1
|
Lam CD, Park S. Nanomechanical characterization of soft nanomaterial using atomic force microscopy. Mater Today Bio 2025; 31:101506. [PMID: 40018054 PMCID: PMC11867545 DOI: 10.1016/j.mtbio.2025.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Atomic force microscopy (AFM) is a promising method for generating high-spatial-resolution images, providing insightful perspectives on the nanomechanical attributes of soft matter, including cells, bacteria, viruses, proteins, and nanoparticles. AFM is widely used in biological and pharmaceutical sciences because it can scrutinize mechanical properties under physiological conditions. We comprehensively reviewed experimental techniques and fundamental mathematical models to investigate the mechanical properties, including elastic moduli and binding forces, of soft materials. To determine these mechanical properties, two-dimensional arrays of force-distance (f-d) curves are obtained through AFM indentation experiments using the force volume technique. For elasticity determination, models are divided into approach f-d curve-based models, represented by the Hertz model, and retract f-d curve-based models, exemplified by the Johnson-Kendall-Roberts and Derjaguin-Müller-Toporov models. Especially, the Chen, Tu, and Cappella models, developed from the Hertz model, are used for thin samples on hard substrates. Additionally, the establishment of physical or chemical bonds during indentation experiments, observable in retract f-d curves, is crucial for the adhesive properties of samples and binding affinity between antibodies (receptors) and antigens (ligands). Chemical force microscopy, single-molecule force spectroscopy, and single-cell force spectroscopy are primary AFM methods that provide a comprehensive view of such properties through retract curve analysis. Furthermore, this paper, structured into key thematic sections, also reviews the exemplary application of AFM across multiple scientific disciplines. Notably, cancer cells are softer than healthy cells, although more sophisticated investigations are required for prognostic applications. AFM also investigates how bacteria adapt to antibiotics, addressing antimicrobial resistance, and reveals that stiffer virus capsids indicate reduced infectivity, aiding in the development of new strategies to combat viral infections. Moreover, AFM paves the way for innovative therapeutic approaches in designing effective drug delivery systems by providing insights into the physical properties of soft nanoparticles and the binding affinity of target moieties. Our review provides researchers with representative studies applying AFM to a wide range of cross-disciplinary research.
Collapse
Affiliation(s)
- Chi-Dat Lam
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Soyeun Park
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| |
Collapse
|
2
|
Li S, Yang H, Tian F, Li W, Wang H, Shi X, Cui Z, Shan Y. Unveiling the Dynamic Mechanism of SARS-CoV-2 Entry Host Cells at the Single-Particle Level. ACS NANO 2024; 18:27891-27904. [PMID: 39353173 DOI: 10.1021/acsnano.4c04212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Understanding the dynamic features of severe acute respiratory coronavirus 2 (SARS-CoV-2) binding to the cell membrane and entry cells is crucial for comprehending viral pathogenesis and transmission and facilitating the development of effective drugs against COVID-19. Herein, we employed atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) to study the binding dynamics between the virus and cell membrane. Our findings revealed that the Omicron variant of SARS-CoV-2 virus-like particles (VLPs) exhibited a slightly stronger affinity for the angiotensin-converting enzyme-2 (ACE2) receptor compared with the Delta variant and was significantly higher than the wild-type (WT). Using a real-time force-tracing technique, we quantified the dynamic parameters for a single SARS-CoV-2 VLP entry into cells, showing that approximately 200 ms and 60 pN are required. The parameters aligned with the analysis obtained from coarse-grained molecular dynamics (CGMD) simulations. Additionally, the Omicron variant invades cells at a higher entry cell speed, smaller force, and higher probability. Furthermore, single-particle fluorescence tracking visually demonstrated clathrin-dependent endocytosis for SARS-CoV-2 entry into A549 cells. The dynamic features of endocytosis provide valuable insights into the SARS-CoV-2 entry mechanism and possible intervention strategies targeting the viral infection process.
Collapse
Affiliation(s)
- Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hui Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falin Tian
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinghua Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
3
|
Sun H, Wang J. Novel perspective for protein-drug interaction analysis: atomic force microscope. Analyst 2023; 148:454-474. [PMID: 36398684 DOI: 10.1039/d2an01591a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteins are major drug targets, and drug-target interaction identification and analysis are important factors for drug discovery. Atomic force microscopy (AFM) is a powerful tool making it possible to image proteins with nanometric resolution and probe intermolecular forces under physiological conditions. We review recent studies conducted in the field of target protein drug discovery using AFM-based analysis technology, including drug-driven changes in nanomechanical properties of protein morphology and interactions. Underlying mechanisms (including thermodynamic and kinetic parameters) of the drug-target interaction and drug-modulating protein-protein interaction (PPI) on the surfaces of models or living cells are discussed. Furthermore, challenges and the outlook for the field are likewise discussed. Overall, this insight into the mechanical properties of protein-drug interactions provides an unprecedented information framework for rational drug discovery in the pharmaceutical field.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
4
|
Liu J, Fan S, Xiang Y, Xia J, Jin H, Xu JF, Yang F, Cai J, Pi J. Nanoscale Features of Gambogic Acid Induced ROS-Dependent Apoptosis in Esophageal Cancer Cells Imaged by Atomic Force Microscopy. SCANNING 2022; 2022:1422185. [PMID: 35937670 PMCID: PMC9337977 DOI: 10.1155/2022/1422185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/07/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Gambogic acid (GA), a kind of polyprenylated xanthone derived from Garcinia hanburyi tree, has showed spectrum anticancer effects both in vitro and in vivo with low toxicity. However, up to now, there is little information about the effects of GA on esophageal cancer. In this study, we aim to test the anticancer effects of GA on esophageal cancer EC9706 cells. We established a nanoscale imaging method based on AFM to evaluate the reactive oxygen species- (ROS-) mediated anticancer effects of GA on esophageal cancer regarding the morphological and ultrastructural changes of esophageal cancer cells. The obtained results demonstrated that GA could inhibit cell proliferation, induce apoptosis, induce cell cycle arrest, and induce mitochondria membrane potential disruption in a ROS-dependent way. And using AFM imaging, we also found that GA could induce the damage of cellular morphology and increase of membrane height distribution and membrane roughness in EC9706 cells, which could be reversed by the removal of GA-induced excessive intracellular ROS. Our results not only demonstrated the anticancer effects of GA on EC9706 cells in ROS-dependent mechanism but also strongly suggested AFM as a powerful tool for the detection of ROS-mediated cancer cell apoptosis on the basis of imaging.
Collapse
Affiliation(s)
- Jianxin Liu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Shuhao Fan
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yinhong Xiang
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jiaojiao Xia
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jun-fa Xu
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Fen Yang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Jiang Pi
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
5
|
Qin J, Zhang M, Guan Y, Guo X, Li Z, Rankl C, Tang J. Imaging and quantifying analysis the binding behavior of PD-L1 at molecular resolution by atomic force microscopy. Anal Chim Acta 2022; 1191:339281. [PMID: 35033247 DOI: 10.1016/j.aca.2021.339281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Immunotherapy has emerged as an effective treatment modality for cancer. The interaction of programmed cell death ligand-1 (PD-L1) and programmed cell death protein-1 (PD-1) plays a key role in tumor-related immune escape and has become one of the most extensive targets for immunotherapy. Herein, we investigated the interaction of PD-L1 with its antibody and PD-1 using atomic force microscopy-based single molecule force spectroscopy for the first time. It was found that the PD-L1/anti-PD-L1 antibody complex was easier to dissociate than PD-L1/PD-1. The unbinding forces of specific interaction of PD-L1 on T24 cells with its antibody and PD-1 were quantitatively measured and similar to those on substrate. In addition, the location of PD-L1 on T24 cells was mapped at the single-molecule level by force-volume mapping. The force maps revealed that PD-L1 randomly distributed on T24 cells surface. The recognition events on cells obviously increased after INF-γ treatment, which proved that INF-γ up-regulated the expression of PD-L1 on T24 cells. These findings enrich our understanding of the molecular mechanisms by which PD-L1 interacts with its antibody and PD-1. It provides useful information for the physical factors that is needed to be considered in the design of inhibitors for tumor immunology.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Christian Rankl
- Research Center for Non Destructive Testing GmbH, Science Park 2/2. OG, Altenberger Straße 69, A-4040, Linz, Austria
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China.
| |
Collapse
|
6
|
Qin J, Zhang M, Guan Y, Li C, Ma X, Rankl C, Tang J. Investigation of the interaction between MeCP2 methyl-CpG binding domain and methylated DNA by single molecule force spectroscopy. Anal Chim Acta 2020; 1124:52-59. [PMID: 32534675 DOI: 10.1016/j.aca.2020.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
Abstract
MeCP2 is an essential transcriptional repressor that mediates transcriptional inhibition by binding to methylated DNA. The binding specificity of MeCP2 protein to methylated DNA was considered to depend on its methyl-CpG binding domain (MBD). In this study, we used atomic force microscope based single-molecular force spectroscopy to investigate the interaction of MeCP2 MBD and methylated DNA. The specific interaction forces of the MeCP2 MBD-methylated DNA complexes were measured for the first time. The dynamics was also investigated by measuring the unbinding force of the complex at different loading rates. In addition, the distribution of unbinding forces and binding probabilities of MeCP2 MBD and different DNA were studied at the same loading rate. It was found that MeCP2 MBD had weak interaction with hemi-methylated and unmethylated DNA compared to methylated DNA. This work revealed the binding characteristics of MeCP2 MBD and methylated DNA at the single-molecule level. It provides a new idea for exploring the molecular mechanism of MeCP2 in regulating methylation signals.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Chen Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Xingxing Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Christian Rankl
- RECENDT Research Center for Non Destructive Testing GmbH, Science Park 2/2.OG, Altenberger Straße 69, 4040 Linz, Austria
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
7
|
Kim H, Hoshi M, Iijima M, Kuroda S, Nakamura C. Development of a universal method for the measurement of binding affinities of antibody drugs towards a living cell based on AFM force spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2922-2927. [PMID: 32930215 DOI: 10.1039/d0ay00788a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A universal method to measure the binding affinities of antibody drugs towards their targets on the surface of living cells was developed based on atomic force microscopy (AFM) analysis. Nivolumab, an antibody drug targeting programmed cell death 1 (PD-1), was mainly used as a model for this evaluation. The surface of a tip-less AFM cantilever was coated with nano-capsules, on which immunoglobulin G-binding ZZ domains of protein A were exposed, and nivolumab molecules were immobilized on the cantilever through binding between the antibody Fc domains and the ZZ domains, which controlled the molecular orientation of the antibodies. Model human T lymphocytes (Jurkat), on which PD-1 molecules were highly expressed, were immobilized on a glass substrate via a lipid bilayer-anchoring reagent. The nivolumab-coated AFM cantilever was moved to approach the T cells, and the rupture forces between nivolumab molecules on the AFM cantilever and PD-1 molecules on the cell surface were measured. The average values of the rupture forces were 0.18 ± 0.10, 0.21 ± 0.18, 0.12 ± 0.07, 0.11 ± 0.06, and 0.12 ± 0.06 nN μm-2 at loading forces of 10, 20, 30, 40, and 50 nN, respectively. Application of significantly higher loading forces decreased the S/N ratio, as confirmed by comparison with control T cells with low PD-1 expression, which suggested that a low loading force of less than 20 nN was sufficient for these measurements. A correlation between the expression levels of PD-1 and the rupture force values was confirmed using immunofluorescence. A similar assay was performed by using an antibody drug targeting epidermal growth factor receptor (EGFR) and a model cancer cell expressing EGFR molecules (A431) to evaluate the universal application of the developed method for various antibody drugs, and the same conclusions as that in nivolumab's case were obtained. This method can be applied to living cells without any chemical treatment, which allows the present method to compare the affinities of various antibody drugs towards the same single cell. These results indicated that the present method is useful for selecting the most effective candidates from various antibody drugs from the point of view of binding forces between antibodies and living cells.
Collapse
Affiliation(s)
- Hyonchol Kim
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan.
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, Japan
| | - Masamichi Hoshi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan.
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, Japan
| | - Masumi Iijima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan
| | - Shun'ichi Kuroda
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Ibaraki, Japan
| | - Chikashi Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan.
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, Japan
| |
Collapse
|
8
|
Li M, Xi N, Wang Y, Liu L. Atomic Force Microscopy as a Powerful Multifunctional Tool for Probing the Behaviors of Single Proteins. IEEE Trans Nanobioscience 2020; 19:78-99. [DOI: 10.1109/tnb.2019.2954099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Ligand-Receptor Binding on Cell Membrane: Dynamic Force Spectroscopy Applications. Methods Mol Biol 2018. [PMID: 30374866 DOI: 10.1007/978-1-4939-8894-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Ligand-receptor recognition on the cell membrane enables the communication of cells with the extracellular environment. Atomic force microscopy (AFM)-based single-molecule dynamic force spectroscopy represents one of the most powerful techniques available to directly investigate ligand-receptor recognition under physiological conditions without considerable disruption to cells. It provides important information for research on biological processes, disease pathogenesis, and mechanism of drugs. Here we describe an example of applying single-molecule dynamic force spectroscopy to study the binding of epidermal growth factor (EGF) to its receptor EGFR, as well as the effect of two clinical drugs, Pertuzumab and Trastuzumab, on the interaction of EGF and EGFR.
Collapse
|
10
|
Li W, Kou X, Xu J, Zhou W, Zhao R, Zhang Z, Fang X. Characterization of Hepatitis C Virus Core Protein Dimerization by Atomic Force Microscopy. Anal Chem 2018; 90:4596-4602. [DOI: 10.1021/acs.analchem.7b05070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wenhui Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachao Xu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Li W, Xu J, Kou X, Zhao R, Zhou W, Fang X. Single-molecule force spectroscopy study of interactions between angiotensin II type 1 receptor and different biased ligands in living cells. Anal Bioanal Chem 2018; 410:3275-3284. [PMID: 29492619 DOI: 10.1007/s00216-018-0956-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/12/2018] [Accepted: 02/09/2018] [Indexed: 01/14/2023]
Abstract
Angiotensin II type 1 receptor (AT1R), a typical G protein-coupled receptor, plays a key role in regulating many cardiovascular functions. Different ligands can bind with AT1R to selectively activate either G protein (Gq) or β-arrestin (β-arr) pathway, or both pathways, but the molecular mechanism is not clear yet. In this work, we used, for the first time, atomic force microscopy-based single molecule force spectroscopy (SMFS) to study the interactions of AT1R with three types of ligands, balanced ligand, Gq-biased ligand, and β-arr-biased ligand, in living cells. The results revealed their difference in binding force and binding stability. The complex of the Gq-biased ligand-AT1R overcame two energy barriers with an intermediate state during dissociation, whereas that of β-arr-biased ligand-AT1R complex overcame one energy barrier. This indicated that AT1R had different ligand-binding conformational substates and underwent different structural changes to activate downstream signaling pathways with variable agonist efficacies. Quantitative analysis of AT1R-ligand binding in living cells at the single-molecule level offers a new tool to study the molecular mechanism of AT1R biased activation. Graphical Abstract Single-molecule force measurement on the living cell expressing AT1R-eGFP with a ligand modified AFM tip (left), the dynamic force spectra of β-arrestin biased ligands-AT1R (middle), and Gq-biased ligands-AT1R (right). The complexes of β-arr-biased ligand-AT1R overcame one energy barrier, with one linear region in the spectra, whereas the Gq-biased ligand-AT1R complexes overcame two energy barriers with two linear regions.
Collapse
Affiliation(s)
- Wenhui Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiachao Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolong Kou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Zemła J, Danilkiewicz J, Orzechowska B, Pabijan J, Seweryn S, Lekka M. Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin Cell Dev Biol 2018; 73:115-124. [DOI: 10.1016/j.semcdb.2017.06.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/27/2022]
|
13
|
Zhao R, Li N, Xu J, Li W, Fang X. Quantitative single-molecule study of TGF-β/Smad signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:51-59. [PMID: 29190315 DOI: 10.1093/abbs/gmx121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022] Open
Abstract
TGF-β/Smad signaling pathway triggers diverse cellular responses among different cell types and environmental conditions. Quantitative analysis of protein-protein interactions involved in TGF-β/Smad signaling is demanded for understanding the molecular mechanism of this signaling pathway. Live-cell single-molecule microcopy with high spatiotemporal resolution is a new tool to monitor key molecular events in a real-time manner. In this review, we mainly presented the recent work on the quantitative characterization of TGF-β/Smad signaling proteins by single-molecule method, and showed how it enabled us to obtain new insights about this canonical signaling process.
Collapse
Affiliation(s)
- Rong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachao Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Zhang Q, Shi Y, Xu H, Zhou L, Gao J, Jiang J, Cai M, Shan Y. Evaluating the efficacy of the anticancer drug cetuximab by atomic force microscopy. RSC Adv 2018; 8:21793-21797. [PMID: 35541738 PMCID: PMC9081852 DOI: 10.1039/c8ra03215g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Cetuximab is a monoclonal antibody that binds to the epidermal growth factor receptor, which is important in the growth of many cancers. However, the biophysical characteristics of cetuximab as an anti-cancer drug remain elusive. In this study, we adopted atomic force microscopy to measure the mechanical properties of cancer cells following cetuximab treatment and the biomechanical properties of cetuximab and epidermal growth factor receptor interactions. Atomic force microscopy can be implemented as a platform for further investigations that target the cellular stiffness and affinity of ligand–receptor as a therapeutic choice. Atomic force microscopy can be implemented as a platform for further investigations that target the cellular stiffness and affinity of ligand–receptor as a therapeutic choice.![]()
Collapse
Affiliation(s)
- Qingrong Zhang
- School of Chemistry and Life Science
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
- China
| | - Yan Shi
- Changchun Institute of Applied Chemistry
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Science
- Changchun
- China
| | - Haijiao Xu
- Changchun Institute of Applied Chemistry
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Science
- Changchun
- China
- University of Chinese Academy of Sciences
| | - Lulu Zhou
- Changchun Institute of Applied Chemistry
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Science
- Changchun
- China
- University of Chinese Academy of Sciences
| | - Jing Gao
- Changchun Institute of Applied Chemistry
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Science
- Changchun
- China
| | - Junguang Jiang
- Changchun Institute of Applied Chemistry
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Science
- Changchun
- China
| | - Mingjun Cai
- Changchun Institute of Applied Chemistry
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Science
- Changchun
- China
| | - Yuping Shan
- School of Chemistry and Life Science
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
- China
| |
Collapse
|
15
|
Li M, Dang D, Xi N, Wang Y, Liu L. Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: from single molecules to living cells. NANOSCALE 2017; 9:17643-17666. [PMID: 29135007 DOI: 10.1039/c7nr07023c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to the lack of adequate tools for observation, native molecular behaviors at the nanoscale have been poorly understood. The advent of atomic force microscopy (AFM) provides an exciting instrument for investigating physiological processes on individual living cells with molecular resolution, which attracts the attention of worldwide researchers. In the past few decades, AFM has been widely utilized to investigate molecular activities on diverse biological interfaces, and the performances and functions of AFM have also been continuously improved, greatly improving our understanding of the behaviors of single molecules in action and demonstrating the important role of AFM in addressing biological issues with unprecedented spatiotemporal resolution. In this article, we review the related techniques and recent progress about applying AFM to characterize biomolecular systems in situ from single molecules to living cells. The challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | | | | | | | | |
Collapse
|
16
|
Su Z, Sun H, Ao M, Zhao C. Atomic Force Microscopy Study of the Anti-inflammatory Effects of Triptolide on Rheumatoid Arthritis Fibroblast-like Synoviocytes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:1002-1012. [PMID: 28743324 DOI: 10.1017/s1431927617012399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High-resolution atomic force microscopy (AFM) was used for the in situ evaluation of the anti-inflammatory effects of triptolide on rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) to understand the anti-RA effects of triptolide, based on the morphological and biophysical changes observed in RA-FLS. RA-FLS have been reported to play a primary role in inflammatory bone destruction during the development of RA and thus are regarded as an important target for RA treatment. Triptolide pretreatment significantly inhibited tumor necrosis factor-α-induced expression of the interleukin (IL)-1β, IL-6, and IL-8 genes in MH7A cells. Using AFM, we showed that triptolide-induced morphological damage in MH7A cells by inducing significant ultrastructure changes in the membrane, which were closely related to triptolide-induced apoptosis in MH7A cells. Using force measurements determined with AFM, triptolide was shown to increase the stiffness of MH7A cells. These findings not only revealed the strong anti-inflammatory effects of triptolide on RA-FLS, highlighting triptolide as a potential anti-RA agent, but also revealed the possible use of AFM for studying anti-inflammatory responses in RA-FLS, which we expect to be developed into a potential tool for anti-RA drug studies in RA-FLS.
Collapse
Affiliation(s)
- Zhanhui Su
- Hebei Key Laboratory of Research and Development for Traditional Chinese Medicine, Institute of Chinese Materia Medica, Chengde Medical College, Chengde 067000, China
| | - Han Sun
- Chengde Nursing Vocational College, Chengde 067000, China
| | - Man Ao
- Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Chunying Zhao
- Hebei Key Laboratory of Research and Development for Traditional Chinese Medicine, Institute of Chinese Materia Medica, Chengde Medical College, Chengde 067000, China
| |
Collapse
|
17
|
Pi J, Jin H, Jiang J, Yang F, Cai H, Yang P, Cai J, Chen ZW. Single molecule force spectroscopy for in-situ probing oridonin inhibited ROS-mediated EGF-EGFR interactions in living KYSE-150 cells. Pharmacol Res 2017; 119:479-489. [PMID: 28411855 DOI: 10.1016/j.phrs.2016.11.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 10/19/2022]
Abstract
As the active anticancer component of Rabdosia Rubescens, oridonin has been proved to show strong anticancer activity in cancer cells, which is also found to be closely related to its specific inhibition effects on the EGFR tyrosine kinase activity. In this study, atomic force microscopy based single molecule force spectroscopy (AFM-SMFS) was used for real-time and in-situ detection of EGF-EGFR interactions in living esophageal cancer KYSE-150 cells to evaluate the anticancer activity of oridonin for the first time. Oridonin was found to induce apoptosis and also reduce EGFR expression in KYSE-150 cells. AFM-SMFS results demonstrated that oridonin could inhibit the binding between EGF and EGFR in KYSE-150 cells by decreasing the unbinding force and binding probability for EGF-EGFR complexes, which was further proved to be closely associated with the intracellular ROS level. More precise mechanism studies based on AFM-SMFS demonstrated that oridonin treatment could decrease the energy barrier width, increase the dissociation off rate constant and decrease the activation energy of EGF-EGFR complexes in ROS dependent way, suggesting oridonin as a strong anticancer agent targeting EGF-EGFR interactions in cancer cells through ROS dependent mechanism. Our results not only suggested oridonin as a strong anticancer agent targeting EGF-EGFR interactions in ROS dependent mechanism, but also highlighted AFM-SMFS as a powerful technique for pharmacodynamic studies by detecting ligand-receptor interactions, which was also expected to be developed into a promising tool for the screening and mechanism studies of drugs.
Collapse
Affiliation(s)
- Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago 60612, USA
| | - Hua Jin
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago 60612, USA
| | - Jinhuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Fen Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Huaihong Cai
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Peihui Yang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Jiye Cai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| | - Zheng W Chen
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago 60612, USA
| |
Collapse
|
18
|
Li Z, Wang Q, Yang X, Wang K, Du S, Zhang H, Gao L, Zheng Y, Nie W. Evaluating the Effect of Lidocaine on the Interactions of C-reactive Protein with Its Aptamer and Antibody by Dynamic Force Spectroscopy. Anal Chem 2017; 89:3370-3377. [PMID: 28231708 DOI: 10.1021/acs.analchem.6b03960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Effects of medicine on the biomolecular interaction have been given extensive attention in biochemistry and biomedicine because of the complexity of the environment in vivo and the increasing opportunity of exposure to medicine. Herein, the effect of lidocaine on the interactions of C-reactive protein (CRP) with its aptamer and antibody under different temperature was investigated through dynamic force spectroscopy (DFS). The results revealed that lidocaine could reduce the binding probabilities and binding affinities of the CRP-aptamer and the CRP-antibody. An interesting discovery was that lidocaine had differential influences on the dynamic force spectra of the CRP-aptamer and the CRP-antibody. The energy landscape of the CRP-aptamer turned from two activation barriers to one after the treatment of lidocaine, while the one activation barrier in energy landscape of the CRP-antibody almost remained unchanged. In addition, similar results were obtained for 25 and 37 °C. In accordance with the result of molecular docking, the reduction of binding probabilities might be due to the binding of lidocaine on CRP. Additionally, the alteration of the dissociation pathway of the CRP-aptamer and the change of binding affinities might be caused by the conformational change of CRP, which was verified through synchronous fluorescence spectroscopy. Furthermore, differential effects of lidocaine on the interactions of CRP-aptamer and CRP-antibody might be attributed to the different dissociation processes and binding sites of the CRP-aptamer and the CRP-antibody and different structures of the aptamer and the antibody. This work indicated that DFS provided information for further research and comprehensive applications of biomolecular interaction, especially in the design of biosensors in complex systems.
Collapse
Affiliation(s)
- Zhiping Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Shasha Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Lei Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Wenyan Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| |
Collapse
|
19
|
miR-217 and CAGE form feedback loop and regulates the response to anti-cancer drugs through EGFR and HER2. Oncotarget 2016; 7:10297-321. [PMID: 26863629 PMCID: PMC4891121 DOI: 10.18632/oncotarget.7185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNA array analysis revealed that miR-217 expression was decreased in anti-cancer drug-resistant Malme3MR cancer cells. CAGE, a cancer/testis antigen, was predicted as a target of miR-217. Luciferase activity and ChIP assays revealed a negative feedback relationship between CAGE and miR-217. miR-217 and CAGE oppositely regulated the response to anti-cancer drugs such as taxol, gefitinib and trastuzumab, an inhibitor of HER2. miR-217 negatively regulated the tumorigenic, metastatic, angiogenic, migration and invasion potential of cancer cells. The xenograft of Malme3MR cells showed an increased expression of pEGFRY845. CAGE and miR-217 inhibitor regulated the expression of pEGFRY845. CAGE showed interactions with EGFR and HER2 and regulated the in vivo sensitivity to trastuzumab. The down-regulation of EGFR or HER2 enhanced the sensitivity to anti-cancer drugs. CAGE showed direct regulation of HER2 and was necessary for the interaction between EGFR and HER2 in Malme3MR cells. miR-217 inhibitor induced interactions of CAGE with EGFR and HER2 in Malme3M cells. The inhibition of EGFR by CAGE-binding GTGKT peptide enhanced the sensitivity to gefitinib and trastuzumab and prevented interactions of EGFR with CAGE and HER2. Our results show that miR-217-CAGE feedback loop serves as a target for overcoming resistance to various anti-cancer drugs, including EGFR and HER2 inhibitors.
Collapse
|
20
|
Single-molecule force spectroscopy study of the effect of cigarette carcinogens on thrombomodulin–thrombin interaction. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1084-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Zhang L, Pi J, Shi Q, Cai J, Yang P, Liang Z. In situ single molecule detection of insulin receptors on erythrocytes from a type 1 diabetes ketoacidosis patient by atomic force microscopy. Analyst 2016; 140:7407-16. [PMID: 26405719 DOI: 10.1039/c5an01417d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Type 1 diabetes is an insulin-dependent metabolic disorder always associated with ketoacidosis and a high morbidity rate in teenagers. The in situ single molecule detection of insulin receptors on healthy and diseased erythrocytes is helpful to understand the pathomechanism of type 1 diabetes ketoacidosis (T1-DKA), which would also benefit the diagnosis and treatment of T1-DKA. Here, we demonstrated, for the first time, the single molecule interaction between insulin and insulin receptor on erythrocytes from a healthy volunteer and a T1-DKA patient using high sensitivity atomic force microscopy (AFM) in PBS solution. The single molecule force results demonstrated the decreased binding force and binding probability between insulin and insulin receptor on T1-DKA erythrocytes, implying the deficit of insulin receptor functions in T1-DKA. The binding kinetic parameters calculated from dynamic force spectroscopy indicated that the insulin-insulin receptor complexes on T1-DKA erythrocytes were less stable than those from healthy volunteer. Using high resolution AFM imaging, a decreased roughness was found both in intact T1-DKA erythrocytes and in the purified membrane of T1-DKA erythrocytes, and an increased stiffness was also found in T1-DKA erythrocytes. Moreover, AFM, which was used to investigate the single molecule interactions between insulin-insulin receptor, cell surface ultrastructure and stiffness in healthy and diseased erythrocytes, was expected to develop into a potential nanotool for pathomechanism studies of clinical samples at the nanoscale.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Chemistry, Jinan University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
22
|
Le Cigne A, Chièze L, Beaussart A, El-Kirat-Chatel S, Dufrêne YF, Dedieu S, Schneider C, Martiny L, Devy J, Molinari M. Analysis of the effect of LRP-1 silencing on the invasive potential of cancer cells by nanomechanical probing and adhesion force measurements using atomic force microscopy. NANOSCALE 2016; 8:7144-7154. [PMID: 26965453 DOI: 10.1039/c5nr08649c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP-1) can internalize proteases involved in cancer progression and is thus considered a promising therapeutic target. However, it has been demonstrated that LRP-1 is also able to regulate the endocytosis of membrane-anchored proteins. Thus, strategies that target LRP-1 to modulate proteolysis could also affect adhesion and cytoskeleton dynamics. Here, we investigated the effect of LRP-1 silencing on parameters reflecting cancer cells' invasiveness by atomic force microscopy (AFM). The results show that LRP-1 silencing induces changes in the cells' adhesion behavior, particularly the dynamics of cell attachment. Clear alterations in morphology, such as more pronounced stress fibers and increased spreading, leading to increased area and circularity, were also observed. The determination of the cells' mechanical properties by AFM showed that these differences are correlated with an increase in Young's modulus. Moreover, the measurements show an overall decrease in cell motility and modifications of directional persistence. An overall increase in the adhesion force between the LRP-1-silenced cells and a gelatin-coated bead was also observed. Ultimately, our AFM-based force spectroscopy data, recorded using an antibody directed against the β1 integrin subunit, provide evidence that LRP-1 silencing modifies the rupture force distribution. Together, our results show that techniques traditionally used for the investigation of cancer cells can be coupled with AFM to gain access to complementary phenotypic parameters that can help discriminate between specific phenotypes associated with different degrees of invasiveness.
Collapse
Affiliation(s)
- A Le Cigne
- Laboratoire de Recherche en Nanosciences LRN EA4682, Université de Reims Champagne-Ardenne, 21 rue Clément Ader, 51685 Reims Cedex 2, France.
| | - L Chièze
- Laboratoire de Recherche en Nanosciences LRN EA4682, Université de Reims Champagne-Ardenne, 21 rue Clément Ader, 51685 Reims Cedex 2, France.
| | - A Beaussart
- Institute of Life Sciences, Université Catholique de Louvain, Croix du Sud 4-5, bte L7.07.06, 1348 Louvain-la-neuve, Belgique
| | - S El-Kirat-Chatel
- Institute of Life Sciences, Université Catholique de Louvain, Croix du Sud 4-5, bte L7.07.06, 1348 Louvain-la-neuve, Belgique
| | - Y F Dufrêne
- Institute of Life Sciences, Université Catholique de Louvain, Croix du Sud 4-5, bte L7.07.06, 1348 Louvain-la-neuve, Belgique
| | - S Dedieu
- Laboratoire Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France.
| | - C Schneider
- Laboratoire Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France.
| | - L Martiny
- Laboratoire Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France.
| | - J Devy
- Laboratoire Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France.
| | - M Molinari
- Laboratoire de Recherche en Nanosciences LRN EA4682, Université de Reims Champagne-Ardenne, 21 rue Clément Ader, 51685 Reims Cedex 2, France.
| |
Collapse
|
23
|
Zhao L, Zhai J, Zhang X, Gao X, Fang X, Li J. Computational design of peptide-Au cluster probe for sensitive detection of α(IIb)β3 integrin. NANOSCALE 2016; 8:4203-4208. [PMID: 26831577 DOI: 10.1039/c5nr09175f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have designed a novel peptide-Au cluster probe to specifically bind to αIIbβ3 integrin. As indicated by molecular dynamics (MD) simulations, the binding mode of the native ligand of αIIbβ3 integrin, γC peptide, can be realized by the designed probe. More importantly, the peptide-Au probe can provide multiple coating peptides to form additional salt bridges with protein, and the binding stability of the probe is comparable to the native ligand. The designed probe was then successfully synthesized. The specific binding in a cellular environment was validated by colocalization analysis of confocal microscopy. In addition, the binding affinity was confirmed by atomic force microscopy (AFM) based single molecule force spectroscopy. Our results suggest the combination of computational design and experimental verification can be a useful strategy for the development of nanoprobes.
Collapse
Affiliation(s)
- Lina Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiao Zhai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuejie Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China. and Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xueyun Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jingyuan Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Shan Y, Wang H. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chem Soc Rev 2016; 44:3617-38. [PMID: 25893228 DOI: 10.1039/c4cs00508b] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.
Collapse
Affiliation(s)
- Yuping Shan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | | |
Collapse
|
25
|
Nevola L, Giralt E. Modulating protein-protein interactions: the potential of peptides. Chem Commun (Camb) 2015; 51:3302-15. [PMID: 25578807 DOI: 10.1039/c4cc08565e] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein-protein interactions (PPIs) have emerged as important and challenging targets in chemical biology and medicinal chemistry. The main difficulty encountered in the discovery of small molecule modulators derives from the large contact surfaces involved in PPIs when compared with those that participate in protein-small molecule interactions. Because of their intrinsic features, peptides can explore larger surfaces and therefore represent a useful alternative to modulate PPIs. The use of peptides as therapeutics has been held back by their instability in vivo and poor cell internalization. However, more than 200 peptide drugs and homologous compounds (proteins or antibodies) containing peptide bonds are (or have been) on the market, and many alternatives are now available to tackle these limitations. This review will focus on the latest progress in the field, spanning from "lead" identification methods to binding evaluation techniques, through an update of the most successful examples described in the literature.
Collapse
Affiliation(s)
- Laura Nevola
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, 08028 Barcelona, Spain.
| | | |
Collapse
|
26
|
Pi J, Cai H, Yang F, Jin H, Liu J, Yang P, Cai J. Atomic force microscopy based investigations of anti-inflammatory effects in lipopolysaccharide-stimulated macrophages. Anal Bioanal Chem 2015; 408:165-76. [PMID: 26476923 DOI: 10.1007/s00216-015-9091-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022]
Abstract
A new method based on atomic force microscopy (AFM) was developed to investigate the anti-inflammatory effects of drugs on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The LPS-stimulated RAW264.7 macrophage cell line is a widely used in vitro cell model for the screening of anti-inflammatory drugs or the study of anti-inflammatory mechanisms. In this work, the inhibitory effects of dexamethasone and quercetin on LPS-CD14 receptor binding in RAW264.7 macrophages was probed by LPS-functionalized tips for the first time. Both dexamethasone and quercetin were found to inhibit LPS-induced NO production, iNOS expression, IκBα phosphorylation, and IKKα/β phosphorylation in RAW264.7 macrophages. The morphology and ultrastructure of RAW264.7 macrophages were determined by AFM, which indicated that dexamethasone and quercetin could inhibit LPS-induced cell surface particle size and roughness increase in RAW264.7 macrophages. The binding of LPS and its receptor in RAW264.7 macrophages was determined by LPS-functionalized AFM tips, which demonstrated that the binding force and binding probability between LPS and CD14 receptor on the surface of RAW264.7 macrophages were also inhibited by dexamethasone or quercetin treatment. The obtained results imply that AFM, which is very useful for the investigation of potential targets for anti-inflammatory drugs on native macrophages and the enhancement of our understanding of the anti-inflammatory effects of drugs, is expected to be developed into a promising tool for the study of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Huaihong Cai
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Fen Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Hua Jin
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Jianxin Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Peihui Yang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Jiye Cai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China. .,Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
27
|
Liu J, Zhang X, Yang H, Yuan J, Wei H, Yu J, Fang X. Study of the interactions between endolysin and bacterial peptidoglycan on S. aureus by dynamic force spectroscopy. NANOSCALE 2015; 7:15245-15250. [PMID: 26324763 DOI: 10.1039/c5nr03525b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cell wall binding domain (CBD) of bacteriophage lysins can recognize target bacteria with extraordinary specificity through binding to bacterial peptidoglycan, thus it is a promising new probe to identify the corresponding bacterial pathogen. In this work, we used atomic force microscopy (AFM) based single-molecule force spectroscopy to investigate the interaction between the CBD of lysin PlyV12 (PlyV12C) and pathogenic bacterium Staphylococcus aureus (S. aureus). The binding forces of PlyV12C with S. aureus have been measured, and the dissociation process of their binding complex has been characterized. Furthermore, we compared the interactions of PlyV12C-S. aureus and antibody-S. aureus. It is revealed that PlyV12C has a comparable affinity to bacterial peptidoglycans as that of the S. aureus antibody. The results provide new information on the binding properties of lysin CBD with bacterium, and the application of lysin CBD in bacterium detection.
Collapse
Affiliation(s)
- Jianli Liu
- Beijing National Lab. for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy. Acta Pharmacol Sin 2015; 36:769-82. [PMID: 26027658 DOI: 10.1038/aps.2015.28] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Knowledge of the nanoscale changes that take place in individual cells in response to a drug is useful for understanding the drug action. However, due to the lack of adequate techniques, such knowledge was scarce until the advent of atomic force microscopy (AFM), which is a multifunctional tool for investigating cellular behavior with nanometer resolution under near-physiological conditions. In the past decade, researchers have applied AFM to monitor the morphological and mechanical dynamics of individual cells following drug stimulation, yielding considerable novel insight into how the drug molecules affect an individual cell at the nanoscale. In this article we summarize the representative applications of AFM in characterization of drug actions on cell membrane, including topographic imaging, elasticity measurements, molecular interaction quantification, native membrane protein imaging and manipulation, etc. The challenges that are hampering the further development of AFM for studies of cellular activities are aslo discussed.
Collapse
|
29
|
Cao M, Deng L, Xu H. Study of PNA–DNA hybridization by AFM-based single-molecule force spectroscopy. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Wang Q, Liu L, Yang X, Wang K, Chen N, Zhou C, Luo B, Du S. Evaluation of medicine effects on the interaction of myoglobin and its aptamer or antibody using atomic force microscopy. Anal Chem 2015; 87:2242-8. [PMID: 25615803 DOI: 10.1021/ac503885e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of medicine on the biomolecular interaction have been given increasing attention in biochemistry and affinity-based analytics since the environment in vivo is complex especially for the patients. Herein, myoglobin, a biomarker of acute myocardial infarction, was used as a model, and the medicine effects on the interactions of myoglobin/aptamer and myoglobin/antibody were systematically investigated using atomic force microscopy (AFM) for the first time. The results showed that the average binding force and the binding probability of myoglobin/aptamer almost remained unchanged after myoglobin-modified gold substrate was incubated with promazine, amoxicillin, aspirin, and sodium penicillin, respectively. These parameters were changed for myoglobin/antibody after the myoglobin-modified gold substrate was treated with these medicines. For promazine and amoxicillin, they resulted in the change of binding force distribution of myoglobin/antibody (i.e., from unimodal distribution to bimodal distribution) and the increase of binding probability; for aspirin, it only resulted in the change of the binding force distribution, and for sodium penicillin, it resulted in the increase of the average binding force and the binding probability. These results may be attributed to the different interaction modes and binding sites between myoglobin/aptamer and myoglobin/antibody, the different structures between aptamer and antibody, and the effects of medicines on the conformations of myoglobin. These findings could enrich our understanding of medicine effects on the interactions of aptamer and antibody to their target proteins. Moreover, this work will lay a good foundation for better research and extensive applications of biomolecular interaction, especially in the design of biosensors in complex systems.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha, Hunan 410082, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Formosa C, Lachaize V, Galés C, Rols MP, Martin-Yken H, François JM, Duval RE, Dague E. Mapping HA-tagged protein at the surface of living cells by atomic force microscopy. J Mol Recognit 2014; 28:1-9. [DOI: 10.1002/jmr.2407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 11/08/2022]
Affiliation(s)
- C. Formosa
- CNRS; LAAS; 7 avenue du Colonel Roche 31400 Toulouse France
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- CNRS; UMR 7565, SRSMC; Vandœuvre-lès-Nancy France
- Université de Lorraine; UMR 7565, Faculté de Pharmacie; Nancy France
| | - V. Lachaize
- CNRS; LAAS; 7 avenue du Colonel Roche 31400 Toulouse France
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale U1048; Université Toulouse III Paul Sabatier; 31432 Toulouse France
- CNRS; ITAV; 1 Place Pierre Potier 31000 Toulouse France
| | - C. Galés
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale U1048; Université Toulouse III Paul Sabatier; 31432 Toulouse France
- CNRS; ITAV; 1 Place Pierre Potier 31000 Toulouse France
| | - M. P. Rols
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- CNRS; IPBS, UMR 5089; 205 route de Narbonne 31077 Toulouse France
| | - H. Martin-Yken
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- INRA; UMR 972 LISBP; Toulouse France
| | - J. M. François
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- INRA; UMR 972 LISBP; Toulouse France
| | - R. E. Duval
- CNRS; UMR 7565, SRSMC; Vandœuvre-lès-Nancy France
- Université de Lorraine; UMR 7565, Faculté de Pharmacie; Nancy France
- ABC Platform®; Nancy France
| | - E. Dague
- CNRS; LAAS; 7 avenue du Colonel Roche 31400 Toulouse France
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- CNRS; ITAV; 1 Place Pierre Potier 31000 Toulouse France
| |
Collapse
|
32
|
Pi J, Jin H, Yang F, Chen ZW, Cai J. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine. NANOSCALE 2014; 6:12229-12249. [PMID: 25227707 DOI: 10.1039/c4nr04195j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In this review, we attempt to summarize the characteristics of these advanced techniques for use in the in situ single molecule imaging of cell membranes. We believe that this work will help to promote the technological and methodological developments of super-resolution techniques for the single molecule imaging of cell membranes and help researchers better understand which technique is most suitable for their future exploring of membrane biomolecules; ultimately promoting further developments in cell biology, immunology and medicine.
Collapse
Affiliation(s)
- Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technique, Macau, China.
| | | | | | | | | |
Collapse
|
33
|
Wang C, Yadavalli VK. Investigating biomolecular recognition at the cell surface using atomic force microscopy. Micron 2014; 60:5-17. [PMID: 24602267 DOI: 10.1016/j.micron.2014.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique.
Collapse
Affiliation(s)
- Congzhou Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
34
|
Zhang X, Liu Q, Xia T, Li N, He K, Wang C, Tan W, Fang X. Atomic force microscopy study of the effects of water-soluble fullerenes on the elasticity of living plant cells. Chem Asian J 2013; 8:2388-94. [PMID: 23929723 DOI: 10.1002/asia.201300522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/13/2013] [Indexed: 11/11/2022]
Abstract
In this work, atomic force microscopy (AFM) was employed to characterize the elastic properties of a living suspension of Nicotiana tabacum L. cv. Bright Yellow (BY-2) cells and to investigate the changes in plant-cell elasticity that were induced by water-soluble C70 fullerene derivatives. The results revealed different effects of the three fullerene derivatives that had different numbers of carboxylic groups on the cell elasticity. BY-2 cells that were repressed by dimalonic-acid-modified C70 fullerenes (DiF70) and trimalonic-acid-modified C70 fullerenes (TriF70) showed a clear decrease in their Young's modulus. However, the Young's modulus of cells that were treated with tetramalonic-acid-modified C70 fullerenes (TetraF70) increased. Disruption of the actin cytoskeleton arrangement was observed following treatment with DiF70 and TriF70, but not with TetraF70. Moreover, the fullerene-induced cell-elasticity change was consistent with the change in cell-proliferation rate. This work provides a new approach and valuable information for the study of the biological effect of nanomaterials on plant cells.
Collapse
Affiliation(s)
- Xuejie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun Beiyijie, Beijing 100190 (P. R. China), Fax: (+86) 10-62653083
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li M, Liu L, Xi N, Wang Y, Xiao X, Zhang W. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy. Biochem Biophys Res Commun 2013; 438:709-14. [PMID: 23916706 DOI: 10.1016/j.bbrc.2013.07.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 07/28/2013] [Indexed: 12/22/2022]
Abstract
Fc gamma receptors (FcγR), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of FcγRs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of FcγRs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of FcγRs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the FcγRs, revealing the nanoscale distribution of FcγRs on local areas of macrophages. The experimental results can improve our understanding of FcγRs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | | | | | | | | | | |
Collapse
|