1
|
Shah SA, Sohail M, Nakielski P, Rinoldi C, Zargarian SS, Kosik-Kozioł A, Ziai Y, Haghighat Bayan MA, Zakrzewska A, Rybak D, Bartolewska M, Pierini F. Integrating Micro- and Nanostructured Platforms and Biological Drugs to Enhance Biomaterial-Based Bone Regeneration Strategies. Biomacromolecules 2025; 26:140-162. [PMID: 39621708 PMCID: PMC11733931 DOI: 10.1021/acs.biomac.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 01/14/2025]
Abstract
Bone defects resulting from congenital anomalies and trauma pose significant clinical challenges for orthopedics surgeries, where bone tissue engineering (BTE) aims to address these challenges by repairing defects that fail to heal spontaneously. Despite numerous advances, BTE still faces several challenges, i.e., difficulties in detecting and tracking implanted cells, high costs, and regulatory approval hurdles. Biomaterials promise to revolutionize bone grafting procedures, heralding a new era of regenerative medicine and advancing patient outcomes worldwide. Specifically, novel bioactive biomaterials have been developed that promote cell adhesion, proliferation, and differentiation and have osteoconductive and osteoinductive characteristics, stimulating tissue regeneration and repair, particularly in complex skeletal defects caused by trauma, degeneration, and neoplasia. A wide array of biological therapeutics for bone regeneration have emerged, drawing from the diverse spectrum of gene therapy, immune cell interactions, and RNA molecules. This review will provide insights into the current state and potential of future strategies for bone regeneration.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
- Faculty
of Pharmacy, The Superior University, Lahore 54000, Punjab, Pakistan
| | - Muhammad Sohail
- Faculty
of Pharmacy, Cyprus International University, Nicosia 99258, North Cyprus
| | - Paweł Nakielski
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Chiara Rinoldi
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Alicja Kosik-Kozioł
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Yasamin Ziai
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Mohammad Ali Haghighat Bayan
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anna Zakrzewska
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Daniel Rybak
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Magdalena Bartolewska
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
2
|
Suzuki K, Tamazawa M, Onuma E, Honda M, Aizawa M. Preferred Orientation of Hydroxyapatite Ceramics Along the c-Axis Promotes Osteoblast Differentiation. Int J Mol Sci 2024; 25:12926. [PMID: 39684637 DOI: 10.3390/ijms252312926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Hydroxyapatite (HAp) is similar to the main inorganic components of bone and tooth enamel. Furthermore, it possesses biocompatibility, making it suitable for clinical use in artificial bones. This study aimed to verify whether the preferred orientation of HAp influences osteogenesis. Using the templated grain growth method, we successfully fabricated HAp ceramics with a preferred orientation to m (a)-planes (aHAp) and examined the effects of this orientation on bone differentiation. Osteosarcoma-derived osteoblasts (MG-63) were cultured on aHAp and HAp ceramics made from commercially available powder (iHAp). Electron backscatter diffraction analysis revealed the crystal orientation distribution of HAp ceramics and the numerous exposed a-planes of aHAp. The MG-63 cultured on aHAp exhibited significantly higher alkaline phosphatase activity, a marker of early bone differentiation, compared to iHAp. Furthermore, the two-dimensional electrophoresis results indicated that the expressed proteins differed between aHAp and iHAp. These results indicate that controlling HAp's crystal structure may promote the osteogenic potential of osteoblasts. In this study, we propose that the a-plane of HAp promotes bone differentiation during the early stages, presenting a promising approach for novel biomaterials, such as high-performance artificial bones.
Collapse
Affiliation(s)
- Kitaru Suzuki
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Meiji University International Institute for Materials with Life Functions, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Masaki Tamazawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Erika Onuma
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Michiyo Honda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Meiji University International Institute for Materials with Life Functions, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Meiji University International Institute for Materials with Life Functions, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
3
|
Imamura K, Yoshida W, Seshima F, Aoki H, Yamashita K, Kitamura Y, Murakami T, Ambiru M, Bizenjima T, Katayama A, Tomita S, Saito A. Periodontal regenerative therapy using recombinant human fibroblast growth factor (rhFGF)-2 in combination with carbonate apatite granules or rhFGF-2 alone: 12-month randomized controlled trial. Clin Oral Investig 2024; 28:574. [PMID: 39373727 DOI: 10.1007/s00784-024-05979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVES This randomized controlled trial compared the outcomes of recombinant human fibroblast growth factor (rhFGF)-2 plus carbonate apatite (CO3Ap) granules with rhFGF-2 alone in the treatment of intrabony periodontal defects. MATERIALS AND METHODS Patients with Stage III Grade B/C periodontitis who had completed initial periodontal therapy and had intrabony defects with a depth of ≥ 3 mm were included. Defects were treated solely with rhFGF-2 (control) or rhFGF-2 plus CO3Ap (test). Periodontal parameters and a patient-reported outcome measure (PROM) were assessed at baseline, at 6, 9 and 12 months postoperatively. The primary outcome was the change in clinical attachment level (CAL) from baseline to 12 months postoperatively. Using the Friedman test with Dunn's post-test, intragroup data were compared over time, and Mann-Whitney U test was used to assess intergroup data at each time point. RESULTS Forty-eight sites in 38 patients were subjected to analysis. At 12 months postoperatively, CAL in both groups showed a significant improvement from baseline (p < 0.001). CAL gain was 3.4 ± 1.3 mm in the test group and 3.2 ± 1.2 mm in the control group, with no significant intergroup difference (p = 0.567). Radiographic bone fill in the test group (67.2%) was significantly greater than in the control group (32.4%) (p < 0.001). PROM scores showed no difference between groups. CONCLUSIONS At 12 months, the outcomes including CAL gain and PROM showed no significant differences between groups, although the combination treatment enhanced radiographic bone fill. CLINICAL RELEVANCE The use of rhFGF-2 (with/without CO3Ap) could lead to significant improvement in clinical parameters in the treatment of intrabony periodontal defects. The benefit of adding CO3Ap to rhFGF-2 therapy needs further evaluation. CLINICAL TRIAL REGISTRATION NUMBER The University Hospital Medical Information Network-Clinical Trials Registry (UMIN-CTR) : UMIN000040783.
Collapse
Affiliation(s)
- Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 1010061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Wataru Yoshida
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 1010061, Japan
| | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 1010061, Japan
| | - Hideto Aoki
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 1010061, Japan
| | - Keiko Yamashita
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 1010061, Japan
| | - Yurie Kitamura
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 1010061, Japan
| | - Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 1010061, Japan
| | - Mayuri Ambiru
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 1010061, Japan
| | | | - Akihiko Katayama
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 1010061, Japan
- Yurakucho Dental Office, Tokyo, Japan
| | - Sachiyo Tomita
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 1010061, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 1010061, Japan.
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
4
|
Hayashi K, Zhang C, Taleb Alashkar AN, Ishikawa K. Carbonate Apatite Honeycomb Scaffold-Based Drug Delivery System for Repairing Osteoporotic Bone Defects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45956-45968. [PMID: 39182190 PMCID: PMC11378151 DOI: 10.1021/acsami.4c08047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Osteoporotic bone defects are difficult to repair in elderly patients. This study aimed to repair osteoporotic bone defects using a combination of bone tissue engineering (BTE) and drug delivery systems (DDS). Herein, honeycomb granules (HCGs) composed of carbonate apatite microspheres were fabricated as BTE scaffolds. Each HCG possesses hexagonal macropores and abundant interconnected micropores between the microspheres. Owing to these multiscale interconnected pores, HCGs can readily contain antibodies against sclerostin (Scl), which causes imbalances in bone homeostasis. Anti-Scl antibody-loaded HCGs (Scl-Ab-HCGs) regulate the release of Scl-Abs in response to the pH of the osteoporotic environment. In ovariectomized rabbit osteoporotic femurs, HCG monotherapy forms new bone with less osteocyte damage (fewer empty bone lacunae) and fewer osteoclasts than osteoporotic bone; however, it is insufficient to prevent receptor activator of nuclear factor-kappa B ligand (RANKL) overexpression. Consequently, HCG monotherapy restores bone quantity better than no treatment but not to normal levels. In contrast, new bone tissue formed by Scl-Ab-HCG-based DDS predominantly expresses osteocalcin rather than RANKL, similar to normal bone, and shows a similar osteocyte apoptosis level, bone quantity, and osteoclast number as normal bone. Thus, Scl-Ab-HCG-based DDS is a promising approach for osteoporotic bone defect repair.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Cheng Zhang
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ahmad Nazir Taleb Alashkar
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
Nunn ME, Rudick C, Nikaido M, Miyamoto T. A systematic review of a novel alloplast carbonate apatite granules. FRONTIERS IN DENTAL MEDICINE 2024; 5:1418039. [PMID: 39917693 PMCID: PMC11797801 DOI: 10.3389/fdmed.2024.1418039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/18/2024] [Indexed: 02/09/2025] Open
Abstract
The objectives of this study are to provide a systematic review of a novel alloplastic hard-tissue grafting material, carbonate apatite granules (CO3Ap-granules), to provide a clinical case presentation of CO3Ap-granules in periodontal surgery. The following three electronic databases were searched independently by two of the authors (MN) and (CR): National Library of Medicine [MEDLINE (PubMed) and ClinicalTrials.gov], EMBASE (OVID) and the Cochrane Central Register of Controlled Trials (CENTRAL). After searching electronic databases, select journals in periodontics and implantology were also manually searched. Of the 43 studies identified from the systematic review, the following classifications were determined: (1) in vitro studies - 5 studies, (2) animal studies - 28 studies, (3) clinical studies - 7 studies, (4) reviews - 3 studies. Results from selected animal studies and all human studies were summarized. These results demonstrate that the novel alloplast CO3Ap-granules has the potential ability to stimulate new bone formation while CO3Ap-granules simultaneously resorb over time. Replacement of CO3Ap-granules with new bone formation has been shown to be comparable to autogenous bone grafting with one study showing superior results to a bovine-derived xenograft.
Collapse
Affiliation(s)
- Martha E. Nunn
- Nunn Biostatistical Solutions, Omaha, NE, United States
- Private Practitioner, Omaha, NE, United States
| | | | - Masahiko Nikaido
- Tokyo Dental College, Tokyo, Japan
- Private Practitioner, Tokyo, Japan
| | - Takanari Miyamoto
- Private Practitioner, Omaha, NE, United States
- Department of Periodontics, Creighton University School of Dentistry, Omaha, NE, United States
| |
Collapse
|
6
|
Hayashi K, Shimabukuro M, Zhang C, Taleb Alashkar AN, Kishida R, Tsuchiya A, Ishikawa K. Silver phosphate-modified carbonate apatite honeycomb scaffolds for anti-infective and pigmentation-free bone tissue engineering. Mater Today Bio 2024; 27:101161. [PMID: 39155941 PMCID: PMC11326936 DOI: 10.1016/j.mtbio.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Bone regeneration using synthetic materials has a high rate of surgical site infection, resulting in severe pain for patients and often requiring revision surgery. We propose Ag3PO4-based surface modification and structural control of scaffolds for preventing infections in bone regeneration. We demonstrated the differences in toxicity and antibacterial activity between in vitro and in vivo studies and determined the optimal silver content in terms of overall anti-infection effects, bone regeneration, toxicity, and pigmentation. A honeycomb structure comprising osteoconductive and resorbable carbonate apatite (CAp) was used as the base scaffold. CAp in the scaffold surface was partially replaced with different concentrations of Ag3PO4 via controlled dissolution-precipitation reactions in an AgNO3 solution. Both bone regeneration and infection prevention were achieved at 860-2300 ppm of silver. Despite the absence of Ag3PO4, honeycomb scaffolds were less susceptible to infection, even under conditions where infection occurs in clinically used three-dimensional porous scaffolds. Regardless of in vitro cytotoxicity at >5200 ppm of silver, increasing the silver content to 21,000 ppm did not adversely affect in vivo bone formation and scaffold resorption or cause acute systemic toxicity. Rather, bone formation was enhanced with 5200 ppm of silver. However, pigmentation was observed at that concentration. Hence, we concluded that the optimal silver concentration range is 860-2300 ppm for anti-infective and pigmentation-free bone regeneration. Bone regeneration was achieved via surface modification, resulting in the rapid release of silver ions immediately after implantation, followed by gradual release over several months. The scaffold structure may also aid in preventing bacterial growth within the scaffolds.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Cheng Zhang
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ahmad Nazir Taleb Alashkar
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
7
|
Escalante LMT, Tsuchiya A, Zhanrui L, Morinobu M, Ishikawa K. Fabrication and histological evaluation of a self-setting granular cement using calcium sulfate hemihydrate granules with different pore distribution. Dent Mater J 2024; 43:573-581. [PMID: 38853007 DOI: 10.4012/dmj.2023-248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Granular type of bone substitutes is currently used in the field of dentistry to restore alveolar bone defects. However, the migration of the granules from the implantation site is still an unresolved issue. In this study, the feasibility to fabricate self-setting calcium sulfate hemihydrate (CSH) granules using different ranges of loading pressure: CSH(0), CSH(50), CSH(100), and CSH(150) was investigated with the hypothesis that CSH granules with reduced microporosity can inhibit the rapid dissolution rate of the calcium sulfate dihydrate (CSD) set blocks and induce bone regeneration. After 4 weeks of implantation, the granules were mostly replaced with new bone although no significant differences were observed. Nevertheless, the granules demonstrated the ability to set within the bone defect. It is therefore concluded that the setting ability of calcium sulfate can contribute to address the issue of migration of the granules and provide a useful guide for designing setting bone substitutes.
Collapse
Affiliation(s)
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University
| | - Lou Zhanrui
- Department of Biomaterials, Faculty of Dental Science, Kyushu University
| | - Miki Morinobu
- Department of Biomaterials, Faculty of Dental Science, Kyushu University
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University
| |
Collapse
|
8
|
Scavia S, Audino E, Salgarello S. Ridge Preservation Combined With Open Barrier Membrane Technique in Case of Postextractive Oroantral Communication: A Case Series Retrospective Study. J ORAL IMPLANTOL 2024; 50:141-152. [PMID: 38839071 DOI: 10.1563/aaid-joi-d-24-00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
After dental extraction, a physiological phenomenon of reabsorption of the dentoalveolar process is triggered, especially if periradicular lesions are present, which can sometimes be associated with oroantral communication in the upper posterior maxilla. To investigate a minimally invasive approach, 19 patients undergoing tooth extraction in the posterosuperior maxilla were recruited. All cases presented an oroantral communication with a diameter of 2-5 mm after tooth extraction and the alveolar process and, in some cases, with a partial defect of 1 or more bony walls. In these cases, a single surgical procedure was used to preserve the alveolar ridge using an open barrier technique with an exposed dense polytetrafluoroethylene membrane. The bottom of the extraction socket was filled with a collagen fleece. The residual bone process was reconstructed using a biomaterial based on carbonate-apatite derived from porcine cancellous bone. After 6 months, all patients were recalled and subjected to radiographic control associated with an implant-prosthetic rehabilitation plan. Data relating to the sinus health status and the average height and thickness of the regenerated bone were collected. Radiographic evaluation verified the integrity of the maxillary sinus floor with new bone formation, detecting a vertical bone dimension between 3.1 mm and 7.4 mm (average 5.13 ± 1.15 mm) and a horizontal thickness between 4.2 mm and 9.6 mm (average 6.86 ± 1.55 mm). The goal of this study was to highlight the advantage of managing an oroantral communication and, simultaneously, obtain the preservation and regeneration of the alveolar bone crest. The open barrier technique appears to be effective for the minimally invasive management of oroantral communication up to 5 mm in diameter in postextraction sites, with a good regeneration of hard and soft tissue.
Collapse
Affiliation(s)
| | - Elisabetta Audino
- Department of Medical and Surgery Specialties, Radiological Sciences and Public Health, Dental School, University of Brescia, Brescia, Italy
| | - Stefano Salgarello
- Department of Medical and Surgery Specialties, Radiological Sciences and Public Health, Dental School, University of Brescia, Brescia, Italy
| |
Collapse
|
9
|
Borden MD, Shors EC, Walsh WR, Lovric V. Characterization of an advanced bone graft material with a nanocrystalline hydroxycarbanoapatite surface and dual phase composition. J Biomed Mater Res B Appl Biomater 2024; 112:e35416. [PMID: 38747324 DOI: 10.1002/jbm.b.35416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 10/24/2024]
Abstract
The bone formation response of ceramic bone graft materials can be improved by modifying the material's surface and composition. A unique dual-phase ceramic bone graft material with a nanocrystalline, hydroxycarbanoapatite (HCA) surface and a calcium carbonate core (TrelCor®-Biogennix, Irvine, CA) was characterized through a variety of analytical methods. Scanning electron microscopy (SEM) of the TrelCor surface (magnification 100-100,000X) clearly demonstrated a nanosized crystalline structure covering the entire surface. The surface morphology showed a hierarchical structure that included micron-sized spherulites fully covered by plate-like nanocrystals (<60 nm in thickness). Chemical and physical characterization of the material using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM-EDX) showed a surface composed of HCA. Analysis of fractured samples confirmed the dual-phase composition with the presence of a calcium carbonate core and HCA surface. An in vitro bioactivity study was conducted to evaluate whether TrelCor would form a bioactive layer when immersed in simulated body fluid. This response was compared to a known bioactive material (45S5 bioactive glass - Bioglass). Following 14-days of immersion, surface and cross-sectional analysis via SEM-EDX showed that the TrelCor material elicited a bioactive response with the formation of a bioactive layer that was qualitatively thicker than the layer that formed on Bioglass. An in vivo sheep muscle pouch model was also conducted to evaluate the ability of the material to stimulate an ectopic, cellular bone formation response. Results were compared against Bioglass and a first-generation calcium phosphate ceramic that lacked a nanocrystalline surface. Histology and histomorphometric analysis (HMA) confirmed that the TrelCor nanocrystalline HCA surface stimulated a bone formation response in muscle (avg. 11% bone area) that was significantly greater than Bioglass (3%) and the smooth surface calcium phosphate ceramic (0%).
Collapse
Affiliation(s)
| | | | - William R Walsh
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Vedran Lovric
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Transformable Carbonate Apatite Chains as a Novel Type of Bone Graft. Adv Healthc Mater 2024; 13:e2303245. [PMID: 38229572 DOI: 10.1002/adhm.202303245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Indexed: 01/18/2024]
Abstract
The aging global population is generating an ever-increasing demand for bone regeneration. Various materials, including blocks, granules, and sponges, are developed for bone regeneration. However, blocks require troublesome shaping and exhibit poor bone-defect conformities; granules migrate into the surrounding tissues during and after filling of the defect, causing handling difficulties and complications; and sponges contain polymers that are subject to religious restrictions, lack osteoconductivity, and may cause inflammation and allergies. Herein, carbonate apatite chains that overcome the limitations of conventional materials are presented. Although carbonate apatite granules migrate, causing inflammation and ectopic calcification, the chains remain in the defects without causing any complications. The chains conform to the defect shape and transform into 3D porous structures, resulting in faster bone regeneration than that observed using granules. Thus, these findings indicate that even traditional calcium phosphates materials can be converted to state-of-the-art materials via shape control.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
11
|
Yotsova R, Peev S. Biological Properties and Medical Applications of Carbonate Apatite: A Systematic Review. Pharmaceutics 2024; 16:291. [PMID: 38399345 PMCID: PMC10892468 DOI: 10.3390/pharmaceutics16020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Bone defects represent an everyday challenge for clinicians who work in the fields of orthopedic surgery, maxillofacial and oral surgery, otorhinolaryngology, and dental implantology. Various bone substitutes have been developed and utilized, according to the needs of bone reconstructive surgery. Carbonate apatite has gained popularity in recent years, due to its excellent tissue behavior and osteoconductive potential. This systematic review aims to evaluate the role of carbonate apatite in bone reconstructive surgery and tissue engineering, analyze its advantages and limitations, and suggest further directions for research and development. The Web of Science, PubMed, and Scopus electronic databases were searched for relevant review articles, published from January 2014 to 21 July 2023. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Eighteen studies were included in the present review. The biological properties and medical applications of carbonate apatite (CO3Ap) are discussed and evaluated. The majority of articles demonstrated that CO3Ap has excellent biocompatibility, resorbability, and osteoconductivity. Furthermore, it resembles bone tissue and causes minimal immunological reactions. Therefore, it may be successfully utilized in various medical applications, such as bone substitution, scaffolding, implant coating, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Ralitsa Yotsova
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University of Varna, bul. Tsar Osvoboditel 84, 9002 Varna, Bulgaria
| | - Stefan Peev
- Department of Periodontology and Dental Implantology, Faculty of Dental Medicine, Medical University of Varna, bul. Tsar Osvoboditel 84, 9002 Varna, Bulgaria;
| |
Collapse
|
12
|
Imber JC, Imber LC, Roccuzzo A, Stähli A, Muñoz F, Weusmann J, Bosshardt DD, Sculean A. Preclinical evaluation of a new synthetic carbonate apatite bone substitute on periodontal regeneration in intrabony defects. J Periodontal Res 2024; 59:42-52. [PMID: 37997207 DOI: 10.1111/jre.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE To evaluate the potential of a novel synthetic carbonate apatite bone substitute (CO3 Ap-BS) on periodontal regeneration. BACKGROUND The use of various synthetic bone substitutes as a monotherapy for periodontal regeneration mainly results in a reparative healing pattern. Since xenografts or allografts are not always accepted by patients for various reasons, a synthetic alternative would be desirable. METHODS Acute-type 3-wall intrabony defects were surgically created in 4 female beagle dogs. Defects were randomly allocated and filled with CO3 Ap-BS (test) and deproteinized bovine bone mineral (DBBM) or left empty (control). After 8 weeks, the retrieved specimens were scanned by micro-CT, and the percentages of new bone, bone substitute, and soft tissues were evaluated. Thereafter, the tissues were histologically and histometrically analyzed. RESULTS Healing was uneventful in all animals, and defects were present without any signs of adverse events. Formation of periodontal ligament and cementum occurred to varying extent in all groups without statistically significant differences between the groups. Residues of both bone substitutes were still present and showed integration into new bone. Histometry and micro-CT revealed that the total mineralized area or volume was higher with the use of CO3 Ap-BS compared to control (66.06 ± 9.34%, 36.11 ± 6.40%; p = .014, or 69.74 ± 2.95%, 42.68 ± 8.68%; p = .014). The percentage of bone substitute surface covered by new bone was higher for CO3 Ap-BS (47.22 ± 3.96%) than for DBBM (16.69 ± 5.66, p = .114). CONCLUSIONS CO3 Ap-BS and DBBM demonstrated similar effects on periodontal regeneration. However, away from the root surface, more new bone, total mineralized area/volume, and higher osteoconductivity were observed for the CO3 Ap-BS group compared to the DBBM group. These findings point to the potential of CO3 Ap-BS for periodontal and bone regeneration.
Collapse
Affiliation(s)
- Jean-Claude Imber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Larissa Carmela Imber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Andrea Roccuzzo
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Fernando Muñoz
- Department of Veterinary Clinical Sciences, University of Santiago de Compostela, Ibonelab SL, Lugo, Spain
| | - Jens Weusmann
- Department of Periodontology and Operative Dentistry, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Dieter Daniel Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Tan JLT, Shimabukuro M, Kobayashi M, Kishida R, Kawashita M, Ishikawa K. Ant-nest type porous scaffold with micro-struts consisting of carbonate apatite for promoting bone formation and scaffold resorption. J Biomed Mater Res A 2024; 112:31-43. [PMID: 37680002 DOI: 10.1002/jbm.a.37608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/22/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Scaffolds having appropriate mechanical strength and providing a proper microenvironment for osteogenesis are expected to be effective alternatives to autografts for bone regeneration. In this study, ant-nest type porous (ANP) scaffolds consisting of CO3 Ap were fabricated using calcium carbonate powder or slurry and two types of polyurethane foam through a dissolution-precipitation reaction. ANP-type, three-dimensional, interconnected porous CO3 Ap scaffolds were fabricated by burning out the struts of polyurethane foams embedded in CaCO3 , followed by compositional transformation from CaCO3 to CO3 Ap. The types of polyurethane foam and impregnation methods of CaCO3 into polyurethane form affected the geometry of the resulting ANP structures. Mechanical and in vivo biological performances of these scaffolds relied on the geometry of the ANP structures. The ANP structures displayed had a clear structural advantage in bone regeneration, owing to the promotion of cell and tissue migration throughout the scaffolds. In particular, ANP-structured scaffolds, which had highest porosity, interconnectivity, and smallest strut thickness, had a mechanical strength comparable to cancellous bone, formed more new bone, were highly resorbed, resulting in cancellous bone-like bone tissue regeneration at 12 weeks of healing. The results suggest that bone regeneration after the migration of cell and tissue into the entire scaffolds is affected by strut thickness preferentially over porosity and interconnectivity. ANP-structured CO3 Ap scaffolds are attractive for bone regeneration.
Collapse
Affiliation(s)
| | - Masaya Shimabukuro
- Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamiko Kobayashi
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Kishida
- Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunio Ishikawa
- Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Javkhlan Z, Hsu SH, Chen RS, Chen MH. 3D-printed polycaprolactone scaffolds coated with beta tricalcium phosphate for bone regeneration. J Formos Med Assoc 2024; 123:71-77. [PMID: 37709573 DOI: 10.1016/j.jfma.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND/PURPOSE 3D-printing technology is an important tool for the bone tissue engineering (BTE). The aim of this study was to investigate the interaction of polycaprolactone (PCL) scaffolds and modified mesh PCL coated with beta TCP (PCL/β-TCP) scaffolds with MG-63. METHODS This study used the fused deposition modeling (FDM) technique with the 3D printing technique to fabricate the thermoplastic polymer and composite scaffolds. Scaffold structure and coating quality were observed under a scanning electron microscope (SEM). MG-63 cells were injected and attached to the mesh-manufactured PCL scaffolds. The biocompatibility of mesh structured PCL and PCL/β-TCP scaffolds could be examined by measuring the viability of MG-63 cells of MTT assay. Bone cell differentiation was evaluated ALP activity by mineralization assay. RESULTS The results showed that both mesh PCL scaffolds and PCL/β-TCP scaffolds were non-toxic to the cells. The ALP activities of cells in PCL/β-TCP scaffolds groups were significant differences and better than PCL groups in all groups at all experimental dates. The mineralization process was time-dependent, and significantly higher mineralization of osteosarcoma cells was observed on PCL/β-TCP scaffolds at experimental dates. CONCLUSION We concluded that both meshes structured PCL and PCL/β-TCP scaffolds could promote the MG-63 cell growth, and PCL/β-TCP was better than the PCL scaffolds for the outcome of MG63 cell differentiation and mineralization.
Collapse
Affiliation(s)
- Zolzaya Javkhlan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Sheng-Hao Hsu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
15
|
Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Effects of Space Dimensionality within Scaffold for Bone Regeneration with Large and Oriented Blood Vessels. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7518. [PMID: 38138660 PMCID: PMC10744811 DOI: 10.3390/ma16247518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The internal structure of the scaffolds is a key factor for bone regeneration. In this study, we focused on the space dimensionality within the scaffold that may control cell migration and evaluated the effects on the size and orientation of blood vessels and the amount of bone formation in the scaffold. The carbonate apatite scaffolds with intrascaffold space allowing one-dimensional (1D), two-dimensional (2D), or three-dimensional (3D) cell migration were fabricated by 3D printing. These scaffolds had the same space size, i.e., distances between the struts (~300 µm). The scaffolds were implanted into the medial condyle of rabbit femurs for four weeks. Both the size and orientation degree of the blood vessels formed in the scaffolds allowing 1D cell migration were 2.5- to 4.0-fold greater than those of the blood vessels formed in the scaffolds allowing 2D and 3D cell migration. Furthermore, the amount of bone formed in the scaffolds allowing 1D cell migration was 1.4-fold larger than that formed in the scaffolds allowing 2D and 3D cell migration. These are probably because the 1D space limited the direction of cell migration and prevented the branching of blood vessels, whereas 2D and 3D spaces provided the opportunity for random cell migration and blood vessel branching. Thus, scaffolds with 1D space are advantageous for inducing large and oriented blood vessels, resulting in a larger amount of bone formation.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (R.K.); (A.T.); (K.I.)
| | | | | | | |
Collapse
|
16
|
Chimedtseren I, Yamahara S, Akiyama Y, Ito M, Arai Y, Gantugs AE, Nastume N, Wakita T, Hiratsuka T, Honda M, Montenegro Raudales JL. Collagen type I-based recombinant peptide promotes bone regeneration in rat critical-size calvarial defects by enhancing osteoclast activity at late stages of healing. Regen Ther 2023; 24:515-527. [PMID: 37841660 PMCID: PMC10570703 DOI: 10.1016/j.reth.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction We recently demonstrated the bone-forming potential of medium-cross-linked recombinant collagen peptide (mRCP) in animal models of bone defects. However, these studies were limited to a 4-week observation period; therefore, in the present study, we aimed to further evaluate mRCP as a suitable bone graft material for the alveolar cleft by analyzing its bone-forming potential, osteogenic-inducing ability, and biodegradation over an extended period of 12 weeks, using a rat critical-size calvarial defect model. Methods Using Sprague-Dawley rats, we created critical-size calvarial defects through a surgical procedure. The defects were then filled with 3 mg of mRCP (mRCP group) or 18 mg of Cytrans® (CA) granules, which has a carbonate apatite-based composition resembling natural bone, was used as a reference material (CA group). For negative control, the defects were left untreated. Bone volume, total bone volume (bone volume including CA granules), and bone mineral density (BMD) in the defect were assessed using micro-computed tomography (μ-CT) at 0, 4, 8, and 12 weeks after implantation. Using histomorphometric analyses of hematoxylin and eosin (H&E)-stained sections, we measured the amount of newly formed bone and total newly formed bone (new bone including CA granules) in the entire defect site, as well as the amount of newly formed bone in the central side, two peripheral sides (left and right), periosteal (top) side, and dura mater (bottom) side. In addition, we measured the amount of residual bone graft material in the defect. Osteoclasts and osteoblasts in the newly formed bone were detected using tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) staining, respectively. Results Bone volume in the mRCP group increased over time and was significantly larger at 8 and 12 weeks after surgery than at 4 weeks. The bone volume in the mRCP group was greater than that of the CA and control groups at 4, 8, and 12 weeks after implantation, and while the total bone volume was greater in the CA group after 4 and 8 weeks, the mRCP group had comparable levels of total bone volume to that of the CA group at 12 weeks after implantation. The BMD of the mRCP group reached similar levels to native calvaria bone at the same time point. H&E-stained sections revealed a larger amount of newly formed bone 12 weeks after implantation in the mRCP group compared to that of the CA and control groups. The total newly formed bone at 12 weeks after implantation was on par with that in the CA group. Furthermore, at the defect site, the area of newly formed bone was larger on the peripheral and dura mater sides. Notably, the number of osteoclasts in the mRCP group was higher than in the CA and control groups and peaked 8 weeks after implantation, which coincided with the timing of the greatest resorption of mRCP. Although the ALP-positive area was greater in the mRCP group compared to other groups, we did not detect any significant changes in the number of osteoblasts over time. Conclusion This study demonstrated the bone-forming potential of mRCP over an extended period of 12 weeks, suggesting that mRCP sufficiently resists resorption to promote bone formation through induction of osteoclast activation in the late stages of the healing period.
Collapse
Affiliation(s)
- Ichinnorov Chimedtseren
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Shoji Yamahara
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Yasunori Akiyama
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Masaaki Ito
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Anar Erdene Gantugs
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Nagato Nastume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi, 464-8651, Japan
| | - Taku Wakita
- Bio Science & Engineering Laboratory, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Takahiro Hiratsuka
- Bio Science & Engineering Laboratory, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Jorge Luis Montenegro Raudales
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
17
|
Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Superiority of Triply Periodic Minimal Surface Gyroid Structure to Strut-Based Grid Structure in Both Strength and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433180 DOI: 10.1021/acsami.3c06263] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The aging population has rapidly driven the demand for bone regeneration. The pore structure of a scaffold is a critical factor that affects its mechanical strength and bone regeneration. Triply periodic minimal surface gyroid structures similar to the trabecular bone structure are considered superior to strut-based lattice structures (e.g., grids) in terms of bone regeneration. However, at this stage, this is only a hypothesis and is not supported by evidence. In this study, we experimentally validated this hypothesis by comparing gyroid and grid scaffolds composed of carbonate apatite. The gyroid scaffolds possessed compressive strength approximately 1.6-fold higher than that of the grid scaffolds because the gyroid structure prevented stress concentration, whereas the grid structure could not. The porosity of gyroid scaffolds was higher than that of the grid scaffolds; however, porosity and compressive strength generally have a trade-off relationship. Moreover, the gyroid scaffolds formed more than twice the amount of bone as grid scaffolds in a critical-sized bone defect in rabbit femur condyles. This favorable bone regeneration using gyroid scaffolds was attributed to the high permeability (i.e., larger volume of macropores or porosity) and curvature profile of the gyroid structure. Thus, this study validated the conventional hypothesis using in vivo experiments and revealed factors that led to this hypothetical outcome. The findings of this study are expected to contribute to the development of scaffolds that can achieve early bone regeneration without sacrificing the mechanical strength.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
18
|
Nagayasu-Tanaka T, Anzai J, Takedachi M, Kitamura M, Harada T, Murakami S. Effects of combined application of fibroblast growth factor (FGF)-2 and carbonate apatite for tissue regeneration in a beagle dog model of one-wall periodontal defect. Regen Ther 2023; 23:84-93. [PMID: 37122358 PMCID: PMC10141504 DOI: 10.1016/j.reth.2023.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction There has been an increasing desire for the development of predictive periodontal regenerative therapy for severe periodontitis. In this study, we investigated the effect of the combined use of fibroblast growth factor-2 (FGF-2), a drug for periodontal regeneration approved in Japan, and carbonated apatite (CO3Ap), bioresorbable and osteoconductive scaffold, on periodontal regeneration in beagle dog model of one-wall periodontal defect (severe intraosseous defect) for 24 weeks in comparison with CO3Ap or vehicle alone. Methods One-wall periodontal defects were created (mesiodistal width × depth: 4 × 4 mm) on the mesial portion of the mandibular first molar (M1) of beagle dogs on both side. Mixture of FGF-2 and CO3Ap, vehicle and CO3Ap, or vehicle alone were administered to the defects and designated as groups FGF-2+CO3Ap, CO3Ap, and control, respectively. To assess the periodontal regeneration, radiographic analysis over time for 24 weeks, and micro computed tomography (μCT) and histological evaluation at 6 and 24 weeks were performed. Results For the regenerated tissue in the defect site, the mineral content of the FGF-2+CO3Ap group was higher than that of the CO3Ap group in the radiographic analysis at 6-24 weeks. In the context of new bone formation and replacement, the FGF-2+CO3Ap group exhibited significantly greater new bone volume and smaller CO3Ap volume than the CO3Ap group in the μCT analysis at 6 and 24 weeks. Furthermore, the density of the new bone in the FGF-2+CO3Ap group at 24 weeks was similar to those in the control and CO3Ap groups. Histological evaluation revealed that the length of the new periodontal ligament and cementum in the FGF-2+CO3Ap group was greater than that in the CO3Ap group at 6 weeks. We also examined the effect of the combined use of the FGF-2 and CO3Ap on the existing bone adjacent to the defect and demonstrated that the existing bone height and volume in the FGF-2+CO3Ap group remained significantly greater than those in the CO3Ap group. Conclusion This study demonstrated that the combination of FGF-2 and CO3Ap was effective not only in enhancing new bone formation and replacing scaffold but also in maintaining the existing bone adjacent to the defect site in a beagle dog model of one-wall periodontal defect. Additionally, new periodontal tissues induced by FGF-2 and CO3Ap may follow a maturation process similar to that formed by spontaneous healing. This suggests that the combined use of FGF-2 and CO3Ap would promote periodontal regeneration in severe bony defects of periodontitis patient.
Collapse
Affiliation(s)
- Toshie Nagayasu-Tanaka
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan
| | - Jun Anzai
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuhiro Harada
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Corresponding author. Shinya Murakami Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Hayashi K, Yanagisawa T, Kishida R, Tsuchiya A, Ishikawa K. Gear-shaped carbonate apatite granules with a hexagonal macropore for rapid bone regeneration. Comput Struct Biotechnol J 2023; 21:2514-2523. [PMID: 37077175 PMCID: PMC10106487 DOI: 10.1016/j.csbj.2023.03.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Synthetic bone grafts are in high demand owing to increased age-related bone disorders in the global aging population. Here, we report fabrication of gear-shaped granules (G-GRNs) for rapid bone healing. G-GRNs possessed six protrusions and a hexagonal macropore in the granular center. These were composed of carbonate apatite, i.e., bone mineral, microspheres with ∼1-μm micropores in the spaces between the microspheres. G-GRNs formed new bone and blood vessels (both on the granular surface and within the macropores) 4 weeks after implantation in the rabbit femur defects. The formed bone structure was similar to that of cancellous bone. The bone percentage in the defect recovered to that in a normal rabbit femur at week-4 post-implantation, and the bone percentage remained constant for the following 8 weeks. Throughout the entire period, the bone percentage in the G-GRN-implanted group was ∼10% higher than that of the group implanted with conventional carbonate apatite granules. Furthermore, a portion of the G-GRNs resorbed at week-4, and resorption continued for the following 8 weeks. Thus, G-GRNs are involved in bone remodeling and are gradually replaced with new bone while maintaining a suitable bone level. These findings provide a basis for the design and fabrication of synthetic bone grafts for achieving rapid bone regeneration.
Collapse
|
20
|
Motojima K, Shiratsuchi R, Suzuki K, Aizawa M, Kaneko H. Machine Learning Model for Predicting the Material Properties and Bone Formation Rate and Direct Inverse Analysis of the Model for New Synthesis Conditions of Bioceramics. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
21
|
Tan JLT, Shimabukuro M, Kishida R, Ishikawa K. Fabrication and histological evaluation of ant-nest type porous carbonate apatite artificial bone using polyurethane foam as a porogen. J Biomed Mater Res B Appl Biomater 2023; 111:560-567. [PMID: 36205010 DOI: 10.1002/jbm.b.35173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 01/25/2023]
Abstract
The composition of carbonate apatite (CO3 Ap) aids bone regeneration. Other features, such as porosity and pore interconnectivity of artificial bone, also govern bone regeneration. In general, a trade-off exists between the porosity and mechanical strength of artificial bone. Therefore, this suggests that the interconnected pores in the ant-nest-type porous (ANP) structure of artificial bone accelerate bone regeneration by minimizing the sacrifice of mechanical strength. The unique structure of polyurethane foam has the potential to endow CO3 Ap with an ANP structure without forming excess pores. This study investigated the efficacy of polyurethane foam as a porogen in providing ANP structure to CO3 Ap artificial bone. The polyurethane foam was completely decomposed by sintering and the resulting CO3 Ap displayed ANP structure with a compressive strength of approximately 15 MPa. Furthermore, in vivo experiments revealed that the migration of cells and tissues into the interior of CO3 Ap through the interconnected pores accelerated bone regeneration in the ANP-structured CO3 Ap. Thus, this indicates that using polyurethane foam as a porogen endows the CO3 Ap artificial bone with an ANP structure that accelerates bone regeneration.
Collapse
Affiliation(s)
| | - Masaya Shimabukuro
- Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Kishida
- Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Bone Apatite Nanocrystal: Crystalline Structure, Chemical Composition, and Architecture. Biomimetics (Basel) 2023; 8:biomimetics8010090. [PMID: 36975320 PMCID: PMC10046636 DOI: 10.3390/biomimetics8010090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
The biological and mechanical functions of bone rely critically on the inorganic constituent, which can be termed as bone apatite nanocrystal. It features a hydroxylapatite-like crystalline structure, complex chemical compositions (e.g., carbonate-containing and calcium- and hydroxyl-deficient), and fine geometries and properties. The long research with vast literature across broad spectra of disciplines and fields from chemistry, crystallography, and mineralogy, to biology, medical sciences, materials sciences, mechanics, and engineering has produced a wealth of knowledge on the bone apatite nanocrystal. This has generated significant impacts on bioengineering and industrial engineering, e.g., in developing new biomaterials with superior osteo-inductivities and in inspiring novel strong and tough composites, respectively. Meanwhile, confusing and inconsistent understandings on the bone mineral constituent should be addressed to facilitate further multidisciplinary progress. In this review, we present a mineralogical account of the bone-related ideal apatite mineral and then a brief historical overview of bone mineral research. These pave the road to understanding the bone apatite nanocrystal via a material approach encompassing crystalline structure, diverse chemical formulae, and interesting architecture and properties, from which several intriguing research questions emerge for further explorations. Through providing the classical and latest findings with decent clearness and adequate breadth, this review endeavors to promote research advances in a variety of related science and engineering fields.
Collapse
|
23
|
Kudoh K, Fukuda N, Akita K, Kudoh T, Takamaru N, Kurio N, Hayashi K, Ishikawa K, Miyamoto Y. Reconstruction of rabbit mandibular bone defects using carbonate apatite honeycomb blocks with an interconnected porous structure. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 34:2. [PMID: 36586041 PMCID: PMC9805415 DOI: 10.1007/s10856-022-06710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Carbonate apatite (CO3Ap) granules are useful as a bone substitute because they can be remodeled to new natural bone in a manner that conforms to the bone remodeling process. However, reconstructing large bone defects using CO3Ap granules is difficult because of their granular shape. Therefore, we fabricated CO3Ap honeycomb blocks (HCBs) with continuous unidirectional pores. We aimed to elucidate the tissue response and availability of CO3Ap HCBs in the reconstruction of rabbit mandibular bone defects after marginal mandibulectomy. The percentages of the remaining CO3Ap area and calcified bone area (newly formed bone) were estimated from the histological images. CO3Ap area was 49.1 ± 4.9%, 30.3 ± 3.5%, and 25.5 ± 8.8%, whereas newly formed bone area was 3.0 ± 0.6%, 24.3 ± 3.3%, and 34.7 ± 4.8% at 4, 8, and 12 weeks, respectively, after implantation. Thus, CO3Ap HCBs were gradually resorbed and replaced by new bone. The newly formed bone penetrated most of the pores in the CO3Ap HCBs at 12 weeks after implantation. By contrast, the granulation tissue scarcely invaded the CO3Ap HCBs. Some osteoclasts invaded the wall of CO3Ap HCBs, making resorption pits. Furthermore, many osteoblasts were found on the newly formed bone, indicating ongoing bone remodeling. Blood vessels were also formed inside most of the pores in the CO3Ap HCBs. These findings suggest that CO3Ap HCBs have good osteoconductivity and can be used for the reconstruction of large mandibular bone defects. The CO3Ap HCB were gradually resorbed and replaced by newly formed bone.
Collapse
Affiliation(s)
- Keiko Kudoh
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Naoyuki Fukuda
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuya Akita
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takaharu Kudoh
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Natsumi Takamaru
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Naito Kurio
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Hayashi
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Youji Miyamoto
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Hara ES, Nagaoka N, Okada M, Nakano T, Matsumoto T. Distinct Morphologies of Bone Apatite Clusters in Endochondral and Intramembranous Ossification. Adv Biol (Weinh) 2022; 6:e2200076. [PMID: 35859256 DOI: 10.1002/adbi.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/27/2022] [Indexed: 01/28/2023]
Abstract
Bone apatite crystals grow in clusters, but the microstructure of these clusters is unknown. This study compares the structural and compositional differences between bone apatite clusters formed in intramembranous (IO) and endochondral ossification (EO). Calvaria (IO) and femurs (EO) are isolated from mice at embryonic days (E) 14.5 to 15.5 and post-natal days (P) 6 to 7, respectively. Results show that the initially formed bone apatite clusters in EO (≅1.2 µm2 ) are >10 times larger than those in IO (≅0.1 µm2 ), without significant changes in ion composition. In IO (E14.5 calvarium), early minerals are formed inside matrix vesicles (MVs). In contrast, in EO (P6 femur epiphysis), no MVs are observed, and chondrocyte-derived plasma membrane nanofragments (PMNFs) are the nucleation site for mineralization. Apatite cluster size difference is linked with the different nucleation sites. Moreover, an alkaline pH and slow P supply into a Ca-rich microenvironment are suggested to facilitate apatite cluster growth, as demonstrated in a biomimetic mineralization system. Together, the results reveal for the first time the distinct and exquisite microstructures of bone apatite clusters in IO and EO, and provide insightful inspirations for the design of more efficient materials for bone tissue engineering and repair.
Collapse
Affiliation(s)
- Emilio Satoshi Hara
- Department of Biomaterials Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Noriyuki Nagaoka
- Dental School, Okayama University, Advanced Research Center for Oral and Craniofacial Sciences, Okayama, 700-8525, Japan
| | - Masahiro Okada
- Department of Biomaterials Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-Shi, Osaka, 565-0871, Japan
| | - Takuya Matsumoto
- Department of Biomaterials Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| |
Collapse
|
25
|
Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Channel Aperture Characteristics of Carbonate Apatite Honeycomb Scaffolds Affect Ingrowths of Bone and Fibrous Tissues in Vertical Bone Augmentation. Bioengineering (Basel) 2022; 9:627. [PMID: 36354538 PMCID: PMC9687283 DOI: 10.3390/bioengineering9110627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 10/17/2023] Open
Abstract
Synthetic scaffolds with the ability to prevent fibrous tissue penetration and promote bone augmentation may realize guided bone regeneration without the use of a barrier membrane for dental implantation. Here, we fabricated two types of honeycomb scaffolds of carbonate apatite, a bone mineral analog, whose channel apertures were square (HC-S) and rectangular (HC-R). The side lengths of the HC-Ss and HC-Rs were 265.8 ± 8.9; 817.7 ± 2.4 and 267.1 ± 5.2 μm, respectively. We placed cylindrical HC-Ss and HC-Rs on the rabbit calvaria. At 4 weeks post-implantation, the HC-Ss prevented fibrous tissue penetration from the top face via the channels, which allowed the new bone to reach the top of the scaffold from the bottom face or the calvarium. In contrast, in the HC-Rs, fibrous tissues filled the channels in the top region. At 12 weeks post-implantation, the HC-Ss were partially replaced with new bone. In the top region of the HC-Rs, although new bone had formed, fibrous tissue remained. According to the findings here and in our previous study, the longer side length rather than the shorter side length of a rectangular scaffold channel aperture is the dominant factor that affects fibrous tissue penetration and new bone augmentation. Furthermore, even though channel aperture areas are similar, bone and fibrous tissue ingrowths are different when the aperture shapes are different.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
26
|
Bai B, Hao J, Hou M, Wang T, Wu X, Liu Y, Wang Y, Dai C, Hua Y, Ji G, Zhou G. Repair of Large-Scale Rib Defects Based on Steel-Reinforced Concrete-Designed Biomimetic 3D-Printed Scaffolds with Bone-Mineralized Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42388-42401. [PMID: 36094886 DOI: 10.1021/acsami.2c08422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tissue engineering technology provides a promising approach for large-scale bone reconstruction in cases of extensive chest wall defects. However, previous studies did not consider meticulous scaffold design specific to large-scale rib regeneration in terms of three-dimensional (3D) shape, proper porous structures, enough mechanical strength, and osteogenic microenvironments. Thus, there is an urgent need to develop an appropriate bone biomimetic scaffold (BBS) to address this problem. In this study, a BBS with controllable 3D morphology, appropriate mechanical properties, good biocompatibility and biodegradability, porous structure suitable for cell loading, and a biomimetic osteogenic inorganic salt (OIS) microenvironment was successfully prepared by integrating computer-aided design, 3D-printing, cast-molding, and freeze-drying technologies. The addition of the OIS in the scaffold substantially promoted ectopic bone regeneration in vivo, which might be attributed to the activation of osteogenic and angiogenic signaling pathways as well as upregulated expression of osteogenic genes. More importantly, dual long rib defects could be successfully repaired and medullary cavity recanalized by the rib-shaped mature cortical bone, which might be mediated by the activation of osteoclast signaling pathways. Thus, this paper presents a reliable BBS and proposes a new strategy for the repair of large-scale bone defects.
Collapse
Affiliation(s)
- Baoshuai Bai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Junxiang Hao
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Mengjie Hou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Tao Wang
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Xiaodi Wu
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Yanhan Liu
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| | - Yiyang Wang
- National Tissue Engineering Center of China, Shanghai 200001, China
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chengxiang Dai
- Cellular Biomedicine Group, Incorporated, No. 85 Faladi Road, Building 3, Pudong New Area, Shanghai 201210, China
| | - Yujie Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| | - Guangyu Ji
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| |
Collapse
|
27
|
Hayashi K, Yanagisawa T, Kishida R, Ishikawa K. Effects of Scaffold Shape on Bone Regeneration: Tiny Shape Differences Affect the Entire System. ACS NANO 2022; 16:11755-11768. [PMID: 35833725 PMCID: PMC9413413 DOI: 10.1021/acsnano.2c03776] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Although studies on scaffolds for tissue generation have mainly focused on the chemical composition and pore structure, the effects of scaffold shape have been overlooked. Scaffold shape determines the scaffold surface area (SA) at the single-scaffold level (i.e., microscopic effects), although it also affects the amount of interscaffold space in the tissue defect at the whole-system level (i.e., macroscopic effects). To clarify these microscopic and macroscopic effects, this study reports the osteogenesis abilities of three types of carbonate apatite granular scaffolds with different shapes, namely, irregularly shaped dense granules (DGs) and two types of honeycomb granules (HCGs) with seven hexagonal channels (∼255 μm in length between opposite sides). The HCGs possessed either 12 protuberances (∼75 μm in length) or no protuberances. Protuberances increased the SA of each granule by 3.24 mm2 while also widening interscaffold spaces and increasing the space percentage in the defect by ∼7.6%. Interscaffold spaces were lower in DGs than HCGs. On DGs, new bone formed only on the surface, whereas on HCGs, bone simultaneously formed on the surface and in intrascaffold channels. Interestingly, HCGs without protuberances formed approximately 30% more new bone than those with protuberances. Thus, even tiny protuberances on the scaffold surface can affect the percentage of interscaffold space, thereby exerting dominant effects on osteogenesis. Our findings demonstrate that bone regeneration can be improved by considering macroscopic shape effects beyond the microscopic effects of the scaffold.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty
of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Toshiki Yanagisawa
- Department of Biomaterials, Faculty
of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty
of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty
of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
28
|
Combination of Carbonate Hydroxyapatite and Stem Cells from Human Deciduous Teeth Promotes Bone Regeneration by Enhancing BMP-2, VEGF and CD31 Expression in Immunodeficient Mice. Cells 2022; 11:cells11121914. [PMID: 35741043 PMCID: PMC9221865 DOI: 10.3390/cells11121914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to clarify the efficiency of a combination of stem cells from human deciduous teeth and carbonate apatite in bone regeneration of calvarial defects. Immunodeficient mice (n = 5 for each group/4 groups) with artificial calvarial bone defects (5 mm in diameter) were developed, and stem cells from human deciduous teeth (SHEDs) and carbonate hydroxyapatite (CAP) granules were transplanted with an atelocollagen sponge as a scaffold. A 3D analysis using microcomputed tomography, and 12 weeks after transplantation, histological and immunohistochemical evaluations of markers of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and cluster of differentiation (CD) 31 were performed. In the 3D analysis, regenerated bone formation was observed in SHEDs and CAP, with the combination of SHEDs and CAP showing significantly greater bone regeneration than that in the other groups. Histological and immunohistochemical evaluations showed that combining SHEDs and CAP enhanced the expression of BMP-2, VEGF, and CD31, and promoted bone regeneration. This study demonstrates that the combination of SHEDs and CAP transplantation may be a promising tool for bone regeneration in alveolar defects.
Collapse
|
29
|
Surface functionalization with copper endows carbonate apatite honeycomb scaffold with antibacterial, proangiogenic, and pro-osteogenic activities. BIOMATERIALS ADVANCES 2022; 135:212751. [PMID: 35929223 DOI: 10.1016/j.bioadv.2022.212751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/04/2022] [Accepted: 03/04/2022] [Indexed: 11/22/2022]
Abstract
Osteomyelitis is a potentially devastating inflammatory bone disease that leads to bone destruction and loss. Treatment of osteomyelitis requires the removal of residual bacteria as well as osteogenesis with angiogenesis at the site of treatment. Use of an appropriate amount of copper (Cu) in treatment scaffolds may achieve these goals without the risk of toxicity. In this study, the surface of the carbonate apatite honeycomb scaffold was functionalized with Cu through a dissolution-precipitation reaction. The resulting scaffolds retained the honeycomb structure after immersion in CuCl2 solution, and Cu was precipitated on the surface as libethenite [Cu2(OH)PO4]. The surface Cu concentration was controlled by the concentration of the CuCl2 solution. Scaffolds with a surface Cu concentration of 23.8 wt% exhibited antibacterial and cytotoxic effects, whereas those with concentrations of ≤4.6 wt% exerted antibacterial effects without negatively affecting the cellular adhesion, proliferation, differentiation, and calcification of osteoblast-like cells. Furthermore, scaffolds with a surface Cu concentration of 4.6 wt% Cu inhibited bacterial growth for at least 28 days and displayed proangiogenic and pro-osteogenic activities in vivo. These data confirm the success in functionalizing scaffolds with Cu that may be utilized as an innovative osteomyelitis therapy.
Collapse
|
30
|
Shibahara K, Hayashi K, Nakashima Y, Ishikawa K. Effects of Channels and Micropores in Honeycomb Scaffolds on the Reconstruction of Segmental Bone Defects. Front Bioeng Biotechnol 2022; 10:825831. [PMID: 35372306 PMCID: PMC8971796 DOI: 10.3389/fbioe.2022.825831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/01/2022] [Indexed: 01/17/2023] Open
Abstract
The reconstruction of critical-sized segmental bone defects is a key challenge in orthopedics because of its intractability despite technological advancements. To overcome this challenge, scaffolds that promote rapid bone ingrowth and subsequent bone replacement are necessary. In this study, we fabricated three types of carbonate apatite honeycomb (HC) scaffolds with uniaxial channels bridging the stumps of a host bone. These HC scaffolds possessed different channel and micropore volumes. The HC scaffolds were implanted into the defects of rabbit ulnar shafts to evaluate the effects of channels and micropores on bone reconstruction. Four weeks postoperatively, the HC scaffolds with a larger channel volume promoted bone ingrowth compared to that with a larger micropore volume. In contrast, 12 weeks postoperatively, the HC scaffolds with a larger volume of the micropores rather than the channels promoted the scaffold resorption by osteoclasts and bone formation. Thus, the channels affected bone ingrowth in the early stage, and micropores affected scaffold resorption and bone formation in the middle stage. Furthermore, 12 weeks postoperatively, the HC scaffolds with large volumes of both channels and micropores formed a significantly larger amount of new bone than that attained using HC scaffolds with either large volume of channels or micropores, thereby bridging the host bone stumps. The findings of this study provide guidance for designing the pore structure of scaffolds.
Collapse
Affiliation(s)
- Keigo Shibahara
- Department of Biomaterials Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Hayashi
- Department of Biomaterials Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Hayashi K, Yanagisawa T, Shimabukuro M, Kishida R, Ishikawa K. Granular honeycomb scaffolds composed of carbonate apatite for simultaneous intra- and inter-granular osteogenesis and angiogenesis. Mater Today Bio 2022; 14:100247. [PMID: 35378911 PMCID: PMC8976130 DOI: 10.1016/j.mtbio.2022.100247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/08/2023] Open
Abstract
Granular porous calcium phosphate scaffolds are used for bone regeneration in dentistry. However, in conventional granules, the macropore interconnectivity is poor and has varying size. Herein, we developed a productive method for fabricating carbonate apatite honeycomb granules with uniformly sized macropores based on extrusion molding. Each honeycomb granule possesses three hexagonal macropores of ∼290 μm along its diagonal. Owing to these macropores, honeycomb granules simultaneously formed new and mature bone and blood vessels in both the interior and exterior of the granules at 4 weeks after implantation. The honeycomb granules are useful for achieving rapid osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiki Yanagisawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
32
|
Freitas P, Kishida R, Hayashi K, Tsuchiya A, Shimabukuro M, Ishikawa K. Fabrication and histological evaluation of porous carbonate apatite blocks using disodium hydrogen phosphate crystals as a porogen and phosphatization accelerator. J Biomed Mater Res A 2022; 110:1278-1290. [PMID: 35194936 DOI: 10.1002/jbm.a.37374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 01/21/2023]
Abstract
The porous architecture of artificial bones plays a pivotal role in bone ingrowth. Although salt leaching methods produce predictable porous architectures, their application in the low-temperature fabrication of ceramics remains a challenge. Carbonate apatite (CO3 Ap) blocks with three ranges of pore sizes: 100-200, 200-400, and 400-600 μm, were fabricated from CaCO3 blocks with embedded Na2 HPO4 crystals as a porogen and accelerator for CaCO3 -to-CO3 Ap conversion. CaCO3 blocks were obtained from Ca(OH)2 compacts with Na2 HPO4 by CO2 flow at 100% humidity. When carbonated under 100% water humidity, the dissolution of Na2 HPO4 and the formation of hydroxyapatite were observed. Using 90% methanol and 10% water were beneficial in avoiding the Na2 HPO4 consumption and generating the metastable CaCO3 vaterite, which was rapidly converted into CO3 Ap in a Na2 HPO4 solution in 7 days. For the histological evaluation, the CO3 Ap blocks were implanted in rabbit femur defects. Four weeks after implantation, new bone was formed at the edges of the blocks. After 12 weeks, new bone was observed in the central areas of the material. Notably, CO3 Ap blocks with pore sizes of 100-200 μm were the most effective, exhibiting approximately 23% new bone area. This study sheds new light on the fabrication of tailored porous blocks and provides a useful guide for designing artificial bones.
Collapse
Affiliation(s)
- Pery Freitas
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
33
|
Elsheikh M, Kishida R, Hayashi K, Tsuchiya A, Shimabukuro M, Ishikawa K. Effects of Pore Interconnectivity on Bone Regeneration in Carbonate Apatite Blocks. Regen Biomater 2022; 9:rbac010. [PMID: 35449826 PMCID: PMC9017375 DOI: 10.1093/rb/rbac010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/24/2022] Open
Abstract
Porous architecture in bone substitutes, notably the interconnectivity of pores, is a critical factor for bone ingrowth. However, controlling the pore interconnectivity while maintaining the microarchitecture has not yet been achieved using conventional methods, such as sintering. Herein, we fabricated a porous block using the crystal growth of calcium sulfate dihydrate, and controlled the pore interconnectivity by limiting the region of crystal growth. The calcium sulfate dihydrate blocks were transformed to bone apatite, carbonate apatite (CO3Ap) through dissolution–precipitation reactions. Thus, CO3Ap blocks with 15% and 30% interconnected pore volumes were obtained while maintaining the microarchitecture: they were designated as CO3Ap-15 and CO3Ap-30, respectively. At 4 weeks after implantation in a rabbit femur defect, new bone formed throughout CO3Ap-30, whereas little bone was formed in the center region of CO3Ap-15. At 12 weeks after implantation, a large portion of CO3Ap-30 was replaced with new bone and the boundary with the host bone became blurred. In contrast, CO3Ap-15 remained in the defect and the boundary with the host bone was still clear. Thus, the interconnected pores promote bone ingrowth, followed by replacement of the material with new bone. These findings provide a useful guide for designing bone substitutes for rapid bone regeneration. ![]()
Collapse
Affiliation(s)
- Maab Elsheikh
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
34
|
Wickramasinghe ML, Dias GJ, Premadasa KMGP. A novel classification of bone graft materials. J Biomed Mater Res B Appl Biomater 2022; 110:1724-1749. [PMID: 35156317 DOI: 10.1002/jbm.b.35029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Maduni L. Wickramasinghe
- Department of Biomedical Engineering General Sir John Kotelawala Defense University Ratmalana Sri Lanka
| | - George J. Dias
- Department of Anatomy, School of Medical Sciences University of Otago Dunedin New Zealand
| | | |
Collapse
|
35
|
Hayashi K, Shimabukuro M, Ishikawa K. Antibacterial Honeycomb Scaffolds for Achieving Infection Prevention and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3762-3772. [PMID: 35020349 DOI: 10.1021/acsami.1c20204] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surgical site infection (SSI) is a severe complication associated with orthopedic bone reconstruction. For both infection prevention and bone regeneration, the framework surface of osteoconductive and bioresorbable scaffolds must be locally modified by minimum antibacterial substances, without sacrificing the osteoconductivity of the scaffold framework. In this study, we fabricated antibacterial honeycomb scaffolds by replacing carbonate apatite, which is the main component of the scaffold, with silver phosphate locally on the scaffold surface via dissolution-precipitation reactions. When the silver content was 9.9 × 10-4 wt %, the honeycomb scaffolds showed antibacterial activity without cytotoxicity and allowed cell proliferation, differentiation, and mineralization. Furthermore, the antibacterial honeycomb scaffolds perfectly prevented bacterial infection in vivo in the presence of methicillin-resistant Staphylococcus aureus, formed new bone at 2 weeks after surgery, and were gradually replaced with a new bone. Thus, the antibacterial honeycomb scaffolds achieved both infection prevention and bone regeneration. In contrast, severe infection symptoms, including abscess formation, osteolytic lesions, and inflammation, occurred 2 weeks after surgery when honeycomb scaffolds without silver phosphate modification were implanted. Nevertheless, the unmodified honeycomb scaffolds eliminated bacteria and necrotic bone through their scaffold channels, resulting in symptom improvement and bone formation. These results suggest that the honeycomb structure is inherently effective in hindering bacterial growth. This novel insight may contribute to the development of antibacterial scaffolds. Moreover, our modification method is useful for providing antibacterial activity to various biomaterials.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
36
|
Zhao X, Yang Z, Liu Q, Yang P, Wang P, Wei S, Liu A, Zhao Z. Potential Load-Bearing Bone Substitution Material: Carbon-Fiber-Reinforced Magnesium-Doped Hydroxyapatite Composites with Excellent Mechanical Performance and Tailored Biological Properties. ACS Biomater Sci Eng 2022; 8:921-938. [PMID: 35029364 DOI: 10.1021/acsbiomaterials.1c01247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A potential load-bearing bone substitution and repair material, that is, carbon fiber (CF)-reinforced magnesium-doped hydroxyapatite (CF/Mg-HAs) composites with excellent mechanical performance and tailored biological properties, was constructed via the hydrothermal method and spark plasma sintering. A high-resolution transmission electron microscopy (TEM) was employed to characterize the nanostructure of magnesium-doped hydroxyapatite (Mg-HA). TEM images showed that the doping of Mg-induced distortions and dislocations in the hydroxyapatite lattice, resulting in decreased crystallinity and enhanced dissolution. Compressive strengths of 10% magnesium-doped hydroxyapatite (1Mg-HAs) and CF-reinforced 1Mg-HAs (CF/1Mg-HAs) were within the range of that of cortical bone. Compared with 1Mg-HAs, the fracture toughness of CF/1Mg-HAs increased by approximately 38%. The bioactivity, biocompatibility, and osteogenic induction properties of Mg-HAs and CF/Mg-HAs composites were evaluated in vitro using simulated body fluid (SBF) immersion, cell culture, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and expression of genes associated with osteogenesis. When Mg-HAs were immersed in SBF, Mg2+ continued to release for up to 21 days. Mg-HAs demonstrated a satisfactory ability to induce apatite formation in comparison with HAs. The cell proliferation and morphology on CF/1Mg-HAs were similar to those of 1Mg-HAs, suggesting that adding CF had no adverse effect on cellular activity. The expression levels of osteogenesis-related genes [osteocalcin (OPN), osteopontin (OCN), and runt-related transcription factor 2 (Runx2)] on 1Mg-HAs were significantly higher at days 3 and 7 than those on HAs and 0.5Mg-HAs groups. This finding suggests that a certain amount of Mg doping had beneficial influences in the different stages of osteogenic differentiation and could induce osteogenic differentiation of BMSCs. The new bone volume to total volume ratio of implanted 1Mg-HAs (30.9% ± 4.1%) and CF/1Mg-HAs (25.4% ± 5.4%) was remarkably higher than that of HAs (21.6% ± 3.9%). 1Mg-HAs and CF/1Mg-HAs tailored an ideal effect of new bone information and implant osseointegration. The excellent mechanical performance and tailored biological properties of CF/Mg-HAs were attributed to nano Mg-doped HA, CF reinforcing, refined microstructure, and controlled composition.
Collapse
Affiliation(s)
- Xueni Zhao
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Zhi Yang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Qingyao Liu
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Pinglin Yang
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Pengfei Wang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Sensen Wei
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Ao Liu
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Zhenyang Zhao
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| |
Collapse
|
37
|
Hayashi K, Shimabukuro M, Kishida R, Tsuchiya A, Ishikawa K. Structurally optimized honeycomb scaffolds with outstanding ability for vertical bone augmentation. J Adv Res 2022; 41:101-112. [DOI: 10.1016/j.jare.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
|
38
|
Gao B, Honda Y, Yamada Y, Tanaka T, Takeda Y, Nambu T, Baba S. Utility of Thermal Cross-Linking in Stabilizing Hydrogels with Beta-Tricalcium Phosphate and/or Epigallocatechin Gallate for Use in Bone Regeneration Therapy. Polymers (Basel) 2021; 14:40. [PMID: 35012062 PMCID: PMC8747742 DOI: 10.3390/polym14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
β-tricalcium phosphate (β-TCP) granules are commonly used materials in dentistry or orthopedic surgery. However, further improvements are required to raise the operability and bone-forming ability of β-TCP granules in a clinical setting. Recently, we developed epigallocatechin gallate (EGCG)-modified gelatin sponges as a novel biomaterial for bone regeneration. However, there is no study on using the above material for preparing hydrogel incorporating β-TCP granules. Here, we demonstrate that vacuum heating treatment induced thermal cross-linking in gelatin sponges modified with EGCG and incorporating β-TCP granules (vhEc-GS-β) so that the hydrogels prepared from vhEc-GS-β showed high stability, β-TCP granule retention, operability, and cytocompatibility. Additionally, microcomputed tomography morphometry revealed that the hydrogels from vhEc-GS-β had significantly higher bone-forming ability than β-TCP alone. Tartrate-resistant acid phosphatase staining demonstrated that the number of osteoclasts increased at three weeks in defects treated with the hydrogels from vhEc-GS-β compared with that around β-TCP alone. The overall results indicate that thermal cross-linking treatment for the preparation of sponges (precursor of hydrogels) can be a promising process to enhance the bone-forming ability. This insight should provide a basis for the development of novel materials with good operativity and bone-forming ability for bone regenerative medicine.
Collapse
Affiliation(s)
- Beiyuan Gao
- Department of Implantology, Osaka Dental University, Osaka 573-1121, Japan; (B.G.); (Y.Y.); (Y.T.); (S.B.)
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, Osaka 573-1121, Japan
| | - Yoichi Yamada
- Department of Implantology, Osaka Dental University, Osaka 573-1121, Japan; (B.G.); (Y.Y.); (Y.T.); (S.B.)
| | - Tomonari Tanaka
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yoshihiro Takeda
- Department of Implantology, Osaka Dental University, Osaka 573-1121, Japan; (B.G.); (Y.Y.); (Y.T.); (S.B.)
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, Osaka 573-1121, Japan;
| | - Shunsuke Baba
- Department of Implantology, Osaka Dental University, Osaka 573-1121, Japan; (B.G.); (Y.Y.); (Y.T.); (S.B.)
| |
Collapse
|
39
|
Borden M, Westerlund LE, Lovric V, Walsh W. Controlling the bone regeneration properties of bioactive glass: Effect of particle shape and size. J Biomed Mater Res B Appl Biomater 2021; 110:910-922. [PMID: 34936202 PMCID: PMC9305884 DOI: 10.1002/jbm.b.34971] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 11/24/2022]
Abstract
The ability of particulate bioactive glass to function as an effective bone graft material is directly related to its in vivo dissolution, ion release, and interparticle spacing (area associated with bone in‐growth). A spherical shape represents an optimal geometry to control bioactive glass bone formation properties. Spherical particles were fabricated from 45S5 bioactive glass with unimodal (90–180, 180–355, and 355–500 μm) and bimodal size ranges (180–355/355–500 and 90–180/355–500 μm). Particles were formed into bone graft putties and compared to a commercially available product composed of irregular 45S5 bioactive glass particles (32–710 μm). Scanning electron microscopy characterization of spherical particles showed a relatively uniform sphere shape and smooth surfaces. Irregular particles were characterized by random shapes with flat surfaces and sharp edges. X‐ray fluorescence and X‐ray diffraction indicated that the spheroidization process maintained the properties of 45S5 bioactive glass. Cross‐sectional micro‐computed tomography imaging of the putty samples demonstrated that smaller spheres and irregular particles resulted denser packing patterns compared to the larger spheres. Isolated particles were immersed in simulated body fluid for 14 days to measure silicon ion release and bioactivity. Inductively coupled plasma spectroscopy showed faster ion release from smaller particles due to increased surface area. Bioactivity characterization of 14‐day simulated body fluid exposed particle surfaces showed the presence of a hydroxycarbanoapatite mineral layer (characteristic of 45S5 bioactive glass) on all bioactive glass particles. Results demonstrated that spherical particles maintained the properties of the starting 45S5 bioactive glass, and that particle shape and size directly affected short‐term glass dissolution, ion release, and interparticle spacing.
Collapse
Affiliation(s)
- Mark Borden
- Synergy Biomedical, Wayne, Pennsylvania, USA
| | | | - Vedran Lovric
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - William Walsh
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Deguchi K, Nomura S, Tsuchiya A, Takahashi I, Ishikawa K. Effects of the carbonate content in carbonate apatite on bone replacement. J Tissue Eng Regen Med 2021; 16:200-206. [PMID: 34844287 DOI: 10.1002/term.3270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 11/12/2022]
Abstract
Carbonate apatite (CO3 Ap), an inorganic component of human bone, has been clinically applied as an artificial bone substitute. In this study, the effects of the CO3 content in CO3 Ap on the replacement by new bone were studied by fabricating CO3 Ap granules containing 0.9-8.3 wt% of CO3 . The dissolution rate of CO3 Ap in a weak acidic solution, mimicking the Howship's lacunae, was rapid for the CO3 Ap granules containing a larger amount of CO3 . Histological analyses demonstrated the rapid resorption in CO3 Ap and replacement by natural bone tissue when the CO3 content was increased. Therefore, the CO3 content in CO3 Ap is a key factor that influences the replacement of the bone tissue.
Collapse
Affiliation(s)
- Kaai Deguchi
- Section of Orthodontics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shunsuke Nomura
- Section of Orthodontics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ichiro Takahashi
- Section of Orthodontics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
41
|
Production and Characterization of a 316L Stainless Steel/β-TCP Biocomposite Using the Functionally Graded Materials (FGMs) Technique for Dental and Orthopedic Applications. METALS 2021. [DOI: 10.3390/met11121923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metallic biomaterials are widely used for implants and dental and orthopedic applications due to their good mechanical properties. Among all these materials, 316L stainless steel has gained special attention, because of its good characteristics as an implantable biomaterial. However, the Young’s modulus of this metal is much higher than that of human bone (~193 GPa compared to 5–30 GPa). Thus, a stress shielding effect can occur, leading the implant to fail. In addition, due to this difference, the bond between implant and surrounding tissue is weak. Already, calcium phosphate ceramics, such as beta-tricalcium phosphate, have shown excellent osteoconductive and osteoinductive properties. However, they present low mechanical strength. For this reason, this study aimed to combine 316L stainless steel with the beta-tricalcium phosphate ceramic (β-TCP), with the objective of improving the steel’s biological performance and the ceramic’s mechanical strength. The 316L stainless steel/β-TCP biocomposites were produced using powder metallurgy and functionally graded materials (FGMs) techniques. Initially, β-TCP was obtained by solid-state reaction using powders of calcium carbonate and calcium phosphate. The forerunner materials were analyzed microstructurally. Pure 316L stainless steel and β-TCP were individually submitted to temperature tests (1000 and 1100 °C) to determine the best condition. Blended compositions used to obtain the FGMs were defined as 20% to 20%. They were homogenized in a high-energy ball mill, uniaxially pressed, sintered and analyzed microstructurally and mechanically. The results indicated that 1100 °C/2 h was the best sintering condition, for both 316L stainless steel and β-TCP. For all individual compositions and the FGM composite, the parameters used for pressing and sintering were appropriate to produce samples with good microstructural and mechanical properties. Wettability and hemocompatibility were also achieved efficiently, with no presence of contaminants. All results indicated that the production of 316L stainless steel/β-TCP FGMs through PM is viable for dental and orthopedic purposes.
Collapse
|
42
|
Porous Carbonated Hydroxyapatite-Based Paraffin Wax Nanocomposite Scaffold for Bone Tissue Engineering: A Physicochemical Properties and Cell Viability Assay Analysis. COATINGS 2021. [DOI: 10.3390/coatings11101189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Porosity is one of the parameters of scaffold pore structure that must be developed using paraffin wax as a synthetic polymer for making porous bioceramics carbonated hydroxyapatite (CHA). This study fabricated CHA based on abalone mussel shells (Halioitis asinina); CHA/paraffin wax nanocomposite scaffolds were synthesized using paraffin wax with concentration variations of 10, 20, and 30 wt.%. The energy-dispersive X-ray spectroscopy (EDS) results showed that the Ca/P molar ratio of CHA was 1.72, which approaches the natural bone. The addition of paraffin wax in all concentration variation treatments caused the crystallographic properties of the CHA/paraffin wax nanocomposite scaffolds to decrease. The results of pore analysis suggest that the high concentration of paraffin wax in the CHA suspension is involved in the formation of more pores on the surface of the scaffold, but only CHA/paraffin wax 30 wt.% had a scaffold with potential to be used in media with a cellular growth orientation. The micropore analysis was also supported by the cell viability assay results for CHA/paraffin wax 30 wt.% nanocomposite scaffold, where serial doses of scaffold concentrations to mouse osteoblast cells were secure. Overall, based on this analysis, the CHA/paraffin wax scaffold can be a candidate for bone tissue engineering.
Collapse
|
43
|
Shibahara K, Hayashi K, Nakashima Y, Ishikawa K. Honeycomb Scaffold-Guided Bone Reconstruction of Critical-Sized Defects in Rabbit Ulnar Shafts. ACS APPLIED BIO MATERIALS 2021; 4:6821-6831. [PMID: 35006982 DOI: 10.1021/acsabm.1c00533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reconstruction of critical-sized defects (CSDs) in bone shafts remains a major challenge in orthopedics. Honeycomb (HC) scaffolds are considered promising as their uniaxial channels bridge the amputation stumps of bones and promote the ingrowth of bone and blood vessels (BV) into the scaffolds. In this study, the ability of the HC scaffolds, composed of the bone mineral or carbonate apatite (CAp), was evaluated by reconstructing 10, 15, and 20 mm segmental defects in the rabbit ulnar shaft. Radiographic and μ-computed tomography evaluations showed that bony calluses were formed around the scaffolds at 4 weeks post-surgery in all defects, whereas no callus bridged in the ulna without scaffolds. At 12 weeks post-surgery, the scaffolds were connected to the host bone in 10 and 15 mm defects, while a slight gap remained between the scaffold and host bone in the 20 mm defect. New bone formation and scaffold resorption progressed over 12 weeks. Histological evaluations showed that mature bones (MB) and BV were already formed at the edges of the scaffolds at 4 weeks post-surgery in 10, 15, and 20 mm defects. In the central region of the scaffold, in the 10 mm defect, MB and BV were formed at 4 weeks post-surgery. In the 15 mm defect, although BV were formed, a few MB were formed. It is concluded that CAp HC scaffolds have good potential value for the reconstruction of CSDs.
Collapse
Affiliation(s)
- Keigo Shibahara
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan.,Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
44
|
Sakemi Y, Hayashi K, Tsuchiya A, Nakashima Y, Ishikawa K. Reconstruction of critical-size segmental defects in rat femurs using carbonate apatite honeycomb scaffolds. J Biomed Mater Res A 2021; 109:1613-1622. [PMID: 33644971 DOI: 10.1002/jbm.a.37157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/01/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Critical-size segmental defects are formidable challenges in orthopedic surgery. Various scaffolds have been developed to facilitate bone reconstruction within such defects. Many previously studied scaffolds achieved effective outcomes with a combination of high cost, high-risk growth factors or stem cells. Herein, we developed honeycomb scaffolds (HCSs) comprising carbonate apatite (CO3 Ap) containing 8% carbonate, identical to human bone composition. The CO3 Ap HCSs were white-columned blocks harboring regularly arranged macropore channels of a size and wall thickness of 156 ± 5 μm and 102 ± 10 μm, respectively. The compressive strengths of the HCSs parallel and perpendicular to the macropore channel direction were 51.0 ± 11.8 and 15.6 ± 2.2 MPa, respectively. The HCSs were grafted into critical-sized segmental defects in rat femurs. The HCSs bore high-load stresses without any observed breakage. Two-weeks post-implantation, calluses formed around the HCSs and immature bone formed in the HCS interior. The calluses and immature bone matured until 8 weeks via endochondral ossification. At 12 weeks post-implantation, large parts of the HCSs were gradually replaced by newly formed bone. The bone reconstruction efficacy of the CO3 Ap HCSs alone was comparable to that of protein and cell scaffolds, while achieving a lower cost and increased safety.
Collapse
Affiliation(s)
- Yuta Sakemi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
45
|
Ishikawa K, Hayashi K. Carbonate apatite artificial bone. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:683-694. [PMID: 34434075 PMCID: PMC8381965 DOI: 10.1080/14686996.2021.1947120] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Bone apatite is not hydroxyapatite (HAp), it is carbonate apatite (CO3Ap), which contains 6-9 mass% carbonate in an apatitic structure. The CO3Ap block cannot be fabricated by sintering because of its thermal decomposition at the sintering temperature. Chemically pure (100%) CO3Ap artificial bone was recently fabricated through a dissolution-precipitation reaction in an aqueous solution using a precursor, such as a calcium carbonate block. In this paper, methods of fabricating CO3Ap artificial bone are reviewed along with their clinical and animal results. CO3Ap artificial bone is resorbed by osteoclasts and upregulates the differentiation of osteoblasts. As a result, CO3Ap demonstrates much higher osteoconductivity than HAp and is replaced by new bone via bone remodeling. Granular-type CO3Ap artificial bone was approved for clinical use in Japan in 2017. Honeycomb-type CO3Ap artificial bone is fabricated using an extruder and a CaCO3 honeycomb block as a precursor. Honeycomb CO3Ap artificial bone allows vertical bone augmentation. A CO3Ap-coated titanium plate has also been fabricated using a CaCO3-coated titanium plate as a precursor. The adhesive strength is as high as 76.8 MPa, with excellent tissue response and high osteoconductivity.
Collapse
Affiliation(s)
- Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Higashi-ku, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Higashi-ku, Japan
| |
Collapse
|
46
|
Nosho S, Ono M, Komori T, Mikai A, Tosa I, Ishibashi K, Tanaka Y, Kimura-Ono A, Hara ES, Oohashi T, Kuboki T. Preclinical bioequivalence study of E.coli-derived rhBMP-2/β-TCP and autogenous bone in a canine guided-bone regeneration model. J Prosthodont Res 2021; 66:124-130. [PMID: 34176850 DOI: 10.2186/jpr.jpr_d_20_00226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Bone morphogenetic protein (BMP)-2 is a potent growth factor that is widely used in the orthopedic and dental fields for bone regeneration.However, recombinant human BMP-2 (rhBMP-2) products have not been legally approved in Japan. Recently, our research group succeeded in producing GMP-grade rhBMP-2 using the E. coli system (E-rhBMP-2) at the industrial level and developed E-rhBMP-2 adsorbed onto β-TCP (E-rhBMP-2/β-TCP) as an alternative material to autogenous bone grafts. Previous studies on the toxicity, pharmacokinetics, and optimal doses of E-rhBMP-2 have confirmed its safety and efficiency. However, comparative studies with standard treatment therapies are still necessary before clinical application in humans. Therefore, in this preclinical study, we compared the bone regeneration ability of E-rhBMP-2/β-TCP and autogenous bone grafts in a canine guided-bone regeneration model. METHODS Following extraction of the maxillary third premolar, box-type bone defects (10 mmL × 4 mmW × 9 mmH) were created in the extraction socket area and transplanted with E-rhBMP-2/β-TCP or autogenous bone graft in a canine. After 8 weeks, micro-CT and histological analyses were performed. RESULTS Transplantation of both E-rhBMP-2/β-TCP and autogenous bone graft significantly promoted bone formation compared to the non-transplantation control group. The bone formation ability of E-rhBMP-2/β-TCP was equal to that of the autogenous bone graft. Histological analysis showed that excessive infiltration of inflammatory cells and residual β-TCP particles mostly were not observed in the E-rhBMP-2/β-TCP transplantation group. CONCLUSIONS This preclinical study demonstrated that E-rhBMP-2/β-TCP and autogenous bone have equal potential to promote bone regeneration.
Collapse
Affiliation(s)
- Shuji Nosho
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama.,Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Taishi Komori
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Akihiro Mikai
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama.,Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Kei Ishibashi
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama.,Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Yukie Tanaka
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama.,Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Aya Kimura-Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama
| | - Emilio S Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| |
Collapse
|
47
|
Hayashi K, Ishikawa K. Honeycomb scaffolds capable of ectopic osteogenesis: Histological evaluation of osteoinduction mechanism. NANO SELECT 2021. [DOI: 10.1002/nano.202000283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials Faculty of Dental Science Kyushu University Higashi‐ku Fukuoka Japan
| | - Kunio Ishikawa
- Department of Biomaterials Faculty of Dental Science Kyushu University Higashi‐ku Fukuoka Japan
| |
Collapse
|
48
|
Hayashi K, Ishikawa K. Effects of nanopores on the mechanical strength, osteoclastogenesis, and osteogenesis in honeycomb scaffolds. J Mater Chem B 2021; 8:8536-8545. [PMID: 32822446 DOI: 10.1039/d0tb01498b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The scaffold chemical composition and pore architecture are critical for successful bone regeneration. Although the effects of chemical composition, micron-scale pores, and macropores (≥100 μm) are known, those of nanometer-scale pores (nanopores) are unknown. Here, honeycomb scaffolds (HCSs) composed of carbonate apatite and bone mineral, were fabricated with three distinct nanopore volumes, while other parameters were comparable between HCSs. Their compressive strengths and nanopore volumes linearly correlated. The HCSs were implanted into critical-sized bone defects (CSDs) in the rabbit femur distal epiphyses. The nanopore volume affected both osteoclastogenesis and osteogenesis. HCSs with nanopore volumes of ≥0.15 cm3 g-1 promoted osteoclastogenesis, contributing to bone maturation and bone formation within 4 weeks. However, HCSs with nanopore volumes of 0.07 cm3 g-1 promoted significantly less bone maturation and neoformation. Nevertheless, HCSs with nanopore volumes of ≥0.18 cm3 g-1 did not undergo continuous bone regeneration throughout the 12 week period due to excessive osteoclastogenesis, which favored HCS resorption over bone neoformation. When the nanopore volume was 0.15 cm3 g-1, osteoclastogenesis and osteogenesis progressed harmonically, resulting in HCS replacement with new bone. Our results demonstrate that the nanopore volume is critical for controlling osteoclastogenesis and osteogenesis. These insights may help establish a coherent strategy for developing scaffolds for different applications.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
49
|
Contessi Negrini N, Angelova Volponi A, Higgins C, Sharpe P, Celiz A. Scaffold-based developmental tissue engineering strategies for ectodermal organ regeneration. Mater Today Bio 2021; 10:100107. [PMID: 33889838 PMCID: PMC8050778 DOI: 10.1016/j.mtbio.2021.100107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary research field aiming at the regeneration, restoration, or replacement of damaged tissues and organs. Classical TE approaches combine scaffolds, cells and soluble factors to fabricate constructs mimicking the native tissue to be regenerated. However, to date, limited success in clinical translations has been achieved by classical TE approaches, because of the lack of satisfactory biomorphological and biofunctional features of the obtained constructs. Developmental TE has emerged as a novel TE paradigm to obtain tissues and organs with correct biomorphology and biofunctionality by mimicking the morphogenetic processes leading to the tissue/organ generation in the embryo. Ectodermal appendages, for instance, develop in vivo by sequential interactions between epithelium and mesenchyme, in a process known as secondary induction. A fine artificial replication of these complex interactions can potentially lead to the fabrication of the tissues/organs to be regenerated. Successful developmental TE applications have been reported, in vitro and in vivo, for ectodermal appendages such as teeth, hair follicles and glands. Developmental TE strategies require an accurate selection of cell sources, scaffolds and cell culture configurations to allow for the correct replication of the in vivo morphogenetic cues. Herein, we describe and discuss the emergence of this TE paradigm by reviewing the achievements obtained so far in developmental TE 3D scaffolds for teeth, hair follicles, and salivary and lacrimal glands, with particular focus on the selection of biomaterials and cell culture configurations.
Collapse
Affiliation(s)
| | - A. Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - C.A. Higgins
- Department of Bioengineering, Imperial College London, London, UK
| | - P.T. Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - A.D. Celiz
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
50
|
Sari M, Hening P, Chotimah, Ana ID, Yusuf Y. Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering. Biomater Res 2021; 25:2. [PMID: 33468254 PMCID: PMC7816331 DOI: 10.1186/s40824-021-00203-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background The application of bioceramic hydroxyapatite (HA) derived from materials high in calcium to tissue engineering has been of concern, namely scaffold. Scaffold pores allow for cell mobility metabolic processes, and delivery of oxygen and nutrients by blood vessel. Thus, pore architecture affects cell seeding efficiency, cell viability, migration, morphology, cell proliferation, cell differentiation, angiogenesis, mechanical strength of scaffolds, and, eventually, bone formation. Therefore, to improve the efficacy of bone regeneration, several important parameters of the pore architecture of scaffolds must be carefully controlled, including pore size, geometry, orientation, uniformity, interconnectivity, and porosity, which are interrelated and whose coordination affects the effectiveness of bone tissue engineering. The honeycomb (HCB) as natural polymeric porogen is used to pore forming agent of scaffolds. It is unique for fully interconnected and oriented pores of uniform size and high mechanical strength in the direction of the pores. The aim of this study was therefore to evaluate the effect of HCB concentration on macropore structure of the scaffolds. Methods Bioceramic hydroxyapatite (HA) was synthesized from abalone mussel shells (Halioitis asinina) using a precipitation method, and HA-based scaffolds were fabricated with honeycomb (HCB) as the porogen agent. Pore structure engineering was successfully carried out using HCB at concentrations of 10, 20, and 30 wt%. Results The Energy Dispersive X-Ray Spectroscopy (EDS) analysis revealed that the Ca/P molar ratio of HA was 1.67 (the stoichiometric ratio of HA). The Fourier Transform Infrared Spectroscopy (FTIR) spectra results for porous HA-based scaffolds and synthesized HA showed that no chemical decomposition occurred in the HA-based scaffold fabrication process. The porosity of the scaffold tended to increase when higher concentrations of HCB were added. XRD data show that the HCB was completely degraded from the scaffold material. The cell metabolic activity and morphology of the HA + HCB 30 wt% scaffold enable it to facilitate the attachment of MC3T3E1 cells on its surface. Conclusion HCB 30 wt% is the best concentration to fabricate the scaffold corresponding to the criteria for pores structure, crystallographic properties, chemical decomposition process and cell viability for bone tissue engineering.
Collapse
Affiliation(s)
- Mona Sari
- Department of physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Puspa Hening
- Integrated Laboratory for Research and Testing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Chotimah
- Department of physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yusril Yusuf
- Department of physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|