1
|
Yang S, Zheng J, Mao H, Vinitchaikul P, Wu D, Chai J. Multiomics of yaks reveals significant contribution of microbiome into host metabolism. NPJ Biofilms Microbiomes 2024; 10:133. [PMID: 39572587 PMCID: PMC11582361 DOI: 10.1038/s41522-024-00609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
An intensive feeding system might improve the production cycle of yaks. However, how intensive feeding system contributes to yak growth is unclear. Here, multi-omics, including rumen metagenomics, rumen and plasma metabolomics, were performed to classify the regulatory mechanisms of intensive feeding system on yaks. Increased growth performance were observed. Rumen metagenomics revealed that Clostridium, Methanobrevibacter, Piromyces and Anaeromyces increased in the intensively fed yaks, contributing to amino acid and carbohydrate metabolism. The grazing yaks had more cellulolytic microbes. These microbiomes were correlated with the pathways of "Alanine aspartate and glutamate metabolism" and "Pyruvate metabolism". Intensive feeding increased methane degradation functions, while grazing yaks had higher methyl metabolites associated with methane production. These rumen microbiomes and their metabolites resulted in changes in plasma metabolome, finally influencing yaks' growth. Thus, an intensive feeding system altered the rumen microbiome and metabolism as well as host metabolism, resulting in improvements of yak growth.
Collapse
Affiliation(s)
- Shuli Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, 528000, China
| | - Jieyi Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, 528000, China
| | - Huaming Mao
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | | | - Dongwang Wu
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, 528000, China.
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
2
|
Jones AL, Pratt CJ, Meili CH, Soo RM, Hugenholtz P, Elshahed MS, Youssef NH. Anaerobic gut fungal communities in marsupial hosts. mBio 2024; 15:e0337023. [PMID: 38259066 PMCID: PMC10865811 DOI: 10.1128/mbio.03370-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The anaerobic gut fungi (AGF) inhabit the alimentary tracts of herbivores. In contrast to placental mammals, information regarding the identity, diversity, and community structure of AGF in marsupials is extremely sparse. Here, we characterized AGF communities in 61 fecal samples from 10 marsupial species belonging to four families in the order Diprotodontia: Vombatidae (wombats), Phascolarctidae (koalas), Phalangeridae (possums), and Macropodidae (kangaroos, wallabies, and pademelons). An amplicon-based diversity survey using the D2 region of the large ribosomal subunit as a phylogenetic marker indicated that marsupial AGF communities were dominated by eight genera commonly encountered in placental herbivores (Neocallimastix, Caecomyces, Cyllamyces, Anaeromyces, Orpinomyces, Piromyces, Pecoramyces, and Khoyollomyces). Community structure analysis revealed a high level of stochasticity, and ordination approaches did not reveal a significant role for the animal host, gut type, dietary preferences, or lifestyle in structuring marsupial AGF communities. Marsupial foregut and hindgut communities displayed diversity and community structure patterns comparable to AGF communities typically encountered in placental foregut hosts while exhibiting a higher level of diversity and a distinct community structure compared to placental hindgut communities. Quantification of AGF load using quantitative PCR indicated a significantly smaller load in marsupial hosts compared to their placental counterparts. Isolation efforts were only successful from a single red kangaroo fecal sample and yielded a Khoyollomyces ramosus isolate closely related to strains previously isolated from placental hosts. Our results suggest that AGF communities in marsupials are in low abundance and show little signs of selection based on ecological and evolutionary factors.IMPORTANCEThe AGF are integral part of the microbiome of herbivores. They play a crucial role in breaking down plant biomass in hindgut and foregut fermenters. The majority of research has been conducted on the AGF community in placental mammalian hosts. However, it is important to note that many marsupial mammals are also herbivores and employ a hindgut or foregut fermentation strategy for breaking down plant biomass. So far, very little is known regarding the AGF diversity and community structure in marsupial mammals. To fill this knowledge gap, we conducted an amplicon-based diversity survey targeting AGF in 61 fecal samples from 10 marsupial species. We hypothesize that, given the distinct evolutionary history and alimentary tract architecture, novel and unique AGF communities would be encountered in marsupials. Our results indicate that marsupial AGF communities are highly stochastic, present in relatively low loads, and display community structure patterns comparable to AGF communities typically encountered in placental foregut hosts. Our results indicate that marsupial hosts harbor AGF communities; however, in contrast to the strong pattern of phylosymbiosis typically observed between AGF and placental herbivores, the identity and gut architecture appear to play a minor role in structuring AGF communities in marsupials.
Collapse
Affiliation(s)
- Adrienne L. Jones
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Carrie J. Pratt
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Casey H. Meili
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rochelle M. Soo
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Queensland, Australia
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Queensland, Australia
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
3
|
Meili CH, Jones AL, Arreola AX, Habel J, Pratt CJ, Hanafy RA, Wang Y, Yassin AS, TagElDein MA, Moon CD, Janssen PH, Shrestha M, Rajbhandari P, Nagler M, Vinzelj JM, Podmirseg SM, Stajich JE, Goetsch AL, Hayes J, Young D, Fliegerova K, Grilli DJ, Vodička R, Moniello G, Mattiello S, Kashef MT, Nagy YI, Edwards JA, Dagar SS, Foote AP, Youssef NH, Elshahed MS. Patterns and determinants of the global herbivorous mycobiome. Nat Commun 2023; 14:3798. [PMID: 37365172 PMCID: PMC10293281 DOI: 10.1038/s41467-023-39508-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Despite their role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. Here, to examine global patterns and determinants of AGF diversity, we generate and analyze an amplicon dataset from 661 fecal samples from 34 mammalian species, 9 families, and 6 continents. We identify 56 novel genera, greatly expanding AGF diversity beyond current estimates (31 genera and candidate genera). Community structure analysis indicates that host phylogenetic affiliation, not domestication status and biogeography, shapes the community rather than. Fungal-host associations are stronger and more specific in hindgut fermenters than in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicate that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya) than those with preferences for foregut hosts (22-32 Mya). Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.
Collapse
Affiliation(s)
- Casey H Meili
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Adrienne L Jones
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Alex X Arreola
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Jeffrey Habel
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Carrie J Pratt
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Radwa A Hanafy
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Yan Wang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Moustafa A TagElDein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Christina D Moon
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H Janssen
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Mitesh Shrestha
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Prajwal Rajbhandari
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Magdalena Nagler
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Julia M Vinzelj
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Sabine M Podmirseg
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | | | | | - Diana Young
- Bavarian State Research Center for Agriculture, Freising, Germany
| | - Katerina Fliegerova
- Institute of Animal Physiology and Genetics Czech Academy of Sciences, Prague, Czechia
| | - Diego Javier Grilli
- Área de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Giuseppe Moniello
- Department of Veterinary Medicine, University of Sassari, Sardinia, Italy
| | - Silvana Mattiello
- University of Milan, Dept. of Agricultural and Environmental Sciences, Milan, Italy
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yosra I Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Andrew P Foote
- Oklahoma State University, Department of Animal and Food Sciences, Stillwater, OK, USA
| | - Noha H Youssef
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.
| | - Mostafa S Elshahed
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.
| |
Collapse
|
4
|
Shinde R, Shahi DK, Mahapatra P, Naik SK, Thombare N, Singh AK. Potential of lignocellulose degrading microorganisms for agricultural residue decomposition in soil: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115843. [PMID: 36056484 DOI: 10.1016/j.jenvman.2022.115843] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic crop residues (LCCRs) hold a significant share of the terrestrial biomass, estimated at 5 billion Mg per annum globally. A massive amount of these LCCRs are burnt in many countries resulting in immense environmental pollution; hence, its proper disposal in a cost-effective and eco-friendly manner is a significant challenge. Among the different options for management of LCCRs, the use of lignocellulose degrading microorganisms (LCDMOs), like fungi and bacteria, has emerged as an eco-friendly and effective way for its on-site disposal. LCDMOs achieve degradation through various mechanisms, including multiple supportive enzymes, causing oxidative attacks by which recalcitrance of lignocellulose material is reduced, paving the way to further activity by depolymerizing enzymes. This improves the physical properties of soil, recycles plant nutrients, promotes plant growth and thus helps improve productivity. Rapid and proper microbial degradation may be achieved through the correct combination of the LCDMOs, supplementing nutrients and controlling different factors affecting microbial activity in the field. The review is a critical discussion of previous studies revealing the potential of individuals or a set of LCDMOs, factors controlling the rate of degradation and the key researchable areas for better understanding of the role of these decomposers for future use.
Collapse
Affiliation(s)
- Reshma Shinde
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India.
| | | | | | - Sushanta Kumar Naik
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India
| | - Nandkishore Thombare
- ICAR- Indian Institute of Natural Resin and Gums, Ranchi, 834010, Jharkhand, India
| | - Arun Kumar Singh
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India
| |
Collapse
|
5
|
Orłowska M, Muszewska A. In Silico Predictions of Ecological Plasticity Mediated by Protein Family Expansions in Early-Diverging Fungi. J Fungi (Basel) 2022; 8:67. [PMID: 35050007 PMCID: PMC8778642 DOI: 10.3390/jof8010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Early-diverging fungi (EDF) are ubiquitous and versatile. Their diversity is reflected in their genome sizes and complexity. For instance, multiple protein families have been reported to expand or disappear either in particular genomes or even whole lineages. The most commonly mentioned are CAZymes (carbohydrate-active enzymes), peptidases and transporters that serve multiple biological roles connected to, e.g., metabolism and nutrients intake. In order to study the link between ecology and its genomic underpinnings in a more comprehensive manner, we carried out a systematic in silico survey of protein family expansions and losses among EDF with diverse lifestyles. We found that 86 protein families are represented differently according to EDF ecological features (assessed by median count differences). Among these there are 19 families of proteases, 43 CAZymes and 24 transporters. Some of these protein families have been recognized before as serine and metallopeptidases, cellulases and other nutrition-related enzymes. Other clearly pronounced differences refer to cell wall remodelling and glycosylation. We hypothesize that these protein families altogether define the preliminary fungal adaptasome. However, our findings need experimental validation. Many of the protein families have never been characterized in fungi and are discussed in the light of fungal ecology for the first time.
Collapse
Affiliation(s)
- Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
6
|
Neuroserpin Inclusion Bodies in a FENIB Yeast Model. Microorganisms 2021; 9:microorganisms9071498. [PMID: 34361933 PMCID: PMC8305157 DOI: 10.3390/microorganisms9071498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
FENIB (familial encephalopathy with neuroserpin inclusion bodies) is a human monogenic disease caused by point mutations in the SERPINI1 gene, characterized by the intracellular deposition of polymers of neuroserpin (NS), which leads to proteotoxicity and cell death. Despite the different cell and animal models developed thus far, the exact mechanism of cell toxicity elicited by NS polymers remains unclear. Here, we report that human wild-type NS and the polymerogenic variant G392E NS form protein aggregates mainly localized within the endoplasmic reticulum (ER) when expressed in the yeast S. cerevisiae. The expression of NS in yeast delayed the exit from the lag phase, suggesting that NS inclusions cause cellular stress. The cells also showed a higher resistance following mild oxidative stress treatments when compared to control cells. Furthermore, the expression of NS in a pro-apoptotic mutant strain-induced cell death during aging. Overall, these data recapitulate phenotypes observed in mammalian cells, thereby validating S. cerevisiae as a model for FENIB.
Collapse
|
7
|
Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK. Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. CHEMOSPHERE 2019; 231:588-606. [PMID: 31154237 DOI: 10.1016/j.chemosphere.2019.05.142] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 04/02/2019] [Accepted: 05/17/2019] [Indexed: 05/15/2023]
Abstract
Tremendous explosion of population has led to about 200% increment of total energy consumptions in last twenty-five years. Apart from conventional fossil fuel as limited energy source, alternative non-conventional sources are being explored worldwide to cater the energy requirement. Lignocellulosic biomass conversion for biofuel production is an important alternative energy source due to its abundance in nature and creating less harmful impacts on the environment in comparison to the coal or petroleum-based sources. However, lignocellulose biopolymer, the building block of plants, is a recalcitrant substance and difficult to break into desirable products. Commonly used chemical and physical methods for pretreating the substrate are having several limitations. Whereas, utilizing microbial potential to hydrolyse the biomass is an interesting area of research. Because of the complexity of substrate, several enzymes are required that can act synergistically to hydrolyse the biopolymer producing components like bioethanol or other energy substances. Exploring a range of microorganisms, like bacteria, fungi, yeast etc. that utilizes lignocelluloses for their energy through enzymatic breaking down the biomass, is one of the options. Scientists are working upon designing organisms through genetic engineering tools to integrate desired enzymes into a single organism (like bacterial cell). Studies on designer cellulosomes and bacteria consortia development relating consolidated bioprocessing are exciting to overcome the issue of appropriate lignocellulose digestions. This review encompasses up to date information on recent developments for effective microbial degradation processes of lignocelluloses for improved utilization to produce biofuel (bioethanol in particular) from the most plentiful substances of our planet.
Collapse
Affiliation(s)
- Rajesh Kumar Prasad
- Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India; Assam University, Silchar, 788011, Assam, India
| | | | | | | | - Sonika Sharma
- Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India
| | | | | | | | - Dharmendra Kumar Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), HerrenhäuserStr. 2, 30419, Hannover, Germany
| |
Collapse
|
8
|
Foaming, emulsifying and rheological properties of extracts from a co-product of the Quorn fermentation process. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03287-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Israeli-Ruimy V, Bule P, Jindou S, Dassa B, Moraïs S, Borovok I, Barak Y, Slutzki M, Hamberg Y, Cardoso V, Alves VD, Najmudin S, White BA, Flint HJ, Gilbert HJ, Lamed R, Fontes CMGA, Bayer EA. Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions. Sci Rep 2017; 7:42355. [PMID: 28186207 PMCID: PMC5301203 DOI: 10.1038/srep42355] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/08/2017] [Indexed: 11/25/2022] Open
Abstract
Protein-protein interactions play a vital role in cellular processes as exemplified by assembly of the intricate multi-enzyme cellulosome complex. Cellulosomes are assembled by selective high-affinity binding of enzyme-borne dockerin modules to repeated cohesin modules of structural proteins termed scaffoldins. Recent sequencing of the fiber-degrading Ruminococcus flavefaciens FD-1 genome revealed a particularly elaborate cellulosome system. In total, 223 dockerin-bearing ORFs potentially involved in cellulosome assembly and a variety of multi-modular scaffoldins were identified, and the dockerins were classified into six major groups. Here, extensive screening employing three complementary medium- to high-throughput platforms was used to characterize the different cohesin-dockerin specificities. The platforms included (i) cellulose-coated microarray assay, (ii) enzyme-linked immunosorbent assay (ELISA) and (iii) in-vivo co-expression and screening in Escherichia coli. The data revealed a collection of unique cohesin-dockerin interactions and support the functional relevance of dockerin classification into groups. In contrast to observations reported previously, a dual-binding mode is involved in cellulosome cell-surface attachment, whereas single-binding interactions operate for cellulosome integration of enzymes. This sui generis cellulosome model enhances our understanding of the mechanisms governing the remarkable ability of R. flavefaciens to degrade carbohydrates in the bovine rumen and provides a basis for constructing efficient nano-machines applied to biological processes.
Collapse
Affiliation(s)
- Vered Israeli-Ruimy
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Pedro Bule
- CIISA – Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sadanari Jindou
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Bareket Dassa
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Yoav Barak
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
- Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Michal Slutzki
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Hamberg
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Vânia Cardoso
- CIISA – Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Victor D. Alves
- CIISA – Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Shabir Najmudin
- CIISA – Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Bryan A. White
- Department of Animal Sciences, Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Champaign, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana–Champaign, Champaign, IL, USA
| | - Harry J. Flint
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Harry J. Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Carlos M. G. A. Fontes
- CIISA – Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Pakchotanon P, Molee P, Nuamtanong S, Limpanont Y, Chusongsang P, Limsomboon J, Chusongsang Y, Maneewatchararangsri S, Chaisri U, Adisakwattana P. Molecular characterization of serine protease inhibitor isoform 3, SmSPI, from Schistosoma mansoni. Parasitol Res 2016; 115:2981-94. [PMID: 27083187 DOI: 10.1007/s00436-016-5053-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/07/2016] [Indexed: 11/26/2022]
Abstract
Serine protease inhibitors, known as serpins, are pleiotropic regulators of endogenous and exogenous proteases, and molecule transporters. They have been documented in animals, plants, fungi, bacteria, and viruses; here, we characterize a serpin from the trematode platyhelminth Schistosoma mansoni. At least eight serpins have been found in the genome of S. mansoni, but only two have characterized molecular properties and functions. Here, the function of S. mansoni serpin isoform 3 (SmSPI) was analyzed, using both computational and molecular biological approaches. Phylogenetic analysis showed that SmSPI was closely related to Schistosoma haematobium serpin and Schistosoma japonicum serpin B10. Structure determined in silico confirmed that SmSPI belonged to the serpin superfamily, containing nine α-helices, three β-sheets, and a reactive central loop. SmSPI was highly expressed in schistosomules, predominantly in the head gland, and in adult male and female with intensive accumulation on the spines, which suggests that it may have a role in facilitating intradermal and intravenous survival. Recombinant SmSPI was overexpressed in Escherichia coli; the recombinant protein was of the same size (46 kDa) as the native protein. Immunological analysis suggested that mice infected with S. mansoni responded to rSmSPI at 8 weeks postinfection (wpi) but not earlier. The inhibitory activity of rSmSPI was specific to chymotrypsin but not trypsin, neutrophil elastase, and porcine pancreatic elastase. Elucidating the biological and physiological functions of SmSPI as well as other serpins will lead to further understanding of host-parasite interaction machinery that may provide novel strategies to prevent and control schistosomiasis in the future.
Collapse
Affiliation(s)
- Pattarakul Pakchotanon
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Patamaporn Molee
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Supaporn Nuamtanong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Jareemate Limsomboon
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Santi Maneewatchararangsri
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Center of Excellence for Antibody Research (CEAR), Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
11
|
|
12
|
Dollhofer V, Podmirseg SM, Callaghan TM, Griffith GW, Fliegerová K. Anaerobic Fungi and Their Potential for Biogas Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:41-61. [PMID: 26337843 DOI: 10.1007/978-3-319-21993-6_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plant biomass is the largest reservoir of environmentally friendly renewable energy on earth. However, the complex and recalcitrant structure of these lignocellulose-rich substrates is a severe limitation for biogas production. Microbial pro-ventricular anaerobic digestion of ruminants can serve as a model for improvement of converting lignocellulosic biomass into energy. Anaerobic fungi are key players in the digestive system of various animals, they produce a plethora of plant carbohydrate hydrolysing enzymes. Combined with the invasive growth of their rhizoid system their contribution to cell wall polysaccharide decomposition may greatly exceed that of bacteria. The cellulolytic arsenal of anaerobic fungi consists of both secreted enzymes, as well as extracellular multi-enzyme complexes called cellulosomes. These complexes are extremely active, can degrade both amorphous and crystalline cellulose and are probably the main reason of cellulolytic efficiency of anaerobic fungi. The synergistic use of mechanical and enzymatic degradation makes anaerobic fungi promising candidates to improve biogas production from recalcitrant biomass. This chapter presents an overview about their biology and their potential for implementation in the biogas process.
Collapse
Affiliation(s)
- Veronika Dollhofer
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Micro- and Molecular Biology, Lange Point 6, 85354, Freising, Germany,
| | | | | | | | | |
Collapse
|
13
|
Dunaevsky YE, Popova VV, Semenova TA, Beliakova GA, Belozersky MA. Fungal inhibitors of proteolytic enzymes: classification, properties, possible biological roles, and perspectives for practical use. Biochimie 2013; 101:10-20. [PMID: 24355205 DOI: 10.1016/j.biochi.2013.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/06/2013] [Indexed: 01/10/2023]
Abstract
Peptidase inhibitors are ubiquitous regulatory proteins controlling catalytic activity of proteolytic enzymes. Interest in these proteins increased substantially after it became clear that they can be used for therapy of various important diseases including cancer, malaria, and autoimmune and neurodegenerative diseases. In this review we summarize available data on peptidase inhibitors from fungi, emphasizing their properties, biological role, and possible practical applications of these proteins in the future. A number of fungal peptidase inhibitors with unique structure and specificity of action have no sequence homology with other classes of peptidase inhibitors, thus representing new and specific candidates for therapeutic use. The main classifications of inhibitors in current use are considered. Available data on structure, mechanisms and conditions of action, and diversity of functions of peptidase inhibitors of fungi are analyzed. It is mentioned that on one side the unique properties of some inhibitors can be used for selective inhibition of peptidases responsible for initiation and development of pathogenic processes. On the other side, general inhibitory activity of other inhibitors towards peptidases of various catalytic classes might be able to provide efficient defense of transgenic plants against insect pests by overcoming compensatory synthesis of new peptidases by these pests in response to introduction of a fungal inhibitor. Together, the data analyzed in this review reveal that fungal inhibitors extend the spectrum of known peptidase inhibitors potentially suitable for use in medicine and agriculture.
Collapse
Affiliation(s)
- Y E Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.
| | - V V Popova
- Faculty of Biology, Moscow State University, Moscow 119992, Russia
| | - T A Semenova
- Faculty of Biology, Moscow State University, Moscow 119992, Russia
| | - G A Beliakova
- Faculty of Biology, Moscow State University, Moscow 119992, Russia
| | - M A Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|
14
|
Bae J, Morisaka H, Kuroda K, Ueda M. Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes. J Mol Microbiol Biotechnol 2013; 23:370-8. [PMID: 23920499 DOI: 10.1159/000351358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cellulose, a primary component of lignocellulosic biomass, is the most abundant carbohydrate polymer in nature. Only a limited number of microorganisms are known to degrade cellulose, which is highly recalcitrant due to its crystal structure. Anaerobic bacteria efficiently degrade cellulose by producing cellulosomes, which are complexes of cellulases bound to scaffoldins. The underlying mechanisms that are responsible for the assembly and efficiency of cellulosomes are not yet fully understood. The cohesin-dockerin specificity has been extensively studied to understand cellulosome assembly. Moreover, the recent progress in proteomics has enabled integral analyses of the growth-substrate-dependent variations in cellulosomal systems. Furthermore, the proximity and targeting effects of cellulosomal synergistic actions have been investigated using designed minicellulosomes. The recent findings about cellulosome assembly, strategies for optimal cellulosome production, and beneficial features of cellulosomes as an arming microcompartment on the microbial cell surface are summarized here.
Collapse
Affiliation(s)
- Jungu Bae
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
15
|
Extending the cellulosome paradigm: the modular Clostridium thermocellum cellulosomal serpin PinA is a broad-spectrum inhibitor of subtilisin-like proteases. Appl Environ Microbiol 2013; 79:6173-5. [PMID: 23872568 DOI: 10.1128/aem.01912-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Clostridium thermocellum encodes a cellulosomal, modular, and thermostable serine protease inhibitor (serpin), PinA. PinA stability but not inhibitory activity is affected by the Fn(III) and Doc(I) domains, and PinA is a broad inhibitor of subtilisin-like proteases and may play a key role in protecting the cellulosome from protease attack.
Collapse
|
16
|
The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 2013; 79:4620-34. [PMID: 23709508 DOI: 10.1128/aem.00821-13] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaerobic gut fungi represent a distinct early-branching fungal phylum (Neocallimastigomycota) and reside in the rumen, hindgut, and feces of ruminant and nonruminant herbivores. The genome of an anaerobic fungal isolate, Orpinomyces sp. strain C1A, was sequenced using a combination of Illumina and PacBio single-molecule real-time (SMRT) technologies. The large genome (100.95 Mb, 16,347 genes) displayed extremely low G+C content (17.0%), large noncoding intergenic regions (73.1%), proliferation of microsatellite repeats (4.9%), and multiple gene duplications. Comparative genomic analysis identified multiple genes and pathways that are absent in Dikarya genomes but present in early-branching fungal lineages and/or nonfungal Opisthokonta. These included genes for posttranslational fucosylation, the production of specific intramembrane proteases and extracellular protease inhibitors, the formation of a complete axoneme and intraflagellar trafficking machinery, and a near-complete focal adhesion machinery. Analysis of the lignocellulolytic machinery in the C1A genome revealed an extremely rich repertoire, with evidence of horizontal gene acquisition from multiple bacterial lineages. Experimental analysis indicated that strain C1A is a remarkable biomass degrader, capable of simultaneous saccharification and fermentation of the cellulosic and hemicellulosic fractions in multiple untreated grasses and crop residues examined, with the process significantly enhanced by mild pretreatments. This capability, acquired during its separate evolutionary trajectory in the rumen, along with its resilience and invasiveness compared to prokaryotic anaerobes, renders anaerobic fungi promising agents for consolidated bioprocessing schemes in biofuels production.
Collapse
|
17
|
Sirohi SK, Singh N, Dagar SS, Puniya AK. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol 2012; 95:1135-54. [PMID: 22782251 DOI: 10.1007/s00253-012-4262-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 12/30/2022]
Abstract
Rumen microbial community comprising of bacteria, archaea, fungi, and protozoa is characterized not only by the high population density but also by the remarkable diversity and the most complex microecological interactions existing in the biological world. This unprecedented biodiversity is quite far from full elucidation as only about 15-20 % of the rumen microbes are identified and characterized till date using conventional culturing and microscopy. However, the last two decades have witnessed a paradigm shift from cumbersome and time-consuming classical methods to nucleic acid-based molecular approaches for deciphering the rumen microbial community. These techniques are rapid, reproducible and allow both the qualitative and quantitative assessment of microbial diversity. This review describes the different molecular methods and their applications in elucidating the rumen microbial community.
Collapse
Affiliation(s)
- Sunil Kumar Sirohi
- Nutrition Biotechnology Laboratory, Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | | | | | | |
Collapse
|
18
|
Rodriguez-Valle M, Vance M, Moolhuijzen PM, Tao X, Lew-Tabor AE. Differential recognition by tick-resistant cattle of the recombinantly expressed Rhipicephalus microplus serine protease inhibitor-3 (RMS-3). Ticks Tick Borne Dis 2012; 3:159-69. [DOI: 10.1016/j.ttbdis.2012.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/20/2012] [Accepted: 03/24/2012] [Indexed: 11/16/2022]
|
19
|
Jeon SD, Lee JE, Kim SJ, Kim SW, Han SO. Analysis of selective, high protein-protein binding interaction of cohesin-dockerin complex using biosensing methods. Biosens Bioelectron 2012; 35:382-389. [PMID: 22480778 DOI: 10.1016/j.bios.2012.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
Optical biosensors that use fluorescence are promising tools for the analysis of target materials such as protein, DNA and other biomaterial. To analyze the binding properties of a protein-protein interaction, we constructed fluorescent biomarkers based on the cohesin-dockerin interaction, which coordinates the assembly of cellulolytic enzymes and scaffolding proteins to produce a cell surface multiprotein complex known as the "cellulosome" in some anaerobic bacteria. Our 2D-PAGE results displayed diverse binding profiles to the dockerin containing cellulosomal proteins produced by Clostridium cellulovorans grown on different carbon sources, such as Avicel, xylan and AXP (Avicel:xylan:pectin (3:1:1)). Fluorescence intensity analysis indicated that EngE and EngH bound more efficiently to Coh6 than to Coh2 or Coh9 (2-fold to 6-fold and 1.5-fold to 5-fold, respectively), while others cellulosomal proteins displayed similar results. In addition, both an enzyme-linked interaction assay (ELIA) and surface plasmon resonance (SPR) analyses demonstrated that both EngE and EngH preferentially bound cohesin6 versus the other two cohesin molecules. This work demonstrated the analysis of the binding patterns between interacting proteins using fluorescent biomarkers. We also illustrated the potential of this sensitive approach to quantify specific target analytical materials via the example of the cohesin-dockerin interaction.
Collapse
Affiliation(s)
- Sang Duck Jeon
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Ji Eun Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Su Jung Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-701, Republic of Korea
| | - Sung Ok Han
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea.
| |
Collapse
|
20
|
Microbial and fungal protease inhibitors--current and potential applications. Appl Microbiol Biotechnol 2012; 93:1351-75. [PMID: 22218770 PMCID: PMC7080157 DOI: 10.1007/s00253-011-3834-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 01/18/2023]
Abstract
Proteolytic enzymes play essential metabolic and regulatory functions in many biological processes and also offer a wide range of biotechnological applications. Because of their essential roles, their proteolytic activity needs to be tightly regulated. Therefore, small molecules and proteins that inhibit proteases can be versatile tools in the fields of medicine, agriculture and biotechnology. In medicine, protease inhibitors can be used as diagnostic or therapeutic agents for viral, bacterial, fungal and parasitic diseases as well as for treating cancer and immunological, neurodegenerative and cardiovascular diseases. They can be involved in crop protection against plant pathogens and herbivorous pests as well as against abiotic stress such as drought. Furthermore, protease inhibitors are indispensable in protein purification procedures to prevent undesired proteolysis during heterologous expression or protein extraction. They are also valuable tools for simple and effective purification of proteases, using affinity chromatography. Because there are such a large number and diversity of proteases in prokaryotes, yeasts, filamentous fungi and mushrooms, we can expect them to be a rich source of protease inhibitors as well.
Collapse
|
21
|
Putative role of cellulosomal protease inhibitors in Clostridium cellulovorans based on gene expression and measurement of activities. J Bacteriol 2011; 193:5527-30. [PMID: 21784939 DOI: 10.1128/jb.05022-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study is the first to demonstrate the activity of putative cellulosomal protease/peptidase inhibitors (named cyspins) of Clostridium cellulovorans, using the Saccharomyces cerevisiae display system. Cyspins exhibited inhibitory activities against several representative plant proteases. This suggests that these inhibitors protect their microbe and cellulosome from external attack by plant proteases.
Collapse
|
22
|
Serpin induced antiviral activity of prostaglandin synthetase-2 against HIV-1 replication. PLoS One 2011; 6:e18589. [PMID: 21533265 PMCID: PMC3075258 DOI: 10.1371/journal.pone.0018589] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 03/10/2011] [Indexed: 11/24/2022] Open
Abstract
The serine protease inhibitors (serpins) are anti-inflammatory proteins that have various functions. By screening a diverse panel of viruses, we demonstrate that the serpin antithrombin III (ATIII) has a broad-spectrum anti-viral activity for HIV-1, HCV and HSV. To investigate the mechanism of action in more detail we investigated the HIV-1 inhibition. Using gene-expression arrays we found that multiple host cell signal transduction pathways were activated by ATIII in HIV-1 infected cells but not in uninfected controls. Moreover, the signal pathways initiated by ATIII treatment, were more than 200-fold increased by the use of heparin-activated ATIII. The most up-regulated transcript in HIV-1 infected cells was prostaglandin synthetase-2 (PTGS2). Furthermore, we found that over-expression of PTGS2 reduced levels of HIV-1 replication in human PBMC. These findings suggest a central role for serpins in the host innate anti-viral response. Host factors such as PTGS2 elicited by ATIII treatment could be exploited in the development of novel anti-viral interventions.
Collapse
|
23
|
|
24
|
Padua MB, Kowalski AA, Cañas MY, Hansen PJ. The molecular phylogeny of uterine serpins and its relationship to evolution of placentation. FASEB J 2009; 24:526-37. [DOI: 10.1096/fj.09-138453] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Maria B. Padua
- Department of Animal SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - Andrés A. Kowalski
- Laboratorio de Embriología y Endocrinología MolecularDecanato de AgronomíaUniversidad Centroccidental Lisandro AlvaradoBarquisimetoEdo LaraVenezuela
| | - Miryan Y. Cañas
- Laboratorio de Embriología y Endocrinología MolecularDecanato de AgronomíaUniversidad Centroccidental Lisandro AlvaradoBarquisimetoEdo LaraVenezuela
| | - Peter J. Hansen
- Department of Animal SciencesUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
25
|
Abstract
Serpins form an enormous superfamily of 40-60-kDa proteins found in almost all types of organisms, including humans. Most are one-use suicide substrate serine and cysteine proteinase inhibitors that have evolved to finely regulate complex proteolytic pathways, such as blood coagulation, fibrinolysis, and inflammation. Despite distinct functions for each serpin, there is much redundancy in the primary specificity-determining residues. However, many serpins exploit additional exosites to generate the exquisite specificity that makes a given serpin effective only when certain other criteria, such as the presence of specific cofactors, are met. With a focus on human serpins, this minireview examines use of exosites by nine serpins in the initial complex-forming phase to modulate primary specificity in either binary serpin-proteinase complexes or ternary complexes that additionally employ a protein or other cofactor. A frequent theme is down-regulation of inhibitory activity unless the exosite(s) are engaged. In addition, the use of exosites by maspin and plasminogen activator inhibitor-1 to indirectly affect proteolytic processes is considered.
Collapse
Affiliation(s)
- Peter G W Gettins
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|