redox- and light-sensitive liposomes are able to deliver drug into tumor microenvironment to improve therapeutic index. Since a number of receptors upregulate on HCC cells, the functionalization of liposomes with lactoferrin and peptides can promote the targeting ability towards HCC cells. Moreover, phototherapy can be induced by liposomes through loading phtoosensitizers to stimulate photothermal- and photodynamic-driven ablation of HCC cells. Overall, the findings are in line with the fact that liposomes are promising nanocarriers for the treatment of HCC.
Collapse
Affiliation(s)
- Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Fatehi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Romina Roshannia
- Faculty of Life Science and Bio-technology, Shahid Beheshti University, Tehran, Iran
| | - Saeed Hashemi
- Faculty of Veterinary Medicine, Department of Clinical Sciences, University of Shahrekord, Shahrekord, Iran
| | - Nazanin Javani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Amani-Beni
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Neda Malgard
- Department of Internal medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Bender L, Ayoub AM, Schulze J, Amin MU, Librizzi D, Engelhardt KH, Roschenko V, Yousefi BH, Schäfer J, Preis E, Bakowsky U. Evaluating the photodynamic efficacy of nebulized curcumin-loaded liposomes prepared by thin-film hydration and dual centrifugation: In vitro and in ovo studies. BIOMATERIALS ADVANCES 2024; 159:213823. [PMID: 38460353 DOI: 10.1016/j.bioadv.2024.213823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Lung cancer, one of the most common causes of high mortality worldwide, still lacks appropriate and convenient treatment options. Photodynamic therapy (PDT) has shown promising results against cancer, especially in recent years. However, pulmonary drug delivery of the predominantly hydrophobic photosensitizers still represents a significant obstacle. Nebulizing DPPC/Cholesterol liposomes loaded with the photosensitizer curcumin via a vibrating mesh nebulizer might overcome current restrictions. In this study, the liposomes were prepared by conventional thin-film hydration and two other methods based on dual centrifugation. The liposomes' physicochemical properties were determined before and after nebulization, showing that liposomes do not undergo any changes. However, morphological characterization of the differently prepared liposomes revealed structural differences between the methods in terms of lamellarity. Internalization of curcumin in lung adenocarcinoma (A549) cells was visualized and quantified. The generation of reactive oxygen species because of the photoreaction was also proven. The photodynamic efficacy of the liposomal formulations was tested against A549 cells. They revealed different phototoxic responses at different radiant exposures. Furthermore, the photodynamic efficacy was investigated after nebulizing curcumin-loaded liposomes onto xenografted tumors on the CAM, followed by irradiation, and evaluated using positron emission tomography/computed tomography and histological analysis. A decrease in tumor metabolism could be observed. Based on the efficacy of curcumin-loaded liposomes in 2D and 3D models, liposomes, especially with prior film formation, can be considered a promising approach for PDT against lung cancer.
Collapse
Affiliation(s)
- Lena Bender
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Damiano Librizzi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| | - Konrad H Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Valeri Roschenko
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Behrooz H Yousefi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| | - Jens Schäfer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
10
|
Bender L, Preis E, Engelhardt KH, Amin MU, Ayoub AM, Librizzi D, Roschenko V, Schulze J, Yousefi BH, Schaefer J, Bakowsky U. In vitro and in ovo photodynamic efficacy of nebulized curcumin-loaded tetraether lipid liposomes prepared by DC as stable drug delivery system. Eur J Pharm Sci 2024; 196:106748. [PMID: 38471594 DOI: 10.1016/j.ejps.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Lung cancer is one of the most common causes of high mortality worldwide. Current treatment strategies, e.g., surgery, radiotherapy, chemotherapy, and immunotherapy, insufficiently affect the overall outcome. In this study, we used curcumin as a natural photosensitizer in photodynamic therapy and encapsulated it in liposomes consisting of stabilizing tetraether lipids aiming for a pulmonary drug delivery system against lung cancer. The liposomes with either hydrolyzed glycerol-dialkyl-glycerol tetraether (hGDGT) in different ratios or hydrolyzed glycerol-dialkyl-nonitol tetraether (hGDNT) were prepared by dual centrifugation (DC), an innovative method for liposome preparation. The liposomes' physicochemical characteristics before and after nebulization and other nebulization characteristics confirmed their suitability. Morphological characterization using atomic force and transmission electron microscopy showed proper vesicular structures indicative of liposomes. Qualitative and quantitative uptake of the curcumin-loaded liposomes in lung adenocarcinoma (A549) cells was visualized and proven. Phototoxic effects of the liposomes were detected on A549 cells, showing decreased cell viability. The generation of reactive oxygen species required for PDT and disruption of mitochondrial membrane potential were confirmed. Moreover, the chorioallantoic membrane (CAM) model was used to further evaluate biocompatibility and photodynamic efficacy in a 3D cell culture context. Photodynamic efficacy was assessed by PET/CT after nebulization of the liposomes onto the xenografted tumors on the CAM with subsequent irradiation. The physicochemical properties and the efficacy of tetraether lipid liposomes encapsulating curcumin, especially liposomes containing hGDNT, in 2D and 3D cell cultures seem promising for future PDT usage against lung cancer.
Collapse
Affiliation(s)
- Lena Bender
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Konrad H Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Damiano Librizzi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Hans-Meerwein-Str. 3, Marburg 35043, Germany
| | - Valeri Roschenko
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Behrooz H Yousefi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Hans-Meerwein-Str. 3, Marburg 35043, Germany
| | - Jens Schaefer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| |
Collapse
|
11
|
Fahmy SA, Elghanam R, Rashid G, Youness RA, Sedky NK. Emerging tendencies for the nano-delivery of gambogic acid: a promising approach in oncotherapy. RSC Adv 2024; 14:4666-4691. [PMID: 38318629 PMCID: PMC10840092 DOI: 10.1039/d3ra08042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Despite the advancements in cancer therapies during the past few years, chemo/photo resistance, severe toxic effects, recurrence of metastatic tumors, and non-selective targeting remain incomprehensible. Thus, much effort has been spent exploring natural anticancer compounds endowed with biosafety and high effectiveness in cancer prevention and therapy. Gambogic acid (GA) is a promising natural compound in cancer therapy. It is the major xanthone component of the dry resin extracted from the Garcinia hanburyi Hook. f. tree. GA has significant antiproliferative effects on different types of cancer, and it exerts its anticancer activities through various pathways. Nonetheless, the clinical translation of GA has been hampered, partly due to its water insolubility, low bioavailability, poor pharmacokinetics, rapid plasma clearance, early degradation in blood circulation, and detrimental vascular irritation. Lately, procedures have been invented demonstrating the ability of nanoparticles to overcome the challenges associated with the clinical use of natural compounds both in vitro and in vivo. This review sheds light on the recent emerging trends for the nanodelivery of GA to cancer cells. To the best of our knowledge, no similar recent review described the different nanoformulations designed to improve the anticancer therapeutic activity and targeting ability of GA.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20 1222613344
| | - Rawan Elghanam
- Nanotechnology Department, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University Gurugram Haryana 122413 India
| | - Rana A Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) Cairo 11835 Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo Egypt
| |
Collapse
|
12
|
Nady DS, Hassan A, Amin MU, Bakowsky U, Fahmy SA. Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment. Pharmaceutics 2023; 16:14. [PMID: 38276492 PMCID: PMC10821275 DOI: 10.3390/pharmaceutics16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer is a global health burden and is one of the leading causes of death. Photodynamic therapy (PDT) is considered an alternative approach to conventional cancer treatment. PDT utilizes a light-sensitive compound, photosensitizers (PSs), light irradiation, and molecular oxygen (O2). This generates cytotoxic reactive oxygen species (ROS), which can trigger necrosis and/ or apoptosis, leading to cancer cell death in the intended tissues. Classical photosensitizers impose limitations that hinder their clinical applications, such as long-term skin photosensitivity, hydrophobic nature, nonspecific targeting, and toxic cumulative effects. Thus, nanotechnology emerged as an unorthodox solution for improving the hydrophilicity and targeting efficiency of PSs. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their high surface area, defined pore size and structure, ease of surface modification, stable aqueous dispersions, good biocompatibility, and optical transparency, which are vital for PDT. The advancement of integrated MSNs/PDT has led to an inspiring multimodal nanosystem for effectively treating malignancies. This review gives an overview of the main components and mechanisms of the PDT process, the effect of PDT on tumor cells, and the most recent studies that reported the benefits of incorporating PSs into silica nanoparticles and integration with PDT against different cancer cells.
Collapse
Affiliation(s)
- Doaa Sayed Nady
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afnan Hassan
- Biomedical Sciences Program, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt
| |
Collapse
|
13
|
Schulze J, Schöne L, Ayoub AM, Librizzi D, Amin MU, Engelhardt K, Yousefi BH, Bender L, Schaefer J, Preis E, Schulz-Siegmund M, Wölk C, Bakowsky U. Modern Photodynamic Glioblastoma Therapy Using Curcumin- or Parietin-Loaded Lipid Nanoparticles in a CAM Model Study. ACS APPLIED BIO MATERIALS 2023; 6:5502-5514. [PMID: 38016693 PMCID: PMC10732153 DOI: 10.1021/acsabm.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Natural photosensitizers, such as curcumin or parietin, play a vital role in photodynamic therapy (PDT), causing a light-mediated reaction that kills cancer cells. PDT is a promising treatment option for glioblastoma, especially when combined with nanoscale drug delivery systems. The curcumin- or parietin-loaded lipid nanoparticles were prepared via dual asymmetric centrifugation and subsequently characterized through physicochemical analyses including dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The combination of PDT and lipid nanoparticles has been evaluated in vitro regarding uptake, safety, and efficacy. The extensive and well-vascularized chorioallantois membrane (CAM) of fertilized hen's eggs offers an optimal platform for three-dimensional cell culture, which has been used in this study to evaluate the photodynamic efficacy of lipid nanoparticles against glioblastoma cells. In contrast to other animal models, the CAM model lacks a mature immune system in an early stage, facilitating the growth of xenografts without rejection. Treatment of xenografted U87 glioblastoma cells on CAM was performed to assess the effects on tumor viability, growth, and angiogenesis. The xenografts and the surrounding blood vessels were targeted through topical application, and the effects of photodynamic therapy have been confirmed microscopically and via positron emission tomography and X-ray computed tomography. Finally, the excised xenografts embedded in the CAM were analyzed histologically by hematoxylin and eosin and KI67 staining.
Collapse
Affiliation(s)
- Jan Schulze
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Lisa Schöne
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Abdallah M. Ayoub
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Damiano Librizzi
- Center
for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging,
Department of Nuclear Medicine, University
of Marburg, Hans-Meerwein-Strasse 3, Marburg 35043, Germany
| | - Muhammad Umair Amin
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Konrad Engelhardt
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Behrooz H. Yousefi
- Center
for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging,
Department of Nuclear Medicine, University
of Marburg, Hans-Meerwein-Strasse 3, Marburg 35043, Germany
| | - Lena Bender
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Jens Schaefer
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Eduard Preis
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Michaela Schulz-Siegmund
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Christian Wölk
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Udo Bakowsky
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| |
Collapse
|
14
|
Ayoub AM, Atya MS, Abdelsalam AM, Schulze J, Amin MU, Engelhardt K, Wojcik M, Librizzi D, Yousefi BH, Nasrullah U, Pfeilschifter J, Bakowsky U, Preis E. Photoactive Parietin-loaded nanocarriers as an efficient therapeutic platform against triple-negative breast cancer. Int J Pharm 2023; 643:123217. [PMID: 37429562 DOI: 10.1016/j.ijpharm.2023.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
The application of photodynamic therapy has become more and more important in combating cancer. However, the high lipophilic nature of most photosensitizers limits their parenteral administration and leads to aggregation in the biological environment. To resolve this problem and deliver a photoactive form, the natural photosensitizer parietin (PTN) was encapsulated in poly(lactic-co-glycolic acid) nanoparticles (PTN NPs) by emulsification diffusion method. PTN NPs displayed a size of 193.70 nm and 157.31 nm, characterized by dynamic light scattering and atomic force microscopy, respectively. As the photoactivity of parietin is essential for therapy, the quantum yield of PTN NPs and the in vitro release were assessed. The antiproliferative activity, the intracellular generation of reactive oxygen species, mitochondrial potential depolarization, and lysosomal membrane permeabilization were evaluated in triple-negative breast cancer cells (MDA-MB-231 cells). At the same time, confocal laser scanning microscopy (CLSM) and flow cytometry were used to investigate the cellular uptake profile. In addition, the chorioallantoic membrane (CAM) was employed to evaluate the antiangiogenic effect microscopically. The spherical monomodal PTN NPs show a quantum yield of 0.4. The biological assessment on MDA-MB-231 cells revealed that free PTN and PTN NPs inhibited cell proliferation with IC50 of 0.95 µM and 1.9 µM at 6 J/cm2, respectively, and this can be attributed to the intracellular uptake profile as proved by flow cytometry. Eventually, the CAM study illustrated that PTN NPs could reduce the number of angiogenic blood vessels and disrupt the vitality of xenografted tumors. In conclusion, PTN NPs are a promising anticancer strategy in vitro and might be a tool for fighting cancer in vivo.
Collapse
Affiliation(s)
- Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Muhammed S Atya
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Ahmed M Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Muhammad U Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Damiano Librizzi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Germany
| | - Behrooz H Yousefi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Germany
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany.
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany.
| |
Collapse
|
15
|
Dhilip Kumar SS, Abrahamse H. Recent advances in the development of biocompatible nanocarriers and their cancer cell targeting efficiency in photodynamic therapy. Front Chem 2022; 10:969809. [PMID: 36046728 PMCID: PMC9420852 DOI: 10.3389/fchem.2022.969809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the role of biocompatible nanocarriers (BNs) and their cancer cell targeting efficiency in photodynamic therapy (PDT) holds potential benefits for cancer treatment. Biocompatible and biodegradable nanoparticles are successfully used as carrier molecules to deliver cancer drugs and photosensitizers due to their material safety in the drug delivery system. Biocompatible nanocarriers are non-toxic and ensure high-level biocompatibility with blood, cells, and physiological conditions. The physicochemical properties of BNs often enable them to modify their surface chemistry, which makes conjugating specific ligands or antibodies to achieve cancer cell targeting drug delivery in PDT. This review article focuses on the various types of BNs used in targeted drug delivery, physicochemical properties, and surface chemistry of BNs in targeted drug delivery, advantages of BNs in drug delivery systems, and the targeting efficiency of BNs on some specific targeting receptors for cancer therapy. Furthermore, the review briefly recaps the nanocarrier-based targeted approaches in cancer PDT.
Collapse
|
16
|
Dayyih A, Gutberlet B, Preis E, Engelhardt KH, Amin MU, Abdelsalam AM, Bonsu M, Bakowsky U. Thermoresponsive Liposomes for Photo-Triggered Release of Hypericin Cyclodextrin Inclusion Complex for Efficient Antimicrobial Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31525-31540. [PMID: 35790214 PMCID: PMC9307054 DOI: 10.1021/acsami.2c02741] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antimicrobial strategies with high efficacy against bacterial infections are urgently needed. The development of effective therapies to control bacterial infections is still a challenge. Herein, near-infrared (NIR)-activated thermosensitive liposomes (TSL) were loaded with the NIR-dye 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DiR) and the water-soluble hypericin (Hyp) β-cyclodextrin inclusion complex (Hyp-βCD). DiR and Hyp-βCD loaded thermosensitive liposomes (DHβCD-TSL) are functionalized for photothermal triggered release and synergistic photodynamic therapy to eliminate the gram-positive Staphylococcus saprophyticus. The dually active liposomes allow the production of heat and singlet oxygen species with the help of DiR and Hyp, respectively. The elevated temperature, generated by the NIR irradiation, irreversibly damages the bacterial membrane, increases the permeation, and melts the liposomes via a phase-transition mechanism, which allows the release of the Hyp-βCD complex. The photodynamic effect of Hyp-βCD eradicates the bacterial cells owing to its toxic oxygen species production. DHβCD-TSL measured the size of 130 nm with an adequate encapsulation efficiency of 81.3% of Hyp-βCD. They exhibited a phase transition temperature of 42.3 °C, while they remained stable at 37 °C, and 44% of Hyp-βCD was released after NIR irradiation (T > 47 °C). The bacterial viability dropped significantly after the synergistic treatment (>4 log10), indicating that the NIR-activated TSL have immense therapeutic potential to enhance the antibacterial efficacy. The liposomes showed good biocompatibility, which was confirmed by the cellular viability of mouse fibroblasts (L929).
Collapse
Affiliation(s)
- Alice
Abu Dayyih
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Eduard Preis
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Konrad H. Engelhardt
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Muhammad Umair Amin
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Ahmed M. Abdelsalam
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Martina Bonsu
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
17
|
Yang S, Zhang B, Tan W, Qi L, Ma X, Wang X. A Novel Purine and Uric Metabolism Signature Predicting the Prognosis of Hepatocellular Carcinoma. Front Genet 2022; 13:942267. [PMID: 35903353 PMCID: PMC9315342 DOI: 10.3389/fgene.2022.942267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is regarded as one of the most common cancers in the world with a poor prognosis. Patients with HCC often have abnormal purine and uric acid metabolism, but their relationship with prognosis is unclear. Methods: Here, we collected the data of peripheral blood uric acid and clinical data in 50 patients with HCC and analyzed the relationship with prognosis. At the same time, the transcriptome sequencing data of TCGA and GEO databases were collected to analyze the changes in purine metabolic pathway activity and construct a prognosis prediction model. Based on the prognosis prediction model related to purine metabolism, we further looked for the differences in the immune microenvironment and molecular level and provided possible drug targets. Results: We found that the level of serum uric acid was positively correlated with the prognosis of HCC. At the same time, purine metabolism and purine biosynthesis pathway activities were significantly activated in patients with a poor prognosis of HCC. The prognosis prediction model of HCC based on purine metabolism and purine biosynthesis pathway can accurately evaluate the prognosis of patients with HCC. Meanwhile, we found that there were significant changes in tumor immune infiltration microenvironment and biological function at the molecular level in patients with over-activation of purine metabolism and purine biosynthesis pathway. In addition, we found that uric acid level was positively correlated with peripheral blood leukocytes in HCC patients. Conclusion: In this study, we found that the level of peripheral blood uric acid in patients with HCC is correlated with their prognosis. The prognosis of patients with HCC can be accurately predicted through the metabolic process of uric acid and purine.
Collapse
Affiliation(s)
- Shengjie Yang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Baoying Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Weijuan Tan
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lu Qi
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiao Ma
- Department of Internal Medicine, Zhangqiu People’s Hospital, Jinan, China
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xinghe Wang,
| |
Collapse
|
18
|
Ayoub AM, Gutberlet B, Preis E, Abdelsalam AM, Abu Dayyih A, Abdelkader A, Balash A, Schäfer J, Bakowsky U. Parietin Cyclodextrin-Inclusion Complex as an Effective Formulation for Bacterial Photoinactivation. Pharmaceutics 2022; 14:357. [PMID: 35214089 PMCID: PMC8875783 DOI: 10.3390/pharmaceutics14020357] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multidrug resistance in pathogenic bacteria has become a significant public health concern. As an alternative therapeutic option, antimicrobial photodynamic therapy (aPDT) can successfully eradicate antibiotic-resistant bacteria with a lower probability of developing resistance or systemic toxicity commonly associated with the standard antibiotic treatment. Parietin (PTN), also termed physcion, a natural anthraquinone, is a promising photosensitizer somewhat underrepresented in aPDT because of its poor water solubility and potential to aggregate in the biological environment. This study investigated whether the complexation of PTN with (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) could increase its solubility, enhance its photophysical properties, and improve its phototoxicity against bacteria. At first, the solubilization behavior and complexation constant of the PTN/HP-β-CD inclusion complexes were evaluated by the phase solubility method. Then, the formation and physicochemical properties of PTN/HP-β-CD complexes were analyzed and confirmed in various ways. At the same time, the photodynamic activity was assessed by the uric acid method. The blue light-mediated photodegradation of PTN in its free and complexed forms were compared. Complexation of PTN increased the aqueous solubility 28-fold and the photostability compared to free PTN. PTN/HP-β-CD complexes reduce the bacterial viability of Staphylococcus saprophyticus and Escherichia coli by > 4.8 log and > 1.0 log after irradiation, respectively. Overall, the low solubility, aggregation potential, and photoinstability of PTN were overcome by its complexation in HP-β-CD, potentially opening up new opportunities for treating infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Abdallah Mohamed Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Ahmed Mohamed Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Alice Abu Dayyih
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Ayat Abdelkader
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Amir Balash
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 10, 35032 Marburg, Germany;
| | - Jens Schäfer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| |
Collapse
|