1
|
Yamaguchi SI, Takemura M, Miwa K, Morimoto N, Nakayama M. Siglec-14-Mediated Inflammatory Responses to Carbon Nanomaterials. ACS APPLIED BIO MATERIALS 2025; 8:2927-2937. [PMID: 40099920 DOI: 10.1021/acsabm.4c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Carbon nanomaterials (CNM), including carbon nanotubes (CNT) and graphene nanoplatelets (GNP), are expected to have diverse industrial applications due to their unique physical properties. However, concerns have been raised regarding their toxicity in humans. In this context, risk assessment must include an understanding of the molecular mechanisms underlying human recognition of CNM. We have recently identified human sialic acid-binding immunoglobulin-like lectin (Siglec)-14 as a CNT-recognizing receptor. Since no rodent orthologs for Siglec-14 exist, previous rodent toxicological studies may underestimate CNM toxicity in humans. Therefore, in this study, we investigate Siglec-14 responses to various CNM. Siglec-14 recognizes various types of CNM via its extracellular aromatic cluster with a similar affinity, regardless of size and shape. Ultrathin single-walled CNT (SWCNT) and spherical carbon black nanoparticles (CBNP) activated macrophage Siglec-14 signaling, leading to IL-8 production. Notably, GNP as well as long needle-like MWCNT not only activate this inflammatory signal but also cause phagosomal damage, leading to the release of IL-1β, the most prominent pro-inflammatory cytokine. In mice transduced with Siglec-14, intratracheal injection of GNP or long needle-like MWCNT caused lung inflammation, whereas injection of SWCNT or CBNP did not. Taken together, these results suggest that CNM-induced inflammation requires two processes: macrophage receptor ligation and phagosomal damage. This indicates that CNM may be safe unless they cause damage to the macrophage phagosome.
Collapse
Affiliation(s)
- Shin-Ichiro Yamaguchi
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Miki Takemura
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Karen Miwa
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Nobuyuki Morimoto
- Faculty of Materials for Energy, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Masafumi Nakayama
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
- Research Center for Animal Life Science, Shiga University of Medical Sciences, Otsu 525-0072, Japan
| |
Collapse
|
2
|
Thakur CK, Karthikeyan C, Ashby CR, Neupane R, Singh V, Babu RJ, Narayana Moorthy NSH, Tiwari AK. Ligand-conjugated multiwalled carbon nanotubes for cancer targeted drug delivery. Front Pharmacol 2024; 15:1417399. [PMID: 39119607 PMCID: PMC11306048 DOI: 10.3389/fphar.2024.1417399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Multiwalled carbon nanotubes (MWCNTs) are at the forefront of nanotechnology-based advancements in cancer therapy, particularly in the field of targeted drug delivery. The nanotubes are characterized by their concentric graphene layers, which give them outstanding structural strength. They can deliver substantial doses of therapeutic agents, potentially reducing treatment frequency and improving patient compliance. MWCNTs' diminutive size and modifiable surface enable them to have a high drug loading capacity and penetrate biological barriers. As a result of the extensive research on these nanomaterials, they have been studied extensively as synthetic and chemically functionalized molecules, which can be combined with various ligands (such as folic acid, antibodies, peptides, mannose, galactose, polymers) and linkers, and to deliver anticancer drugs, including but not limited to paclitaxel, docetaxel, cisplatin, doxorubicin, tamoxifen, methotrexate, quercetin and others, to cancer cells. This functionalization facilitates selective targeting of cancer cells, as these ligands bind to specific receptors overexpressed in tumor cells. By sparing non-cancerous cells and delivering the therapeutic payload precisely to cancer cells, this therapeutic payload delivery ability reduces chemotherapy systemic toxicity. There is great potential for MWCNTs to be used as targeted delivery systems for drugs. In this review, we discuss techniques for functionalizing and conjugating MWCNTs to drugs using natural and biomacromolecular linkers, which can bind to the cancer cells' receptors/biomolecules. Using MWCNTs to administer cancer drugs is a transformative approach to cancer treatment that combines nanotechnology and pharmacotherapy. It is an exciting and rich field of research to explore and optimize MWCNTs for drug delivery purposes, which could result in significant benefits for cancer patients.
Collapse
Affiliation(s)
- Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
- Chhattrapati Shivaji Institute of Pharmacy, Durg, Chhattisgarh, India
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John’s University, Queens, NY, United States
| | - Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Vishal Singh
- Department of Nutrition, State College, Pennsylvania State University, University Park, PA, United States
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - N. S. Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
3
|
Memarian P, Bagher Z, Asghari S, Aleemardani M, Seifalian A. Emergence of graphene as a novel nanomaterial for cardiovascular applications. NANOSCALE 2024; 16:12793-12819. [PMID: 38919053 DOI: 10.1039/d4nr00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.
Collapse
Affiliation(s)
- Paniz Memarian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sheida Asghari
- Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, S3 7HQ, UK.
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK.
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
| |
Collapse
|
4
|
Alwahsh W, Sahudin S, Alkhatib H, Bostanudin MF, Alwahsh M. Chitosan-Based Nanocarriers for Pulmonary and Intranasal Drug Delivery Systems: A Comprehensive Overview of their Applications. Curr Drug Targets 2024; 25:492-511. [PMID: 38676513 DOI: 10.2174/0113894501301747240417103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
The optimization of respiratory health is important, and one avenue for achieving this is through the application of both Pulmonary Drug Delivery System (PDDS) and Intranasal Delivery (IND). PDDS offers immediate delivery of medication to the respiratory system, providing advantages, such as sustained regional drug concentration, tunable drug release, extended duration of action, and enhanced patient compliance. IND, renowned for its non-invasive nature and swift onset of action, presents a promising path for advancement. Modern PDDS and IND utilize various polymers, among which chitosan (CS) stands out. CS is a biocompatible and biodegradable polysaccharide with unique physicochemical properties, making it well-suited for medical and pharmaceutical applications. The multiple positively charged amino groups present in CS facilitate its interaction with negatively charged mucous membranes, allowing CS to adsorb easily onto the mucosal surface. In addition, CS-based nanocarriers have been an important topic of research. Polymeric Nanoparticles (NPs), liposomes, dendrimers, microspheres, nanoemulsions, Solid Lipid Nanoparticles (SLNs), carbon nanotubes, and modified effective targeting systems compete as important ways of increasing pulmonary drug delivery with chitosan. This review covers the latest findings on CS-based nanocarriers and their applications.
Collapse
Affiliation(s)
- Wasan Alwahsh
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
- Atta-Ur-Rahman Institute of Natural Products Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Hatim Alkhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | | | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| |
Collapse
|
5
|
Mal S, Duarte E Souza L, Allard C, David C, Blais-Ouellette S, Gaboury L, Tang NYW, Martel R. Duplex Phenotype Detection and Targeting of Breast Cancer Cells Using Nanotube Nanoprobes and Raman Imaging. ACS APPLIED BIO MATERIALS 2023; 6:1173-1184. [PMID: 36795958 DOI: 10.1021/acsabm.2c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
We designed, synthesized, and characterized a Raman nanoprobe made of dye-sensitized single-walled carbon nanotubes (SWCNTs) that can selectively target biomarkers of breast cancer cells. The nanoprobe is composed of Raman-active dyes encapsulated inside a SWCNT, whose surface is covalently grafted with poly(ethylene glycol) (PEG) at a density of ∼0.7% per carbon. Using α-sexithiophene- and β-carotene-derived nanoprobes covalently bound to an antibody, either anti-E-cadherin (E-cad) or anti-keratin-19 (KRT19), we prepared two distinct nanoprobes that specifically recognize biomarkers on breast cancer cells. Immunogold experiments and transmission electron microscopy (TEM) images are first used to guide the synthesis protocol for higher PEG-antibody attachment and biomolecule loading capacity. The duplex of nanoprobes was then applied to target E-cad and KRT19 biomarkers in T47D and MDA-MB-231 breast cancer cell lines. Hyperspectral imaging of specific Raman bands allows for simultaneous detection of this nanoprobe duplex on target cells without the need for additional filters or subsequent incubation steps. Our results confirm the high reproducibility of the nanoprobe design for duplex detection and highlight the potential of Raman imaging for advanced biomedical applications in oncology.
Collapse
Affiliation(s)
- Suraj Mal
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Layane Duarte E Souza
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Charlotte Allard
- Department of Engineering Physics, Polytechnique of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Carolane David
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | | | - Louis Gaboury
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Nathalie Y-W Tang
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Richard Martel
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
6
|
Alothaid H. Evaluation of cytotoxicity, oxidative stress and organ-specific effects of activated carbon from Al-Baha date palm kernels. Saudi J Biol Sci 2022; 29:103387. [PMID: 35923600 PMCID: PMC9340513 DOI: 10.1016/j.sjbs.2022.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background Activated carbon (AC) is a carbonaceous material derived from carbonization and activation of carbon-containing compounds at high temperature and has a large surface area, providing it with excellent adsorption properties. Human exposure to ACs via ingestion is increasing and, unfortunately, there is little to no evidence related to its level of toxicity Materials and methods Activated carbon of powdered date kernels from Al-Baha city in Saudi Arabia were used to treat rats and cell lines (HepG2 and HCT-116). Toxicity, microbiological tests and biochemical analyses were carried out to investigate biological activity of both commercially available AC (CAC), pharmaceutical AC (PAC) and AC from date palm kernels (AAC) Results None of the ACs showed activity on Staphylococcus aureus, Bacillus subtilis, Protius mirabilis and Escherichia coli. AAC showed the most cytotoxic effect on both HCT-116 and HepG2 cell lines after 24 h, with IC50 of 48.7 ± 17.2 µg/ml and 51 ± 6.24 µg/ml respectively. Rats treated with AAC for 48 h showed no impairment of hepatic and renal functions, unlike those exposed to CAC and PAC. Similarly, AAC-exposed rats did not show oxidative stress in both the liver and kidneys while CAC and PAC exposure resulted in depletion of CAT, GPx, SOD and GSH in both organs. L-arginase and α-fucosidase expression were also induced by both PAC and CAC while α-fucosidase levels were unaffected in AAC-exposed rats Conclusion AAC appears to be biologically safe compared with PAC and CAC due to its antioxidant activities and non-effect on both hepatic and renal functions.
Collapse
|
7
|
Chetyrkina MR, Fedorov FS, Nasibulin AG. In vitro toxicity of carbon nanotubes: a systematic review. RSC Adv 2022; 12:16235-16256. [PMID: 35733671 PMCID: PMC9152879 DOI: 10.1039/d2ra02519a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Carbon nanotube (CNT) toxicity-related issues provoke many debates in the scientific community. The controversial and disputable data about toxicity doses, proposed hazard effects, and human health concerns significantly restrict CNT applications in biomedical studies, laboratory practices, and industry, creating a barrier for mankind in the way of understanding how exactly the material behaves in contact with living systems. Raising the toxicity question again, many research groups conclude low toxicity of the material and its potential safeness at some doses for contact with biological systems. To get new momentum for researchers working on the intersection of the biological field and nanomaterials, i.e., CNT materials, we systematically reviewed existing studies with in vitro toxicological data to propose exact doses that yield toxic effects, summarize studied cell types for a more thorough comparison, the impact of incubation time, and applied toxicity tests. Using several criteria and different scientific databases, we identified and analyzed nearly 200 original publications forming a "golden core" of the field to propose safe doses of the material based on a statistical analysis of retrieved data. We also differentiated the impact of various forms of CNTs: on a substrate and in the form of dispersion because in both cases, some studies demonstrated good biocompatibility of CNTs. We revealed that CNTs located on a substrate had negligible impact, i.e., 90% of studies report good viability and cell behavior similar to control, therefore CNTs could be considered as a prospective conductive substrate for cell cultivation. In the case of dispersions, our analysis revealed mean values of dose/incubation time to be 4-5 μg mL-1 h-1, which suggested the material to be a suitable candidate for further studies to get a more in-depth understanding of its properties in biointerfaces and offer CNTs as a promising platform for fundamental studies in targeted drug delivery, chemotherapy, tissue engineering, biosensing fields, etc. We hope that the present systematic review will shed light on the current knowledge about CNT toxicity, indicate "dark" spots and offer possible directions for the subsequent studies based on the demonstrated here tabulated and statistical data of doses, cell models, toxicity tests, viability, etc.
Collapse
Affiliation(s)
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
- Aalto University FI-00076 15100 Espoo Finland
| |
Collapse
|
8
|
Jain N, Gupta E, Kanu NJ. Plethora of Carbon Nanotubes Applications in Various Fields – A State-of-the-Art-Review. SMART SCIENCE 2021. [DOI: 10.1080/23080477.2021.1940752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nidhi Jain
- Department of Engineering Science, Bharati Vidyapeeth College of Engineering, Lavale, Pune, India
| | - Eva Gupta
- Department of Electrical Engineering, ASET, Amity University, Noida, India
- Department of Electrical Engineering, TSSM’s Bhivrabai Sawant College of Engineering and Research, Pune, Maharashtra, India
| | - Nand Jee Kanu
- Department of Mechanical Engineering, S. V. National Institute of Technology, Surat, India
- Department of Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India
| |
Collapse
|
9
|
Teixeira-Santos R, Gomes M, Gomes LC, Mergulhão FJ. Antimicrobial and anti-adhesive properties of carbon nanotube-based surfaces for medical applications: a systematic review. iScience 2021; 24:102001. [PMID: 33490909 PMCID: PMC7809508 DOI: 10.1016/j.isci.2020.102001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although high-performance carbon materials are widely used in surface engineering, with emphasis on carbon nanotubes (CNTs), the application of CNT nanocomposites on medical surfaces is poorly documented. In this study, we aimed to evaluate the antimicrobial and anti-adhesive properties of CNT-based surfaces. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria and 59 studies were selected for the qualitative analysis. Results from the analyzed studies suggest that surfaces containing modified CNTs, and specially CNTs conjugated with different polymers, exhibited strong antimicrobial and anti-adhesive activities. These composites seem to preserve the CNT toxicity to microorganisms and promote CNT-cell interactions, as well as to protect them from nonspecific protein adsorption. However, CNTs cannot yet compete with the conventional strategies to fight biofilms as their toxicity profile on the human body has not been thoroughly addressed. This review can be helpful for the development of new engineered medical surfaces.
Collapse
Affiliation(s)
- Rita Teixeira-Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marisa Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J. Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Brahimi M, SELLAM D, Bouchoucha A, Arbia Y, Merazka H, Bagtache R, Djebbari K, Bachari K, Talhi O. In-silico modelling of fullerene and fullerene adsorbed by nO 2 molecules ( n(O 2)@ Cm with n = 1, 2, 4 and m = 48 and 60) as potential SARS-CoV-2 inhibitors. BULLETIN OF MATERIALS SCIENCE 2021; 44:220. [PMCID: PMC8313420 DOI: 10.1007/s12034-021-02505-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/12/2021] [Indexed: 05/24/2023]
Abstract
Abstract COVID-19 pandemic started more than a year ago and has infected more than 115 million of people from ~210 countries and >2.5 million of deaths worldwide being reported without any commercial and effective treatment or vaccine being yet released. However, recent studies on nanomaterials such as fullerenes, carbon nanotubes and graphene showed that they possess anti-inflammatory, antiviral, anti-oxidant and anti-HIV properties. Herein, the interactions which established between the fullerenes Cm (m = 48, 60, 70, 80, 84 and 86) and the spike protein (SP) of SARS-CoV-2 and the human ACE2 receptor have been investigated based on the density functional theory (DFT) method with the CAM-B3LYP functional and the 6-31G* basis. The results of this study show that C48 exhibited as potential inhibitor of SARS-CoV-2. Because of the presence of heteroatoms on the surface of fullerenes which systematically reduce energy gaps, which in turn increase their reactivities. The oxygen adsorbed by fullerenes increases the number of non-covalent contacts and involves a large number of hydrogen bonds, while decreasing the binding energies. Thus, the hACE2-SP-4O2@C60 complex is strongly recommended for inhibiting SARS-CoV-2 in the final phase of contamination. Graphic abstract Stabilizing interactions between fullerenes and the spike protein of SARS-CoV-2.![]()
Collapse
Affiliation(s)
- Meziane Brahimi
- Laboratoire de Physico Chimie Théorique et Chimie Informatique (LPCTCI), USTHB, BP N° 32 Al Alia, 16111 Alger, Algeria
| | - Djamila SELLAM
- Laboratoire de Chimie Appliquée et de Génie Chimique, Université Mouloud Mammeri, 15000 Tizi Ouzou, Algeria
| | - Afaf Bouchoucha
- Laboratoire d’Hydrométallurgie et Chimie Inorganique Moléculaire, USTHB, BP N° 32 el Alia, 16111 Alger, Algeria
| | - Yassamina Arbia
- Laboratoire de Physico Chimie Théorique et Chimie Informatique (LPCTCI), USTHB, BP N° 32 Al Alia, 16111 Alger, Algeria
| | - Hadjer Merazka
- Laboratoire d’Hydrométallurgie et Chimie Inorganique Moléculaire, USTHB, BP N° 32 el Alia, 16111 Alger, Algeria
| | - Radia Bagtache
- Laboratoire de Chimie Organique Appliquée, USTHB, BP N° 32 el Alia, 16111 Alger, Algeria
| | - Khaled Djebbari
- Laboratoire de Physico Chimie Théorique et Chimie Informatique (LPCTCI), USTHB, BP N° 32 Al Alia, 16111 Alger, Algeria
| | - Khaldoun Bachari
- Centre de Recherche en Analyses Physico Chimiques (CRAPC), 42415 Bou Ismail, Tipaza Algeria
| | - Oualid Talhi
- Centre de Recherche en Analyses Physico Chimiques (CRAPC), 42415 Bou Ismail, Tipaza Algeria
| |
Collapse
|
11
|
Saleemi MA, Hosseini Fouladi M, Yong PVC, Chinna K, Palanisamy NK, Wong EH. Toxicity of Carbon Nanotubes: Molecular Mechanisms, Signaling Cascades, and Remedies in Biomedical Applications. Chem Res Toxicol 2020; 34:24-46. [PMID: 33319996 DOI: 10.1021/acs.chemrestox.0c00172] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbon nanotubes (CNTs) are the most studied allotropic form of carbon. They can be used in various biomedical applications due to their novel physicochemical properties. In particular, the small size of CNTs, with a large surface area per unit volume, has a considerable impact on their toxicity. Despite of the use of CNTs in various applications, toxicity is a big problem that requires more research. In this Review, we discuss the toxicity of CNTs and the associated mechanisms. Physicochemical factors, such as metal impurities, length, size, solubilizing agents, CNTs functionalization, and agglomeration, that may lead to oxidative stress, toxic signaling pathways, and potential ways to control these mechanisms are also discussed. Moreover, with the latest mechanistic evidence described in this Review, we expect to give new insights into CNTs' toxicological effects at the molecular level and provide new clues for the mitigation of harmful effects emerging from exposure to CNTs.
Collapse
Affiliation(s)
- Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Mohammad Hosseini Fouladi
- School of Engineering, Faculty of Innovation and Technology, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Phelim Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Karuthan Chinna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Navindra Kumari Palanisamy
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000 Sungai Buloh, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
12
|
Farr AC, Hogan KJ, Mikos AG. Nanomaterial Additives for Fabrication of Stimuli-Responsive Skeletal Muscle Tissue Engineering Constructs. Adv Healthc Mater 2020; 9:e2000730. [PMID: 32691983 DOI: 10.1002/adhm.202000730] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/13/2020] [Indexed: 12/12/2022]
Abstract
Volumetric muscle loss necessitates novel tissue engineering strategies for skeletal muscle repair, which have traditionally involved cells and extracellular matrix-mimicking scaffolds and have thus far been unable to successfully restore physiologically relevant function. However, the incorporation of various nanomaterial additives with unique physicochemical properties into scaffolds has recently been explored as a means of fabricating constructs that are responsive to electrical, magnetic, and photothermal stimulation. Herein, several classes of nanomaterials that are used to mediate external stimulation to tissue engineered skeletal muscle are reviewed and the impact of these stimuli-responsive biomaterials on cell growth and differentiation and in vivo muscle repair is discussed. The degradation kinetics and biocompatibilities of these nanomaterial additives are also briefly examined and their potential for incorporation into clinically translatable skeletal muscle tissue engineering strategies is considered. Overall, these nanomaterial additives have proven efficacious and incorporation in tissue engineering scaffolds has resulted in enhanced functional skeletal muscle regeneration.
Collapse
Affiliation(s)
- Amy Corbin Farr
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Center for Engineering Complex Tissues, USA
| | - Katie J Hogan
- Center for Engineering Complex Tissues, USA
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Antonios G Mikos
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Center for Engineering Complex Tissues, USA
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| |
Collapse
|
13
|
The role of single- and multi-walled carbon nanotube in breast cancer treatment. Ther Deliv 2020; 11:653-672. [DOI: 10.4155/tde-2020-0019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have been conducted to design new strategies for breast cancer treatment. Past studies have shown a wide range of carbon-nanomaterials properties, such as single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in breast cancer diagnosis and treatment. In this regard, the current study aims to review the role of both SWCNTs and MWCNTs in breast cancer treatment and diagnosis. For reaching this goal, we reviewed the literature by using various searching engines such as Scopus, PubMed, Google Scholar, Web of Science and MEDLINE. This comprehensive review showed that CNTs could dramatically improve breast cancer treatment and could be used as a novel modality to increase diagnostic accuracy; however, no clinical studies have been conducted based on CNTs. In addition, the literature review demonstrates a lack of enough studies to evaluate the side effects of using CNTs.
Collapse
|
14
|
Saleemi MA, Yong PVC, Wong EH. Investigation of antimicrobial activity and cytotoxicity of synthesized surfactant-modified carbon nanotubes/polyurethane electrospun nanofibers. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Saleemi M, Kong Y, Yong P, Wong E. An overview of recent development in therapeutic drug carrier system using carbon nanotubes. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101855] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Sheikhpour M, Naghinejad M, Kasaeian A, Lohrasbi A, Shahraeini SS, Zomorodbakhsh S. The Applications of Carbon Nanotubes in the Diagnosis and Treatment of Lung Cancer: A Critical Review. Int J Nanomedicine 2020; 15:7063-7078. [PMID: 33061368 PMCID: PMC7522408 DOI: 10.2147/ijn.s263238] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The importance of timely diagnosis and the complete treatment of lung cancer for many people with this deadly disease daily increases due to its high mortality. Diagnosis and treatment with helping the nanoparticles are useful, although they have reasonable harms. This article points out that the side effects of using carbon nanotube (CNT) in this disease treatment process such as inflammation, fibrosis, and carcinogenesis are very problematic. Toxicity can reduce to some extent using the techniques such as functionalizing to proper dimensions as a longer length, more width, and greater curvature. The targeted CNT sensors can be connected to various modified vapors. In this regard, with helping this method, screening makes non-invasive diagnosis possible. Researchers have also found that nanoparticles such as CNTs could be used as carriers to direct drug delivery, especially with chemotherapy drugs. Most of these carriers were multi-wall carbon nanotubes (MWCNT) used for cancerous cell targeting. The results of laboratory and animal researches in the field of diagnosis and treatment became very desirable and hopeful. The collection of researches summarized has highlighted the requirement for a detailed assessment which includes CNT dose, duration, method of induction, etc., to achieve the most controlled conditions for animal and human studies. In the discussion section, 4 contradictory issues are discussed which are invited researchers to do more research to get clearer results.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Naghinejad
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Armaghan Lohrasbi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shahab Zomorodbakhsh
- Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| |
Collapse
|
17
|
Luo X, Xie Q, Tian Z, Guo X, Zhang J, Gao T, Liang Y. Geometric analysis of shape transition for two-layer carbon-silicon nanotubes. Sci Rep 2020; 10:14994. [PMID: 32929115 PMCID: PMC7490700 DOI: 10.1038/s41598-020-71026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
The two-layer nanotubes consisted of carbon atoms on the outside layer and silicon atoms on the inside layer (CNT@SiNT) show a series of diversity in the shape transitions, for instance transforming from a circle through an oval to a rectangle. In this paper, we investigate this geometric change from three perspectives. In the first aspect, we stationary time, followed by quantize in the three-dimensional Z-axis of nanotubes. In the second aspect, we stationary Z-axis, followed by quantize in the time. Finally, we tracked distance of nanotubes flattest section and roundest section. At the stationary time, the overall image of different Z-axis distance distributions is similar to a plan view of multiple ice creams, regardless of whether CNT or SiNT are on the same Z-axis, their slice plans are circle or rectangle of the projection of the Z-axis section on the XOY plane. In the stationary Z-axis, the nanotubes periodically change from a circle to an oval, and then from an oval to a rectangle at different times. Most remarkably, the distance value of deformation which we track the flattest and roundest is a constant value, and in the same distance period, there is only one roundest circle and one longest rectangle at different section and different time. The geometric analysis provided theoretical reference for the preparation of various devices and semiconductor nano-heterojunctions.
Collapse
Affiliation(s)
- Xiangyan Luo
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Quan Xie
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China.
| | - Zean Tian
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Xiaotian Guo
- School of Mathematics and Physics, Anshun University, Anshun, 561000, China
| | - Jinmin Zhang
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Tinghong Gao
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Yongchao Liang
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
18
|
Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Siva Kumar N, Vekariya RL. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv 2020; 10:26777-26791. [PMID: 35515778 PMCID: PMC9055574 DOI: 10.1039/d0ra03491f] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022] Open
Abstract
Drug delivery technology has a wide spectrum, which is continuously being upgraded at a stupendous speed. Different fabricated nanoparticles and drugs possessing low solubility and poor pharmacokinetic profiles are the two major substances extensively delivered to target sites. Among the colloidal carriers, nanolipid dispersions (liposomes, deformable liposomes, virosomes, ethosomes, and solid lipid nanoparticles) are ideal delivery systems with the advantages of biodegradation and nontoxicity. Among them, nano-structured lipid carriers and solid lipid nanoparticles (SLNs) are dominant, which can be modified to exhibit various advantages, compared to liposomes and polymeric nanoparticles. Nano-structured lipid carriers and SLNs are non-biotoxic since they are biodegradable. Besides, they are highly stable. Their (nano-structured lipid carriers and SLNs) morphology, structural characteristics, ingredients used for preparation, techniques for their production, and characterization using various methods are discussed in this review. Also, although nano-structured lipid carriers and SLNs are based on lipids and surfactants, the effect of these two matrixes to build excipients is also discussed together with their pharmacological significance with novel theranostic approaches, stability and storage.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University Henan 450018 China
| | - Abhishek Dhar
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Chetan Patel
- School of Sciences, P P Savani University NH-8, GETCO, Near Biltech, Village: Dhamdod, Kosamba, Dist. Surat 394125 Gujarat India
| | - Mehul Khimani
- School of Sciences, P P Savani University NH-8, GETCO, Near Biltech, Village: Dhamdod, Kosamba, Dist. Surat 394125 Gujarat India
| | - Swarnali Neogi
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Prolay Sharma
- Department of Instrumentation & Electronics Engineering, Jadavpur University Kolkata 700106 India
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, King Saud University P.O. Box 800 Riyadh 11421 Saudi Arabia
| | - Rohit L Vekariya
- Department for Management of Science and Technology Development, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
19
|
Fujita K, Obara S, Maru J, Endoh S. Cytotoxicity profiles of multi-walled carbon nanotubes with different physico-chemical properties. Toxicol Mech Methods 2020; 30:477-489. [DOI: 10.1080/15376516.2020.1761920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Katsuhide Fujita
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Sawae Obara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Junko Maru
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shigehisa Endoh
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Bessa MJ, Brandão F, Viana M, Gomes JF, Monfort E, Cassee FR, Fraga S, Teixeira JP. Nanoparticle exposure and hazard in the ceramic industry: an overview of potential sources, toxicity and health effects. ENVIRONMENTAL RESEARCH 2020; 184:109297. [PMID: 32155489 DOI: 10.1016/j.envres.2020.109297] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
The ceramic industry is an industrial sector of great impact in the global economy that has been benefiting from advances in materials and processing technologies. Ceramic manufacturing has a strong potential for airborne particle formation and emission, namely of ultrafine particles (UFP) and nanoparticles (NP), meaning that workers of those industries are at risk of potential exposure to these particles. At present, little is known on the impact of engineered nanoparticles (ENP) on the environment and human health and no established Occupational Exposure Limits (OEL) or specific regulations to airborne nanoparticles (ANP) exposure exist raising concerns about the possible consequences of such exposure. In this paper, we provide an overview of the current knowledge on occupational exposure to NP in the ceramic industry and their impact on human health. Possible sources and exposure scenarios, a summary of the existing methods for evaluation and monitoring of ANP in the workplace environment and proposed Nano Reference Values (NRV) for different classes of NP are presented. Case studies on occupational exposure to ANP generated at different stages of the ceramic manufacturing process are described. Finally, the toxicological potential of intentional and unintentional ANP that have been identified in the ceramic industry workplace environment is discussed based on the existing evidence from in vitro and in vivo inhalation toxicity studies.
Collapse
Affiliation(s)
- Maria João Bessa
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - Fátima Brandão
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| | - Mar Viana
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain.
| | - João F Gomes
- CERENA, Centro de Recursos Naturais e Ambiente/Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; ISEL - Instituto Superior de Engenharia de Lisboa, Lisboa, Portugal.
| | - Eliseo Monfort
- Institute of Ceramic Technology (ITC), Universitat Jaume I, 12006, Castellón, Spain.
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute for Risk Assessment Studies, Utrecht University, Utrecht, the Netherlands.
| | - Sónia Fraga
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| | - João Paulo Teixeira
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
21
|
Veerubhotla K, Lee CH. Emerging Trends in Nanocarbon‐Based Cardiovascular Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Krishna Veerubhotla
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| | - Chi H. Lee
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| |
Collapse
|
22
|
Samiei F, Shirazi FH, Naserzadeh P, Dousti F, Seydi E, Pourahmad J. Toxicity of multi-wall carbon nanotubes inhalation on the brain of rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12096-12111. [PMID: 31984464 DOI: 10.1007/s11356-020-07740-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
This study was designed to investigate the brain toxicity following the respiratory contact with multi-wall carbon nanotubes (MWCNTs) in male Wistar rats. Rats were exposed to 5 mg/m3 MWCNT aerosol in different sizes and purities for 5 h/day, 5 days/week for 2 weeks in a whole-body exposure chamber. After 2-week exposure, mitochondrial isolation was performed from different parts of rat brain (hippocampus, frontal cortex, and cerebellum) and parameters of mitochondrial toxicity including mitochondrial succinate dehydrogenase (SDH) activity, generation of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) collapse, mitochondrial swelling, and cytochrome c release, ATP level, mitochondrial GSH, and lipid peroxidation were evaluated. Our results demonstrated that MWCNTs with different characteristics, in size and purity, significantly (P < 0.05) decreased SDH activity, GSH, and ATP level, and increased mitochondrial ROS production, lipid peroxidation, mitochondrial swelling, MMP collapse, and cytochrome c release in the brain mitochondria. In conclusion, we suggested that MWCNTs with different characteristics, in size and purity, induce damage in varying degrees on the mitochondrial respiratory chain and increase mitochondrial ROS formation in different parts of rat brain (hippocampus, frontal cortex, and cerebellum).
Collapse
Affiliation(s)
- Fatemeh Samiei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran
| | - Farshad Hosseini Shirazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran
| | - Faezeh Dousti
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran.
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran.
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran.
| |
Collapse
|
23
|
Choudhury H, Maheshwari R, Pandey M, Tekade M, Gorain B, Tekade RK. Advanced nanoscale carrier-based approaches to overcome biopharmaceutical issues associated with anticancer drug ‘Etoposide’. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110275. [DOI: 10.1016/j.msec.2019.110275] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
|
24
|
Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Liu Y, Shao B, Liang Q, Tang W, Yuan X. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. ENVIRONMENT INTERNATIONAL 2020; 134:105298. [PMID: 31765863 DOI: 10.1016/j.envint.2019.105298] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Carbon nanomaterials (CNMs) are novel nanomaterials with excellent physicochemical properties, which are widely used in biomedicine, energy and sensing. Besides, CNMs also play an important role in environmental pollution control, which can absorb heavy metals, antibiotics and harmful gases. However, CNMs are inevitably entering the environment while they are rapidly developing. They are harmful to living organisms in the environment and are difficult to degrade under natural conditions. Here, we systematically describe the toxicity of carbon nanotubes (CNTs), graphene (GRA) and C60 to cells, animals, humans, and microorganisms. According to the current research results, the toxicity mechanism is summarized, including oxidative stress response, mechanical damage and effects on biological enzymes. In addition, according to the latest research progress, we focus on the two major degradation methods of chemical degradation and biodegradation of CNTs, GRA and C60. Meanwhile, the reaction conditions and degradation mechanisms of degradation are respectively stated. Moreover, we have prospects for the limitations of CNM degradation under non-experimental conditions and their potential application.
Collapse
Affiliation(s)
- Zan Peng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaojuan Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Wei Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
25
|
Yan H, Xue Z, Xie J, Dong Y, Ma Z, Sun X, Kebebe Borga D, Liu Z, Li J. Toxicity of Carbon Nanotubes as Anti-Tumor Drug Carriers. Int J Nanomedicine 2019; 14:10179-10194. [PMID: 32021160 PMCID: PMC6946632 DOI: 10.2147/ijn.s220087] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022] Open
Abstract
Nanoparticle drug formulations have enormous application prospects owing to achievement of targeted and sustained release drug delivery, improvement in drug solubility and reduction of adverse drug reactions. Recently, a variety of efficient drug nanometer carriers have been developed, among which carbon nanotubes (CNT) have been increasingly utilized in the field of cancer therapy. However, these nanotubes exert various toxic effects on the body due to their unique physical and chemical properties. CNT-induced toxicity is related to surface modification, degree of aggregation in vivo, and nanoparticle concentration. This review has focused on the potential toxic effects of CNTs utilized as anti-tumor drug carriers. The main modes by which CNTs enter target sites, the toxicity expressive types and the factors affecting toxicity are discussed.
Collapse
Affiliation(s)
- Hongli Yan
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Zhifeng Xue
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Jiarong Xie
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Yixiao Dong
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Xinru Sun
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Dereje Kebebe Borga
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Jiawei Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| |
Collapse
|
26
|
Mitochondrial Impairment Induced by Sub-Chronic Exposure to Multi-Walled Carbon Nanotubes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050792. [PMID: 30841488 PMCID: PMC6427246 DOI: 10.3390/ijerph16050792] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Human exposure to carbon nanotubes (CNTs) can cause health issues due to their chemical-physical features and biological interactions. These nanostructures cause oxidative stress, also due to endogenous reactive oxygen species (ROS) production, which increases following mitochondrial impairment. The aim of this in vitro study was to assess the health effects, due to mitochondrial dysfunction, caused by a sub-chronic exposure to a non-acutely toxic dose of multi walled CNTs (raw and functionalised). The A549 cells were exposed to multi-walled carbon nanotubes (MWCNTs) (2 µg mL-1) for 36 days. Periodically, cellular dehydrogenases, pyruvate dehydrogenase kinase 1 (PDK1), cytochrome c release, permeability transition pore (mPTP) opening, transmembrane potential (Δψ m), apoptotic cells, and intracellular ROS were measured. The results, compared to untreated cells and to positive control formed by cells treated with MWCNTs (20 µg mL-1), highlighted the efficiency of homeostasis to counteract ROS overproduction, but a restitutio ad integrum of mitochondrial functionality was not observed. Despite the tendency to restore, the mitochondrial impairment persisted. Overall, the results underlined the tissue damage that can arise following sub-chronic exposure to MWCNTs.
Collapse
|
27
|
Amiri M, Salavati-Niasari M, Akbari A. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Adv Colloid Interface Sci 2019; 265:29-44. [PMID: 30711796 DOI: 10.1016/j.cis.2019.01.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 01/30/2023]
Abstract
A valuable site-directed application in the field of nanomedicine is targeted drug delivery using magnetic metal oxide nanoparticles by applying an external magnetic field at the target tissue. The magnetic property of these structures allows controlling the orientation and location of particles by changing the direction of the applied external magnetic field. Pharmaceutical design and research in the field of nanotechnology offer novel solutions for diagnosis and therapies. This review summarizes magnetic nanoparticles and magnetic spinel ferrit's properties, remarkable approaches in magnetic liposomes, magnetic polymeric nanoparticles, MRI, hyperthermia and especially magnetic drug delivery systems, which have recently developed in the field of magnetic nanoparticles and their medicinal applications. Here, we discuss spinel ferrite (SF) as magnetic materials that are a significant class of composite metal oxides. They contain ferric ions and have the general structural formula M2+Fe23+O4 (where M = Co,Ni,Zn,etc.). This structure indicates unique multifunctional properties, such as excellent magnetic characteristics, high specific surface area, surface active sites, high chemical stability, tuneable shape and size, and options for functionalization. The review assesses the current efforts on synthesis, properties and medical application of magnetic spinel ferrites nanoparticles based on cobalt, nickel and zinc. Based on this review, it can be concluded that MNPs and SFNPs have unlimited ability in biomedical applications. However, the practical application of SFNPs on a huge scale still needs to be considered and evaluated.
Collapse
|
28
|
Zare-Zardini H, Taheri-Kafrani A, Ordooei M, Amiri A, Karimi-Zarchi M. Evaluation of toxicity of functionalized graphene oxide with ginsenoside Rh2, lysine and arginine on blood cancer cells (K562), red blood cells, blood coagulation and cardiovascular tissue: In vitro and in vivo studies. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
The Effects of Carbon Dots on Immune System Biomarkers, Using the Murine Macrophage Cell Line RAW 264.7 and Human Whole Blood Cell Cultures. NANOMATERIALS 2018; 8:nano8060388. [PMID: 29857529 PMCID: PMC6027327 DOI: 10.3390/nano8060388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/20/2022]
Abstract
Carbon dots (CDs) are engineered nanoparticles that are used in a number of bioapplications such as bioimaging, drug delivery and theranostics. The effects of CDs on the immune system have not been evaluated. The effects of CDs on the immune system were assessed by using RAW 264.7 cells and whole blood cell cultures. RAW cells were exposed to CD concentrations under basal conditions. Whole blood cell cultures were exposed to CD concentrations under basal conditions or in the presence of the mitogens, lipopolysaccharide (LPS) or phytohaemmagglutinin (PHA). After exposure, a number of parameters were assessed, such as cell viability, biomarkers of inflammation, cytokine biomarkers of the acquired immune system and a proteome profile analysis. CDs were cytotoxic to RAW and whole blood cell cultures at 62.5, 250 and 500 μg/mL, respectively. Biomarkers associated with inflammation were induced by CD concentrations ≥250 and 500 μg/mL under basal conditions for both RAW and whole blood cell cultures, respectively. The humoral immune cytokine interleukin (IL)-10 was increased at 500 μg/mL CD under both basal and PHA activated whole blood cell culture conditions. Proteome analysis supported the inflammatory data as upregulated proteins identified are associated with inflammation. The upregulated proteins provide potential biomarkers of risk that can be assessed upon CD exposure.
Collapse
|
30
|
Kavosi A, Hosseini Ghale Noei S, Madani S, Khalighfard S, Khodayari S, Khodayari H, Mirzaei M, Kalhori MR, Yavarian M, Alizadeh AM, Falahati M. The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Sci Rep 2018; 8:8375. [PMID: 29849103 PMCID: PMC5976726 DOI: 10.1038/s41598-018-26790-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/18/2018] [Indexed: 12/23/2022] Open
Abstract
Herein, we have investigated the toxicity of SWCNTs and MWCNTs in vitro and in vivo, and assessed their therapeutic effects on a typical animal model of breast cancer in order to obtain: first, the cytotoxicity effects of CNTs on MC4L2 cell and mice, second the impact of CNTs on ablation of breast tumor. CNTs especially SWCNTs were toxic to organs and induced death at high dosages. In this case, some of the liver cells showed a relative shrinkage which was also confirmed by Annexin test in MC4L2 cells. Moreover, CNTs decreased the tumor volume. BCL2 gene was down-regulated, and BAX and Caspase-3 were also up-regulated in the treated groups with CNTs. As a result, CNTs especially MWCNT in lower dosages can be used as a promising drug delivery vehicle for targeted therapy of abnormal cells in breast cancer.
Collapse
Affiliation(s)
- Arghavan Kavosi
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University, Pharmaceutical Science branch, Tehran, Iran
| | - Saeideh Hosseini Ghale Noei
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University, Pharmaceutical Science branch, Tehran, Iran
| | - Samaneh Madani
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University, Pharmaceutical Science branch, Tehran, Iran
| | - Solmaz Khalighfard
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Mirzaei
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | | | - Majid Yavarian
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
31
|
Polymer-wrapped single-walled carbon nanotubes: a transformation toward better applications in healthcare. Drug Deliv Transl Res 2018; 9:578-594. [DOI: 10.1007/s13346-018-0505-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Duoni D, Di Z, Chen H, Yin Z, Cui C, Qian W, Han M. Carbon nanotube-alumina strips as robust, rapid, reversible adsorbents of organics. RSC Adv 2018; 8:10715-10718. [PMID: 35540479 PMCID: PMC9078894 DOI: 10.1039/c8ra01233d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/04/2018] [Indexed: 11/22/2022] Open
Abstract
Developing nanostructured adsorbents of organics is crucial for environmental protection with low energy consumption, but care needs to be taken to prevent the loss of nanomaterials because of their small size. This paper reports the fabrication of carbon nanotube (CNT)-alumina strips (CASs) with a high surface area, sufficient mesopores and strongly interacted structure. Use of CASs allowed the rapid and reversible adsorption–desorption of para-xylene, when compared to pristine powders of CNT and activated carbon. Use of CASs is promising for the practical use when packed in a scaled adsorption tower. Strips of carbon nanotube-alumina exhibited robust structure and a better, rapid, reversible adsorption–desorption performance for organics, advantages over compared to pristine nanotube powder and activated carbon.![]()
Collapse
Affiliation(s)
- Duoni Duoni
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Zuoxing Di
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Hang Chen
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Zefang Yin
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Chaojie Cui
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Weizhong Qian
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Minghan Han
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
33
|
Chen H, Zheng X, Nicholas J, Humes ST, Loeb JC, Robinson SE, Bisesi JH, Das D, Saleh NB, Castleman WL, Lednicky JA, Sabo-Attwood T. Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza a virus titers in mice. Virol J 2017; 14:242. [PMID: 29273069 PMCID: PMC5741862 DOI: 10.1186/s12985-017-0909-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/08/2017] [Indexed: 02/02/2023] Open
Abstract
Background Numerous toxicological studies have focused on injury caused by exposure to single types of nanoparticles, but few have investigated how such exposures impact a host’s immune response to pathogen challenge. Few studies have shown that nanoparticles can alter a host’s response to pathogens (chiefly bacteria) but there is even less knowledge of the impact of such particles on viral infections. In this study, we performed experiments to investigate if exposure of mice to single-walled carbon nanotubes (SWCNT) alters immune mechanisms and viral titers following subsequent influenza A virus (IAV) infection. Methods Male C57BL/6 mice were exposed to 20 μg of SWCNT or control vehicle by intratracheal instillation followed by intranasal exposure to 3.2 × 104 TCID50 IAV or PBS after 3 days. On day 7 mice were euthanized and near-infrared fluorescence (NIRF) imaging was used to track SWCNT in lung tissues. Viral titers, histopathology, and mRNA expression of antiviral and inflammatory genes were measured in lung tissue. Differential cell counts and cytokine levels were quantified in bronchoalveolar lavage fluid (BALF). Results Viral titers showed a 63-fold increase in IAV in SWCNT + IAV exposed lungs compared to the IAV only exposure. Quantitation of immune cells in BALF indicated an increase of neutrophils in the IAV group and a mixed profile of lymphocytes and neutrophils in SWCNT + IAV treated mice. NIRF indicated SWCNT remained in the lung throughout the experiment and localized in the junctions of terminal bronchioles, alveolar ducts, and surrounding alveoli. The dual exposure exacerbated pulmonary inflammation and tissue lesions compared to SWCNT or IAV single exposures. IAV exposure increased several cytokine and chemokine levels in BALF, but greater levels of IL-4, IL-12 (P70), IP-10, MIP-1, MIP-1α, MIP-1β, and RANTES were evident in the SWCNT + IAV group. The expression of tlr3, ifnβ1, rantes, ifit2, ifit3, and il8 was induced by IAV alone but several anti-viral targets showed a repressed trend (ifits) with pre-exposure to SWCNT. Conclusions These findings reveal a pronounced effect of SWCNT on IAV infection in vivo as evidenced by exacerbated lung injury, increased viral titers and several cytokines/chemokines levels, and reduction of anti-viral gene expression. These results imply that SWCNT can increase susceptibility to respiratory viral infections as a novel mechanism of toxicity. Electronic supplementary material The online version of this article (10.1186/s12985-017-0909-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Chen
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Xiao Zheng
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Justine Nicholas
- Department of Physiological Sciences, 1333 Center Drive, Box 100144, Gainesville, FL, 32610, USA
| | - Sara T Humes
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Dipesh Das
- Department of Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - Navid B Saleh
- Department of Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - William L Castleman
- Department of Infectious Diseases and Pathology, PO Box 110880, Gainesville, FL, 32611, USA
| | - John A Lednicky
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| |
Collapse
|
34
|
The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today 2017; 22:1637-1653. [DOI: 10.1016/j.drudis.2017.08.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
|
35
|
Zhang KS, Pham D, Lawal O, Ghosh S, Gangoli VS, Smalley P, Kennedy K, Brinson BE, Billups WE, Hauge RH, Adams WW, Barronβ AR. Overcoming Catalyst Residue Inhibition of the Functionalization of Single-Walled Carbon Nanotubes via the Billups-Birch Reduction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37972-37980. [PMID: 29058877 DOI: 10.1021/acsami.7b12857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Billups-Birch Reduction chemistry has been shown to functionalize single-walled carbon nanotubes (SWCNTs) without damaging the sidewalls, but has challenges in scalability. Currently published work uses a large mole ratio of Li to carbon atoms in the SWCNT (Li:C) to account for lithium amide formation, however this increases the cost and hazard of the reaction. We report here the systematic understanding of the effect of various parameters on the extent of functionalization using resonant Raman spectroscopy. Addition of 1-iodododecane yielded alkyl-functionalized SWCNTs, which were isolated by solvent extraction and evaporation, and purified by a hydrocarbon wash. The presence of SWCNT growth catalyst residue (Fe) was shown to have a strong adverse effect on SWCNT functionalization. Chlorination-based SWCNT purification reduced the amount of residual Fe, and achieve a maximum ID/IG ratio using a Li:C ratio of 6:1 in a reaction time of 30 min. This result is consistent with published literature requiring 20-fold mole equivalents of Li per mole SWCNT with a reaction time of over 12 h. This new understanding of the factors influencing the functionalization chemistry will help cut down material and process costs, and also increase the selectivity of the reaction toward the desired product.
Collapse
Affiliation(s)
- Kevin S Zhang
- Smalley-Curl nanoCarbon Center, Rice University , Houston, Texas 77005, United States
| | - David Pham
- Smalley-Curl nanoCarbon Center, Rice University , Houston, Texas 77005, United States
| | - Olawale Lawal
- Department of Materials Science and Nanoengineering, Rice University , Houston, Texas 77005, United States
| | - Saunab Ghosh
- Smalley-Curl nanoCarbon Center, Rice University , Houston, Texas 77005, United States
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - Varun Shenoy Gangoli
- Smalley-Curl nanoCarbon Center, Rice University , Houston, Texas 77005, United States
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - Preston Smalley
- Smalley-Curl nanoCarbon Center, Rice University , Houston, Texas 77005, United States
| | - Katherine Kennedy
- Smalley-Curl nanoCarbon Center, Rice University , Houston, Texas 77005, United States
| | - Bruce E Brinson
- Smalley-Curl nanoCarbon Center, Rice University , Houston, Texas 77005, United States
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - W Edward Billups
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - Robert H Hauge
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - W Wade Adams
- Department of Materials Science and Nanoengineering, Rice University , Houston, Texas 77005, United States
| | - Andrew R Barronβ
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
- Energy Safety Research Institute (ESRI), Swansea University Bay Campus , Fabian Way, Swansea SA1 8EN, U.K
| |
Collapse
|
36
|
Maheshwari R, Tekade M, Gondaliya P, Kalia K, D'Emanuele A, Tekade RK. Recent advances in exosome-based nanovehicles as RNA interference therapeutic carriers. Nanomedicine (Lond) 2017; 12:2653-2675. [PMID: 28960165 DOI: 10.2217/nnm-2017-0210] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) therapeutics (siRNA, miRNA, etc.) represent an emerging medicinal remedy for a variety of ailments. However, their low serum stability and low cellular uptake significantly restrict their clinical applications. Exosomes are biologically derived nanodimensional vesicle ranging from a few nanometers to a hundred. In the last few years, several reports have been published demonstrating the emerging applications of these exogenous membrane vesicles, particularly in carrying different RNAi therapeutics to adjacent or distant targeted cells. In this report, we explored the numerous aspects of exosomes from structure to clinical implications with special emphasis on their application in delivering RNAi-based therapeutics. siRNA and miRNA have attracted great interest in recent years due to their specific application in treating many complex diseases including cancer. We highlight strategies to obviate the challenges of their low bioavailability for gene therapy.
Collapse
Affiliation(s)
- Rahul Maheshwari
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Muktika Tekade
- TIT College of Pharmacy, Technocrats Institute of Technology Campus, Anand Nagar, Raisen Road, Bhopal 462021, Madhya Pradesh, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Antony D'Emanuele
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
37
|
Lara-Martínez LA, Massó F, Palacios González E, García-Peláez I, Contreras-Ramos A, Valverde M, Rojas E, Cervantes-Sodi F, Hernández-Gutiérrez S. Evaluating the biological risk of functionalized multiwalled carbon nanotubes and functionalized oxygen-doped multiwalled carbon nanotubes as possible toxic, carcinogenic, and embryotoxic agents. Int J Nanomedicine 2017; 12:7695-7707. [PMID: 29089764 PMCID: PMC5656341 DOI: 10.2147/ijn.s144777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Carbon nanotubes (CNTs) have been a focus of attention due to their possible applications in medicine, by serving as scaffolds for cell growth and proliferation and improving mesenchymal cell transplantation and engraftment. The emphasis on the benefits of CNTs has been offset by the ample debate on the safety of nanotechnologies. In this study, we determine whether functionalized multiwalled CNTs (fMWCNTs) and functionalized oxygen-doped multiwalled CNTs (fCOxs) have toxic effects on rat mesenchymal stem cells (MSCs) in vitro by analyzing morphology and cell proliferation and, using in vivo models, whether they are able to transform MSCs in cancer cells or induce embryotoxicity. Our results demonstrate that there are statistically significant differences in cell proliferation and the cell cycle of MSCs in culture. We identified dramatic changes in cells that were treated with fMWCNTs. Our evaluation of the transformation to cancer cells and cytotoxicity process showed little effect. However, we found a severe embryotoxicity in chicken embryos that were treated with fMWCNTs, while fCOxs seem to exert cardioembryotoxicity and a discrete teratogenicity. Furthermore, it seems that the time of contact plays an important role during cell transformation and embryotoxicity. A single contact with fMWCNTs is not sufficient to transform cells in a short time; an exposure of fMWCNTs for 2 weeks led to cell transformation risk and cardioembryotoxicity effects.
Collapse
Affiliation(s)
- Luis A Lara-Martínez
- Department of Molecular Biology, School of Medicine, Universidad Panamericana, Mexico City, Mexico
| | - Felipe Massó
- Department of Physiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
| | - Eduardo Palacios González
- Department of Microscopy, Ultra High Resolution Electron Microscopy Laboratory, Instituto Mexicano del Petróleo, Mexico City, Mexico
| | - Isabel García-Peláez
- Department of Embryology, Medicine Faculty, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Alejandra Contreras-Ramos
- Department of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico, Federico Gomez, Mexico City, Mexico
| | - Mahara Valverde
- Department of Genomic Medicine, Institute of Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Emilio Rojas
- Department of Genomic Medicine, Institute of Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Felipe Cervantes-Sodi
- Department of Physics and Mathematics, Nanoscience and Nanotechnology Laboratory, Universidad Iberoamericana, Mexico City, Mexico
| | | |
Collapse
|
38
|
Al-Qattan MN, Deb PK, Tekade RK. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discov Today 2017; 23:235-250. [PMID: 29031623 DOI: 10.1016/j.drudis.2017.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/05/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023]
Abstract
The carbon nanotube (CNT)-based target-specific delivery of drugs, or other molecular cargo, has emerged as one of the most promising biomedical applications of nanotechnology. To achieve efficient CNT-based drug delivery, the interactions between the drug, CNT and biomolecular target need to be properly optimized. Recent advances in the computer-aided molecular design tools, in particular molecular dynamics (MD) simulation studies, offer an appropriate low-cost approach for such optimization. This review highlights the various potential MD approaches for the simulation of CNT interactions with cell membranes while emphasizing various methods of cellular internalization and toxicities of CNTs to build new strategies for designing rational CNT-based targeted drug delivery to circumvent the limitations associated with the various clinically available nonspecific therapeutic agents.
Collapse
Affiliation(s)
- Mohammed N Al-Qattan
- Faculty of Pharmacy, Philadelphia University-Jordan, P.O. Box (1), Philadelphia University (19392), Jordan
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University-Jordan, P.O. Box (1), Philadelphia University (19392), Jordan.
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, (An Institute of National Importance, Government of India), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
39
|
Játiva P, Ceña V. Use of nanoparticles for glioblastoma treatment: a new approach. Nanomedicine (Lond) 2017; 12:2533-2554. [DOI: 10.2217/nnm-2017-0223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a very aggressive CNS tumor with poor prognosis. Current treatment lacks efficacy indicating that new therapeutic approaches are needed. One of these new approaches is based on the use of nanoparticles (NPs) to deliver different cargos (antitumoral drugs or genetic materials) to tumoral cells. This review covers the signaling pathways altered in GBM cells to understand the rationale behind choosing new therapeutic targets and recent advances in the use of different NPs to deliver to GBM cells, both in vitro and in vivo, different therapeutic molecules. A special focus is placed on the effect of NPs on orthotopic brain tumors since this animal model represents the optimal model for translational purposes.
Collapse
Affiliation(s)
- Pablo Játiva
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
40
|
Dobrovolskaia MA, Shurin MR, Kagan VE, Shvedova AA. Ins and Outs in Environmental and Occupational Safety Studies of Asthma and Engineered Nanomaterials. ACS NANO 2017; 11:7565-7571. [PMID: 28737932 PMCID: PMC6481664 DOI: 10.1021/acsnano.7b04916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
According to the Centers for Disease Control and Prevention, approximately 25 million Americans suffer from asthma. The disease total annual cost is about $56 billion and includes both the direct and indirect costs of medications, hospital stays, missed work, and decreased productivity. Air pollution with xenobiotics, bacterial agents, and industrial nanomaterials, such as carbon nanotubes, contribute to the exacerbation of this condition and are a point of particular attention in environmental toxicology as well as in occupational health and safety research. Mast cell degranulation and activation of Th2 cells triggered either by allergen-specific immunoglobulin E (IgE) or by alternative mechanisms, such as locally produced neurotransmitters, underlie the pathophysiological process of airway constriction during an asthma attack. Other immune and non-immune cell types, including basophils, eosinophils, Th1, Th17, Th9, macrophages, dendritic cells, and smooth muscle cells, are involved in the inflammatory and allergic responses during asthma, which, under chronic conditions, may progress without mast cells, the key trigger of the acute asthma attack. To decipher complex molecular, cellular, and genetic mechanisms, many researchers have attempted to develop in vitro and in vivo models to study asthma. Herein, we summarize the advantages and disadvantages of various models and their applicability to nanoparticle evaluation in asthma research. We further suggest that a framework for both in vitro and in vivo methods should be used to study the impact of engineered nanomaterials on asthma etiology, pathophysiology, and treatment.
Collapse
Affiliation(s)
- Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702, USA
| | - Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Valerian E. Kagan
- Departments of Environmental and Occupational Health, Pharmacology and Chemical Biology, Chemistry and Radiation Oncology and Center for Free and Antioxidant Health, University of Pittsburgh
| | - Anna A. Shvedova
- Health Effects Laboratory Division, National Institute of Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
41
|
Mamidi N, Leija HM, Diabb JM, Lopez Romo I, Hernandez D, Castrejón JV, Martinez Romero O, Barrera EV, Elias Zúñiga A. Cytotoxicity evaluation of unfunctionalized multiwall carbon nanotubes-ultrahigh molecular weight polyethylene nanocomposites. J Biomed Mater Res A 2017; 105:3042-3049. [DOI: 10.1002/jbm.a.36168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Narsimha Mamidi
- Tecnologico de Monterrey; Departamento de Ingeniería Biomédica, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849; Monterrey Nuevo León, México
| | - Héctor Manuel Leija
- Tecnologico de Monterrey; Departamento de Ingeniería Biomédica, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849; Monterrey Nuevo León, México
| | - Jose Manuel Diabb
- Tecnologico de Monterrey; Departamento de Ingeniería Biomédica, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849; Monterrey Nuevo León, México
| | - Irasema Lopez Romo
- Tecnologico de Monterrey, Departamento de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849; Monterrey Nuevo León, México
| | - Diana Hernandez
- Tecnologico de Monterrey, Departamento de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849; Monterrey Nuevo León, México
| | - Javier Villela Castrejón
- Tecnologico de Monterrey, Departamento de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849; Monterrey Nuevo León, México
| | - Oscar Martinez Romero
- Tecnologico de Monterrey; Departamento de Ingeniería Biomédica, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849; Monterrey Nuevo León, México
| | - Enrique V. Barrera
- Department of Materials Science and NanoEngineering; Rice University; Houston Texas 77005
- Department of Chemistry; Rice University; Houston Texas 77005
- Distinguished Visiting Professor; Tecnológico de Monterrey, Departamento de Ingeniería Biomédica, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849; Monterrey Nuevo León México
| | - Alex Elias Zúñiga
- Tecnologico de Monterrey; Departamento de Ingeniería Biomédica, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849; Monterrey Nuevo León, México
| |
Collapse
|
42
|
Guven A, Villares GJ, Hilsenbeck SG, Lewis A, Landua JD, Dobrolecki LE, Wilson LJ, Lewis MT. Carbon nanotube capsules enhance the in vivo efficacy of cisplatin. Acta Biomater 2017; 58:466-478. [PMID: 28465075 PMCID: PMC6344128 DOI: 10.1016/j.actbio.2017.04.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/10/2017] [Accepted: 04/28/2017] [Indexed: 12/30/2022]
Abstract
Over the past few years, numerous nanotechnology-based drug delivery systems have been developed in an effort to maximize therapeutic effectiveness of conventional drug delivery, while limiting undesirable side effects. Among these, carbon nanotubes (CNTs) are of special interest as potential drug delivery agents due to their numerous unique and advantageous physical and chemical properties. Here, we show in vivo favorable biodistribution and enhanced therapeutic efficacy of cisplatin (CDDP) encapsulated within ultra-short single-walled carbon nanotube capsules (CDDP@US-tubes) using three different human breast cancer xenograft models. In general, the CDDP@US-tubes demonstrated greater efficacy in suppressing tumor growth than free CDDP in both MCF-7 cell line xenograft and BCM-4272 patient-derived xenograft (PDX) models. The CDDP@US-tubes also demonstrated a prolonged circulation time compared to free CDDP which enhanced permeability and retention (EPR) effects resulting in significantly more CDDP accumulation in tumors, as determined by platinum (Pt) analysis via inductively-coupled plasma mass spectrometry (ICP-MS). STATEMENT OF SIGNIFICANCE Over the past decade, drug-loaded nanocarriers have been widely fabricated and studied to enhance tumor specific delivery. Among the diverse classes of nanomaterials, carbon nanotubes (CNTs), or more specifically ultra-short single-walled carbon nanocapsules (US-tubes), have been shown to be a popular, new platform for the delivery of various medical agents for both imaging and therapeutic purposes. Here, for the first time, we have shown that US-tubes can be utilized as a drug delivery platform in vivo to deliver the chemotherapeutic drug, cisplatin (CDDP) as CDDP@US-tubes. The studies have demonstrated the ability of the US-tube platform to promote the delivery of encapsulated CDDP by increasing the accumulation of drug in breast cancer resistance cells, which reveals how CDDP@US-tubes help overcome CDDP resistance.
Collapse
Affiliation(s)
- Adem Guven
- Department of Chemistry and the Smalley-Curly Institute, MS-60, P.O. Box 1892, Rice University, Houston, TX 77251-1892, USA
| | - Gabriel J Villares
- Departments of Molecular and Cellular Biology and Radiology, Lester and Sue Smith Breast Center at Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Biology, University of St. Thomas, 3800 Montrose Boulevard, Houston, TX 77006, USA
| | - Susan G Hilsenbeck
- Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Alaina Lewis
- Departments of Molecular and Cellular Biology and Radiology, Lester and Sue Smith Breast Center at Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - John D Landua
- Departments of Molecular and Cellular Biology and Radiology, Lester and Sue Smith Breast Center at Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lacey E Dobrolecki
- Departments of Molecular and Cellular Biology and Radiology, Lester and Sue Smith Breast Center at Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lon J Wilson
- Department of Chemistry and the Smalley-Curly Institute, MS-60, P.O. Box 1892, Rice University, Houston, TX 77251-1892, USA.
| | - Michael T Lewis
- Departments of Molecular and Cellular Biology and Radiology, Lester and Sue Smith Breast Center at Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Sheikhpour M, Golbabaie A, Kasaeian A. Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1289-1304. [DOI: 10.1016/j.msec.2017.02.132] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/18/2016] [Accepted: 02/24/2017] [Indexed: 12/25/2022]
|
44
|
Catalyst Residue and Oxygen Species Inhibition of the Formation of Hexahapto-Metal Complexes of Group 6 Metals on Single-Walled Carbon Nanotubes. C — JOURNAL OF CARBON RESEARCH 2017. [DOI: 10.3390/c3020017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
45
|
Tekade RK, Tekade M, Kesharwani P, D’Emanuele A. RNAi-combined nano-chemotherapeutics to tackle resistant tumors. Drug Discov Today 2016; 21:1761-1774. [DOI: 10.1016/j.drudis.2016.06.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/12/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023]
|
46
|
Hosseinpour M, Azimirad V, Alimohammadi M, Shahabi P, Sadighi M, Ghamkhari Nejad G. The cardiac effects of carbon nanotubes in rat. ACTA ACUST UNITED AC 2016; 6:79-84. [PMID: 27525224 PMCID: PMC4981252 DOI: 10.15171/bi.2016.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 06/12/2016] [Accepted: 06/21/2016] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Carbon nanotubes (CNTs) are novel candidates in nanotechnology with a variety of increasing applications in medicine and biology. Therefore the investigation of nanomaterials' biocompatibility can be an important topic. The aim of present study was to investigate the CNTs impact on cardiac heart rate among rats. METHODS Electrocardiogram (ECG) signals were recorded before and after injection of CNTs on a group with six rats. The heart rate variability (HRV) analysis was used for signals analysis. The rhythm-to-rhythm (RR) intervals in HRV method were computed and features of signals in time and frequency domains were extracted before and after injection. RESULTS RESULTS of the HRV analysis showed that CNTs increased the heart rate but generally these nanomaterials did not cause serious problem in autonomic nervous system (ANS) normal activities. CONCLUSION Injection of CNTs in rats resulted in increase of heart rate. The reason of phenomenon is that multiwall CNTs may block potassium channels. The suppressed and inhibited IK and potassium channels lead to increase of heart rate.
Collapse
Affiliation(s)
- Mina Hosseinpour
- Biomechatronics Lab, Department of Mechatronics, School of Engineering Emerging Technologies, University of Tabriz, Tabriz, Iran
| | - Vahid Azimirad
- Biomechatronics Lab, Department of Mechatronics, School of Engineering Emerging Technologies, University of Tabriz, Tabriz, Iran
| | - Maryam Alimohammadi
- Biomechatronics Lab, Department of Mechatronics, School of Engineering Emerging Technologies, University of Tabriz, Tabriz, Iran
| | - Parviz Shahabi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Sadighi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
47
|
Wang X, Mansukhani ND, Guiney LM, Lee JH, Li R, Sun B, Liao YP, Chang CH, Ji Z, Xia T, Hersam MC, Nel AE. Toxicological Profiling of Highly Purified Metallic and Semiconducting Single-Walled Carbon Nanotubes in the Rodent Lung and E. coli. ACS NANO 2016; 10:6008-19. [PMID: 27159184 PMCID: PMC4941827 DOI: 10.1021/acsnano.6b01560] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The electronic properties of single-walled carbon nanotubes (SWCNTs) are potentially useful for electronics, optics, and sensing applications. Depending on the chirality and diameter, individual SWCNTs can be classified as semiconducting (S-SWCNT) or metallic (M-SWCNT). From a biological perspective, the hazard profiling of purified metallic versus semiconducting SWCNTs has been pursued only in bacteria, with the conclusion that aggregated M-SWCNTs are more damaging to bacterial membranes than S-SWCNTs. However, no comparative studies have been performed in a mammalian system, where most toxicity studies have been undertaken using relatively crude SWCNTs that include a M:S mix at 1:2 ratio. In order to compare the toxicological impact of SWCNTs sorted to enrich them for each of the chirality on pulmonary cells and the intact lung, we used density gradient ultracentrifugation and extensive rinsing to prepare S- and M-SWCNTs that are >98% purified. In vitro screening showed that both tube variants trigger similar amounts of interleukin 1β (IL-1β) and transforming growth factor (TGF-β1) production in THP-1 and BEAS-2B cells, without cytotoxicity. Oropharyngeal aspiration confirmed that both SWCNT variants induce comparable fibrotic effects in the lung and abundance of IL-1β and TGF-β1 release in the bronchoalveolar lavage fluid. There was also no change in the morphology, membrane integrity, and viability of E. coli, in contradistinction to the previously published effects of aggregated tubes on the bacterial membrane. Collectively, these data indicate that the electronic properties and chirality do not independently impact SWCNT toxicological impact in the lung, which is of significance to the safety assessment and incremental use of purified tubes by industry.
Collapse
Affiliation(s)
- Xiang Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Nikhita D. Mansukhani
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Linda M. Guiney
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Jae-Hyeok Lee
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Bingbing Sun
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - André E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
- Corresponding Author: André E. Nel, M.D./Ph.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 825-6620, Fax: (310) 206-8107,
| |
Collapse
|
48
|
A study on the cytotoxicity of carbon-based materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:101-108. [PMID: 27524001 DOI: 10.1016/j.msec.2016.05.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/26/2016] [Accepted: 05/22/2016] [Indexed: 01/29/2023]
Abstract
With an aim to understand the origin and key contributing factors towards carbon-induced cytotoxicity, we have studied five different carbon samples with diverse surface area, pore width, shape and size, conductivity and surface functionality. All the carbon materials were characterized with surface area and pore size distribution, X-ray photoelectron spectroscopy (XPS) and electron microscopic imaging. We performed cytotoxicity study in Caco-2 cells by colorimetric assay, oxidative stress analysis by reactive oxygen species (ROS) detection, cellular metabolic activity measurement by adenosine triphosphate (ATP) depletion and visualization of cellular internalization by TEM imaging. The carbon materials demonstrated a varying degree of cytotoxicity in contact with Caco-2 cells. The lowest cell survival rate was observed for nanographene, which possessed the minimal size amongst all the carbon samples under this study. None of the carbons induced oxidative stress to the cells as indicated by the ROS generation results. Cellular metabolic activity study revealed that the carbon materials caused ATP depletion in cells and nanographene caused the highest depletion. Visual observation by TEM imaging indicated the cellular internalization of nanographene. This study confirmed that the size is the key cause of carbon-induced cytotoxicity and it is probably caused by the ATP depletion within the cell.
Collapse
|
49
|
Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Sci Rep 2016; 6:26508. [PMID: 27216374 PMCID: PMC4877924 DOI: 10.1038/srep26508] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/04/2016] [Indexed: 11/08/2022] Open
Abstract
Subtle changes in the structure of nanoparticles influence their surface tension and corresponding interaction with cells and proteins. Here, the interaction of the single wall carbon nanotube (SWCNT) and multiwall carbon nanotube (MWCNT) with different surface tension with tau protein was evaluated using a variety of techniques including far and near circular dichroism, fluorescence spectroscopy, dynamic light scattering, Zeta potential, and TEM evaluation. Also the cytotoxicity of SWCNT and MWCNT on the PC12 cell line as a model of nervous system cell line was investigated by the MTT, LDH, acridine orange/ethidium bromide staining, flow cytometry, caspase 3 activity, cell and membrane potential assays. It was observed that SWCNT induced more structural changes of tau protein relative to MWCNT/tau protein interaction. It was also revealed that SWCNT and MWCNT impaired the viability and complexity of PC12 cells in different modes of cytotoxicity. Analysis of cellular outcomes indicated that MWCNT in comparison with SWCNT resulted in induction of necrotic modes of cell death, whereas apoptotic modes of cell death were activated in SWCNT-incubated cells. Together these findings suggest that surface tension may be used to determine how nanoparticle structure affects neurotoxicity and protein conformational changes.
Collapse
|
50
|
Mehra NK, Palakurthi S. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov Today 2016; 21:585-97. [DOI: 10.1016/j.drudis.2015.11.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022]
|