1
|
Nosrati S, Javid H, Amiri H, Jafari N, Hashemy SI. Investigating the anticancer effects of chitosan-NLC-folate nanohybrid loaded with auraptene on A2780 ovarian cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1895-1903. [PMID: 39196393 DOI: 10.1007/s00210-024-03325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
The significant fatality rate associated with ovarian cancer underscores the urgent need for novel therapeutic interventions in this area. The focus of this study was to assess the cytotoxic impact of auraptene nanohybrid chitosan folate on A2780 ovarian cancer cells. A combination of liquid and solid lipids were used to create auraptene-nanostructured lipid carriers. Folic acid was conjugated to chitosan in order to modify the surface. The nanoparticles containing methylene blue were dissolved in deionized distilled water to attach the chitosan-folic acid to the nanoparticles. The resazurin cell viability assay was employed to gauge the cytotoxicity of auraptene on the cells. Real-time PCR was utilized to quantify the expression levels of Bcl-2, Bax, and P53 genes. DLS analysis exposed a spheroidal particle with an approximate diameter of 211 nm. The auraptene nanoparticles did not revealed inhibitory effect on normal cell line (HFF-1) at the concentrations that it was toxic for cancerous cells (A2780). In vitro trials suggested that auraptene nanoparticles trigger apoptosis in A2780 cells in a dose-responsive manner by promoting the expression of pro-apoptotic genes (Bax and P53), while suppressing the expression of the anti-apoptotic gene (Bcl-2). Furthermore, auraptene nanoparticles also heightened the production of reactive oxygen species within the cancerous cells. The notable cytotoxic and lethal influence of auraptene nanoparticles on human ovarian cancer may be attributed to their capacity to generate oxidative stress conditions and induce apoptosis.
Collapse
Affiliation(s)
- Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Jafari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Stone NE, Raj A, Young KM, DeLuca AP, Chrit FE, Tucker BA, Alexeev A, McDonald J, Benigno BB, Sulchek T. Label-free microfluidic enrichment of cancer cells from non-cancer cells in ascites. Sci Rep 2021; 11:18032. [PMID: 34504124 PMCID: PMC8429413 DOI: 10.1038/s41598-021-96862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
The isolation of a patient's metastatic cancer cells is the first, enabling step toward treatment of that patient using modern personalized medicine techniques. Whereas traditional standard-of-care approaches select treatments for cancer patients based on the histological classification of cancerous tissue at the time of diagnosis, personalized medicine techniques leverage molecular and functional analysis of a patient's own cancer cells to select treatments with the highest likelihood of being effective. Unfortunately, the pure populations of cancer cells required for these analyses can be difficult to acquire, given that metastatic cancer cells typically reside in fluid containing many different cell populations. Detection and analyses of cancer cells therefore require separation from these contaminating cells. Conventional cell sorting approaches such as Fluorescence Activated Cell Sorting or Magnetic Activated Cell Sorting rely on the presence of distinct surface markers on cells of interest which may not be known nor exist for cancer applications. In this work, we present a microfluidic platform capable of label-free enrichment of tumor cells from the ascites fluid of ovarian cancer patients. This approach sorts cells based on differences in biomechanical properties, and therefore does not require any labeling or other pre-sort interference with the cells. The method is also useful in the cases when specific surface markers do not exist for cells of interest. In model ovarian cancer cell lines, the method was used to separate invasive subtypes from less invasive subtypes with an enrichment of ~ sixfold. In ascites specimens from ovarian cancer patients, we found the enrichment protocol resulted in an improved purity of P53 mutant cells indicative of the presence of ovarian cancer cells. We believe that this technology could enable the application of personalized medicine based on analysis of liquid biopsy patient specimens, such as ascites from ovarian cancer patients, for quick evaluation of metastatic disease progression and determination of patient-specific treatment.
Collapse
Affiliation(s)
- Nicholas E Stone
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Abhishek Raj
- Department of Mechanical Engineering, Indian Institute of Technology Patna, Bihar, 801103, India
| | - Katherine M Young
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Adam P DeLuca
- Department of Ophthalmology and Visual Science, Carver College of Medicine, Institute for Vision Research, University of Iowa, Iowa City, IA, 52242, USA
| | - Fatima Ezahra Chrit
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Budd A Tucker
- Department of Ophthalmology and Visual Science, Carver College of Medicine, Institute for Vision Research, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexander Alexeev
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - John McDonald
- School of Biology, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | | | - Todd Sulchek
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Heterogeneity of Circulating Tumor Cells in Breast Cancer: Identifying Metastatic Seeds. Int J Mol Sci 2020; 21:ijms21051696. [PMID: 32121639 PMCID: PMC7084665 DOI: 10.3390/ijms21051696] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis being the main cause of breast cancer (BC) mortality represents the complex and multistage process. The entrance of tumor cells into the blood vessels and the appearance of circulating tumor cells (CTCs) seeding and colonizing distant tissues and organs are one of the key stages in the metastatic cascade. Like the primary tumor, CTCs are extremely heterogeneous and presented by clusters and individual cells which consist of phenotypically and genetically distinct subpopulations. However, among this diversity, only a small number of CTCs is able to survive in the bloodstream and to form metastases. The identification of the metastasis-initiating CTCs is believed to be a critical issue in developing therapeutic strategies against metastatic disease. In this review, we summarize the available literature addressing morphological, phenotypic and genetic heterogeneity of CTCs and the molecular makeup of specific subpopulations associated with BC metastasis. Special attention is paid to the need for in vitro and in vivo studies to confirm the tumorigenic and metastatic potential of metastasis-associating CTCs. Finally, we consider treatment approaches that could be effective to eradicate metastatic CTCs and to prevent metastasis.
Collapse
|
4
|
Xiao Y, Lin L, Shen M, Shi X. Design of DNA Aptamer-Functionalized Magnetic Short Nanofibers for Efficient Capture and Release of Circulating Tumor Cells. Bioconjug Chem 2020; 31:130-138. [PMID: 31855600 DOI: 10.1021/acs.bioconjchem.9b00816] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The isolation of viable circulating tumor cells (CTCs) from blood is of paramount significance for early stage detection and individualized therapy of cancer. Currently, CTCs isolated by conventional magnetic separation methods are tightly coated with magnetic materials even after attempted coating removal treatments, which is not conducive for subsequent analysis of CTCs. Herein, we developed DNA aptamer-functionalized magnetic short nanofibers (aptamer-MSNFs) for efficient capture and release of CTCs. In our work, polyethylenimine (PEI)-stabilized Fe3O4 nanoparticles with a mean diameter of 22.6 nm were first synthesized and encapsulated within PEI/poly(vinyl alcohol) nanofibers via a blended electrospinning process. After a homogenization treatment to acquire the MSNFs, surface conjugation of the DNA aptamer was performed through thiol-maleimide coupling. The formed aptamer-MSNFs, with a mean diameter of 350 nm and an average length of 9.6 μm, display a saturated magnetization of 12.3 emu g-1, are capable of specifically capturing cancer cells with an efficiency of 87%, and enable the nondestructive release of cancer cells with a release efficiency of 91% after nuclease treatment. In particular, the prepared aptamer-MSNFs displayed a significantly higher release efficiency than commercial magnetic beads. The designed aptamer-MSNFs may hold great promise for CTC capture and release as well as for other cell sorting applications.
Collapse
Affiliation(s)
- Yunchao Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Lizhou Lin
- Department of Ultrasound, Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200080 , P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| |
Collapse
|
5
|
Hong Y, Rao Y. Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomed Pharmacother 2019; 114:108764. [DOI: 10.1016/j.biopha.2019.108764] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022] Open
|
6
|
Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, Celik E, Leblanc RM. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer 2019; 1871:419-433. [PMID: 31034927 PMCID: PMC6549504 DOI: 10.1016/j.bbcan.2019.04.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 12/27/2022]
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide, and one of the deadliest after lung cancer. Currently, standard methods for cancer therapy including BC are surgery followed by chemotherapy or radiotherapy. However, both chemotherapy and radiotherapy often fail to treat BC due to the side effects that these therapies incur in normal tissues and organs. In recent years, various nanoparticles (NPs) have been discovered and synthesized to be able to selectively target tumor cells without causing any harm to the healthy cells or organs. Therefore, NPs-mediated targeted drug delivery systems (DDS) have become a promising technique to treat BC. In addition to their selectivity to target tumor cells and reduce side effects, NPs have other unique properties which make them desirable for cancer treatment such as low toxicity, good compatibility, ease of preparation, high photoluminescence (PL) for bioimaging in vivo, and high loadability of drugs due to their tunable surface functionalities. In this study, we summarize with a critical analysis of the most recent therapeutic studies involving various NPs-mediated DDS as alternatives for the traditional treatment approaches for BC. It will shed light on the significance of NPs-mediated DDS and serve as a guide to seeking for the ideal methodology for future targeted drug delivery for an efficient BC treatment.
Collapse
Affiliation(s)
- Piumi Y Liyanage
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Allal Ouhtit
- Department of Biological & Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Elif S Seven
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Cagri Y Oztan
- Department of Aerospace and Mechanical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Emrah Celik
- Department of Aerospace and Mechanical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
7
|
Chawla D, Kar R, Gupta B, Halder S, Garg S, Mehndiratta M, Wadhwa N, Agarwal R. Role of Survivin and p53 Expression in Response of Primary Culture of Ovarian Cancer Cells to Treatment With Chemotherapeutic Agents. Int J Gynecol Cancer 2018; 28:1239-1246. [PMID: 29727353 DOI: 10.1097/igc.0000000000001281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ovarian cancer is associated with a high relapse rate and is the fifth leading cause of cancer deaths in women. The genetic profile of a tumor is responsible for deciding response to chemotherapeutic agents. In this study, we investigate the relation between survivin and p53 expression and response to chemotherapeutic agents of primary cultures of ovarian cancer cells established from ascitic fluid. MATERIALS AND METHOD Ascitic fluid and Dulbecco's modified Eagle medium was mixed in equal proportion in culture flasks and incubated to establish primary culture. The cells were treated with different combinations of carboplatin and paclitaxel with and without survivin small interfering RNA transfection. Cell survival was estimated by MTT assay. Survivin and p53 expression was quantified by real-time polymerase chain reaction. RESULTS Out of 19 ascitic fluid samples, 13 primary cultures of ovarian cancer cells were established. The half maximal inhibitory concentration doses of carboplatin (≥70 μg/mL) and paclitaxel (≥18 μg/mL) were high for 10/13 and 5/13 patients, respectively. Survivin messenger RNA expression was significantly downregulated on treatment with carboplatin (100 μg/mL), paclitaxel (12.5 μg/mL), and a combination of carboplatin (50 μg/mL) and paclitaxel (6.25 μg/mL). Only paclitaxel-treated ovarian cancer cells showed decrease in expression of p53. Survivin small interfering RNA increased sensitivity of the primary cultures to chemotherapeutic agents. CONCLUSIONS The present study highlights the fact that establishing primary cultures from ascitic fluid may help to develop personalized treatment regime for individual patients based on their molecular profile. Our study also shows that supplementing taxols drugs with survivin inhibitors may prove to be beneficial in the treatment of ovarian cancer patients.
Collapse
Affiliation(s)
- Diwesh Chawla
- Central Research Laboratory (Multi-disciplinary Research Unit)
| | | | | | | | | | | | - Neelam Wadhwa
- Department of Pathology, University College of Medical Sciences (University of Delhi), Dilshad Garden, Delhi, India
| | | |
Collapse
|
8
|
Simón-Gracia L, Hunt H, Teesalu T. Peritoneal Carcinomatosis Targeting with Tumor Homing Peptides. Molecules 2018; 23:molecules23051190. [PMID: 29772690 PMCID: PMC6100015 DOI: 10.3390/molecules23051190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
Over recent decades multiple therapeutic approaches have been explored for improved management of peritoneally disseminated malignancies—a grim condition known as peritoneal carcinomatosis (PC). Intraperitoneal (IP) administration can be used to achieve elevated local concentration and extended half-life of the drugs in the peritoneal cavity to improve their anticancer efficacy. However, IP-administered chemotherapeutics have a short residence time in the IP space, and are not tumor selective. An increasing body of work suggests that functionalization of drugs and nanoparticles with targeting peptides increases their peritoneal retention and provides a robust and specific tumor binding and penetration that translates into improved therapeutic response. Here we review the progress in affinity targeting of intraperitoneal anticancer compounds, imaging agents and nanoparticles with tumor-homing peptides. We review classes of tumor-homing peptides relevant for PC targeting, payloads for peptide-guided precision delivery, applications for targeted compounds, and the effects of nanoformulation of drugs and imaging agents on affinity-based tumor delivery.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
| | - Hedi Hunt
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
9
|
Abstract
Detection of circulating tumor cells (CTCs) in the blood circulation holds immense promise as it predicts the overall probability of patient survival. Therefore, CTC-based technologies are gaining prominence as a "liquid biopsy" for cancer diagnostics and prognostics. Here, we describe the design and synthesis of two distinct multicomponent magnetic nanosystems for rapid capture and detection of CTCs. The multifunctional Magneto-Dendrimeric Nano System (MDNS) composed of an anchoring dendrimer that is conjugated to multiple agents such as near infrared (NIR) fluorescent cyanine 5 NHS (Cy5), glutathione (GSH), transferrin (Tf), and iron oxide (Fe3O4) magnetic nanoparticle (MNP) for simultaneous tumor cell-specific affinity, multimodal high resolution confocal imaging, and cell isolation. The second nanosystem is a self-propelled microrocket that is composed of carbon nanotube (CNT), chemically conjugated with targeting ligand such as transferrin on the outer surface and Fe3O4 nanoparticles in the inner surface. The multicomponent nanosystems described here are highly efficient in targeting and isolating cancer cells thus benefiting early diagnosis and therapy of cancer.
Collapse
|
10
|
Neoh KH, Hassan AA, Chen A, Sun Y, Liu P, Xu KF, Wong AS, Han RP. Rethinking liquid biopsy: Microfluidic assays for mobile tumor cells in human body fluids. Biomaterials 2018; 150:112-124. [DOI: 10.1016/j.biomaterials.2017.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 12/27/2022]
|
11
|
Targeting Eph/ephrin system in cancer therapy. Eur J Med Chem 2017; 142:152-162. [PMID: 28780190 DOI: 10.1016/j.ejmech.2017.07.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 12/19/2022]
Abstract
It is well established that the Eph/ephrin system plays a central role in the embryonic development, with minor implications in the physiology of the adult. However, it is overexpressed and deregulated in a variety of tumors, with a primary involvement in tumorigenesis, tumor angiogenesis, metastasis development, and cancer stem cell regeneration. Targeting the Eph/ephrin system with biologicals, including antibodies and recombinant proteins, reduces tumor growth in animal models of hematological malignancies, breast, prostate, colon, head and neck cancers and glioblastoma. Currently, some of these biopharmaceutical agents are under investigations in phase I or phase II clinical trials. Peptides and small molecules targeting protein-protein-interaction (PPI) are in the late preclinical phase where they are showing promising activity in models of glioblastoma, ovarian and lung cancer. The present review summarizes the most critical findings proposing the Eph/ephrin signaling system as a new target in molecularly targeted oncology.
Collapse
|
12
|
Jauhar S, Kaur J, Goyal A, Singhal S. Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Adv 2016. [DOI: 10.1039/c6ra21224g] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cobalt ferrite nanostructures have been established to be promising material for future aspects.
Collapse
Affiliation(s)
- Sheenu Jauhar
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | - Japinder Kaur
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | - Ankita Goyal
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | - Sonal Singhal
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| |
Collapse
|
13
|
Effective recovery of highly purified CD326(+) tumor cells from lavage fluid of patients treated with a novel cell-free and concentrated ascites reinfusion therapy (KM-CART). SPRINGERPLUS 2015; 4:780. [PMID: 26702369 PMCID: PMC4683161 DOI: 10.1186/s40064-015-1508-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 11/04/2015] [Indexed: 01/13/2023]
Abstract
For the production of tumor-specific vaccines, including dendritic cell (DC) vaccines, the tumor cells themselves are an ideal source. Floating tumor cells in the ascites fluid from patients with malignant ascites are a good candidate source, but it is not easy to obtain pure tumor cells from ascites because of various types of cell contamination as well as protein aggregates. We here report an effective method to recover pure tumor cells from malignant ascites. We used lavage fluid from 13 patients with malignant ascites who were treated with modified cell-free and concentrated ascites reinfusion therapy (KM-CART). Cellular components were separated from the lavage fluid by centrifugation, enzymatic digestion and hemolysis. Tumor cells were purified by depleting CD45+ leukocytes with antibody-conjugated magnetic beads. The tumor cell lysate was extracted by freeze-and-thaw cycles. The mean obtained total cell number was 7.50 × 107 cells (range 4.40 × 106–2.48 × 108 cells). From this fraction, 6.39 × 106 (range 3.23 × 105–2.53 × 107) CD45− cells were collected, and the tumor cell purity was over 80 % defined as CD45−CD326+. A sufficient amount of tumor lysate, average = 2416 μg (range 25–8743 μg), was extracted from CD45−CD326+ tumor cells. We here established an effective method to produce highly purified tumor cells from KM-CART lavage fluid. The clinical feasibility of this simple preparation method for generating tumor lysate should be examined in clinical studies of DC vaccines.
Collapse
|
14
|
Enten A, Yang Y, Ye Z, Chu R, Van T, Rothschild B, Gonzalez F, Sulchek T. A Liquid-Handling Robot for Automated Attachment of Biomolecules to Microbeads. JOURNAL OF LABORATORY AUTOMATION 2015; 21:526-32. [PMID: 26311061 DOI: 10.1177/2211068215601846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 11/15/2022]
Abstract
Diagnostics, drug delivery, and other biomedical industries rely on cross-linking ligands to microbead surfaces. Microbead functionalization requires multiple steps of liquid exchange, incubation, and mixing, which are laborious and time intensive. Although automated systems exist, they are expensive and cumbersome, limiting their routine use in biomedical laboratories. We present a small, bench-top robotic system that automates microparticle functionalization and streamlines sample preparation. The robot uses a programmable microcontroller to regulate liquid exchange, incubation, and mixing functions. Filters with a pore diameter smaller than the minimum bead diameter are used to prevent bead loss during liquid exchange. The robot uses three liquid reagents and processes up to 10(7) microbeads per batch. The effectiveness of microbead functionalization was compared with a manual covalent coupling process and evaluated via flow cytometry and fluorescent imaging. The mean percentages of successfully functionalized beads were 91% and 92% for the robot and manual methods, respectively, with less than 5% bead loss. Although the two methods share similar qualities, the automated approach required approximately 10 min of active labor, compared with 3 h for the manual approach. These results suggest that a low-cost, automated microbead functionalization system can streamline sample preparation with minimal operator intervention.
Collapse
Affiliation(s)
- Aaron Enten
- Bioengineering in the Electrical and Computer Engineering Home School, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yujia Yang
- Georgia Institute of Technology, Atlanta, GA, USA
| | - Zihan Ye
- Georgia Institute of Technology, Atlanta, GA, USA
| | - Ryan Chu
- Georgia Institute of Technology, Atlanta, GA, USA
| | - Tam Van
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Todd Sulchek
- G. W. Woodruff Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
15
|
Park SH, Park S, Kim DY, Pyo A, Kimura RH, Sathirachinda A, Choy HE, Min JJ, Gambhir SS, Hong Y. Isolation and Characterization of a Monobody with a Fibronectin Domain III Scaffold That Specifically Binds EphA2. PLoS One 2015; 10:e0132976. [PMID: 26177208 PMCID: PMC4503726 DOI: 10.1371/journal.pone.0132976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/19/2015] [Indexed: 01/21/2023] Open
Abstract
Monobodies are binding scaffold proteins originating from a human fibronectin domain III (Fn3) scaffold that can be easily engineered with specificity and affinity. Human EphA2 (hEphA2) is an early detection marker protein for various tumors including lung, breast, and colon cancer. In this study, we isolated two hEphA2-specific monobodies (E1 and E10) by screening a yeast surface display library. They showed the same amino acid sequence except in the DE loop and had high affinity (~2 nM Kd) against hEphA2. E1 bound only hEphA2 and mEphA2, although it bound hEphA2 with an affinity 2-fold higher than that of mEphA2. However, E10 also bound the mEphA6 and mEphA8 homologs as well as hEphA2 and mEphA2. Thus, E1 but not E10 was highly specific for hEphA2. E1 specifically bound human cells and xenograft tumor tissues expressing hEphA on the cell surface. In vivo optical imaging showed strong targeting of Cy5.5-labeled E1 to mouse tumor tissue induced by PC3 cells, a human prostate cancer cell line that expresses a high level of hEphA2. In conclusion, the highly specific monobody E1 is useful as a hEphA2 probe candidate for in vivo diagnosis and therapy.
Collapse
Affiliation(s)
- Seung-Hwan Park
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sukho Park
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ayoung Pyo
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Richard H. Kimura
- Molecular Imaging Program at Stanford, Department of Radiology, Bio-X Program, Stanford University, Palo Alto, CA, United States of America
| | - Ataya Sathirachinda
- Molecular Imaging Program at Stanford, Department of Radiology, Bio-X Program, Stanford University, Palo Alto, CA, United States of America
| | - Hyon E. Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, Department of Radiology, Bio-X Program, Stanford University, Palo Alto, CA, United States of America
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
16
|
Kikuchi S, Kaibe N, Morimoto K, Fukui H, Niwa H, Maeyama Y, Takemura M, Matsumoto M, Nakamori S, Miwa H, Hirota S, Sasako M. Overexpression of Ephrin A2 receptors in cancer stromal cells is a prognostic factor for the relapse of gastric cancer. Gastric Cancer 2015; 18:485-94. [PMID: 24908114 DOI: 10.1007/s10120-014-0390-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/15/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Microenvironments control cancer growth and progression. We explored the prognostic impact of stromal reaction and cancer stromal cells on relapse risk and survival after curative gastrectomy in gastric cancer patients. METHODS Tissue samples were obtained from 107 patients with gastric adenocarcinoma who underwent curative (R0) gastrectomy. Primary stromal cells isolated from gastric cancer tissue (GCSC) and normal gastric tissue (Gastric stromal cell: GSC) in each patient were cultured and subjected to comprehensive proteome (LC-MS/MS) and real-time RT-PCR analysis. Expression of Ephrin A2 receptors (EphA2) in cancers and GCSC was evaluated immunohistochemically. Intermingling of EphA2-positive cancer cells and GCSC (IC/A2+) and overexpression of EphA2 in cancer cells (Ca/A2+) in invasive parts of tumors were assessed, as were relationships of IC/A2+, Ca/A2+, and clinicopathological factors with relapse-free survival and overall survival. RESULTS Proteome analysis showed that EphA2 expression was significantly higher in GCSC than GSC. Real-time RT-PCR analysis showed that levels of EphA1/A2/A3/A5 and EphB2/B4 were ≥2.0-fold higher in GCSC than GSC. Ca/A2 and IC/A2 were positive in 65 (60.7 %) and 26 (24.3 %) patients, respectively. Relapse was significantly more frequent in IC/A2-positive than in IC/A2-negative (HR, 2.12; 95 % CI, 1.16-5.41; p = 0.0207) patients. Among the 54 patients who received S-1 adjuvant chemotherapy, relapse-free survival (RFS) was significantly shorter in those who were IC/A2-positive than in those who were IC/A2-negative and Ca/A2-negative (HR, 2.83; 95 % CI, 1.12-12.12; p = 0.0339). Multivariable analysis indicated that pathological stage (p = 0.010) and IC/A2+ (p = 0.008) were independent risk factors for recurrence. CONCLUSION IC/A2+ was predictive of relapse after curative (R0) gastrectomy.
Collapse
Affiliation(s)
- Shojiro Kikuchi
- Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Quarta A, Bernareggi D, Benigni F, Luison E, Nano G, Nitti S, Cesta MC, Di Ciccio L, Canevari S, Pellegrino T, Figini M. Targeting FR-expressing cells in ovarian cancer with Fab-functionalized nanoparticles: a full study to provide the proof of principle from in vitro to in vivo. NANOSCALE 2015; 7:2336-2351. [PMID: 25504081 DOI: 10.1039/c4nr04426f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Efficient targeting in tumor therapies is still an open issue: systemic biodistribution and poor specific accumulation of drugs weaken efficacy of treatments. Engineered nanoparticles are expected to bring benefits by allowing specific delivery of drug to the tumor or acting themselves as localized therapeutic agents. In this study we have targeted epithelial ovarian cancer with inorganic nanoparticles conjugated to a human antibody fragment against the folate receptor over-expressed on cancer cells. The conjugation approach is generally applicable. Indeed several types of nanoparticles (either magnetic or fluorescent) were engineered with the fragment, and their biological activity was preserved as demonstrated by biochemical methods in vitro. In vivo studies with mice bearing orthotopic and subcutaneous tumors were performed. Elemental and histological analyses showed that the conjugated magnetic nanoparticles accumulated specifically and were retained at tumor sites longer than the non-conjugated nanoparticles.
Collapse
Affiliation(s)
- Alessandra Quarta
- Nanoscience Institute of CNR, National Nanotechnology Laboratory, via Arnesano, 73100, Lecce, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Riedl SJ, Pasquale EB. Targeting the Eph System with Peptides and Peptide Conjugates. Curr Drug Targets 2015; 16:1031-47. [PMID: 26212263 PMCID: PMC4861043 DOI: 10.2174/1389450116666150727115934] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/02/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023]
Abstract
Eph receptor tyrosine kinases and ephrin ligands constitute an important cell communication system that controls development, tissue homeostasis and many pathological processes. Various Eph receptors/ephrins are present in essentially all cell types and their expression is often dysregulated by injury and disease. Thus, the 14 Eph receptors are attracting increasing attention as a major class of potential drug targets. In particular, agents that bind to the extracellular ephrin-binding pocket of these receptors show promise for medical applications. This pocket comprises a broad and shallow groove surrounded by several flexible loops, which makes peptides particularly suitable to target it with high affinity and selectivity. Accordingly, a number of peptides that bind to Eph receptors with micromolar affinity have been identified using phage display and other approaches. These peptides are generally antagonists that inhibit ephrin binding and Eph receptor/ ephrin signaling, but some are agonists mimicking ephrin-induced Eph receptor activation. Importantly, some of the peptides are exquisitely selective for single Eph receptors. Most identified peptides are linear, but recently the considerable advantages of cyclic scaffolds have been recognized, particularly in light of potential optimization towards drug leads. To date, peptide improvements have yielded derivatives with low nanomolar Eph receptor binding affinity, high resistance to plasma proteases and/or long in vivo half-life, exemplifying the merits of peptides for Eph receptor targeting. Besides their modulation of Eph receptor/ephrin function, peptides can also serve to deliver conjugated imaging and therapeutic agents or various types of nanoparticles to tumors and other diseased tissues presenting target Eph receptors.
Collapse
Affiliation(s)
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
19
|
Delaviz N, Gill P, Ajami A, Aarabi M. Aptamer-conjugated magnetic nanoparticles for the efficient removal of HCV particles from human plasma samples. RSC Adv 2015. [DOI: 10.1039/c5ra12209k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Described here is a methodology for selectively capturing HCV particles from human plasma samples using aptamer-conjugated magnetic nanoparticles. The aptamers were specifically bound to the E1E2 glycoprotein of HCV viruses.
Collapse
Affiliation(s)
- Najmeh Delaviz
- Molecular Cell Biology Research Center
- Mazandaran University of Medical Sciences
- Sari
- Iran
| | - Pooria Gill
- Nanomedicine Group
- Immunogenetics Research Center
- Mazandaran University of Medical Sciences
- Sari
- Iran
| | - Abolghasem Ajami
- Molecular Cell Biology Research Center
- Mazandaran University of Medical Sciences
- Sari
- Iran
| | - Mohsen Aarabi
- Diabetes Research Center
- Mazandaran University of Medical Sciences
- Sari
- Iran
| |
Collapse
|
20
|
Rhoda K, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. Potential nanotechnologies and molecular targets in the quest for efficient chemotherapy in ovarian cancer. Expert Opin Drug Deliv 2014; 12:613-34. [PMID: 25300775 DOI: 10.1517/17425247.2015.970162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Ovarian cancer, considered one of the most fatal gynecological cancers, goes largely undiagnosed until metastasis presents itself, usually once the patient is in the final stages and thus, too late for worthwhile therapy. Targeting this elusive disease in its early stages would improve the outcome for most patients, while the information generated thereof would increase the possibility of preventative mechanisms of therapy. AREAS COVERED This review discusses various molecular targets as possible moieties to be incorporated in a holistic drug delivery system or the more aptly termed 'theranostic' system. These molecular targets can be used for targeting, visualizing, diagnosing, and ultimately, treating ovarian cancer in its entirety. Currently implemented nanoframeworks, such as nanomicelles and nanoliposomes, are described and the effectiveness of nanostructures in tumor targeting, treatment functions, and overcoming the drug resistance challenge is discussed. EXPERT OPINION Novel nanotechnology strategies such as the development of nanoframeworks decorated with targeted ligands of a molecular nature may provide an efficient chemotherapy, especially when instituted in combination with imaging, diagnostic, and ultimately, therapeutic moieties. An imperative aspect of utilizing nanotechnology in the treatment of ovarian cancer is the flexibility of the drug delivery system and its ability to overcome standard obstacles such as: i) successfully treating the desired cells through direct targeting; ii) reducing toxicity levels of treatment by achieving direct targeting; and iii) delivery of targeted therapy using an efficient vehicle that is exceptionally degradable in response to a particular stimulus. The targeting of ovarian cancer in its early stages using imaging and diagnostic nanotechnology is an area that can be improved upon by combining therapeutic moieties with molecular biomarkers. The nanotechnology and molecular markers mentioned in this review have generally been used for either imaging or diagnostics, and have not yet been successfully implemented into bi-functional tools, which it is hoped, should eventually include a therapeutic aspect.
Collapse
Affiliation(s)
- Khadija Rhoda
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, 7 York Road, Parktown, 2193 , South Africa
| | | | | | | | | | | |
Collapse
|
21
|
Wierucka M, Biziuk M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.04.007] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Satpathy M, Wang L, Zielinski R, Qian W, Lipowska M, Capala J, Lee GY, Xu H, Wang YA, Mao H, Yang L. Active targeting using HER-2-affibody-conjugated nanoparticles enabled sensitive and specific imaging of orthotopic HER-2 positive ovarian tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:544-55. [PMID: 24038985 PMCID: PMC3946402 DOI: 10.1002/smll.201301593] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/13/2013] [Indexed: 05/20/2023]
Abstract
Despite advances in cancer diagnosis and treatment, ovarian cancer remains one of the most fatal cancer types. The development of targeted nanoparticle imaging probes and therapeutics offers promising approaches for early detection and effective treatment of ovarian cancer. In this study, HER-2 targeted magnetic iron oxide nanoparticles (IONPs) are developed by conjugating a high affinity and small size HER-2 affibody that is labeled with a unique near infrared dye (NIR-830) to the nanoparticles. Using a clinically relevant orthotopic human ovarian tumor xenograft model, it is shown that HER-2 targeted IONPs are selectively delivered into both primary and disseminated ovarian tumors, enabling non-invasive optical and MR imaging of the tumors as small as 1 mm in the peritoneal cavity. It is determined that HER-2 targeted delivery of the IONPs is essential for specific and sensitive imaging of the HER-2 positive tumor since we are unable to detect the imaging signal in the tumors following systemic delivery of non-targeted IONPs into the mice bearing HER-2 positive SKOV3 tumors. Furthermore, imaging signals and the IONPs are not detected in HER-2 low expressing OVCAR3 tumors after systemic delivery of HER-2 targeted-IONPs. Since HER-2 is expressed in a high percentage of ovarian cancers, the HER-2 targeted dual imaging modality IONPs have potential for the development of novel targeted imaging and therapeutic nanoparticles for ovarian cancer detection, targeted drug delivery, and image-guided therapy and surgery.
Collapse
Affiliation(s)
| | - Liya Wang
- Emory University School of Medicine, Atlanta, GA
| | | | - Weiping Qian
- Emory University School of Medicine, Atlanta, GA
| | | | - Jacek Capala
- Radiation Oncology, National Institutes of Health, Bethesda, MD
| | | | - Hong Xu
- Ocean Nanotech, LLC, Springdale, AR
| | | | - Hui Mao
- Emory University School of Medicine, Atlanta, GA
| | - Lily Yang
- Prof. Lily Yang, Department of Surgery, Emory University School of Medicine, Clinic C, Room C-4088, 1365 C Clifton Road, NE, Atlanta, GA 30322. Telephone: 404-778-4269; Fax: 404-778-5530.
| |
Collapse
|
23
|
Abstract
AbstractCopper-cobalt ferrites with composition Cu1−xCoxFe2O4, where x= 0.2 and 0.8 were prepared by thermal treatment of co-precipitated precursor. The obtained materials were characterized by TG-DSC, XRD, Transmission and Conversion Electron Mössbauer spectroscopy and temperature programmed reduction with hydrogen. The catalytic properties of ferrites were tested in methanol decomposition to CO and hydrogen.
Collapse
|
24
|
Abstract
Ascites tumor cells (ATCs) represent a potentially valuable source of cells for monitoring treatment of ovarian cancer as it would obviate the need for more invasive surgical biopsies. The ability to perform longitudinal testing of ascites in a point-of-care setting could significantly impact clinical trials, drug development, and clinical care. Here, we developed a microfluidic chip platform to enrich ATCs from highly heterogeneous peritoneal fluid and then perform molecular analyses on these cells. We evaluated 85 putative ovarian cancer protein markers and found that nearly two-thirds were either nonspecific for malignant disease or had low abundance. Using four of the most promising markers, we prospectively studied 47 patients (33 ovarian cancer and 14 control). We show that a marker set (ATCdx) can sensitively and specifically map ATC numbers and, through its reliable enrichment, facilitate additional treatment-response measurements related to proliferation, protein translation, or pathway inhibition.
Collapse
|
25
|
Gonçalves G, Vila M, Portolés MT, Vallet-Regi M, Gracio J, Marques PAAP. Nano-graphene oxide: a potential multifunctional platform for cancer therapy. Adv Healthc Mater 2013; 2:1072-90. [PMID: 23526812 DOI: 10.1002/adhm.201300023] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Indexed: 11/09/2022]
Abstract
Nano-GO is a graphene derivative with a 2D atomic layer of sp² bonded carbon atoms in hexagonal conformation together with sp³ domains with carbon atoms linked to oxygen functional groups. The supremacy of nano-GO resides essentially in its own intrinsic chemical and physical structure, which confers an extraordinary chemical versatility, high aspect ratio and unusual physical properties. The chemical versatility of nano-GO arises from the oxygen functional groups on the carbon structure that make possible its relatively easy functionalization, under mild conditions, with organic molecules or biological structures in covalent or non-covalent linkage. The synergistic effects resulting from the assembly of well-defined structures at nano-GO surface, in addition to its intrinsic optical, mechanical and electronic properties, allow the development of new multifunctional hybrid materials with a high potential in multimodal cancer therapy. Herein, a comprehensive review of the fundamental properties of nano-GO requirements for cancer therapy and the first developments of nano-GO as a platform for this purpose is presented.
Collapse
Affiliation(s)
- Gil Gonçalves
- TEMA-NRD, Mechanical Engineering Department and Aveiro Institute of Nanotechnology (AIN), University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
26
|
Banerjee SS, Jalota‐Badhwar A, Satavalekar SD, Bhansali SG, Aher ND, Mascarenhas RR, Paul D, Sharma S, Khandare JJ. Transferrin-mediated rapid targeting, isolation, and detection of circulating tumor cells by multifunctional magneto-dendritic nanosystem. Adv Healthc Mater 2013. [PMID: 23184885 DOI: 10.1002/adhm.201200164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A multicomponent magneto-dendritic nanosystem (MDNS) is designed for rapid tumor cell targeting, isolation, and high-resolution imaging by a facile bioconjugation approach. The highly efficient and rapid-acting MDNS provides a convenient platform for simultaneous isolation and high-resolution imaging of tumor cells, potentially leading towards an early diagnosis of cancer.
Collapse
Affiliation(s)
- Shashwat S. Banerjee
- NCE‐Polymer Chemistry Group, Piramal Healthcare Ltd., Goregaon, Mumbai‐400063, India
| | | | - Sneha D. Satavalekar
- NCE‐Polymer Chemistry Group, Piramal Healthcare Ltd., Goregaon, Mumbai‐400063, India
| | - Sujit G. Bhansali
- NCE‐Polymer Chemistry Group, Piramal Healthcare Ltd., Goregaon, Mumbai‐400063, India
| | - Naval D. Aher
- NCE‐Polymer Chemistry Group, Piramal Healthcare Ltd., Goregaon, Mumbai‐400063, India
| | - Russel R. Mascarenhas
- NCE‐Polymer Chemistry Group, Piramal Healthcare Ltd., Goregaon, Mumbai‐400063, India
| | - Debjani Paul
- NCE‐Polymer Chemistry Group, Piramal Healthcare Ltd., Goregaon, Mumbai‐400063, India
| | - Somesh Sharma
- NCE‐Polymer Chemistry Group, Piramal Healthcare Ltd., Goregaon, Mumbai‐400063, India
| | - Jayant J. Khandare
- NCE‐Polymer Chemistry Group, Piramal Healthcare Ltd., Goregaon, Mumbai‐400063, India
| |
Collapse
|
27
|
Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci U S A 2013; 110:E1974-83. [PMID: 23645635 DOI: 10.1073/pnas.1216989110] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Seventy-five percent of patients with epithelial ovarian cancer present with advanced-stage disease that is extensively disseminated intraperitoneally and prognosticates the poorest outcomes. Primarily metastatic within the abdominal cavity, ovarian carcinomas initially spread to adjacent organs by direct extension and then disseminate via the transcoelomic route to distant sites. Natural fluidic streams of malignant ascites triggered by physiological factors, including gravity and negative subdiaphragmatic pressure, carry metastatic cells throughout the peritoneum. We investigated the role of fluidic forces as modulators of metastatic cancer biology in a customizable microfluidic platform using 3D ovarian cancer nodules. Changes in the morphological, genetic, and protein profiles of biomarkers associated with aggressive disease were evaluated in the 3D cultures grown under controlled and continuous laminar flow. A modulation of biomarker expression and tumor morphology consistent with increased epithelial-mesenchymal transition, a critical step in metastatic progression and an indicator of aggressive disease, is observed because of hydrodynamic forces. The increase in epithelial-mesenchymal transition is driven in part by a posttranslational up-regulation of epidermal growth factor receptor (EGFR) expression and activation, which is associated with the worst prognosis in ovarian cancer. A flow-induced, transcriptionally regulated decrease in E-cadherin protein expression and a simultaneous increase in vimentin is observed, indicating increased metastatic potential. These findings demonstrate that fluidic streams induce a motile and aggressive tumor phenotype. The microfluidic platform developed here potentially provides a flow-informed framework complementary to conventional mechanism-based therapeutic strategies, with broad applicability to other lethal malignancies.
Collapse
|
28
|
Sueblinvong T, Ghebre R, Iizuka Y, Pambuccian SE, Isaksson Vogel R, Skubitz APN, Bazzaro M. Establishment, characterization and downstream application of primary ovarian cancer cells derived from solid tumors. PLoS One 2012; 7:e50519. [PMID: 23226302 PMCID: PMC3511542 DOI: 10.1371/journal.pone.0050519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/22/2012] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer is the deadliest of the gynecological diseases and the fifth cause of cancer death among American women. This is mainly due to the lack of prognostic tools capable of detecting early stages of ovarian cancer and to the high rate of resistance to the current chemotherapeutic regimens. In this scenario the overall 5-year survival rate for ovarian cancer patients diagnosed at late stage is less than 25%. Abnormalities associated with the malignant phenotype and the mechanisms of tumor progression are not clearly understood. In vitro studies are necessary, yet have been hampered due to the limitations accompanied with the use of ovarian cancer cell lines and the heterogeneity of the ovarian cancer cell population derived from ascites fluids. In this study we present a simple, rapid and reproducible method for the isolation and characterization of ovarian cancer cells from solid tumor tissue and show that enzymatic digestion for 30 minutes with dispase II results in the most effective recovery of viable epithelial ovarian cancer (EOC) cells. The resulting cancer (EOC) cell preparations demonstrate a significant yield, high levels of viability and are fibroblast-free. They grow for up to six passages and retain the capacity of forming spheroids-like structures in agarose. In addition, they can be genetically manipulated and used for drug screening, thus rendering them highly suitable for downstream applications. Notably, isolation of ovarian cancer cells from solid specimens using this method has the advantage of allowing for isolation of cancer cells from early stages of ovarian cancer as well as obtaining cells from defined either primary and/or metastatic ovarian cancer sites. Thus, these cells are highly suitable for investigations aimed at understanding ovarian cancer.
Collapse
Affiliation(s)
- Thanasak Sueblinvong
- Departments of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rahel Ghebre
- Departments of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yoshie Iizuka
- Departments of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stefan E. Pambuccian
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rachel Isaksson Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Amy P. N. Skubitz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Martina Bazzaro
- Departments of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
29
|
Corbin IR, Ng KK, Ding L, Jurisicova A, Zheng G. Near-infrared fluorescent imaging of metastatic ovarian cancer using folate receptor-targeted high-density lipoprotein nanocarriers. Nanomedicine (Lond) 2012; 8:875-90. [PMID: 23067398 DOI: 10.2217/nnm.12.137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The targeting efficiency of folate receptor-α (FR-α)-targeted high-density lipoprotein nanoparticles (HDL NPs) was evaluated in a syngeneic mouse model of ovarian cancer. MATERIALS & METHODS Folic acid was conjugated to the surface of fluorescent-labeled HDL NPs. In vivo tumor targeting of folic acid-HDL NPs and HDL NPs were evaluated in mice with metastatic ovarian cancer following intravenous or intraperitoneal (ip.) administration. RESULTS & DISCUSSION Intravenous FR-α-targeted HDL resulted in high uptake of the fluorescent nanoparticle in host liver and spleen. The ip. injection of fluorescent HDL produced moderate fluorescence throughout the abdomen. Conversely, animals receiving the ip. FR-α-targeted HDL showed a high fluorescence signal in ovarian tumors, surpassing that seen in all of the host tissues. CONCLUSION The authors' findings demonstrate that the combination of local-regional ip. administration and FR-α-directed nanoparticles provides an enhanced approach to selectively targeting ovarian cancer cells for drug treatment.
Collapse
Affiliation(s)
- Ian R Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| | | | | | | | | |
Collapse
|
30
|
Latifi A, Luwor RB, Bilandzic M, Nazaretian S, Stenvers K, Pyman J, Zhu H, Thompson EW, Quinn MA, Findlay JK, Ahmed N. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS One 2012; 7:e46858. [PMID: 23056490 PMCID: PMC3466197 DOI: 10.1371/journal.pone.0046858] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/10/2012] [Indexed: 02/07/2023] Open
Abstract
Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD) and non-adherent (NAD) cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN) and 14 chemoresistant (CR). AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125), epithelial cell adhesion molecule (EpCAM) and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12-14 weeks after intraperitoneal (i.p.) injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC) markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.
Collapse
Affiliation(s)
- Ardian Latifi
- Women's Cancer Research Centre, Royal Women's Hospital, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Distinctive binding of three antagonistic peptides to the ephrin-binding pocket of the EphA4 receptor. Biochem J 2012; 445:47-56. [PMID: 22489865 DOI: 10.1042/bj20120408] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The EphA4 receptor tyrosine kinase interacts with ephrin ligands to regulate many processes, ranging from axon guidance and nerve regeneration to cancer malignancy. Thus antagonists that inhibit ephrin binding to EphA4 could be useful for a variety of research and therapeutic applications. In the present study we characterize the binding features of three antagonistic peptides (KYL, APY and VTM) that selectively target EphA4 among the Eph receptors. Isothermal titration calorimetry analysis demonstrated that all three peptides bind to the ephrin-binding domain of EphA4 with low micromolar affinity. Furthermore, the effects of a series of EphA4 mutations suggest that the peptides interact in different ways with the ephrin-binding pocket of EphA4. Chemical-shift changes observed by NMR spectroscopy upon binding of the KYL peptide involve many EphA4 residues, consistent with extensive interactions and possibly receptor conformational changes. Additionally, systematic replacement of each of the 12 amino acids of KYL and VTM identify the residues critical for EphA4, binding. The peptides exhibit a long half-life in cell culture medium which, with their substantial binding affinity and selectivity for EphA4, makes them excellent research tools to modulate EphA4 function.
Collapse
|
32
|
Faltas B. Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells. Front Oncol 2012; 2:68. [PMID: 22783544 PMCID: PMC3388423 DOI: 10.3389/fonc.2012.00068] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/12/2012] [Indexed: 12/21/2022] Open
Abstract
The last decade has witnessed an evolution of our understanding of the biology of the metastatic cascade. Recent insights into the metastatic process show that it is complex, dynamic, and multi-directional. This process starts at a very early stage in the natural history of solid tumor growth leading to early development of metastases that grow in parallel with the primary tumor. The role of stem cells in perpetuating cancer metastases is increasingly becoming more evident. At the same time, there is a growing recognition of the crucial role circulating tumor cells (CTCs) play in the development of metastases. These insights have laid the biological foundations for therapeutic targeting of CTCs, a promising area of research that aims to reduce cancer morbidity and mortality by preventing the development of metastases at a very early stage. The hematogenous transport phase of the metastatic cascade provides critical access to CTCs for therapeutic targeting aiming to interrupt the metastatic process. Recent advances in the fields of nanotechnology and microfluidics have led to the development of several devices for in vivo targeting of CTC during transit in the circulation. Selectin-coated tubes that target cell adhesion molecules, immuno-magnetic separators, and in vivo photo-acoustic flow cytometers are currently being developed for this purpose. On the pharmacological front, several pharmacological and immunological agents targeting cancer stem cells are currently being developed. Such agents may ultimately prove to be effective against circulating tumor stem cells (CTSCs). Although still in its infancy, therapeutic targeting of CTCs and CTSCs offers an unprecedented opportunity to prevent the development of metastasis and potentially alter the natural history of cancer. By rendering cancer a "local" disease, these approaches could lead to major reductions in metastasis-related morbidity and mortality.
Collapse
Affiliation(s)
- Bishoy Faltas
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
33
|
Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG. Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2011; 12:39-50. [PMID: 22193407 DOI: 10.1038/nrc3180] [Citation(s) in RCA: 797] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metastasis accounts for the vast majority of cancer deaths. The unique challenges for treating metastases include their small size, high multiplicity and dispersion to diverse organ environments. Nanoparticles have many potential benefits for diagnosing and treating metastatic cancer, including the ability to transport complex molecular cargoes to the major sites of metastasis, such as the lungs, liver and lymph nodes, as well as targeting to specific cell populations within these organs. This Review highlights the research, opportunities and challenges for integrating engineering sciences with cancer biology and medicine to develop nanotechnology-based tools for treating metastatic disease.
Collapse
Affiliation(s)
- Avi Schroeder
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gojdka B, Hrkac V, Strunskus T, Zaporojtchenko V, Kienle L, Faupel F. Study of cobalt clusters with very narrow size distribution deposited by high-rate cluster source. NANOTECHNOLOGY 2011; 22:465704. [PMID: 22025057 DOI: 10.1088/0957-4484/22/46/465704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Co nanoparticles with an average diameter of 4.8 nm and a very narrow size distribution were prepared in a self-built gas aggregation cluster source without a size-selective filtering system. Ferromagnetic nanoparticle films with a thickness of several hundreds of nanometres were prepared at deposition rates up to 600 nm min(-1). Cluster properties and deposition characteristics were investigated for different deposition parameters. The as-deposited films exhibit high porosity compared to conventionally DC-sputtered films.
Collapse
Affiliation(s)
- B Gojdka
- Institute for Materials Science-Multicomponent Materials, Faculty of Engineering, Christian-Albrechts-University of Kiel, Kaiserstraße 2, D-24143 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Noberini R, Lamberto I, Pasquale EB. Targeting Eph receptors with peptides and small molecules: progress and challenges. Semin Cell Dev Biol 2011; 23:51-7. [PMID: 22044885 DOI: 10.1016/j.semcdb.2011.10.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/17/2011] [Indexed: 11/18/2022]
Abstract
The Eph receptors are a large family of receptor tyrosine kinases. Their kinase activity and downstream signaling ability are stimulated by the binding of cell surface-associated ligands, the ephrins. The ensuing signals are bidirectional because the ephrins can also transduce signals (known as reverse signals) following their interaction with Eph receptors. The ephrin-binding pocket in the extracellular N-terminal domain of the Eph receptors and the ATP-binding pocket in the intracellular kinase domain represent potential binding sites for peptides and small molecules. Indeed, a number of peptides and chemical compounds that target Eph receptors and inhibit ephrin binding or kinase activity have been identified. These molecules show promise as probes to study Eph receptor/ephrin biology, as lead compounds for drug development, and as targeting agents to deliver drugs or imaging agents to tumors. Current challenges are to find (1) small molecules that inhibit Eph receptor-ephrin interactions with high binding affinity and good lead-like properties and (2) selective kinase inhibitors that preferentially target the Eph receptor family or subsets of Eph receptors. Strategies that could also be explored include targeting additional Eph receptor interfaces and the ephrin ligands.
Collapse
Affiliation(s)
- Roberta Noberini
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | |
Collapse
|
36
|
Brüning-Richardson A, Bond J, Alsiary R, Richardson J, Cairns DA, McCormack L, Hutson R, Burns P, Wilkinson N, Hall GD, Morrison EE, Bell SM. ASPM and microcephalin expression in epithelial ovarian cancer correlates with tumour grade and survival. Br J Cancer 2011; 104:1602-10. [PMID: 21505456 PMCID: PMC3101901 DOI: 10.1038/bjc.2011.117] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 03/09/2011] [Accepted: 03/13/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The clinico-pathological and molecular heterogeneity of epithelial ovarian cancer (EOC) complicates its early diagnosis and successful treatment. Highly aneuploid tumours and the presence of ascitic fluids are hallmarks of EOC. Two microcephaly-associated proteins, abnormal spindle-like microcephaly-associated protein (ASPM) and microcephalin, are involved in mitosis and DNA damage repair. Their expression is deregulated at the RNA level in EOC. Here, ASPM and microcephalin protein expression in primary cultures established from the ascites of patients with EOC was determined and correlated with clinical data to assess their suitability as biomarkers. METHODS Five established ovarian cancer cell lines, cells derived from two benign ovarian ascites samples and 40 primary cultures of EOC derived from ovarian ascites samples were analysed by protein slot blotting and/or immunofluorescence to determine ASPM and microcephalin protein levels and their cellular localisation. Results were correlated with clinico-pathological data. RESULTS A statistically significant correlation was identified for ASPM localisation and tumour grade, with high levels of cytoplasmic ASPM correlating with grade 1 tumours. Conversely, cytoplasmic microcephalin was only identified in high-grade tumours. Furthermore, low levels of nuclear microcephalin correlated with reduced patient survival. CONCLUSION Our results suggest that ASPM and microcephalin have the potential to be biomarkers in ovarian cancer.
Collapse
Affiliation(s)
- A Brüning-Richardson
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, Welcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - J Bond
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, Welcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - R Alsiary
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, Welcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - J Richardson
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, Welcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - D A Cairns
- Section of Oncology and Clinical Research, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds LS9 7TF, UK
| | - L McCormack
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, Welcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - R Hutson
- St James's Institute of Oncology, St James's University Hospital, Leeds LS9 7TF, UK
| | - P Burns
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, Welcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - N Wilkinson
- St James's Institute of Oncology, St James's University Hospital, Leeds LS9 7TF, UK
| | - G D Hall
- St James's Institute of Oncology, St James's University Hospital, Leeds LS9 7TF, UK
| | - E E Morrison
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, Welcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - S M Bell
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, Welcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
37
|
Scarberry KE, Mezencev R, McDonald JF. Targeted removal of migratory tumor cells by functionalized magnetic nanoparticles impedes metastasis and tumor progression. Nanomedicine (Lond) 2011; 6:69-78. [PMID: 21182419 DOI: 10.2217/nnm.10.103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS To slow tumor progression by reducing migratory tumor cell burden using magnetic nanoparticles (MNPs) functionalized with ligands selective for malignant cell surface receptors. MATERIALS & METHODS Three groups of female C57BL/6 mice (control group I, control group II and experimental group) were intraperitoneally injected with a murine ovarian cancer cell line (ID8[VEGF160(+)/eGFP(+)]). Control group I received no intervention. MNPs were functionalized with ephrin-A1 mimetic peptides selective for the EphA2 receptor that is highly expressed by several cancers. Peritoneal fluids were removed by paracentesis from the experimental group and mixed with the functionalized MNPs. Magnetic filtration was used to remove particle/malignant cell conjugates and filtered peritoneal fluids were re-introduced intraperitoneally. Control group II received the same treatment as the experimental group without MNPs. RESULTS Experimental group tumor progression was 10.77-times slower than that of control group I. CONCLUSION Reduction of malignant cell titer significantly prolonged time to end point in a metastatic ovarian cancer model.
Collapse
Affiliation(s)
- Kenneth E Scarberry
- School of Biology & Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
38
|
Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecol Oncol 2011; 120:393-403. [DOI: 10.1016/j.ygyno.2010.11.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 12/22/2022]
|
39
|
Polyclonal antitumor immunoglobulin may play a role in ovarian cancer adjuvant therapy. Med Hypotheses 2011; 76:530-2. [PMID: 21255939 DOI: 10.1016/j.mehy.2010.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 12/20/2010] [Indexed: 02/05/2023]
Abstract
Currently, surgery plus adjuvant chemotherapy are the mainstay of care in the treatment of ovarian cancer. Although this therapeutic strategy has been considered as "golden standard" regimen with profound impact on survival improvement, several obstacles have been encountered, such as chemotherapy drug resistance and disease relapse. Residual cancer cells in the abdominal cavity and vessels are considered as the main cause of disease relapse. New treatment options attempt to yield higher survival rate in patients. Monoclonal antibodies such as Trastuzumab and Cetuximab showed promising effects on several solid tumors. But for epithelial ovarian cancer, modalities of intravenous monoclonal antibody monotherapy have not achieved expected results as they have in the treatments of breast and colorectal cancer. Relatively low expression of matched receptors on ovarian cancer cells, as well as the intravenous delivery with less efficacy of intra-abdominal antibody accumulation, may account for lack of efficacy of monoclonal antibody on ovarian cancer. So we hypothesize that polyvalent antibodies boosted from rabbit by inoculating human tumor cells could deplete ovarian cancer cells through intraperitoneal route. The mechanisms may include interrupting ligand-receptor binding and thus result in blockage of intracellular signaling pathways such as EGFR and HER2 signal transduction, and possibly may also involve antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity.
Collapse
|
40
|
Mitra S, Duggineni S, Koolpe M, Zhu X, Huang Z, Pasquale EB. Structure-activity relationship analysis of peptides targeting the EphA2 receptor. Biochemistry 2010; 49:6687-95. [PMID: 20677833 DOI: 10.1021/bi1006223] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The EphA2 receptor tyrosine kinase has emerged as a promising new therapeutic target in cancer because of its high level of expression in tumors. EphA2-specific antibodies have been used to deliver drugs and toxins to tumor cells, leading to inhibition of tumor growth and metastatic dissemination. We previously identified two related peptides, YSA and SWL, that selectively bind to the ligand-binding domain of EphA2 but not other Eph receptors and could therefore be useful as selective targeting agents. Here we characterize the two peptides and a series of derivatives. On the basis of systematic amino acid replacements, only five YSA residues appear to be critical for high-affinity receptor binding. Furthermore, a peptide comprising only the first five residues of YSA retains selectivity for EphA2. Similar to ephrin-A1, the physiological ligand for EphA2, both YSA and SWL activate EphA2 and inhibit downstream oncogenic signaling pathways in PC3 cancer cells. The two peptides and derivatives are quite stable in conditioned cell culture medium and show promise for delivering drugs and imaging agents to EphA2-expressing tumors.
Collapse
Affiliation(s)
- Sayantan Mitra
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The Eph receptor tyrosine kinases and their ephrin ligands have intriguing expression patterns in cancer cells and tumour blood vessels, which suggest important roles for their bidirectional signals in many aspects of cancer development and progression. Eph gene mutations probably also contribute to cancer pathogenesis. Eph receptors and ephrins have been shown to affect the growth, migration and invasion of cancer cells in culture as well as tumour growth, invasiveness, angiogenesis and metastasis in vivo. However, Eph signalling activities in cancer seem to be complex, and are characterized by puzzling dichotomies. Nevertheless, the Eph receptors are promising new therapeutic targets in cancer.
Collapse
Affiliation(s)
- Elena B Pasquale
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|