1
|
Ye L, Tang J, Wang Z, Tan G. Comparative transcriptome analysis reveals pathogenic mechanisms of Colletotrichum gloeosporioides in figs (Ficus carica L.) infection. Microb Pathog 2025; 200:107319. [PMID: 39848296 DOI: 10.1016/j.micpath.2025.107319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Colletotrichum gloeosporioides is a pathogen responsible for causing anthracnose in Ficus carica L. (figs) and other fruits worldwide. Various stages of infection have been reported in C. gloeosporioides hosts; however, the molecular mechanisms underlying the differences in pathogen pathogenicity remain poorly understood. In this study, two strains (K7 and M5) of C. gloeosporioides isolated from fig leaves were compared. The K7 strain exhibited higher pathogenicity, faster mycelium growth, and quicker spore germination than M5 strain. To investigate the reasons for these differences, RNA sequencing was performed on samples collected 24 h post-infection from fig-infected K7 and M5 strains (K7-fig and M5-fig). Mycelia grown for 24 h on PDA plates (K7 and M5) were used as controls. A total of 143 differentially expressed genes (DEGs) were identified in C. gloeosporioides during fig infection, 79 DEGs of which were shared between K7 and M5. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of these 143 DEGs revealed significant enrichment in five pathways: aflatoxin biosynthesis, sphingolipid metabolism, aminoacyl-tRNA biosynthesis, nitrogen metabolism and the mitogen-activated protein kinase (MAPK) signaling pathway. Among the shared 79 DEGs, significant enrichment was observed in nitrogen metabolism, pentose phosphate pathway and aflatoxin biosynthesis in the infection process. Notably, pathways related to sphingolipid metabolism, aminoacyl-tRNA biosynthesis and MAPK signaling pathway-yeast in K7 were distinct from those in M5 during fig infection. These findings suggest that the high virulence of K7 may be associated with toxins produced via sphingolipid metabolism, aminoacyl-tRNA biosynthesis and MAPK signaling pathway-yeast. Therefore, this study provides valuable insights into the pathogenic biology of C. gloeosporioides.
Collapse
Affiliation(s)
- Lei Ye
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, China.
| | - Jianlin Tang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, China.
| | - Zhangxun Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, China.
| | - Genjia Tan
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
2
|
da Rosa Pinheiro T, Dantas GA, da Silva JLG, Leal DBR, da Silva RB, de Lima Burgo TA, Santos RCV, Iglesias BA. The First Report of In Vitro Antifungal and Antibiofilm Photodynamic Activity of Tetra-Cationic Porphyrins Containing Pt(II) Complexes against Candida albicans for Onychomycosis Treatment. Pharmaceutics 2023; 15:pharmaceutics15051511. [PMID: 37242753 DOI: 10.3390/pharmaceutics15051511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Onychomycosis is a prevalent nail fungal infection, and Candida albicans is one of the most common microorganisms associated with it. One alternative therapy to the conventional treatment of onychomycosis is antimicrobial photoinactivation. This study aimed to evaluate for the first time the in vitro activity of cationic porphyrins with platinum(II) complexes 4PtTPyP and 3PtTPyP against C. albicans. The minimum inhibitory concentration of porphyrins and reactive oxygen species was evaluated by broth microdilution. The yeast eradication time was evaluated using a time-kill assay, and a checkerboard assay assessed the synergism in combination with commercial treatments. In vitro biofilm formation and destruction were observed using the crystal violet technique. The morphology of the samples was evaluated by atomic force microscopy, and the MTT technique was used to evaluate the cytotoxicity of the studied porphyrins in keratinocyte and fibroblast cell lines. The porphyrin 3PtTPyP showed excellent in vitro antifungal activity against the tested C. albicans strains. After white-light irradiation, 3PtTPyP eradicated fungal growth in 30 and 60 min. The possible mechanism of action was mixed by ROS generation, and the combined treatment with commercial drugs was indifferent. The 3PtTPyP significantly reduced the preformed biofilm in vitro. Lastly, the atomic force microscopy showed cellular damage in the tested samples, and 3PtTPyP did not show cytotoxicity against the tested cell lines. We conclude that 3PtTPyP is an excellent photosensitizer with promising in vitro results against C. albicans strains.
Collapse
Affiliation(s)
- Ticiane da Rosa Pinheiro
- Graduate Program in Pharmaceutical Sciences, Center for Health Sciences, Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Gabrielle Aguiar Dantas
- Graduate Program in Pharmaceutical Sciences, Center for Health Sciences, Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | | | - Daniela Bitencourt Rosa Leal
- Laboratory of Experimental and Applied Immunology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | | | - Thiago Augusto de Lima Burgo
- Bioinorganic and Porphyrin Materials Laboratory, Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Roberto Christ Vianna Santos
- Graduate Program in Pharmaceutical Sciences, Center for Health Sciences, Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Bernardo Almeida Iglesias
- Department of Chemistry and Environmental Sciences, Ibilce, São Paulo State University (Unesp), São Jose do Rio Preto 15054-000, Brazil
| |
Collapse
|
3
|
HE YUAN. COLLOID–CELL INTERACTION ANALYSIS WITH ATOMIC FORCE MICROSCOPY — ζ CALCULATION AND ADHESION ANALYSIS. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422500373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The interaction between cells and colloids is an important characteristic that influences cell behavior. Theoretically, much information could be revealed by analyzing the interactions in colloid–cell contact. In this study, in order to explore the interaction between cells and colloids, we developed a novel computational method able to obtain a zeta potential directly calculated from the force distance curve and apply to adhesion analysis, which used atomic force microscope (AFM), based on DLVO (Deryaguin–Landau–Verwey–Overbeek) theory and Mann Whitney U test, and combined with Zetasizer measurement. The calculation and analysis of [Formula: see text] of the cell surfaces of ncyc-1324 yeast, ncyc-1681 yeast and Pseudomonas fluorescens showed that pH affected the electrostatic distribution on the cell surface. Compared with the previous research methods, this method significantly reduces the computation and manual control, which is an effective method for multi-element surface analysis and comparison. For example, the reverse calculation and curve fitting method will significantly request more computation and manual control to set up the reference force curve that simulated with set zeta potential, while this method only need to calculate on one force curve. The deconvolution of different adhesion events from force curves showed that the heterogeneity of cell surface can be significantly displayed. This provides a method for determining the complexity of the cell surface. Furthermore, this method was used to study the effect of amoxicillin on cell surface interaction, which showed that the cells surface forces were influenced even the medicine concentration is not enough to make significant influence on microbials optical observation appearance. Thus, AFM force analysis is a more sensitive method to research the medicine influence compared to the traditional method.
Collapse
Affiliation(s)
- YUAN HE
- Engineering School, Swansea University, Swansea, SA1 8EN, Wales, UK
| |
Collapse
|
4
|
Carotenuto R, Tussellino M, Ronca R, Benvenuto G, Fogliano C, Fusco S, Netti PA. Toxic effects of SiO 2NPs in early embryogenesis of Xenopuslaevis. CHEMOSPHERE 2022; 289:133233. [PMID: 34896176 DOI: 10.1016/j.chemosphere.2021.133233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The exposure of organisms to the nanoparticulate is potentially hazardous, particularly when it occurs during embryogenesis. The effects of commercial SiO2NPs in early development were studied, using Xenopus laevis as a model to investigate their possible future employment by means of the Frog Embryo Teratogenesis Assay-Xenopus test (FETAX). The SiO2NPs did not change the survival but produced several abnormalities in developing embryos, in particular, the dorsal pigmentation, the cartilages of the head and branchial arches were modified; the encephalon, spinal cord and nerves are anomalous and the intestinal brush border show signs of suffering; these embryos are also bradycardic. In addition, the expression of genes involved in the early pathways of embryo development was modified. Treated embryos showed an increase of reactive oxygen species. This study suggests that SiO2NPs are toxic but non-lethal and showed potential teratogenic effects in Xenopus. The latter may be due to their cellular accumulation and/or to the effect caused by the interaction of SiO2NPs with cytoplasmic and/or nuclear components. ROS production could contribute to the observed effects. In conclusion, the data indicates that the use of SiO2NPs requires close attention and further studies to better clarify their activity in animals, including humans.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | - Raffaele Ronca
- Institute of Biostructures and Bioimaging (IBB)-CNR, Naples, Italy
| | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Italian Institute of Technology, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy; Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae. Pathogens 2021; 10:pathogens10111509. [PMID: 34832664 PMCID: PMC8617999 DOI: 10.3390/pathogens10111509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has a remarkable ability to adapt its lifestyle to fluctuating or hostile environmental conditions. This adaptation most often involves morphological changes such as pseudofilaments, biofilm formation, or cell aggregation in the form of flocs. A prerequisite for these phenotypic changes is the ability to self-adhere and to adhere to abiotic surfaces. This ability is conferred by specialized surface proteins called flocculins, which are encoded by the FLO genes family in this yeast species. This mini-review focuses on the flocculin encoded by FLO11, which differs significantly from other flocculins in domain sequence and mode of genetic and epigenetic regulation, giving it an impressive plasticity that enables yeast cells to swiftly adapt to hostile environments or into new ecological niches. Furthermore, the common features of Flo11p with those of adhesins from pathogenic yeasts make FLO11 a good model to study the molecular mechanism underlying cell adhesion and biofilm formation, which are part of the initial step leading to fungal infections.
Collapse
|
6
|
Bouyx C, Schiavone M, Teste MA, Dague E, Sieczkowski N, Julien A, François JM. The dual role of amyloid-β-sheet sequences in the cell surface properties of FLO11-encoded flocculins in Saccharomyces cerevisiae. eLife 2021; 10:e68592. [PMID: 34467855 PMCID: PMC8457840 DOI: 10.7554/elife.68592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/29/2021] [Indexed: 11/21/2022] Open
Abstract
Fungal adhesins (Als) or flocculins are family of cell surface proteins that mediate adhesion to diverse biotic and abiotic surfaces. A striking characteristic of Als proteins originally identified in the pathogenic Candida albicans is to form functional amyloids that mediate cis-interaction leading to the formation of adhesin nanodomains and trans-interaction between amyloid sequences of opposing cells. In this report, we show that flocculins encoded by FLO11 in Saccharomyces cerevisiae behave like adhesins in C. albicans. To do so, we show that the formation of nanodomains under an external physical force requires a threshold number of amyloid-forming sequences in the Flo11 protein. Then, using a genome editing approach, we constructed strains expressing variants of the Flo11 protein under the endogenous FLO11 promoter, leading to the demonstration that the loss of amyloid-forming sequences strongly reduces cell-cell interaction but has no effect on either plastic adherence or invasive growth in agar, both phenotypes being dependent on the N- and C-terminal ends of Flo11p. Finally, we show that the location of Flo11 is not altered either by the absence of amyloid-forming sequences or by the removal of the N- or C-terminus of the protein.
Collapse
Affiliation(s)
- Clara Bouyx
- Toulouse Biotechnology Institute, INSAToulouseFrance
| | - Marion Schiavone
- Toulouse Biotechnology Institute, INSAToulouseFrance
- Lallemand, Lallemand SASBlagnacFrance
| | | | | | | | | | | |
Collapse
|
7
|
Lipke PN, Mathelié-Guinlet M, Viljoen A, Dufrêne YF. A New Function for Amyloid-Like Interactions: Cross-Beta Aggregates of Adhesins form Cell-to-Cell Bonds. Pathogens 2021; 10:pathogens10081013. [PMID: 34451476 PMCID: PMC8398270 DOI: 10.3390/pathogens10081013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
Amyloid structures assemble through a repeating type of bonding called "cross-β", in which identical sequences in many protein molecules form β-sheets that interdigitate through side chain interactions. We review the structural characteristics of such bonds. Single cell force microscopy (SCFM) shows that yeast expressing Als5 adhesin from Candida albicans demonstrate the empirical characteristics of cross-β interactions. These properties include affinity for amyloid-binding dyes, birefringence, critical concentration dependence, repeating structure, and inhibition by anti-amyloid agents. We present a model for how cross-β bonds form in trans between two adhering cells. These characteristics also apply to other fungal adhesins, so the mechanism appears to be an example of a new type of cell-cell adhesion.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Correspondence: ; Tel.: +1-(917)-696-4862
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| |
Collapse
|
8
|
Beaussart A, Feuillie C, El-Kirat-Chatel S. The microbial adhesive arsenal deciphered by atomic force microscopy. NANOSCALE 2020; 12:23885-23896. [PMID: 33289756 DOI: 10.1039/d0nr07492f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbes employ a variety of strategies to adhere to abiotic and biotic surfaces, as well as host cells. In addition to their surface physicochemical properties (e.g. charge, hydrophobic balance), microbes produce appendages (e.g. pili, fimbriae, flagella) and express adhesion proteins embedded in the cell wall or cell membrane, with adhesive domains targeting specific ligands or chemical properties. Atomic force microscopy (AFM) is perfectly suited to deciphering the adhesive properties of microbial cells. Notably, AFM imaging has revealed the cell wall topographical organization of live cells at unprecedented resolution, and AFM has a dual capability to probe adhesion at the single-cell and single-molecule levels. AFM is thus a powerful tool for unravelling the molecular mechanisms of microbial adhesion at scales ranging from individual molecular interactions to the behaviours of entire cells. In this review, we cover some of the major breakthroughs facilitated by AFM in deciphering the microbial adhesive arsenal, including the exciting development of anti-adhesive strategies.
Collapse
|
9
|
Cieśluk M, Deptuła P, Piktel E, Fiedoruk K, Suprewicz Ł, Paprocka P, Kot P, Pogoda K, Bucki R. Physics Comes to the Aid of Medicine-Clinically-Relevant Microorganisms through the Eyes of Atomic Force Microscope. Pathogens 2020; 9:pathogens9110969. [PMID: 33233696 PMCID: PMC7699805 DOI: 10.3390/pathogens9110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
Despite the hope that was raised with the implementation of antibiotics to the treatment of infections in medical practice, the initial enthusiasm has substantially faded due to increasing drug resistance in pathogenic microorganisms. Therefore, there is a need for novel analytical and diagnostic methods in order to extend our knowledge regarding the mode of action of the conventional and novel antimicrobial agents from a perspective of single microbial cells as well as their communities growing in infected sites, i.e., biofilms. In recent years, atomic force microscopy (AFM) has been mostly used to study different aspects of the pathophysiology of noninfectious conditions with attempts to characterize morphological and rheological properties of tissues, individual mammalian cells as well as their organelles and extracellular matrix, and cells’ mechanical changes upon exposure to different stimuli. At the same time, an ever-growing number of studies have demonstrated AFM as a valuable approach in studying microorganisms in regard to changes in their morphology and nanomechanical properties, e.g., stiffness in response to antimicrobial treatment or interaction with a substrate as well as the mechanisms behind their virulence. This review summarizes recent developments and the authors’ point of view on AFM-based evaluation of microorganisms’ response to applied antimicrobial treatment within a group of selected bacteria, fungi, and viruses. The AFM potential in development of modern diagnostic and therapeutic methods for combating of infections caused by drug-resistant bacterial strains is also discussed.
Collapse
Affiliation(s)
- Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Patrycja Kot
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
- Correspondence:
| |
Collapse
|
10
|
Hammond K, Ryadnov MG, Hoogenboom BW. Atomic force microscopy to elucidate how peptides disrupt membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183447. [PMID: 32835656 DOI: 10.1016/j.bbamem.2020.183447] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy is an increasingly attractive tool to study how peptides disrupt membranes. Often performed on reconstituted lipid bilayers, it provides access to time and length scales that allow dynamic investigations with nanometre resolution. Over the last decade, AFM studies have enabled visualisation of membrane disruption mechanisms by antimicrobial or host defence peptides, including peptides that target malignant cells and biofilms. Moreover, the emergence of high-speed modalities of the technique broadens the scope of investigations to antimicrobial kinetics as well as the imaging of peptide action on live cells in real time. This review describes how methodological advances in AFM facilitate new insights into membrane disruption mechanisms.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; Department of Physics, King's College London, Strand Lane, London WC2R 2LS, UK.
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Schiavone M, Sieczkowski N, Castex M, Trevisiol E, Dague E, François JM. AFM dendritips functionalized with molecular probes specific to cell wall polysaccharides as a tool to investigate cell surface structure and organization. Cell Surf 2020; 5:100027. [PMID: 32743143 PMCID: PMC7389267 DOI: 10.1016/j.tcsw.2019.100027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Functionalisation of AFM dendritips with conA, WGA and anti-β-1,3/β-1, 6-glucan antibodies. Cell wall polysaccharides were immobilized on epoxy-activated glass slides. Specific binding of immobilized polysaccharides to functionalized dendritips. Functionalized dendritips used as a new tool to probe yeast cell surface.
The yeast cell wall is composed of mannoproteins, β-1,3/β-1, 6-glucans and chitin. Each of these components has technological properties that are relevant for industrial and medical applications. To address issues related to cell wall structure and alteration in response to stress or conditioning processes, AFM dendritips were functionalized with biomolecules that are specific for each of the wall components, which was wheat germ agglutinin (WGA) for chitin, concanavalin A (ConA) for mannans and anti-β-1,3/anti-β-1,6-glucan antibodies for β-1,3/β-1,6-glucans. Binding specificity of these biomolecules were validated using penta-N-acetylchitopentaose, α-mannans, laminarin (short β-1,3-glucan chain) and gentiobiose (2 glucose units linked in β 1→6) immobilized on epoxy glass slides. Dynamic force spectroscopy was employed to obtain kinetic and thermodynamic information on the intermolecular interaction of the binary complexes using the model of Friddle-Noy-de Yoreo. Using this model, transition state distance xt, dissociate rate koff and the lowest force (feq) required to break the intermolecular bond of the complexes were approximated. These functionalized dendritips were then used to probe the yeast cell surface treated with a bacterial protease. As expected, this treatment, which removed the outer layer of the cell wall, gave accessibility to the inner layer composed of β-glucans. Likewise, bud scars were nicely localized using AFM dendritip bearing the WGA probe. To conclude, these functionalized AFM dendritips constitute a new toolbox that can be used to investigate cell surface structure and organization in response to a wide arrays of cultures and process conditions.
Collapse
Affiliation(s)
- Marion Schiavone
- LISBP, UMR INSA-CNRS 5504 & INRA 792, F-31077 Toulouse, France.,Lallemand SAS, 19, rue des briquetiers, 31702 Blagnac, France
| | | | - Mathieu Castex
- Lallemand SAS, 19, rue des briquetiers, 31702 Blagnac, France
| | | | - Etienne Dague
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | |
Collapse
|
12
|
Li W, Wang H, Xu XG, Yu Y. Simultaneous Nanoscale Imaging of Chemical and Architectural Heterogeneity on Yeast Cell Wall Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6169-6177. [PMID: 32419466 PMCID: PMC7882198 DOI: 10.1021/acs.langmuir.0c00627] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Particles extracted from yeast cell walls are naturally occurring immunomodulators with significant therapeutic applications. Their biological function has been thought to be a consequence of the overall chemical composition. In contrast, here we achieve direct nanoscale visualization of the compositional and structural heterogeneity of yeast cell wall particles and demonstrate that such nanoscale heterogeneity directly influences the receptor function of immune cells. By combining peak force infrared (PFIR) microscopy with super-resolution fluorescence microscopy, we achieve simultaneous chemical, topographical, and mechanical mapping of cell wall particles extracted from the yeast Saccharomyces cerevisiae with ≈6 nm resolution. We show that polysaccharides (β-glucan and chitin) and proteins are organized in specific nonuniform structures, and their heterogeneous spatial organization leads to heterogeneous recruitment of receptors on immune cell membranes. Our findings indicate that the biological function of yeast cell wall particles depends on not only their overall composition but also the nanoscale distribution of the different cell wall components.
Collapse
Affiliation(s)
- Wenqian Li
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
13
|
El-Kirat-Chatel S, Beaussart A, Mathelié-Guinlet M, Dufrêne YF. The importance of force in microbial cell adhesion. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Abstract
Microbial adhesion and biofilm formation are usually studied using molecular and cellular biology assays, optical and electron microscopy, or laminar flow chamber experiments. Today, atomic force microscopy (AFM) represents a valuable addition to these approaches, enabling the measurement of forces involved in microbial adhesion at the single-molecule level. In this minireview, we discuss recent discoveries made applying state-of-the-art AFM techniques to microbial specimens in order to understand the strength and dynamics of adhesive interactions. These studies shed new light on the molecular mechanisms of adhesion and demonstrate an intimate relationship between force and function in microbial adhesins.
Collapse
|
15
|
ZOU W, HONG G, YAMAZAKI Y, TAKASE K, OGAWA T, WASHIO J, TAKAHASHI N, SASAKI K. Use of cellulose nanofibers as a denture immersing solution. Dent Mater J 2020; 39:80-88. [DOI: 10.4012/dmj.2018-388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Wei ZOU
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University
| | - Guang HONG
- Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University
- Faculty of Dental Medicine, Airlangga University
| | - Yukiko YAMAZAKI
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University
| | - Kazuma TAKASE
- Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University
| | - Toru OGAWA
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University
| | - Jumpei WASHIO
- Division of Oral Ecology and Biochemistry, Graduate School of Dentistry, Tohoku University
| | - Nobuhiro TAKAHASHI
- Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University
| | - Keiichi SASAKI
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University
| |
Collapse
|
16
|
Mathelié-Guinlet M, Viela F, Viljoen A, Dehullu J, Dufrêne YF. Single-molecule atomic force microscopy studies of microbial pathogens. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Beaussart A, El-Kirat-Chatel S. Microbial adhesion and ultrastructure from the single-molecule to the single-cell levels by Atomic Force Microscopy. Cell Surf 2019; 5:100031. [PMID: 32743147 PMCID: PMC7389263 DOI: 10.1016/j.tcsw.2019.100031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/29/2022] Open
Abstract
In the last decades, atomic force microscopy (AFM) has evolved towards an accurate and lasting tool to study the surface of living cells in physiological conditions. Through imaging, single-molecule force spectroscopy and single-cell force spectroscopy modes, AFM allows to decipher at multiple scales the morphology and the molecular interactions taking place at the cell surface. Applied to microbiology, these approaches have been used to elucidate biophysical properties of biomolecules and to directly link the molecular structures to their function. In this review, we describe the main methods developed for AFM-based microbial surface analysis that we illustrate with examples of molecular mechanisms unravelled with unprecedented resolution.
Collapse
|
18
|
Tokarska-Rodak M, Czernik S, Chwedczuk M, Plewik D, Grudniewski T, Pawłowicz-Sosnowska ET. The analysis of nanomechanical properties of Candida spp. by atomic force microscopy (AFM) method. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.3449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of the study was to analyze the selected nanomechanical properties of Candida spp: Candida albicans (standard strain ATCC 10231), Candida albicans (clinical strain, cultured from an oral swab), Candida lipolytica (clinical strain, cultured from a nosal swab) in atomic force microscopy (AFM).
The culture Candida spp. was performed of Tryptone Soya Broth (BioMaxima). The topography and sample properties were analysed in AFM (Ntegra Spectra C from NT) and the results were carried out using NOVA 1.1.0.1824 software.
C. albicans ATCC 10231 cells were significantly higher 1.81 μm (p = 0.001) from clinical strains: C. albicans (1.30 μm) and C. lipolytica (1.23 μm). C. albicans ATCC 10231 cells, and C. albicans cells of the clinical strain were softer, especially in the top parts of cells, than C. lipolytica cells. Adhesion force measured for C. albicans ATCC 10231 was 62.83 nN, and was significantly higher compared to the values obtained for C. albicans (41.93 nN,
p = 0.0002 ) and C. lipolytica (41.78 nN, p = 0.0002 ). The stiffness of the Candida spp. cell surface was comparable and was in the range of 5–6 nA.
The differences in height may result from different conditions in which clinical strains grow. Adhesion force can be helpful in the analysis of the degree of destruction of the cell wall by various substances. The conducted analyses showed morphological differences and the differences in mechanical properties of the researched Candida spp. This data may be important in assessing their susceptibility to the effects of various substances of a lytic nature.
Collapse
Affiliation(s)
- Małgorzata Tokarska-Rodak
- Institute of Health Sciences, Pope John Paul II State School of Higher Education in Biala Podlaska, Poland
| | - Sławomir Czernik
- Innovation Research Centre, Pope John Paul II State School of Higher Education in Biala Podlaska, Poland
| | - Marta Chwedczuk
- Innovation Research Centre, Pope John Paul II State School of Higher Education in Biala Podlaska, Poland
| | - Dorota Plewik
- Institute of Health Sciences, Pope John Paul II State School of Higher Education in Biala Podlaska, Poland
| | - Tomasz Grudniewski
- Institute of Technical Sciences, Pope John Paul II State School of Higher Education in Biala Podlaska, Poland
| | | |
Collapse
|
19
|
Kumar M, Shanthi N, Mahato AK, Soni S, Rajnikanth PS. Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon 2019; 5:e01688. [PMID: 31193099 PMCID: PMC6517330 DOI: 10.1016/j.heliyon.2019.e01688] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Superficial fungal infection in immunocompromised patients can lead to many disorders and complications. Currently, new topical treatment options are critically needed to treat these fungal infections. Luliconazole (LZL) is a topical antifungal medicine used for fungal infection treatment. The purpose of this paper was to develop a new topical luliconazole nanocrystal (LNC) incorporated hydrogel. This study suggested the potential benefits of LNC embedded in a gel as a drug delivery system for topical antifungal treatments. Preliminary experiments were therefore carried out to characterize the LNC in comparison with raw drug. Prepared gel was homogeneous for human use with about 88 percent trapping, non-irritant and safe. Nano-systems showed an overall 5 fold enhancement in solubility, 4 fold increase in dissolution velocity, higher skin retention and better antifungal activity. Drugs retained from LNC hydrogel (N-GEL) in different skin layers within 8 h were the highest, i.e. 62.17% compared to coarse suspension (41.87%), nanosuspension (49.77%), D-GEL (55.76%). In addition, LNC and N-GEL had higher ZOI (41.20 ± 0.61mm and 44.25 ± 0.57mm respectively) than LZL and D-GEL (35.98 ± 0.81mm and 36.83 ± 0.83mm respectively). Therefore, it was observed that LNC loaded hydrogel was more effective in killing the fungus. Consequently, hydrogel incorporated with LNC could be a new approach with improved activity and increased dermal delivery for drugs with poor aqueous solubility rather than coarse drug containing gel.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Balawala, Dehradun, Uttarakhand, India.,Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Nithya Shanthi
- Department of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Balawala, Dehradun, Uttarakhand, India
| | - Arun Kumar Mahato
- Department of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Balawala, Dehradun, Uttarakhand, India
| | - Shashank Soni
- Department of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Balawala, Dehradun, Uttarakhand, India
| | - P S Rajnikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| |
Collapse
|
20
|
The Anti- Candida albicans Agent 4-AN Inhibits Multiple Protein Kinases. Molecules 2019; 24:molecules24010153. [PMID: 30609757 PMCID: PMC6337409 DOI: 10.3390/molecules24010153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/17/2022] Open
Abstract
Small molecules containing quinone and/or oxime moieties have been found as promising anti-fungal agents. One of them is 4-AN, a recently reported potent anti-Candida compound, which inhibits the formation of hyphae, decreases the level of cellular phosphoproteome, and finally shows no toxicity towards human erythrocytes and zebrafish embryos. Here, further research on 4-AN is presented. The results revealed that the compound: (i) Kills Candida clinical isolates, including these with developed antibiotic resistance, (ii) affects mature biofilm, and (iii) moderately disrupts membrane permeability. Atomic force microscopy studies revealed a slight influence of 4-AN on the cell surface architecture. 4-AN was also shown to inhibit multiple various protein kinases, a characteristic shared by most of the ATP-competitive inhibitors. The presented compound can be used in novel strategies in the fight against candidiasis, and reversible protein phosphorylation should be taken into consideration as a target in designing these strategies.
Collapse
|
21
|
Martin-Yken H, Bedekovic T, Brand AC, Richard ML, Znaidi S, d'Enfert C, Dague E. A conserved fungal hub protein involved in adhesion and drug resistance in the human pathogen Candida albicans. Cell Surf 2018; 4:10-19. [PMID: 32743132 PMCID: PMC7389261 DOI: 10.1016/j.tcsw.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022] Open
Abstract
Drug resistance and cellular adhesion are two key elements of both dissemination and prevalence of the human fungal pathogen Candida albicans. Smi1 belongs to a family of hub proteins conserved among the fungal kingdom whose functions in cellular signaling affect morphogenesis, cell wall synthesis and stress resistance. The data presented here indicate that C. albicans SMI1 is a functional homolog of Saccharomyces cerevisiae KNR4 and is involved in the regulation of cell wall synthesis. Expression of SMI1 in S. cerevisiae knr4Δ null mutants rescued their sensitivity to caspofungin and to heat stress. Deletion of SMI1 in C. albicans resulted in sensitivity to the cell-wall-perturbing compounds Calcofluor White and Caspofungin. Analysis of wild-type and mutant cells by Atomic Force Microscopy showed that the Young's Modulus (stiffness) of the cell wall was reduced by 85% upon deletion of SMI1, while cell surface adhesion measured by Force Spectroscopy showed that the surface expression of adhesive molecules was also reduced in the mutant. Over-expression of SMI1, on the contrary, increased cell surface adhesion by 6-fold vs the control strain. Finally, Smi1-GFP localized as cytoplasmic patches and concentrated spots at the sites of new cell wall synthesis including the tips of growing hyphae, consistent with a role in cell wall regulation. Thus, Smi1 function appears to be conserved across fungi, including the yeast S. cerevisiae, the yeast and hyphal forms of C. albicans and the filamentous fungus Neurospora crassa.
Collapse
Affiliation(s)
- Hélène Martin-Yken
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- LAAS CNRS UPR 8001, Université de Toulouse, Toulouse, France
| | - Tina Bedekovic
- MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alexandra C. Brand
- MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Sadri Znaidi
- Institut Pasteur de Tunis, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, Tunis-Belvédère, Tunisia
- Institut Pasteur, INRA USC2019, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, INRA USC2019, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| | - Etienne Dague
- LAAS CNRS UPR 8001, Université de Toulouse, Toulouse, France
| |
Collapse
|
22
|
Towards a better understanding of the flocculation/flotation mechanism of the marine microalgae Phaeodactylum tricornutum under increased pH using atomic force microscopy. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Cierech M, Osica I, Kolenda A, Wojnarowicz J, Szmigiel D, Łojkowski W, Kurzydłowski K, Ariga K, Mierzwińska-Nastalska E. Mechanical and Physicochemical Properties of Newly Formed ZnO-PMMA Nanocomposites for Denture Bases. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E305. [PMID: 29734781 PMCID: PMC5977319 DOI: 10.3390/nano8050305] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 11/17/2022]
Abstract
AIM The aim of this study was to investigate the selected properties of zinc oxide- polymethyl methacrylate (ZnO-PMMA) nanocomposites that can influence the microorganism deposition on their surface. MATERIALS AND METHODS Non-commercial ZnO-NPs were prepared, characterized and used for the preparation of PMMA nanocomposite. Roughness, absorbability, contact angle and hardness of this new nanomaterial were evaluated. PMMA without ZnO-NPs served as control. OUTCOMES Compared to unenriched PMMA, incorporation of ZnO-NPs to 7.5% for PMMA nanocomposite increases the hardness (by 5.92%) and the hydrophilicity. After modification of the material with zinc oxide nanoparticles the roughness parameter did not change. All tested materials showed absorption within the range of 1.82 to 2.03%, which meets the requirements of International Organization for Standardization (ISO) standards for denture base polymers. CONCLUSIONS The results showed no significant deterioration in the properties of acrylic resin that could disqualify the nanocomposite for clinical use. Increased hydrophilicity and hardness with absorbability within the normal range can explain the reduced microorganism growth on the denture base, as has been proven in a previous study.
Collapse
Affiliation(s)
- Mariusz Cierech
- Department of Prosthodontics, Medical University of Warsaw, 02-006 Warsaw, Poland.
| | - Izabela Osica
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-504 Warsaw, Poland.
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | - Adam Kolenda
- Department of Prosthodontics, Medical University of Warsaw, 02-006 Warsaw, Poland.
| | - Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland.
| | - Dariusz Szmigiel
- Division of Silicon Microsystem and Nanostructure Technology, Institute of Electron Technology, 02-668 Warsaw, Poland.
| | - Witold Łojkowski
- Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland.
| | - Krzysztof Kurzydłowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-504 Warsaw, Poland.
| | - Katsuhiko Ariga
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | | |
Collapse
|
24
|
Shahina Z, El-Ganiny AM, Minion J, Whiteway M, Sultana T, Dahms TES. Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida albicans. Fungal Biol Biotechnol 2018; 5:3. [PMID: 29456868 PMCID: PMC5807769 DOI: 10.1186/s40694-018-0046-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/16/2018] [Indexed: 12/01/2022] Open
Abstract
Background Cinnamon (Cinnamomum zeylanicum) bark extract exhibits potent inhibitory activity against Candida albicans but the antifungal mechanisms of this essential oil remain largely unexplored. Results We analyzed the impact of cinnamon bark oil on C. albicans RSY150, and clinical strains isolated from patients with candidemia and candidiasis. The viability of RSY150 was significantly compromised in a dose dependent manner when exposed to cinnamon bark oil, with extensive cell surface remodelling at sub inhibitory levels (62.5 μg/mL). Atomic force microscopy revealed cell surface exfoliation, altered ultrastructure and reduced cell wall integrity for both RSY150 and clinical isolates exposed to cinnamon bark oil. Cell wall damage induced by cinnamon bark oil was confirmed by exposure to stressors and the sensitivity of cell wall mutants involved in cell wall organization, biogenesis, and morphogenesis. The essential oil triggered cell cycle arrest by disrupting beta tubulin distribution, which led to mitotic spindle defects, ultimately compromising the cell membrane and allowing leakage of cellular components. The multiple targets of cinnamon bark oil can be attributed to its components, including cinnamaldehyde (74%), and minor components (< 6%) such as linalool (3.9%), cinamyl acetate (3.8%), α-caryophyllene (5.3%) and limonene (2%). Complete inhibition of the mitotic spindle assembly was observed in C. albicans treated with cinnamaldehyde at MIC (112 μg/mL). Conclusions Since cinnamaldehyde disrupts both the cell wall and tubulin polymerization, it may serve as an effective antifungal, either by chemical modification to improve its specificity and efficacy or in combination with other antifungal drugs. Electronic supplementary material The online version of this article (10.1186/s40694-018-0046-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zinnat Shahina
- 1Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK Canada
| | - Amira M El-Ganiny
- 2Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Malcolm Whiteway
- 4Centre for Structural and Functional Genomics, Concordia University, Montreal, QC Canada
| | - Taranum Sultana
- 1Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK Canada
| | - Tanya E S Dahms
- 1Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK Canada.,3Regina Qu'Appelle Health Region, Regina, SK Canada
| |
Collapse
|
25
|
Amyloid-Like β-Aggregates as Force-Sensitive Switches in Fungal Biofilms and Infections. Microbiol Mol Biol Rev 2017; 82:82/1/e00035-17. [PMID: 29187516 DOI: 10.1128/mmbr.00035-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular aggregation is an essential step in the formation of biofilms, which promote fungal survival and persistence in hosts. In many of the known yeast cell adhesion proteins, there are amino acid sequences predicted to form amyloid-like β-aggregates. These sequences mediate amyloid formation in vitro. In vivo, these sequences mediate a phase transition from a disordered state to a partially ordered state to create patches of adhesins on the cell surface. These β-aggregated protein patches are called adhesin nanodomains, and their presence greatly increases and strengthens cell-cell interactions in fungal cell aggregation. Nanodomain formation is slow (with molecular response in minutes and the consequences being evident for hours), and strong interactions lead to enhanced biofilm formation. Unique among functional amyloids, fungal adhesin β-aggregation can be triggered by the application of physical shear force, leading to cellular responses to flow-induced stress and the formation of robust biofilms that persist under flow. Bioinformatics analysis suggests that this phenomenon may be widespread. Analysis of fungal abscesses shows the presence of surface amyloids in situ, a finding which supports the idea that phase changes to an amyloid-like state occur in vivo. The amyloid-coated fungi bind the damage-associated molecular pattern receptor serum amyloid P component, and there may be a consequential modulation of innate immune responses to the fungi. Structural data now suggest mechanisms for the force-mediated induction of the phase change. We summarize and discuss evidence that the sequences function as triggers for protein aggregation and subsequent cellular aggregation, both in vitro and in vivo.
Collapse
|
26
|
Atomic Force Microscopy: A Promising Tool for Deciphering the Pathogenic Mechanisms of Fungi in Cystic Fibrosis. Mycopathologia 2017; 183:291-310. [PMID: 29128932 DOI: 10.1007/s11046-017-0201-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
During the past decades, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Although most of the works concerned bacteria, AFM also permitted major breakthroughs in the understanding of physiology and pathogenic mechanisms of some fungal species associated with cystic fibrosis. Complementary to electron microscopies, AFM offers unprecedented insights to visualize the cell wall architecture and components through three-dimensional imaging with nanometer resolution and to follow their dynamic changes during cell growth and division or following the exposure to drugs and chemicals. Besides imaging, force spectroscopy with piconewton sensitivity provides a direct means to decipher the forces governing cell-cell and cell-substrate interactions, but also to quantify specific and non-specific interactions between cell surface components at the single-molecule level. This nanotool explores new ways for a better understanding of the structures and functions of the cell surface components and therefore may be useful to elucidate the role of these components in the host-pathogen interactions as well as in the complex interplay between bacteria and fungi in the lung microbiome.
Collapse
|
27
|
Formosa-Dague C, Duval RE, Dague E. Cell biology of microbes and pharmacology of antimicrobial drugs explored by Atomic Force Microscopy. Semin Cell Dev Biol 2017; 73:165-176. [PMID: 28668355 DOI: 10.1016/j.semcdb.2017.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 01/03/2023]
Abstract
Antimicrobial molecules have been used for more than 50 years now and are the basis of modern medicine. No surgery can nowdays be imagined to be performed without antibiotics; dreadful diseases like tuberculosis, leprosis, siphilys, and more broadly all microbial induced diseases, can be cured only through the use of antimicrobial treatments. However, the situation is becoming more and more complex because of the ability of microbes to adapt, develop, acquire, and share mechanisms of resistance to antimicrobial agents. We choose to introduce this review by briefly drawing the panorama of antimicrobial discovery and development, but also of the emergence of microbial resistance. Then we describe how Atomic Force Microscopy (AFM) can be used to provide a better understanding of the mechanisms of action of these drugs at the nanoscale level on microbial interfaces. In this section, we will address these questions: (1) how does drug treatment affect the morphology of single microbes?; (2) do antimicrobial molecules modify the nanomechanical properties of microbes, or do the nanomechanical properties of microbes play a role in antimicrobial activity and efficiency?; and (3) how are the adhesive abilitites of microbes affected by antimicrobial drugs treatment? Finally, in a second part of this review we focus on recent studies aimed at changing the paradigm of the single molecule/cell technology that AFM typically represents. Recent work dealing with the creation of a microbe array which can be explored by AFM will be presented, as these developments constitute the first steps toward transforming AFM into a higher throughput technology. We also discuss papers using AFM as NanoMechnanicalSensors (NEMS), and demonstrate the interest of such approaches in clinical microbiology to detect quickly and with high accuracy microbial resistance.
Collapse
Affiliation(s)
- Cécile Formosa-Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France; CNRS, UMR 7565, SRSMC, F-54506 Vandœuvre-lès-Nancy, France; Université de Lorraine, UMR 7565, SRSMC, Faculté de Pharmacie, F-54001 Nancy, France.
| | - Raphaël Emmanuel Duval
- CNRS, UMR 7565, SRSMC, F-54506 Vandœuvre-lès-Nancy, France; Université de Lorraine, UMR 7565, SRSMC, Faculté de Pharmacie, F-54001 Nancy, France; ABC Platform(®), F-54001 Nancy, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
28
|
Aguayo S, Marshall H, Pratten J, Bradshaw D, Brown JS, Porter SR, Spratt D, Bozec L. Early Adhesion of Candida albicans onto Dental Acrylic Surfaces. J Dent Res 2017; 96:917-923. [PMID: 28460191 DOI: 10.1177/0022034517706354] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Denture-associated stomatitis is a common candidal infection that may give rise to painful oral symptoms, as well as be a reservoir for infection at other sites of the body. As poly (methyl methacrylate) (PMMA) remains the main material employed in the fabrication of dentures, the aim of this research was to evaluate the adhesion of Candida albicans cells onto PMMA surfaces by employing an atomic force microscopy (AFM) single-cell force spectroscopy (SCFS) technique. For experiments, tipless AFM cantilevers were functionalized with PMMA microspheres and probed against C. albicans cells immobilized onto biopolymer-coated substrates. Both a laboratory strain and a clinical isolate of C. albicans were used for SCFS experiments. Scanning electron microscopy (SEM) and AFM imaging of C. albicans confirmed the polymorphic behavior of both strains, which was dependent on growth culture conditions. AFM force-spectroscopy results showed that the adhesion of C. albicans to PMMA is morphology dependent, as hyphal tubes had increased adhesion compared with yeast cells ( P < 0.05). C. albicans budding mother cells were found to be nonadherent, which contrasts with the increased adhesion observed in the tube region. Comparison between strains demonstrated increased adhesion forces for a clinical isolate compared with the lab strain. The clinical isolate also had increased survival in blood and reduced sensitivity to complement opsonization, providing additional evidence of strain-dependent differences in Candida-host interactions that may affect virulence. In conclusion, PMMA-modified AFM probes have shown to be a reliable technique to characterize the adhesion of C. albicans to acrylic surfaces.
Collapse
Affiliation(s)
- S Aguayo
- 1 Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - H Marshall
- 2 Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Faculty of Medical Sciences, University College London, London, UK
| | | | | | - J S Brown
- 2 Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Faculty of Medical Sciences, University College London, London, UK
| | - S R Porter
- 4 Oral Medicine, UCL Eastman Dental Institute, University College London, London, UK
| | - D Spratt
- 5 Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - L Bozec
- 1 Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
29
|
Smolyakov G, Cauquil M, Severac C, Lachaize V, Guilbeau-Frugier C, Sénard JM, Galés C, Dague E. Biophysical properties of cardiomyocyte surface explored by multiparametric AFM. J Struct Biol 2017; 198:28-37. [PMID: 28263874 DOI: 10.1016/j.jsb.2017.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 12/10/2016] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Abstract
PeakForce Quantitative Nanomechanical Mapping (PeakForce QNM) multiparametric AFM mode was adapted to qualitative and quantitative study of the lateral membrane of cardiomyocytes (CMs), extending this powerful mode to the study of soft cells. On living CM, PeakForce QNM depicted the crests and hollows periodic alternation of cell surface architecture previously described using AFM Force Volume (FV) mode. PeakForce QNM analysis provided better resolution in terms of pixel number compared to FV mode and reduced acquisition time, thus limiting the consequences of spontaneous living adult CM dedifferentiation once isolated from the cardiac tissue. PeakForce QNM mode on fixed CMs clearly visualized subsarcolemmal mitochondria (SSM) and their loss following formamide treatment, concomitant with the interfibrillar mitochondria climbing up and forming heaps at the cell surface. Interestingly, formamide-promoted SSM loss allowed visualization of the sarcomeric apparatus ultrastructure below the plasma membrane. High PeakForce QNM resolution led to better contrasted mechanical maps than FV mode and provided correlation between adhesion, dissipation, mechanical and topographical maps. Modified hydrophobic AFM tip enhanced contrast on adhesion and dissipation maps and suggested that CM surface crests and hollows exhibit distinct chemical properties. Finally, two-dimensional Fast Fourier Transform to objectively quantify AFM maps allowed characterization of periodicity of both sarcomeric Z-line and M-band. Overall, this study validated PeakForce QNM as a valuable and innovative mode for the exploration of living and fixed CMs. In the future, it could be applied to depict cell membrane architectural, mechanical and chemical defects as well as sarcomeric abnormalities associated with cardiac diseases.
Collapse
Affiliation(s)
- Georges Smolyakov
- ITAV, Université de Toulouse, CNRS, France; LAAS-CNRS, Université de Toulouse, CNRS, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France
| | - Marie Cauquil
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Université de Toulouse, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France
| | | | - Véronique Lachaize
- ITAV, Université de Toulouse, CNRS, France; LAAS-CNRS, Université de Toulouse, CNRS, France; Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Université de Toulouse, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France
| | - Céline Guilbeau-Frugier
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Université de Toulouse, France; Centre de Microscopie Électronique Appliquée à la Biologie, Université de Toulouse, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Université de Toulouse, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France
| | - Céline Galés
- ITAV, Université de Toulouse, CNRS, France; Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Université de Toulouse, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France.
| | - Etienne Dague
- ITAV, Université de Toulouse, CNRS, France; LAAS-CNRS, Université de Toulouse, CNRS, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France.
| |
Collapse
|
30
|
Xiao J, Dufrêne YF. Optical and force nanoscopy in microbiology. Nat Microbiol 2016; 1:16186. [PMID: 27782138 PMCID: PMC5839876 DOI: 10.1038/nmicrobiol.2016.186] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
Microbial cells have developed sophisticated multicomponent structures and machineries to govern basic cellular processes, such as chromosome segregation, gene expression, cell division, mechanosensing, cell adhesion and biofilm formation. Because of the small cell sizes, subcellular structures have long been difficult to visualize using diffraction-limited light microscopy. During the last three decades, optical and force nanoscopy techniques have been developed to probe intracellular and extracellular structures with unprecedented resolutions, enabling researchers to study their organization, dynamics and interactions in individual cells, at the single-molecule level, from the inside out, and all the way up to cell-cell interactions in microbial communities. In this Review, we discuss the principles, advantages and limitations of the main optical and force nanoscopy techniques available in microbiology, and we highlight some outstanding questions that these new tools may help to answer.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Biophysics &Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21212, USA
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), Belgium
| |
Collapse
|
31
|
|
32
|
Force Sensitivity in Saccharomyces cerevisiae Flocculins. mSphere 2016; 1:mSphere00128-16. [PMID: 27547825 PMCID: PMC4989244 DOI: 10.1128/msphere.00128-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/27/2016] [Indexed: 12/28/2022] Open
Abstract
The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications. Many fungal adhesins have short, β-aggregation-prone sequences that play important functional roles, and in the Candida albicans adhesin Als5p, these sequences cluster the adhesins after exposure to shear force. Here, we report that Saccharomyces cerevisiae flocculins Flo11p and Flo1p have similar β-aggregation-prone sequences and are similarly stimulated by shear force, despite being nonhomologous. Shear from vortex mixing induced the formation of small flocs in cells expressing either adhesin. After the addition of Ca2+, yeast cells from vortex-sheared populations showed greatly enhanced flocculation and displayed more pronounced thioflavin-bright surface nanodomains. At high concentrations, amyloidophilic dyes inhibited Flo1p- and Flo11p-mediated agar invasion and the shear-induced increase in flocculation. Consistent with these results, atomic force microscopy of Flo11p showed successive force-distance peaks characteristic of sequentially unfolding tandem repeat domains, like Flo1p and Als5p. Flo11p-expressing cells bound together through homophilic interactions with adhesion forces of up to 700 pN and rupture lengths of up to 600 nm. These results are consistent with the potentiation of yeast flocculation by shear-induced formation of high-avidity domains of clustered adhesins at the cell surface, similar to the activation of Candida albicans adhesin Als5p. Thus, yeast adhesins from three independent gene families use similar force-dependent interactions to drive cell adhesion. IMPORTANCE The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications.
Collapse
|
33
|
Formosa-Dague C, Fu ZH, Feuillie C, Derclaye S, Foster TJ, Geoghegan JA, Dufrêne YF. Forces between Staphylococcus aureus and human skin. NANOSCALE HORIZONS 2016; 1:298-303. [PMID: 32260649 DOI: 10.1039/c6nh00057f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Characterization of the molecular interactions between microbial cells and the human skin is essential to understand the functions of the skin microbiome, and to gain insight into the molecular basis of skin disorders. Although various molecular approaches have been used to study microbe-skin interactions, the underlying molecular forces were not accessible to study. Here we present a novel atomic force microscopy approach to localize and quantify the nanoscale interaction forces between the bacterial pathogen Staphylococcus aureus and human skin. A method combining nanoscale multiparametric imaging with single bacterial probes is developed to map simultaneously the topography and bacterial-binding properties of corneocytes at high spatiotemporal resolution. Further quantification of the forces between bacteria and corneocytes is achieved using single-cell force spectroscopy. The results show that the S. aureus-skin adhesion is strong (∼500 pN) and originates from multiple specific bonds between adhesins on the bacterial cell surface and target ligands on the corneocyte surface. Applicable to a wide variety of microbes and skin cells, our methodology offers exciting prospects for understanding the molecular details of skin colonization and infection.
Collapse
Affiliation(s)
- Cécile Formosa-Dague
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | |
Collapse
|
34
|
Formosa-Dague C, Feuillie C, Beaussart A, Derclaye S, Kucharíková S, Lasa I, Van Dijck P, Dufrêne YF. Sticky Matrix: Adhesion Mechanism of the Staphylococcal Polysaccharide Intercellular Adhesin. ACS NANO 2016; 10:3443-3452. [PMID: 26908275 DOI: 10.1021/acsnano.5b07515] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of bacterial biofilms on surfaces leads to hospital-acquired infections that are difficult to fight. In Staphylococci, the cationic polysaccharide intercellular adhesin (PIA) forms an extracellular matrix that connects the cells together during biofilm formation, but the molecular forces involved are unknown. Here, we use advanced force nanoscopy techniques to unravel the mechanism of PIA-mediated adhesion in a clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) strain. Nanoscale multiparametric imaging of the structure, adhesion, and elasticity of bacteria expressing PIA shows that the cells are surrounded by a soft and adhesive matrix of extracellular polymers. Cell surface softness and adhesion are dramatically reduced in mutant cells deficient for the synthesis of PIA or under unfavorable growth conditions. Single-cell force spectroscopy demonstrates that PIA promotes cell-cell adhesion via the multivalent electrostatic interaction with polyanionic teichoic acids on the S. aureus cell surface. This binding mechanism rationalizes, at the nanoscale, the well-known ability of PIA to strengthen intercellular adhesion in staphylococcal biofilms. Force nanoscopy offers promising prospects for understanding the fundamental forces in antibiotic-resistant biofilms and for designing anti-adhesion compounds targeting matrix polymers.
Collapse
Affiliation(s)
- Cécile Formosa-Dague
- Institute of Life Sciences, Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Institute of Life Sciences, Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Audrey Beaussart
- Institute of Life Sciences, Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Sylvie Derclaye
- Institute of Life Sciences, Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Soňa Kucharíková
- Department of Molecular Microbiology, VIB,, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3000 Leuven, Belgium
| | - Iñigo Lasa
- Group of Microbial Communities and Disease, Navarrabiomed-FMS, UPNA, IdiSNA, 31008 Navarra, Spain
| | - Patrick Van Dijck
- Department of Molecular Microbiology, VIB,, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3000 Leuven, Belgium
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| |
Collapse
|
35
|
Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc Natl Acad Sci U S A 2015; 113:410-5. [PMID: 26715750 DOI: 10.1073/pnas.1519265113] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus surface protein SasG promotes cell-cell adhesion during the accumulation phase of biofilm formation, but the molecular basis of this interaction remains poorly understood. Here, we unravel the mechanical properties of SasG on the surface of living bacteria, that is, in its native cellular environment. Nanoscale multiparametric imaging of living bacteria reveals that Zn(2+) strongly increases cell wall rigidity and activates the adhesive function of SasG. Single-cell force measurements show that SasG mediates cell-cell adhesion via specific Zn(2+)-dependent homophilic bonds between β-sheet-rich G5-E domains on neighboring cells. The force required to unfold individual domains is remarkably strong, up to ∼500 pN, thus explaining how SasG can withstand physiological shear forces. We also observe that SasG forms homophilic bonds with the structurally related accumulation-associated protein of Staphylococcus epidermidis, suggesting the possibility of multispecies biofilms during host colonization and infection. Collectively, our findings support a model in which zinc plays a dual role in activating cell-cell adhesion: adsorption of zinc ions to the bacterial cell surface increases cell wall cohesion and favors the projection of elongated SasG proteins away from the cell surface, thereby enabling zinc-dependent homophilic bonds between opposing cells. This work demonstrates an unexpected relationship between mechanics and adhesion in a staphylococcal surface protein, which may represent a general mechanism among bacterial pathogens for activating cell association.
Collapse
|
36
|
Herman-Bausier P, Formosa-Dague C, Feuillie C, Valotteau C, Dufrêne YF. Forces guiding staphylococcal adhesion. J Struct Biol 2015; 197:65-69. [PMID: 26707623 DOI: 10.1016/j.jsb.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Staphylococcus epidermidis and Staphylococcus aureus are two important nosocomial pathogens that form biofilms on indwelling medical devices. Biofilm infections are difficult to fight as cells within the biofilm show increased resistance to antibiotics. Our understanding of the molecular interactions driving bacterial adhesion, the first stage of biofilm formation, has long been hampered by the paucity of appropriate force-measuring techniques. In this minireview, we discuss how atomic force microscopy techniques have enabled to shed light on the molecular forces at play during staphylococcal adhesion. Specific highlights include the study of the binding mechanisms of adhesion molecules by means of single-molecule force spectroscopy, the measurement of the forces involved in whole cell interactions using single-cell force spectroscopy, and the probing of the nanobiophysical properties of living bacteria via multiparametric imaging. Collectively, these findings emphasize the notion that force and function are tightly connected in staphylococcal adhesion.
Collapse
Affiliation(s)
- Philippe Herman-Bausier
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Cécile Formosa-Dague
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Belgium.
| |
Collapse
|
37
|
Formosa C, Dague E. Imaging Living Yeast Cells and Quantifying Their Biophysical Properties by Atomic Force Microscopy. Fungal Biol 2015. [DOI: 10.1007/978-3-319-22437-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
38
|
Schiavone M, Sieczkowski N, Castex M, Dague E, Marie François J. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts. FEMS Yeast Res 2015; 15:fou012. [PMID: 25762053 DOI: 10.1093/femsyr/fou012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Saccharomyces cerevisiae cell surface is endowed with some relevant technological properties, notably antimicrobial and biosorption activities. For these purposes, yeasts are usually processed and packaged in an 'autolysed/dried' formula, which may have some impacts on cell surface properties. In this report, we showed using a combination of biochemical, biophysical and molecular methods that the composition of the cell wall of two wine yeast strains was not altered by the autolysis process. In contrast, this process altered the nanomechanical properties as shown by a 2- to 4-fold increased surface roughness and to a higher adhesion to the atomic force microscope tips of the autolysed cells as compared to live yeast cells. Besides, we found that the two strains harboured differences in biomechanical properties that could be due in part to higher levels of mannan in one of them, and to the fact that the surface of this mannan-enriched strain is decorated with highly adhesive patches forming nanodomains. The presence of these nanodomains could be correlated with the upregulation of flocculin encoding FLO11 as well as to higher expression of few other genes encoding cell wall mannoproteins in this mannan-enriched strain as compared to the other strain.
Collapse
Affiliation(s)
- Marion Schiavone
- Université de Toulouse, INSA, UPS, INP, 135 Avenue de Rangueil, F-31077 Toulouse, France INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France CNRS, UMR5504, F-31400 Toulouse, France CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France Lallemand SAS, 19 Rue des Briquetiers, 31702 Blagnac, France
| | | | - Mathieu Castex
- Lallemand SAS, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - Etienne Dague
- Université de Toulouse, INSA, UPS, INP, 135 Avenue de Rangueil, F-31077 Toulouse, France CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Jean Marie François
- Université de Toulouse, INSA, UPS, INP, 135 Avenue de Rangueil, F-31077 Toulouse, France INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France CNRS, UMR5504, F-31400 Toulouse, France
| |
Collapse
|
39
|
de Oliveira HC, da Silva JDF, Scorzoni L, Marcos CM, Rossi SA, de Paula E Silva ACA, Assato PA, da Silva RAM, Fusco-Almeida AM, Mendes-Giannini MJS. Importance of adhesins in virulence of Paracoccidioides spp. Front Microbiol 2015; 6:303. [PMID: 25914695 PMCID: PMC4392702 DOI: 10.3389/fmicb.2015.00303] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/27/2015] [Indexed: 12/26/2022] Open
Abstract
Members of the Paracoccidioides genus are the etiologic agents of paracoccidioidomycosis (PCM). This genus is composed of two species: Paracoccidioides brasiliensis and Paracoccidioides lutzii. The correct molecular taxonomic classification of these fungi has created new opportunities for studying and understanding their relationships with their hosts. Paracoccidioides spp. have features that permit their growth under adverse conditions, enable them to adhere to and invade host tissues and may contribute to disease development. Cell wall proteins called adhesins facilitate adhesion and are capable of mediating fungi-host interactions during infection. This study aimed to evaluate the adhesion profile of two species of the genus Paracoccidioides, to analyze the expression of adhesin-encoding genes by real-time PCR and to relate these results to the virulence of the species, as assessed using a survival curve in mice and in Galleria mellonella after blocking the adhesins. A high level of heterogeneity was observed in adhesion and adhesin expression, showing that the 14-3-3 and enolase molecules are the most highly expressed adhesins during pathogen-host interaction. Additionally, a survival curve revealed a correlation between the adhesion rate and survival, with P. brasiliensis showing higher adhesion and adhesin expression levels and greater virulence when compared with P. lutzii. After blocking 14-3-3 and enolase adhesins, we observed modifications in the virulence of these two species, revealing the importance of these molecules during the pathogenesis of members of the Paracoccidioides genus. These results revealed new insights into the host-pathogen interaction of this genus and may enhance our understanding of different isolates that could be useful for the treatment of this mycosis.
Collapse
Affiliation(s)
- Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Suelen A Rossi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Rosângela A M da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| |
Collapse
|