1
|
Heiser BJ, Veyssi A, Ghosh D. Recent strategies for enhanced delivery of mRNA to the lungs. Nanomedicine (Lond) 2025; 20:1043-1069. [PMID: 40190037 PMCID: PMC12051540 DOI: 10.1080/17435889.2025.2485669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
mRNA-based therapies have emerged as a transformative tool in modern medicine, gaining significant attention following their successful use in COVID-19 vaccines. Delivery to the lungs offers several compelling advantages for mRNA delivery. The lungs are one of the most vascularized organs in the body, which provides an extensive surface area that can facilitate efficient drug transport. Local delivery to the lungs bypasses gastrointestinal degradation, potentially enhancing therapeutic efficacy. In addition, the extensive capillary network of the lungs provides an ideal target for systemic delivery. However, developing effective mRNA therapies for the lungs presents significant challenges. The complex anatomy of the lungs and the body's immune response to foreign particles create barriers to delivery. This review discusses key approaches for overcoming these challenges and improving mRNA delivery to the lungs. It examines both local and systemic delivery strategies aimed at improving lung delivery while mitigating off-target effects. Although substantial progress has been made in lung-targeted mRNA therapies, challenges remain in optimizing cellular uptake and achieving therapeutic efficacy within pulmonary tissues. The continued refinement of delivery strategies that enhance lung-specific targeting while minimizing degradation is critical for the clinical success of mRNA-based pulmonary therapies.
Collapse
Affiliation(s)
- Brittany J. Heiser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Arian Veyssi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Lim Y, Campochiaro PA, Green JJ. Suprachoroidal Delivery of Viral and Nonviral Vectors for Treatment of Retinal and Choroidal Vascular Diseases. Am J Ophthalmol 2024:S0002-9394(24)00571-3. [PMID: 39716546 DOI: 10.1016/j.ajo.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
PURPOSE Current treatments for retinal and choroidal neovascular diseases suffer from insufficient durability, including anti-vascular endothelial growth factor-A agents. It is, therefore, of interest to explore alternative methods that could allow for robust improvement in visual acuity with fewer injections required. DESIGN Literature review. RESULTS Among various preclinical and clinical studies in the literature, a promising approach is the use of suprachoroidal injection with viral and nonviral gene delivery vectors. Compared with other ocular injection methods, suprachoroidal injection has demonstrated wide biodistribution of injected agents and safety as an outpatient procedure. In terms of viral vectors, suprachoroidal injection of an adeno-associated virus 8 vector expressing an anti-vascular endothelial growth factor-A antibody fragment has shown an excellent safety profile and evidence of biological activity. In terms of nonviral vectors, lipid nanoparticles and polymeric nanoparticles both demonstrate strong promise for ocular gene therapy in large animal models. In particular, biodegradable poly(β-amino ester) nanoparticles show excellent biodistribution, safety, and efficacy for gene therapy via the suprachoroidal route. Nonviral nanoparticle approaches can have notable advantages over viral vectors in terms of carrying capacity, redosability, and manufacturing costs. An advantage of gene therapy is that once a delivery vector has been optimized, genetic cargos can be readily tailored without changing the safety, efficacy, and pharmacokinetic properties of the delivery vector. CONCLUSIONS This review highlights recent progress that has been made and compares viral and nonviral suprachoroidal gene delivery for the treatment of retinal and choroidal vascular diseases. Suprachoroidal gene therapy is an emerging biotechnology that holds substantial potential to make a translational impact in treating these diseases.
Collapse
Affiliation(s)
- Yeongseo Lim
- From the Department of Biomedical Engineering (Y.L., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Translational Tissue Engineering Center (Y.L., J.J.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Johns Hopkins Translational ImmunoEngineering Center (Y.L., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter A Campochiaro
- Department of Ophthalmology (P.A.C., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Department of Neuroscience (P.A.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Jordan J Green
- From the Department of Biomedical Engineering (Y.L., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Translational Tissue Engineering Center (Y.L., J.J.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Johns Hopkins Translational ImmunoEngineering Center (Y.L., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Department of Ophthalmology (P.A.C., J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Departments of Chemical & Biomolecular Engineering and Materials Science & Engineering (J.J.G.), Johns Hopkins University, Baltimore, Maryland, USA; Departments of Neurosurgery and Oncology (J.J.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Institute for Nanobiotechnology, Johns Hopkins University (J.J.G.), Baltimore, Maryland, USA..
| |
Collapse
|
3
|
Albuquerque LJC, de Oliveira FA, Christoffolete MA, Nascimento-Sales M, Berger S, Wagner E, Lächelt U, Giacomelli FC. Nucleic acid delivery to retinal cells using lipopeptides as a potential tool towards ocular gene therapies. J Colloid Interface Sci 2024; 655:346-356. [PMID: 37948808 DOI: 10.1016/j.jcis.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
We evaluated the use of lipopeptides capable to bind to nucleic acids towards plasmid DNA (pDNA) delivery. The investigations were particularly focused on arising retinal pigment epithelial cells (ARPE-19) as motivated by the considerable number of ocular disorders linked to gene aberrations. The lipopeptides comprised the artificial oligoamino acid succinyl-tetraethylene pentamine (Stp) as well as incorporated lysines, histidines, cysteines, fatty acids, and tyrosine trimers. Regardless of the structural differences, the lipopeptides demonstrated to efficiently condense pDNA at nitrogen-to-phosphate molar ratio (N/P) ≥ 6. Spheric nanoparticles were observed by cryo-TEM and dynamic light scattering determined hydrodynamic sizes ranging from 50 to 130 nm. The biological assays evidenced highly efficient pDNA delivery with a lower degree of cytotoxicity compared to the well-known transfecting agent linear polyethylenimine (LPEI). Although more efficient than LPEI, cysteine-containing carriers were demonstrated to be less efficient than the other counterparts possibly due to exceeding polyplex stabilization via disulfide cross links, which could hamper pDNA unpacking at the target site. Therefore, clearly a balance between complex stability and cargo release should be taken into account to optimize the transfection efficiency of the non-viral vectors. The gene transfer activity in ARPE-19 cells suggests the applicability of this kind of carrier for ocular treatments based on retinal gene delivery.
Collapse
Affiliation(s)
| | | | | | | | - Simone Berger
- Department of Pharmacy and Center for NanoScience (CeNs), Ludwig-Maximilians-Universität, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience (CeNs), Ludwig-Maximilians-Universität, Munich, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNs), Ludwig-Maximilians-Universität, Munich, Germany; Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
4
|
de Oliveira FA, Albuquerque LJC, Nascimento-Sales M, Christoffolete MA, Bellettini IC, Giacomelli FC. Balancing gene transfection and cytotoxicity of nucleic acid carriers with focus on ocular and hepatic disorders: evaluation of hydrophobic and hydrophilic polyethyleneimine derivatives. J Mater Chem B 2023; 11:4556-4571. [PMID: 37161773 DOI: 10.1039/d3tb00477e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polyethyleneimine (PEI) derivatives substituted by lactose, succinic acid or alkyl domains were evaluated as nonviral gene delivery vectors towards balancing gene transfection and cytotoxicity. The investigations were focused on pDNA transfection into arising retinal pigment epithelia (ARPE-19) and human hepatocellular carcinoma (HepG2) cell lines. The first mentioned cell line was chosen as motivated by the non-negligible number of ocular disorders linked to gene aberrations, whereas the second one is a cell line overexpressing the asialoglycoprotein receptor (ASGP-R), which can bind to galactose residues. The presence of short alkyl domains (C4 and C6), and particularly the succinylation of the PEI chains, improved the biological outputs of the gene vectors. The presence of hydrophobic units possibly enhances lytic activity, whereas the incorporation of succinic acid slightly reduces polymer-DNA interaction strength, thereby enabling more efficient intracellular unpacking and cargo release. Succinylation is also supposed to decrease cytotoxicity and avoid protein adsorption to the polyplexes. The presence of long carbon chains (for instance, C12) nevertheless, results in higher levels of cytotoxicity and respective lower transfection rates. The sugar-decorated polyplexes are overall less cytotoxic, but the presence of lactose moieties also leads to larger polyplexes and notably weak polymer-DNA binding, which compromise the transfection efficiency. Yet, along with the presence of short lytic alkyl domains, the double-substitution of PEI synergistically boosts gene transfection probably due to the uptake of higher DNA and polymer amounts without cell damage. Overall, the experimental data suggest that ocular and hepatic gene therapies may be potentialized by fine-tuning the hydrophobic-to-hydrophilic balance, and succinic acid is a favorable motif for the modification of PEI.
Collapse
Affiliation(s)
- Fernando A de Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.
| | | | | | | | - Ismael C Bellettini
- Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, Brazil
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
5
|
Wilson DR, Tzeng SY, Rui Y, Neshat SY, Conge MJ, Luly KM, Wang E, Firestone JL, McAuliffe J, Maruggi G, Jalah R, Johnson R, Doloff JC, Green JJ. Biodegradable Polyester Nanoparticle Vaccines Deliver Self-Amplifying mRNA in Mice at Low Doses. ADVANCED THERAPEUTICS 2023; 6:2200219. [PMID: 37743930 PMCID: PMC10516528 DOI: 10.1002/adtp.202200219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 02/19/2023]
Abstract
Delivery of self-amplifying mRNA (SAM) has high potential for infectious disease vaccination due its self-adjuvating and dose-sparing properties. Yet a challenge is the susceptibility of SAM to degradation and the need for SAM to reach the cytosol fully intact to enable self-amplification. Lipid nanoparticles have been successfully deployed at incredible speed for mRNA vaccination, but aspects such as cold storage, manufacturing, efficiency of delivery, and the therapeutic window would benefit from further improvement. To investigate alternatives to lipid nanoparticles, we developed a class of >200 biodegradable end-capped lipophilic poly(beta-amino ester)s (PBAEs) that enable efficient delivery of SAM in vitro and in vivo as assessed by measuring expression of SAM encoding reporter proteins. We evaluated the ability of these polymers to deliver SAM intramuscularly in mice, and identified a polymer-based formulation that yielded up to 37-fold higher intramuscular (IM) expression of SAM compared to injected naked SAM. Using the same nanoparticle formulation to deliver a SAM encoding rabies virus glycoprotein, the vaccine elicited superior immunogenicity compared to naked SAM delivery, leading to seroconversion in mice at low RNA injection doses. These biodegradable nanomaterials may be useful in the development of next-generation RNA vaccines for infectious diseases.
Collapse
Affiliation(s)
- David R Wilson
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sarah Y Neshat
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Marranne J Conge
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kathryn M Luly
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ellen Wang
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | - Joshua C Doloff
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Departments of Chemical & Biomolecular Engineering, Materials Science & Engineering, Neurosurgery, Oncology, and Ophthalmology, Sidney Kimmel Comprehensive Cancer Center and Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
6
|
Abstract
This Review examines the state-of-the-art in the delivery of nucleic acid therapies that are directed to the vascular endothelium. First, we review the most important homeostatic functions and properties of the vascular endothelium and summarize the nucleic acid tools that are currently available for gene therapy and nucleic acid delivery. Second, we consider the opportunities available with the endothelium as a therapeutic target and the experimental models that exist to evaluate the potential of those opportunities. Finally, we review the progress to date from investigations that are directly targeting the vascular endothelium: for vascular disease, for peri-transplant therapy, for angiogenic therapies, for pulmonary endothelial disease, and for the blood-brain barrier, ending with a summary of the future outlook in this field.
Collapse
Affiliation(s)
| | | | | | - W. Mark Saltzman
- Department of Biomedical Engineering
- Department of Chemical & Environmental Engineering
- Department of Cellular & Molecular Physiology
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
7
|
Tewari AK, Upadhyay SC, Kumar M, Pathak K, Kaushik D, Verma R, Bhatt S, Massoud EES, Rahman MH, Cavalu S. Insights on Development Aspects of Polymeric Nanocarriers: The Translation from Bench to Clinic. Polymers (Basel) 2022; 14:3545. [PMID: 36080620 PMCID: PMC9459741 DOI: 10.3390/polym14173545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 02/06/2023] Open
Abstract
Scientists are focusing immense attention on polymeric nanocarriers as a prominent delivery vehicle for several biomedical applications including diagnosis of diseases, delivery of therapeutic agents, peptides, proteins, genes, siRNA, and vaccines due to their exciting physicochemical characteristics which circumvent degradation of unstable drugs, reduce toxic side effects through controlled release, and improve bioavailability. Polymers-based nanocarriers offer numerous benefits for in vivo drug delivery such as biocompatibility, biodegradability, non-immunogenicity, active drug targeting via surface modification, and controlled release due to their pH-and thermosensitive characteristics. Despite their potential for medicinal use, regulatory approval has been achieved for just a few. In this review, we discuss the historical development of polymers starting from their initial design to their evolution as nanocarriers for therapeutic delivery of drugs, peptides, and genes. The review article also expresses the applications of polymeric nanocarriers in the pharmaceutical and medical industry with a special emphasis on oral, ocular, parenteral, and topical application of drugs, peptides, and genes over the last two decades. The review further examines the practical, regulatory, and clinical considerations of the polymeric nanocarriers, their safety issues, and directinos for future research.
Collapse
Affiliation(s)
- Akhilesh Kumar Tewari
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Satish Chandra Upadhyay
- Formulation Research and Development, Mankind Research Centre, Manesar, Gurugram 122050, Haryana, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, Uttar Pradesh, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, Haryana, India
| | - Shailendra Bhatt
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, Haryana, India
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza 3725004, Egypt
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
8
|
Iqbal S, Martins AF, Sohail M, Zhao J, Deng Q, Li M, Zhao Z. Synthesis and Characterization of Poly (β-amino Ester) and Applied PEGylated and Non-PEGylated Poly (β-amino ester)/Plasmid DNA Nanoparticles for Efficient Gene Delivery. Front Pharmacol 2022; 13:854859. [PMID: 35462891 PMCID: PMC9023864 DOI: 10.3389/fphar.2022.854859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Polymer-based nanocarriers require extensive knowledge of their chemistries to learn functionalization strategies and understand the nature of interactions that they establish with biological entities. In this research, the poly (β-amino ester) (PβAE-447) was synthesized and characterized, aimed to identify the influence of some key parameters in the formulation process. Initially; PβAE-447 was characterized for aqueous solubility, swelling capacity, proton buffering ability, and cytotoxicity study before nanoparticles formulation. Interestingly, the polymer-supported higher cell viability than the Polyethylenimine (PEI) at 100 μg/ml. PβAE-447 complexed with GFP encoded plasmid DNA (pGFP) generated nanocarriers of 184 nm hydrodynamic radius (+7.42 mV Zeta potential) for cell transfection. Transfection assays performed with PEGylated and lyophilized PβAE-447/pDNA complexes on HEK-293, BEAS-2B, and A549 cell lines showed better transfection than PEI. The outcomes toward A549 cells (above 66%) showed the highest transfection efficiency compared to the other cell lines. Altogether, these results suggested that characterizing physicochemical properties pave the way to design a new generation of PβAE-447 for gene delivery.
Collapse
Affiliation(s)
- Sajid Iqbal
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Alessandro F Martins
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Paraná (UTFPR), Apucarana, Brazil.,Group of Polymers and Composite Materials (GMPC), Department of Chemistry, State University of Maringá (UEM), Maringá, Brazil.,Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO, United States
| | - Muhammad Sohail
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Jingjing Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Deng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Muhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key University Laboratory of Pharmaceutics and Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, China.,Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, China
| |
Collapse
|
9
|
Kim J, Vaughan HJ, Zamboni CG, Sunshine JC, Green JJ. High-throughput evaluation of polymeric nanoparticles for tissue-targeted gene expression using barcoded plasmid DNA. J Control Release 2021; 337:105-116. [PMID: 34097924 DOI: 10.1016/j.jconrel.2021.05.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/03/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
Successful systemic gene delivery requires specific tissue targeting as well as efficient intracellular transfection. Increasingly, research laboratories are fabricating libraries of novel nanoparticles, engineering both new biomaterial structures and composition ratios of multicomponent systems. Yet, methods for screening gene delivery vehicles directly in vivo are often low-throughout, limiting the number of candidate nanoparticles that can be investigated. Here, we report a comprehensive, high-throughput method to evaluate a library of polymeric nanoparticles in vivo for tissue-specific gene delivery. The method involves pairing each nanoparticle formulation with a plasmid DNA (pDNA) that harbors a unique nucleotide sequence serving as the identifying "barcode". Using real time quantitative PCR (qPCR) for detection of the barcoded pDNA and quantitative reverse transcription PCR (RT-qPCR) for transcribed barcoded mRNA, we can quantify accumulation and transfection in tissues of interest. The barcode pDNA and primers were designed with sufficient sensitivity and specificity to evaluate multiple nanoparticle formulations per mouse, improving screening efficiency. Using this platform, we evaluated the biodistribution and transfection of 8 intravenously administered poly(beta-amino ester; PBAE) nanoparticle formulations, each with a PBAE polymer of differential structure. Significant levels of nanoparticle accumulation and gene transfection were observed mainly in organs involved in clearance, including spleen, liver, and kidneys. Interestingly, higher levels of transfection of select organs did not necessarily correlate with higher levels of tissue accumulation, highlighting the importance of directly measuring in vivo transfection efficiency as the key barcoded parameter in gene delivery vector optimization. To validate this method, nanoparticle formulations were used individually for luciferase pDNA delivery in vivo. The distribution of luciferase expression in tissues matched the transfection analysis by the barcode qPCR method, confirming that this platform can be used to accurately evaluate systemic gene delivery.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Hannah J Vaughan
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Camila G Zamboni
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Joel C Sunshine
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan J Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Departments of Neurosurgery, Oncology, and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Iqbal S, Qu Y, Dong Z, Zhao J, Rauf Khan A, Rehman S, Zhao Z. Poly (β‐amino esters) based potential drug delivery and targeting polymer; an overview and perspectives (review). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Kureshi R, Zhu A, Shen J, Tzeng SY, Astrab LR, Sargunas PR, Green JJ, Campochiaro PA, Spangler JB. Structure-Guided Molecular Engineering of a Vascular Endothelial Growth Factor Antagonist to Treat Retinal Diseases. Cell Mol Bioeng 2020; 13:405-418. [PMID: 33184574 DOI: 10.1007/s12195-020-00641-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Ocular neovascularization is a hallmark of retinal diseases including neovascular age-related macular degeneration and diabetic retinopathy, two leading causes of blindness in adults. Neovascularization is driven by the interaction of soluble vascular endothelial growth factor (VEGF) ligands with transmembrane VEGF receptors (VEGFR), and inhibition of the VEGF pathway has shown tremendous clinical promise. However, anti-VEGF therapies require invasive intravitreal injections at frequent intervals and high doses, and many patients show incomplete responses to current drugs due to the lack of sustained VEGF signaling suppression. Methods We synthesized insights from structural biology with molecular engineering technologies to engineer an anti-VEGF antagonist protein. Starting from the clinically approved decoy receptor protein aflibercept, we strategically designed a yeast-displayed mutagenic library of variants and isolated clones with superior VEGF affinity compared to the clinical drug. Our lead engineered protein was expressed in the choroidal space of rat eyes via nonviral gene delivery. Results Using a structure-informed directed evolution approach, we identified multiple promising anti-VEGF antagonist proteins with improved target affinity. Improvements were primarily mediated through reduction in dissociation rate, and structurally significant convergent sequence mutations were identified. Nonviral gene transfer of our engineered antagonist protein demonstrated robust and durable expression in the choroid of treated rats one month post-injection. Conclusions We engineered a novel anti-VEGF protein as a new weapon against retinal diseases and demonstrated safe and noninvasive ocular delivery in rats. Furthermore, our structure-guided design approach presents a general strategy for discovery of targeted protein drugs for a vast array of applications.
Collapse
Affiliation(s)
- Rakeeb Kureshi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Angela Zhu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Jikui Shen
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD USA.,Insititute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD USA
| | - Leilani R Astrab
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Paul R Sargunas
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA.,Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD USA.,Insititute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD USA.,Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Peter A Campochiaro
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
12
|
Shen J, Kim J, Tzeng SY, Ding K, Hafiz Z, Long D, Wang J, Green JJ, Campochiaro PA. Suprachoroidal gene transfer with nonviral nanoparticles. SCIENCE ADVANCES 2020; 6:eaba1606. [PMID: 32937452 PMCID: PMC7458446 DOI: 10.1126/sciadv.aba1606] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/20/2020] [Indexed: 05/16/2023]
Abstract
Subretinal injections of viral vectors provide great benefits but have limited cargo capacity; they induce innate and adaptive immune responses, which may cause damage and preclude repeated injections; and they pose administration risks. As a new biotechnology, suprachoroidal injections of biodegradable nanoparticles (NPs) containing a reporter plasmid induce reporter expression in rat photoreceptors and RPE throughout the entire eye and maintain expression for at least 8 months. Multiple injections markedly increase expression. Suprachoroidal injection of NPs containing a VEGF expression plasmid caused severe subretinal neovascularization progressing to subretinal fibrosis, similar to what occurs in untreated patients with neovascular age-related macular degeneration, providing a new model and proof of concept for level and duration of expression. Suprachoroidal injection of NPs containing a VEGF-binding protein expression plasmid significantly suppressed VEGF-induced vascular leakage and neovascularization demonstrating therapeutic potential. These data suggest that nonviral NP suprachoroidal gene transfer may provide a noninvasive, repeatable alternative to subretinal injection of viral vectors.
Collapse
Affiliation(s)
- Jikui Shen
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kun Ding
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zibran Hafiz
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Da Long
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiangxia Wang
- Johns Hopkins Biostatistics Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jordan J Green
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Campochiaro
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Rui Y, Wilson DR, Choi J, Varanasi M, Sanders K, Karlsson J, Lim M, Green JJ. Carboxylated branched poly(β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. SCIENCE ADVANCES 2019; 5:eaay3255. [PMID: 31840076 PMCID: PMC6897553 DOI: 10.1126/sciadv.aay3255] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/24/2019] [Indexed: 05/03/2023]
Abstract
Efficient cytosolic protein delivery is necessary to fully realize the potential of protein therapeutics. Current methods of protein delivery often suffer from low serum tolerance and limited in vivo efficacy. Here, we report the synthesis and validation of a previously unreported class of carboxylated branched poly(β-amino ester)s that can self-assemble into nanoparticles for efficient intracellular delivery of a variety of different proteins. In vitro, nanoparticles enabled rapid cellular uptake, efficient endosomal escape, and functional cytosolic protein release into cells in media containing 10% serum. Moreover, nanoparticles encapsulating CRISPR-Cas9 ribonucleoproteins (RNPs) induced robust levels of gene knock-in (4%) and gene knockout (>75%) in several cell types. A single intracranial administration of nanoparticles delivering a low RNP dose (3.5 pmol) induced robust gene editing in mice bearing engineered orthotopic murine glioma tumors. This self-assembled polymeric nanocarrier system enables a versatile protein delivery and gene editing platform for biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R. Wilson
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Choi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mahita Varanasi
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katie Sanders
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Johan Karlsson
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Ophthalmology, Materials Science and Engineering, and Chemical and Biomolecular Engineering, and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Wang J, Ren KF, Gao YF, Zhang H, Huang WP, Qian HL, Xu ZK, Ji J. Photothermal Spongy Film for Enhanced Surface-Mediated Transfection to Primary Cells. ACS APPLIED BIO MATERIALS 2019; 2:2676-2684. [DOI: 10.1021/acsabm.9b00358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yi-Fan Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - He Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei-Pin Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hong-Lin Qian
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
15
|
Kaczmarek JC, Kauffman KJ, Fenton OS, Sadtler K, Patel AK, Heartlein MW, DeRosa F, Anderson DG. Optimization of a Degradable Polymer-Lipid Nanoparticle for Potent Systemic Delivery of mRNA to the Lung Endothelium and Immune Cells. NANO LETTERS 2018; 18:6449-6454. [PMID: 30211557 PMCID: PMC6415675 DOI: 10.1021/acs.nanolett.8b02917] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
mRNA therapeutics hold great potential for treating a variety of diseases through protein-replacement, immunomodulation, and gene editing. However, much like siRNA therapy the majority of progress in mRNA delivery has been confined to the liver. Previously, we demonstrated that poly(β-amino esters), a class of degradable polymers, are capable of systemic mRNA delivery to the lungs in mice when formulated into nanoparticles with poly(ethylene glycol)-lipid conjugates. Using experimental design, a statistical approach to optimization that reduces experimental burden, we demonstrate herein that these degradable polymer-lipid nanoparticles can be optimized in terms of polymer synthesis and nanoparticle formulation to achieve a multiple order-of-magnitude increase in potency. Furthermore, using genetically engineered Cre reporter mice, we demonstrate that mRNA is functionally delivered to both the lung endothelium and pulmonary immune cells, expanding the potential utility of these nanoparticles.
Collapse
Affiliation(s)
- James C. Kaczmarek
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA (USA)
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA (USA)
| | - Kevin J. Kauffman
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA (USA)
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA (USA)
| | - Owen S. Fenton
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA (USA)
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA (USA)
| | - Kaitlyn Sadtler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA (USA)
| | - Asha K. Patel
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA (USA)
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD (UK)
| | | | | | - Daniel G. Anderson
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA (USA)
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA (USA)
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA (USA)
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA (USA)
| |
Collapse
|
16
|
DiStasio N, Arts M, Lehoux S, Tabrizian M. IL-10 Gene Transfection in Primary Endothelial Cells via Linear and Branched Poly(β-amino ester) Nanoparticles Attenuates Inflammation in Stimulated Macrophages. ACS APPLIED BIO MATERIALS 2018; 1:917-927. [DOI: 10.1021/acsabm.8b00342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nicholas DiStasio
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Marloes Arts
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Stephanie Lehoux
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | | |
Collapse
|
17
|
The Multifaceted Uses and Therapeutic Advantages of Nanoparticles for Atherosclerosis Research. MATERIALS 2018; 11:ma11050754. [PMID: 29738480 PMCID: PMC5978131 DOI: 10.3390/ma11050754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
Nanoparticles are uniquely suited for the study and development of potential therapies against atherosclerosis by virtue of their size, fine-tunable properties, and ability to incorporate therapies and/or imaging modalities. Furthermore, nanoparticles can be specifically targeted to the atherosclerotic plaque, evading off-target effects and/or associated cytotoxicity. There has been a wealth of knowledge available concerning the use of nanotechnologies in cardiovascular disease and atherosclerosis, in particular in animal models, but with a major focus on imaging agents. In fact, roughly 60% of articles from an initial search for this review included examples of imaging applications of nanoparticles. Thus, this review focuses on experimental therapy interventions applied to and observed in animal models. Particular emphasis is placed on how nanoparticle materials and properties allow researchers to learn a great deal about atherosclerosis. The objective of this review was to provide an update for nanoparticle use in imaging and drug delivery studies and to illustrate how nanoparticles can be used for sensing and modelling, for studying fundamental biological mechanisms, and for the delivery of biotherapeutics such as proteins, peptides, nucleic acids, and even cells all with the goal of attenuating atherosclerosis. Furthermore, the various atherosclerosis processes targeted mainly for imaging studies have been summarized in the hopes of inspiring new and exciting targeted therapeutic and/or imaging strategies.
Collapse
|
18
|
Wilson DR, Sen R, Sunshine JC, Pardoll DM, Green JJ, Kim YJ. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:237-246. [PMID: 29127039 DOI: 10.1016/j.nano.2017.10.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 01/05/2023]
Abstract
Therapeutic cancer vaccines require adjuvants leading to robust type I interferon and proinflammatory cytokine responses in the tumor microenvironment to induce an anti-tumor response. Cyclic dinucleotides (CDNs), a potent Stimulator of Interferon Receptor (STING) agonist, are currently in phase I trials. However, their efficacy may be limited to micromolar concentrations due to the cytosolic residence of STING in the ER membrane. Here we utilized biodegradable, poly(beta-amino ester) (PBAE) nanoparticles to deliver CDNs to the cytosol leading to robust immune response at >100-fold lower extracellular CDN concentrations in vitro. The leading CDN PBAE nanoparticle formulation induced a log-fold improvement in potency in treating established B16 melanoma tumors in vivo when combined with PD-1 blocking antibody in comparison to free CDN without nanoparticles. This nanoparticle-mediated cytosolic delivery method for STING agonists synergizes with checkpoint inhibitors and has strong potential for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- David R Wilson
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rupashree Sen
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel C Sunshine
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan J Green
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Materials Science and Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Young J Kim
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Otolaryngology / Head & Neck Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
19
|
Kim J, Mirando AC, Popel AS, Green JJ. Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 2017; 119:20-43. [PMID: 27913120 PMCID: PMC5449271 DOI: 10.1016/j.addr.2016.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 01/19/2023]
Abstract
Angiogenesis is naturally balanced by many pro- and anti-angiogenic factors while an imbalance of these factors leads to aberrant angiogenesis, which is closely associated with many diseases. Gene therapy has become a promising strategy for the treatment of such a disordered state through the introduction of exogenous nucleic acids that express or silence the target agents, thereby engineering neovascularization in both directions. Numerous non-viral gene delivery nanoparticles have been investigated towards this goal, but their clinical translation has been hampered by issues associated with safety, delivery efficiency, and therapeutic effect. This review summarizes key factors targeted for therapeutic angiogenesis and anti-angiogenesis gene therapy, non-viral nanoparticle-mediated approaches to gene delivery, and recent gene therapy applications in pre-clinical and clinical trials for ischemia, tissue regeneration, cancer, and wet age-related macular degeneration. Enhanced nanoparticle design strategies are also proposed to further improve the efficacy of gene delivery nanoparticles to modulate angiogenesis.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Neurosurgery, and Materials Science & Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
20
|
Zamboni CG, Kozielski KL, Vaughan HJ, Nakata MM, Kim J, Higgins LJ, Pomper MG, Green JJ. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J Control Release 2017; 263:18-28. [PMID: 28351668 DOI: 10.1016/j.jconrel.2017.03.384] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third most deadly cancer in the US, with a meager 5-year survival rate of <20%. Such unfavorable numbers are closely related to the heterogeneity of the disease and the unsatisfactory therapies currently used to manage patients with invasive HCC. Outside of the clinic, gene therapy research is evolving to overcome the poor responses and toxicity associated with standard treatments. The inadequacy of gene delivery vectors, including poor intracellular delivery and cell specificity, are major barriers in the gene therapy field. Herein, we described a non-viral strategy for effective and cancer-specific DNA delivery to human HCC using biodegradable poly(beta-amino ester) (PBAE) nanoparticles (NPs). Varied PBAE NP formulations were evaluated for transfection efficacy and cytotoxicity to a range of human HCC cells as well as healthy human hepatocytes. To address HCC heterogeneity, nine different sources of human HCC cells were utilized. The polymeric NPs composed of 2-((3-aminopropyl)amino) ethanol end-modified poly(1,5-pentanediol diacrylate-co-3-amino-1-propanol) ('536') at a 25 polymer-to-DNA weight-to-weight ratio led to high transfection efficacy to all of the liver cancer lines, but not to hepatocytes. Each individual HCC line had a significantly higher percentage of exogenous gene expression than the healthy liver cells (P<0.01). Notably, this biodegradable end-modified PBAE gene delivery vector was not cytotoxic and maintained the viability of hepatocytes above 80%. In a HCC/hepatocyte co-culture model, in which cancerous and healthy cells share the same micro-environment, 536 25 w/w NPs specifically transfected cancer cells. PBAE NP administration to a subcutaneous HCC mouse model, established with one of the human lines tested in vitro, confirmed effective DNA transfection in vivo. PBAE-based NPs enabled high and preferential DNA delivery to HCC cells, sparing healthy hepatocytes. These biodegradable and liver cancer-selective NPs are a promising technology to deliver therapeutic genes to liver cancer.
Collapse
Affiliation(s)
- Camila G Zamboni
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen L Kozielski
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Hannah J Vaughan
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Maisa M Nakata
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jayoung Kim
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Luke J Higgins
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Martin G Pomper
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Departments of Neurosurgery, Oncology and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Rui Y, Quiñones G, Green JJ. Biodegradable and bioreducible poly(beta-amino ester) nanoparticles for intracellular delivery to treat brain cancer. AIChE J 2017. [DOI: 10.1002/aic.15698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuan Rui
- Dept. of Biomedical Engineering; Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore MD 21231
| | - Gabriella Quiñones
- Dept. of Biomedical Engineering; Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore MD 21231
| | - Jordan J. Green
- Depts. of Biomedical Engineering, Chemical and Biomolecular Engineering, Materials Science and Engineering, Oncology, Ophthalmology, and Neurosurgery; Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore MD 21231
| |
Collapse
|
22
|
Tzeng SY, Wilson DR, Hansen SK, Quiñones-Hinojosa A, Green JJ. Polymeric nanoparticle-based delivery of TRAIL DNA for cancer-specific killing. Bioeng Transl Med 2016; 1:149-159. [PMID: 28349127 PMCID: PMC5365091 DOI: 10.1002/btm2.10019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lack of specificity in cancer therapeutics severely limits the efficacy of many existing treatment modalities. The use of Tumor Necrosis Factor-related Apoptosis-Inducing Ligand (TRAIL) is of interest to the field due to this protein's ability to cause cell death specifically in cancer cells without harming the surrounding healthy tissue. Here, we report that polymeric nanoparticles, based on synthetic poly(beta-amino ester)s (PBAEs) and containing DNA, are able to selectively transfect cancer cells in vitro over healthy cells of the same tissue type. Moreover, PBAE-based nanoparticles containing TRAIL DNA are able to transfect several human cancer cell cultures in vitro and cause cell death. While certain cell types, including human glioblastoma (GBM), showed resistance to TRAIL, we found that the expression of TRAIL-binding surface proteins was predictive of each cell type's resistance to TRAIL therapy. We demonstrate a non-viral nanomedicine approach to cancer gene therapy that can improve cancer specificity via both biomaterial selection and through the use of cancer-targeting genetic cargo.
Collapse
Affiliation(s)
- Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD; The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - David R Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD; The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah K Hansen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD; The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD; The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Material Science and Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
23
|
Kozielski KL, Rui Y, Green JJ. Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opin Drug Deliv 2016; 13:1475-87. [PMID: 27248202 DOI: 10.1080/17425247.2016.1190707] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The delivery of nucleic acids such as DNA and short interfering RNA (siRNA) is promising for the treatment of many diseases, including cancer, by enabling novel biological mechanisms of action. Non-viral nanoparticles are a promising class of nucleic acid carriers that can be designed to be safer and more versatile than traditional viral vectors. AREAS COVERED In this review, recent advances in the intracellular delivery of DNA and siRNA are described with a focus on non-viral nanoparticle-based delivery methods. Material properties that have enabled successful delivery are discussed as well as applications that have directly been applied to cancer therapy. Strategies to co-deliver different nucleic acids are highlighted, as are novel targets for nucleic acid co-delivery. EXPERT OPINION The treatment of complex genetically-based diseases such as cancer can be enabled by safe and effective intracellular delivery of multiple nucleic acids. Non-viral nanoparticles can be fabricated to deliver multiple nucleic acids to the same cell simultaneously to prevent tumor cells from easily compensating for the knockdown or overexpression of one genetic target. The continued innovation of new therapeutic modalities and non-viral nanotechnologies to provide target-specific and personalized forms of gene therapy hold promise for genetic medicine to treat diseases like cancer in the clinic.
Collapse
Affiliation(s)
- Kristen L Kozielski
- a Department of Biomedical Engineering, the Institute for NanoBioTechnology, & the Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Yuan Rui
- a Department of Biomedical Engineering, the Institute for NanoBioTechnology, & the Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Jordan J Green
- a Department of Biomedical Engineering, the Institute for NanoBioTechnology, & the Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,b Departments of Ophthalmology, Oncology, Neurosurgery, and Materials Science & Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
24
|
Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Acta Biomater 2016; 37:120-30. [PMID: 27019146 DOI: 10.1016/j.actbio.2016.03.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Non-viral, biomaterial-mediated gene delivery has the potential to treat many diseases, but is limited by low efficacy. Elucidating the bottlenecks of plasmid mass transfer can enable an improved understanding of biomaterial structure-function relationships, leading to next-generation rationally designed non-viral gene delivery vectors. As proof of principle, we transfected human primary glioblastoma cells using a poly(beta-amino ester) complexed with eGFP plasmid DNA. The polyplexes transfected 70.6±0.6% of the cells with 101±3% viability. The amount of DNA within the cytoplasm, nuclear envelope, and nuclei was assessed at multiple time points using fluorescent dye conjugated plasmid up to 24h post-transfection using a quantitative multi-well plate-based flow cytometry assay. Conversion to plasmid counts and degradation kinetics were accounted for via quantitative PCR (plasmid degradation rate constants were determined to be 0.62h(-1) and 0.084h(-1) for fast and slow phases respectively). Quantitative cellular uptake, nuclear association, and nuclear uptake rate constants were determined by using a four-compartment first order mass-action model. The rate limiting step for these poly(beta-amino ester)/DNA polyplex nanoparticles was determined to be cellular uptake (7.5×10(-4)h(-1)) and only 0.1% of the added dose was taken up by the human brain cancer cells, whereas 12% of internalized DNA successfully entered the nucleus (the rate of nuclear internalization of nuclear associated plasmid was 1.1h(-1)). We describe an efficient new method for assessing cellular and nuclear uptake rates of non-viral gene delivery nanoparticles using flow cytometry to improve understanding and design of polymeric gene delivery nanoparticles. STATEMENT OF SIGNIFICANCE In this work, a quantitative high throughput flow cytometry-based assay and computational modeling approach was developed for assessing cellular and nuclear uptake rates of non-viral gene delivery nanoparticles. This method is significant as it can be used to elucidate structure-function relationships of gene delivery nanoparticles and improve their efficiency. This method was applied to a particular type of biodegradable polymer, a poly(beta-amino ester), that transfected human brain cancer cells with high efficacy and without cytotoxicity. A four-compartment first order mass-action kinetics model was found to model the experimental transport data well without requiring external fitting parameters. Quantitative rate constants were identified for the intracellular transport, including DNA degradation rate from polyplexes, cellular uptake rate, and nuclear uptake rate, with cellular uptake identified as the rate-limiting step.
Collapse
|
25
|
Mullick Chowdhury S, Zafar S, Tellez V, Sitharaman B. Graphene Nanoribbon-Based Platform for Highly Efficacious Nuclear Gene Delivery. ACS Biomater Sci Eng 2016; 2:798-808. [DOI: 10.1021/acsbiomaterials.5b00562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sayan Mullick Chowdhury
- Department of Biomedical
Engineering, Stony Brook University, Stony Brook, New York 11794-5281, United States
| | - Siraat Zafar
- Department of Biomedical
Engineering, Stony Brook University, Stony Brook, New York 11794-5281, United States
| | - Victor Tellez
- Department of Biomedical
Engineering, Stony Brook University, Stony Brook, New York 11794-5281, United States
| | - Balaji Sitharaman
- Department of Biomedical
Engineering, Stony Brook University, Stony Brook, New York 11794-5281, United States
| |
Collapse
|
26
|
Abstract
In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R. Wilson
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Camila G. Zamboni
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jordan J. Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Mangraviti A, Tzeng SY, Kozielski KL, Wang Y, Jin Y, Gullotti D, Pedone M, Buaron N, Liu A, Wilson DR, Hansen SK, Rodriguez FJ, Gao GD, DiMeco F, Brem H, Olivi A, Tyler B, Green JJ. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS NANO 2015; 9:1236-49. [PMID: 25643235 PMCID: PMC4342728 DOI: 10.1021/nn504905q] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Biodegradable polymeric nanoparticles have the potential to be safer alternatives to viruses for gene delivery; however, their use has been limited by poor efficacy in vivo. In this work, we synthesize and characterize polymeric gene delivery nanoparticles and evaluate their efficacy for DNA delivery of herpes simplex virus type I thymidine kinase (HSVtk) combined with the prodrug ganciclovir (GCV) in a malignant glioma model. We investigated polymer structure for gene delivery in two rat glioma cell lines, 9L and F98, to discover nanoparticle formulations more effective than the leading commercial reagent Lipofectamine 2000. The lead polymer structure, poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-modified with 1-(3-aminopropyl)-4-methylpiperazine, is a poly(β-amino ester) (PBAE) and formed nanoparticles with HSVtk DNA that were 138 ± 4 nm in size and 13 ± 1 mV in zeta potential. These nanoparticles containing HSVtk DNA showed 100% cancer cell killing in vitro in the two glioma cell lines when combined with GCV exposure, while control nanoparticles encoding GFP maintained robust cell viability. For in vivo evaluation, tumor-bearing rats were treated with PBAE/HSVtk infusion via convection-enhanced delivery (CED) in combination with systemic administration of GCV. These treated animals showed a significant benefit in survival (p = 0.0012 vs control). Moreover, following a single CED infusion, labeled PBAE nanoparticles spread completely throughout the tumor. This study highlights a nanomedicine approach that is highly promising for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Stephany Yi Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Kristen Lynn Kozielski
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Yuan Wang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Yike Jin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David Gullotti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Mariangela Pedone
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Nitsa Buaron
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Chemical Engineering, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David R. Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Sarah K. Hansen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Fausto J. Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Francesco DiMeco
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan 20133, Italy
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Alessandro Olivi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Address correspondence to ,
| | - Jordan J. Green
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Material Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Address correspondence to ,
| |
Collapse
|
28
|
Oligopeptide-terminated poly(β-amino ester)s for highly efficient gene delivery and intracellular localization. Acta Biomater 2014; 10:2147-58. [PMID: 24406199 DOI: 10.1016/j.actbio.2013.12.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/13/2013] [Accepted: 12/26/2013] [Indexed: 11/24/2022]
Abstract
The main limitation of gene therapy towards clinics is the lack of robust, safe and efficient gene delivery vectors. This paper describes new polycations for gene delivery based on poly(β-amino ester)s (pBAE) containing terminal oligopeptides. The authors developed oligopeptide-modified pBAE-pDNA nanoparticles that achieve better cellular viability and higher transfection efficacy than other end-modified pBAE and commercial transfection agents. Gene expression in highly permissive cell lines was remarkably high, but transfection efficiency in less-permissive cell lines was highly dependent on oligopeptide composition and nanoparticle formulation. Moreover, the use of selected oligopeptides in the pBAE formulation led to preferential intracellular localization of the particles. Particle analysis of highly efficient pBAE formulations revealed different particle sizes and charge features, which indicates chemical pseudotyping of the particle surface, related to the oligopeptide chemical nature. In conclusion, chemical modification at the termini of pBAE with amine-rich oligopeptides is a powerful strategy for developing delivery systems for future gene therapy applications.
Collapse
|
29
|
Kim J, Sunshine JC, Green JJ. Differential polymer structure tunes mechanism of cellular uptake and transfection routes of poly(β-amino ester) polyplexes in human breast cancer cells. Bioconjug Chem 2013; 25:43-51. [PMID: 24320687 DOI: 10.1021/bc4002322] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Successful gene delivery with nonviral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of PBAE polyplexes and the dependence of cellular uptake on the end group and molecular weight of the polymer. We synthesized three different analogues of PBAEs with the same base polymer poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) (B4S4) but with small changes in the end group or molecular weight. We quantified the uptake and transfection efficiencies of the pDNA polyplexes formulated from these polymers in hard-to-transfect triple negative human breast cancer cells (MDA-MB 231). All polymers formed positively charged (10-17 mV) nanoparticles of ∼200 nm in size. Cellular internalization of all three formulations was inhibited the most (60-90% decrease in cellular uptake) by blocking caveolae-mediated endocytosis. Greater inhibition was shown with polymers that had a 1-(3-aminopropyl)-4-methylpiperazine end group (E7) than the others with a 2-(3-aminopropylamino)-ethanol end group (E6) or higher molecular weight. However, caveolae-mediated endocytosis was generally not as efficient as clathrin-mediated endocytosis in leading to transfection. These findings indicate that PBAE polyplexes can be used to transfect triple negative human breast cancer cells and that small changes to the same base polymer can modulate their cellular uptake and transfection routes.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center and §Department of Ophthalmology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21231, United States
| | | | | |
Collapse
|
30
|
Bhise NS, Wahlin KJ, Zack DJ, Green JJ. Evaluating the potential of poly(beta-amino ester) nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells. Int J Nanomedicine 2013; 8:4641-58. [PMID: 24348039 PMCID: PMC3857166 DOI: 10.2147/ijn.s53830] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Gene delivery can potentially be used as a therapeutic for treating genetic diseases, including neurodegenerative diseases, as well as an enabling technology for regenerative medicine. A central challenge in many gene delivery applications is having a safe and effective delivery method. We evaluated the use of a biodegradable poly(beta-amino ester) nanoparticle-based nonviral protocol and compared this with an electroporation-based approach to deliver episomal plasmids encoding reprogramming factors for generation of human induced pluripotent stem cells (hiPSCs) from human fibroblasts. Methods A polymer library was screened to identify the polymers most promising for gene delivery to human fibroblasts. Feeder-independent culturing protocols were developed for nanoparticle-based and electroporation-based reprogramming. The cells reprogrammed by both polymeric nanoparticle-based and electroporation-based nonviral methods were characterized by analysis of pluripotency markers and karyotypic stability. The hiPSC-like cells were further differentiated toward the neural lineage to test their potential for neurodegenerative retinal disease modeling. Results 1-(3-aminopropyl)-4-methylpiperazine end-terminated poly(1,4-butanediol diacry-late-co-4-amino-1-butanol) polymer (B4S4E7) self-assembled with plasmid DNA to form nanoparticles that were more effective than leading commercially available reagents, including Lipofectamine® 2000, FuGENE® HD, and 25 kDa branched polyethylenimine, for nonviral gene transfer. B4S4E7 nanoparticles showed effective gene delivery to IMR-90 human primary fibroblasts and to dermal fibroblasts derived from a patient with retinitis pigmentosa, and enabled coexpression of exogenously delivered genes, as is needed for reprogramming. The karyotypically normal hiPSC-like cells generated by conventional electroporation, but not by poly(beta-amino ester) reprogramming, could be differentiated toward the neuronal lineage, specifically pseudostratified optic cups. Conclusion This study shows that certain nonviral reprogramming methods may not necessarily be safer than viral approaches and that maximizing exogenous gene expression of reprogramming factors is not sufficient to ensure successful reprogramming.
Collapse
Affiliation(s)
- Nupura S Bhise
- Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, Baltimore, MD, USA
| | - Karl J Wahlin
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Solomon H Snyder Department of Neuroscience, Department of Molecular Biology and Genetics, and Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Institut de la Vision, Paris, France
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, Baltimore, MD, USA ; Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Parhiz H, Shier WT, Ramezani M. From rationally designed polymeric and peptidic systems to sophisticated gene delivery nano-vectors. Int J Pharm 2013; 457:237-59. [PMID: 24060371 DOI: 10.1016/j.ijpharm.2013.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 08/21/2013] [Accepted: 09/17/2013] [Indexed: 12/12/2022]
Abstract
Lack of safe, efficient and controllable methods for delivering therapeutic genes appears to be the most important factor preventing human gene therapy. Safety issues encountered with viral vectors have prompted substantial attention to in vivo investigations with non-viral vectors throughout the past decade. However, developing non-viral vectors with effectiveness comparable to viral ones has been a challenge. The strategy of designing multifunctional synthetic carriers targeting several extracellular and intracellular barriers in the gene transfer pathway has emerged as a promising approach to improving the efficacy of gene delivery systems. This review will explain how sophisticated synthetic vectors can be created by combining conventional polycationic vectors such as polyethylenimine and basic amino acid peptides with additional polymers and peptides that are designed to overcome potential barriers to the gene delivery process.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Pharmaceutical Research Center, Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | | | | |
Collapse
|
32
|
Shmueli RB, Ohnaka M, Miki A, Pandey NB, Lima e Silva R, Koskimaki JE, Kim J, Popel AS, Campochiaro PA, Green JJ. Long-term suppression of ocular neovascularization by intraocular injection of biodegradable polymeric particles containing a serpin-derived peptide. Biomaterials 2013; 34:7544-51. [PMID: 23849876 DOI: 10.1016/j.biomaterials.2013.06.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/23/2013] [Indexed: 12/27/2022]
Abstract
Aberrant angiogenesis can cause or contribute to a number of diseases such as neovascular age-related macular degeneration (NVAMD). While current NVAMD treatments target angiogenesis, these treatments are not effective for all patients and also require frequent intravitreal injections. New agents and delivery systems to treat NVAMD could be beneficial to many patients. We have recently developed a serpin-derived peptide as an anti-angiogenic agent. Here, this peptide is investigated for activity in human retinal endothelial cells in vitro and for reducing angiogenesis in a laser-induced choroidal neovascularization mouse model of NVAMD in vivo. While frequent intravitreal injections can be tolerated clinically, reducing the number of injections can improve patient compliance, safety, and outcomes. To achieve this goal, and to maximize the in vivo activity of injected peptide, we have developed biodegradable polymers and controlled release particle formulations to extend anti-angiogenic therapy. To create these devices, the anionic peptides are first self-assembled into nanoparticles using a biodegradable cationic polymer and then as a second step, these nanoparticles are encapsulated into biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles. In situ, these particles show approximately zero-order, linear release of the anionic peptide over 200 days. These particles are made of safe, hydrolytically degradable polymers and have low endotoxin. Long-term in vivo experiments in the laser-induced neovascularization model for NVAMD show that these peptide-releasing particles decrease angiogenesis for at least fourteen weeks in vivo following a single particle dose and therefore are a promising treatment strategy for NVAMD.
Collapse
Affiliation(s)
- Ron B Shmueli
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li C, Tzeng SY, Tellier LE, Green JJ. (3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayer films for gene delivery. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5947-5953. [PMID: 23755861 PMCID: PMC3838882 DOI: 10.1021/am402115v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized because of its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 h, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4'-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of System Life Sciences, Graduate School of Engineering, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Liane E. Tellier
- Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
34
|
Tzeng SY, Higgins LJ, Pomper MG, Green JJ. Student award winner in the Ph.D. category for the 2013 society for biomaterials annual meeting and exposition, april 10-13, 2013, Boston, Massachusetts : biomaterial-mediated cancer-specific DNA delivery to liver cell cultures using synthetic poly(beta-amino ester)s. J Biomed Mater Res A 2013; 101:1837-45. [PMID: 23559534 DOI: 10.1002/jbm.a.34616] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/22/2013] [Indexed: 12/21/2022]
Abstract
Liver cancer is a leading cause of cancer death. Most patients are treated by arterial injection of chemoembolizing agents, providing a convenient avenue for local treatment by novel therapies, including gene therapy. Poly(beta-amino ester)s (PBAEs) were synthesized and used to form nanoparticles for non-viral transfection of buffalo rat hepatoma (MCA-RH7777) and hepatocyte (BRL-3A) lines with eGFP and luciferase DNA. Hepatoma cells were transfected with up to (98 ± 0.4)% efficacy with no measurable cytotoxicity. Hepatocytes were transfected with as high as (73 ± 0.4)% efficacy with (10 ± 4)% non-specific cytotoxicity. In contrast, positive controls (branched polyethylenimine, Lipofectamine™ 2000, and X-tremeGENE(®) DNA HP) caused 30-90% toxicity in BRL-3A cells at doses required for >50% transfection. Of the 21 optimized PBAE-DNA formulations tested, 12 showed significant specificity for hepatoma cells over hepatocytes in monoculture (p < 0.05 for both percentage transfected and eGFP expression intensity). Top polymers from eGFP studies also delivered luciferase DNA with 220 ± 30-fold and 470 ± 30-fold greater specificity for hepatoma cells than hepatocytes. Transfections of co-cultures of hepatoma and hepatocytes with eGFP DNA also showed high specificity (1.9 ± 0.1- to 5.8± 1.4-fold more transfected hepatoma cells than hepatocytes, measured by percentage transfected and flow cytometry). By eGFP intensity, up to 530 ±60-fold higher average expression per cell was measured in hepatoma cells. One top formulation caused (95 ± 0.2)% transfection in hepatoma cells and (27 ± 0.2)% in hepatocytes [(96 ± 9)% relative hepatocyte viability]. PBAE-based nanoparticles are a viable strategy for liver cancer treatment, delivering genes to nearly 100% of cancer cells while maintaining high biomaterial-mediated specificity to prevent toxic side-effects on healthy hepatocytes.
Collapse
Affiliation(s)
- Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
35
|
Shmueli RB, Bhise NS, Green JJ. Evaluation of polymeric gene delivery nanoparticles by nanoparticle tracking analysis and high-throughput flow cytometry. J Vis Exp 2013:e50176. [PMID: 23486314 DOI: 10.3791/50176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Non-viral gene delivery using polymeric nanoparticles has emerged as an attractive approach for gene therapy to treat genetic diseases(1) and as a technology for regenerative medicine(2). Unlike viruses, which have significant safety issues, polymeric nanoparticles can be designed to be non-toxic, non-immunogenic, non-mutagenic, easier to synthesize, chemically versatile, capable of carrying larger nucleic acid cargo and biodegradable and/or environmentally responsive. Cationic polymers self-assemble with negatively charged DNA via electrostatic interaction to form complexes on the order of 100 nm that are commonly termed polymeric nanoparticles. Examples of biomaterials used to form nanoscale polycationic gene delivery nanoparticles include polylysine, polyphosphoesters, poly(amidoamines)s and polyethylenimine (PEI), which is a non-degradable off-the-shelf cationic polymer commonly used for nucleic acid delivery(1,3) . Poly(beta-amino ester)s (PBAEs) are a newer class of cationic polymers(4) that are hydrolytically degradable(5,6) and have been shown to be effective at gene delivery to hard-to-transfect cell types such as human retinal endothelial cells (HRECs)(7), mouse mammary epithelial cells(8), human brain cancer cells(9) and macrovascular (human umbilical vein, HUVECs) endothelial cells(10). A new protocol to characterize polymeric nanoparticles utilizing nanoparticle tracking analysis (NTA) is described. In this approach, both the particle size distribution and the distribution of the number of plasmids per particle are obtained(11). In addition, a high-throughput 96-well plate transfection assay for rapid screening of the transfection efficacy of polymeric nanoparticles is presented. In this protocol, poly(beta-amino ester)s (PBAEs) are used as model polymers and human retinal endothelial cells (HRECs) are used as model human cells. This protocol can be easily adapted to evaluate any polymeric nanoparticle and any cell type of interest in a multi-well plate format.
Collapse
Affiliation(s)
- Ron B Shmueli
- Biomedical Engineering Department, Johns Hopkins University School of Medicine, USA
| | | | | |
Collapse
|
36
|
Kamat CD, Shmueli RB, Connis N, Rudin CM, Green JJ, Hann CL. Poly(β-amino ester) nanoparticle delivery of TP53 has activity against small cell lung cancer in vitro and in vivo. Mol Cancer Ther 2013; 12:405-15. [PMID: 23364678 DOI: 10.1158/1535-7163.mct-12-0956] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive disease with one of the highest case-fatality rates among cancer. The recommended therapy for SCLCs has not changed significantly over the past 30 years; new therapeutic approaches are a critical need. TP53 is mutated in the majority of SCLC cases and its loss is required in transgenic mouse models of the disease. We synthesized an array of biodegradable poly(β-amino ester) (PBAE) polymers that self-assemble with DNA and assayed for transfection efficiency in the p53-mutant H446 SCLC cell line using high-throughput methodologies. Two of the top candidates were selected for further characterization and TP53 delivery in vitro and in vivo. Nanoparticle delivery of TP53 resulted in expression of exogenous p53, induction of p21, induction of apoptosis, and accumulation of cells in sub-G1 consistent with functional p53 activity. Intratumoral injection of subcutaneous H446 xenografts with polymers carrying TP53 caused marked tumor growth inhibition. This is the first demonstration of TP53 gene therapy in SCLC using nonviral polymeric nanoparticles. This technology may have general applicability as a novel anticancer strategy based on restoration of tumor suppressor gene function.
Collapse
Affiliation(s)
- Chandrashekhar D Kamat
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
37
|
Sunshine JC, Sunshine SB, Bhutto I, Handa JT, Green JJ. Poly(β-amino ester)-nanoparticle mediated transfection of retinal pigment epithelial cells in vitro and in vivo. PLoS One 2012; 7:e37543. [PMID: 22629417 PMCID: PMC3357345 DOI: 10.1371/journal.pone.0037543] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 04/23/2012] [Indexed: 02/07/2023] Open
Abstract
A variety of genetic diseases in the retina, including retinitis pigmentosa and leber congenital amaurosis, might be excellent targets for gene delivery as treatment. A major challenge in non-viral gene delivery remains finding a safe and effective delivery system. Poly(beta-amino ester)s (PBAEs) have shown great potential as gene delivery reagents because they are easily synthesized and they transfect a wide variety of cell types with high efficacy in vitro. We synthesized a combinatorial library of PBAEs and evaluated them for transfection efficacy and toxicity in retinal pigment epithelial (ARPE-19) cells to identify lead polymer structures and transfection formulations. Our optimal polymer (B5-S5-E7 at 60 w/w polymer∶DNA ratio) transfected ARPE-19 cells with 44±5% transfection efficacy, significantly higher than with optimized formulations of leading commercially available reagents Lipofectamine 2000 (26±7%) and X-tremeGENE HP DNA (22±6%); (p<0.001 for both). Ten formulations exceeded 30% transfection efficacy. This high non-viral efficacy was achieved with comparable cytotoxicity (23±6%) to controls; optimized formulations of Lipofectamine 2000 and X-tremeGENE HP DNA showed 15±3% and 32±9% toxicity respectively (p>0.05 for both). Our optimal polymer was also significantly better than a gold standard polymeric transfection reagent, branched 25 kDa polyethyleneimine (PEI), which achieved only 8±1% transfection efficacy with 25±6% cytotoxicity. Subretinal injections using lyophilized GFP-PBAE nanoparticles resulted in 1.1±1×103-fold and 1.5±0.7×103-fold increased GFP expression in the retinal pigment epithelium (RPE)/choroid and neural retina respectively, compared to injection of DNA alone (p = 0.003 for RPE/choroid, p<0.001 for neural retina). The successful transfection of the RPE in vivo suggests that these nanoparticles could be used to study a number of genetic diseases in the laboratory with the potential to treat debilitating eye diseases.
Collapse
Affiliation(s)
- Joel C. Sunshine
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah B. Sunshine
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Imran Bhutto
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - James T. Handa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jordan J. Green
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Green JJ. 2011 Rita Schaffer lecture: nanoparticles for intracellular nucleic acid delivery. Ann Biomed Eng 2012; 40:1408-18. [PMID: 22451256 DOI: 10.1007/s10439-012-0550-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
Nanoparticles are a promising technology for delivery of new types of therapeutics. A polymer library approach has allowed engineering of polymeric particles that are particularly effective for the delivery of DNA and siRNA to human cells. Certain chemical structural motifs, degradable linkages, hydrophobicity, and biophysical properties are key for successful intracellular delivery. Small differences to biomaterial structure, and especially the type of degradable linkage in the polymers, can be critical for successful delivery of siRNA vs. DNA. Furthermore, subtle changes to biomaterial structure can facilitate cell-type gene delivery specificity between human brain cancer cells and healthy cells as well as between human retinal endothelial cells and epithelial cells. These polymeric nanoparticles are effective for nucleic acid delivery in a broad range of human cell types and have applications to regenerative medicine, ophthalmology, and cancer among many other biomedical research areas.
Collapse
Affiliation(s)
- Jordan J Green
- Department of Biomedical Engineering, The Wilmer Eye Institute, The Institute for Nanobiotechnology, and The Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Smith 5017, Baltimore, MD 21231, USA.
| |
Collapse
|