1
|
Aggarwal R, Sheikh A, Akhtar M, Ghazwani M, Hani U, Sahebkar A, Kesharwani P. Understanding gold nanoparticles and their attributes in ovarian cancer therapy. Mol Cancer 2025; 24:88. [PMID: 40108575 PMCID: PMC11924612 DOI: 10.1186/s12943-025-02280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Ovarian cancer is one the deadliest disease wherein the survival rate is very low. Despite of advances in medical sciences, researches are still at the stage of infancy where patients are succumbing to this malignancy. Multidrug resistance, toxicity, mode of treatment related issues like catheter related complication poises a number of challenges to scientists worldwide. Novel therapy is now thus being focussed to sensitive the cells more towards the treatment. Gold nanoparticles (Au NPs), known for their high biocompatibility, and strong optical and magnetic responses, have emerged as promising agents for both the diagnosis and treatment of ovarian cancer. Owing to physical characteristics, AuNPs may be used as adjuvants in bioimaging, radiotherapy and fluorescence imaging. As a result, these characteristics substantially support AuNPs in biological domains. In addition to their therapeutic potential, Au NPs exhibit strong surface plasmon resonance (SPR) properties, enhancing imaging techniques for early detection of ovarian tumors. Furthermore, chemical properties such as Magnetic Resonance and Imaging Properties, X-ray imaging property, Two-photon or multiphoton imaging, and Optical coherence tomography (OCT) imaging properties enhance the use of Au NPs in diagnosis. This paper highlights the properties, targeting potential and diagnosis and treatment of ovarian cancer by Au NPs has been discussed.
Collapse
Affiliation(s)
- Rishabh Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Masheera Akhtar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, Abha, 62223, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, Abha, 62223, Saudi Arabia
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India.
| |
Collapse
|
2
|
Swain N, Sharma S, Maitra R, Saxena D, Kautu A, Singh R, Kesharwani K, Chopra S, Joshi KB. Antimicrobial peptide mimetic minimalistic approach leads to very short peptide amphiphiles-gold nanostructures for potent antibacterial activity. ChemMedChem 2024; 19:e202300576. [PMID: 38301146 DOI: 10.1002/cmdc.202300576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Strategically controlling concentrations of lipid-conjugated L-tryptophan (vsPA) guides the self-assembly of nanostructures, transitioning from nanorods to fibres and culminating in spherical shapes. The resulting Peptide-Au hybrids, exhibiting size-controlled 1D, 2D, and 3D nanostructures, show potential in antibacterial applications. Their high biocompatibility, favourable surface area-to-volume ratio, and plasmonic properties contribute to their effectiveness against clinically relevant bacteria. This controlled approach not only yields diverse nanostructures but also holds promise for applications in antibacterial therapeutics.
Collapse
Affiliation(s)
- Narayan Swain
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Rahul Maitra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
- Current address: Colorado State University USA
| | - Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
3
|
Alavi N, Maghami P, Pakdel AF, Rezaei M, Avan A. Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment. Curr Pharm Des 2023; 29:3103-3122. [PMID: 37990429 DOI: 10.2174/0113816128265544231102065515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/03/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) is an innovative, non-invasive method of treating cancer that uses light-activated photosensitizers to create reactive oxygen species (ROS). However, challenges associated with the limited penetration depth of light and the need for precise control over photosensitizer activation have hindered its clinical translation. Nanomedicine, particularly gold nanobiostructures, offers promising solutions to overcome these limitations. This paper reviews the advancements in PDT and nanomedicine, focusing on applying antibody-modified gold nanobiostructures as multifunctional platforms for enhanced PDT efficacy and improved cancer treatment outcomes. The size, shape, and composition of gold nanobiostructures can significantly influence their PDT efficacy, making synthetic procedures crucial. Functionalizing the surface of gold nanobiostructures with various molecules, such as antibodies or targeting agents, bonding agents, PDT agents, photothermal therapy (PTT) agents, chemo-agents, immunotherapy agents, and imaging agents, allows composition modification. Integrating gold nanobiostructures with PDT holds immense potential for targeted cancer therapy. Antibody-modified gold nanobiostructures, in particular, have gained significant attention due to their tunable plasmonic characteristics, biocompatibility, and surface functionalization capabilities. These multifunctional nanosystems possess unique properties that enhance the efficacy of PDT, including improved light absorption, targeted delivery, and enhanced ROS generation. Passive and active targeting of gold nanobiostructures can enhance their localization near cancer cells, leading to efficient eradication of tumor tissues upon light irradiation. Future research and clinical studies will continue to explore the potential of gold nanobiostructures in PDT for personalized and effective cancer therapy. The synthesis, functionalization, and characterization of gold nanobiostructures, their interaction with light, and their impact on photosensitizers' photophysical and photochemical properties, are important areas of investigation. Strategies to enhance targeting efficiency and the evaluation of gold nanobiostructures in vitro and in vivo studies will further advance their application in PDT. The integrating antibody-modified gold nanobiostructures in PDT represents a promising strategy for targeted cancer therapy. These multifunctional nanosystems possess unique properties that enhance PDT efficacy, including improved light absorption, targeted delivery, and enhanced ROS generation. Continued research and development in this field will contribute to the advancement of personalized and effective cancer treatment approaches.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
4
|
Nanoparticles for Therapy and Diagnostic Imaging Techniques in Cancer. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
5
|
Kanaoujiya R, Porwal D, Srivastava S. Applications of nanomaterials for gastrointestinal tumors: A review. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:997123. [PMID: 36119898 PMCID: PMC9475177 DOI: 10.3389/fmedt.2022.997123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Nanotechnology is the emerging and advance field of research for the diagnosis and treatment of various diseases. With the development of nanotechnology, different nanoparticles are used in the treatment of cancer due to their unique optical properties, excellent biocompatibility, surface effects, and small size effects. Nanoparticles are the particles which have the particular size from 1 to 100 nm. These nanoparticles are zero dimension, one dimension, two dimension and three dimension etc. In present scenario a variety of research is focused on the tailored synthesis of nanoparticles for medicinal applications that can be used for cancer treatment based on the morphology, composition, interaction with target cell. The gastrointestinal (GI) tumors are found one of the deadest cancer types with highest reoccurrence rates. The diagnosis and treatment of gastrointestinal cancer is very challenging due to its deep location and complicated surgery. Nanotechnology provides fast diagnosis and immediate treatment for the gastrointestinal disease. A variety of nanomaterials are used for the diagnosis and treatment of GI disease. Nanoparticles target directly to the tumor cell as diagnostic and therapeutic tools facilitating the identification and removal of tumor cells. A number of nanoparticles are developed for the uses are quantum dots (QDs), carbon nanotubes (CNTs), metallic nanoparticles (MNPs), Dendrimers etc. This review article gives an overview of the most promising nanomaterials used for the diagnosis and treatment of GI diseases. This review attempts to incorporate numerous uses for the most current nanomaterials, which have great potential for treating gastrointestinal diseases.
Collapse
|
6
|
Hani U, Osmani RAM, Yasmin S, Gowda BHJ, Ather H, Ansari MY, Siddiqua A, Ghazwani M, Fatease AA, Alamri AH, Rahamathulla M, Begum MY, Wahab S. Novel Drug Delivery Systems as an Emerging Platform for Stomach Cancer Therapy. Pharmaceutics 2022; 14:1576. [PMID: 36015202 PMCID: PMC9416534 DOI: 10.3390/pharmaceutics14081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer has long been regarded as one of the world's most fatal diseases, claiming the lives of countless individuals each year. Stomach cancer is a prevalent cancer that has recently reached a high number of fatalities. It continues to be one of the most fatal cancer forms, requiring immediate attention due to its low overall survival rate. Early detection and appropriate therapy are, perhaps, of the most difficult challenges in the fight against stomach cancer. We focused on positive tactics for stomach cancer therapy in this paper, and we went over the most current advancements and progressions of nanotechnology-based systems in modern drug delivery and therapies in great detail. Recent therapeutic tactics used in nanotechnology-based delivery of drugs aim to improve cellular absorption, pharmacokinetics, and anticancer drug efficacy, allowing for more precise targeting of specific agents for effective stomach cancer treatment. The current review also provides information on ongoing research aimed at improving the curative effectiveness of existing anti-stomach cancer medicines. All these crucial matters discussed under one overarching title will be extremely useful to readers who are working on developing multi-functional nano-constructs for improved diagnosis and treatment of stomach cancer.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India;
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (S.Y.); (H.A.)
| | - B. H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to Be University), Mangalore 575018, Karnataka, India;
| | - Hissana Ather
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (S.Y.); (H.A.)
| | - Mohammad Yousuf Ansari
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University ), Mullana, Ambala 133203, Haryana, India;
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
- Cancer Research Unit, King Khalid University, Abha 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Ali H. Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia;
| |
Collapse
|
7
|
Kakade NR, Das A, Kumar R, Sharma SD, Chadha R, Maiti N, Kapoor S. Application of unlaminated EBT3 film dosimeter for quantification of dose enhancement using silver nanoparticle-embedded alginate film. Biomed Phys Eng Express 2022; 8. [PMID: 35325874 DOI: 10.1088/2057-1976/ac60c5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
Purpose.The paper describes the application of unlaminated Gafchromic EBT3 film dosimeter for quantification of dose enhancement using locally synthesized silver nanoparticle-embedded alginate film (AgNPs-Alg film) for nanoparticles-aided radiotherapy.Materials and Methods.AgNPs-Alg film was synthesized and characterized using standard techniques. The unlaminated Gafchromic EBT3 film was specially customized for dosimetric measurement. The dose enhancements due to AgNPs-Alg film was experimentally determined for ISO wide spectrum x-rays series (average energy ranging from 57-137 keV) and 6 and 10 MV x-rays using laminated and unlaminated Gafchromic EBT3 film. The radiation dose of 1 Gy was delivered to a combination of AgNPs-Alg films and EBT3 film.Results.Ultraviolet-Visible spectroscopy of silver nanoparticles shows a surface plasmon resonance peak at 400 nm. The average particle size of 13 ± 2 nm was measured using Atomic Force Microscopy. For unlaminated film, the dose enhancements of 29%, 23%, 14% and 2% was observed for ISO wide spectrum x-rays having average energy of 57, 79, 104 and 137 keV, respectively. The dose enhancement was negligible for 6 and 10 MV x-rays. In the case of laminated film, no significant dose enhancement was measured for all the x-ray energies.Conclusion.The unlaminated Gafchromic EBT3 film can be a suitable choice for the measurement of dose enhancement. Further, silver nanoparticles can be used during nanoparticle-aided radiotherapy when irradiated at low x-ray energy.
Collapse
Affiliation(s)
- Nitin R Kakade
- Radiological Physics & Advisory Division, Bhabha Atomic Research Centre, Mumbai-400094, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Abhishek Das
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India.,Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - Rajesh Kumar
- Radiological Physics & Advisory Division, Bhabha Atomic Research Centre, Mumbai-400094, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - S D Sharma
- Radiological Physics & Advisory Division, Bhabha Atomic Research Centre, Mumbai-400094, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Ridhima Chadha
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - Nandita Maiti
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India.,Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - Sudhir Kapoor
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India.,Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| |
Collapse
|
8
|
Kim D, Kim H. Numerical Study on Death of Squamous Cell Carcinoma Based on Various Shapes of Gold Nanoparticles Using Photothermal Therapy. SENSORS 2022; 22:s22041671. [PMID: 35214586 PMCID: PMC8880560 DOI: 10.3390/s22041671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
Due to increased exposure to ultraviolet radiation caused by increased outdoor activities, the incidence of skin cancer is increasing. Incision is the most typical method for treating skin cancer, and various treatments that can minimize the risks of incision surgery are being investigated. Among them, photothermal therapy is garnering attention because it does not cause bleeding and affords rapid recovery. In photothermal therapy, tumor death is induced via temperature increase. In this study, a numerical study based on heat transfer theory was conducted to investigate the death of squamous cell carcinoma located in the skin layer based on various shapes of gold nanoparticles (AuNPs) used in photothermal therapy. The quantitative correlation between the conditions of various AuNPs and the laser intensity that yields the optimal photothermal treatment effect was derived using the effective apoptosis ratio. It was confirmed that optimal conditions exist for maximizing apoptosis within a tumor tissue and minimizing the thermal damage to surrounding normal tissues when using AuNPs under various conditions. Furthermore, it is envisioned that research result will be utilized as a standard for photothermal treatment in the future.
Collapse
|
9
|
Zanjanchi P, Asghari SM, Mohabatkar H, Shourian M, Shafiee Ardestani M. Conjugation of VEGFR1/R2-targeting peptide with gold nanoparticles to enhance antiangiogenic and antitumoral activity. J Nanobiotechnology 2022; 20:7. [PMID: 34983556 PMCID: PMC8725421 DOI: 10.1186/s12951-021-01198-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inhibition of tumor angiogenesis through simultaneous targeting of vascular endothelial growth factor receptor (VEGFR)-1 and -2 is highly efficacious. An antagonist peptide of VEGFA/VEGFB, referred to as VGB3, can recognize and neutralize both VEGFR1 and VEGFR2 on the endothelial and tumoral cells, thereby inhibits angiogenesis and tumor growth. However, improved efficacy and extending injection intervals is required for its clinical translation. Given that gold nanoparticles (GNPs) can enhance the efficacy of biotherapeutics, we conjugated VGB3 to GNPs to enhance its efficacy and extends the intervals between treatments without adverse effects. RESULTS GNP-VGB3 bound to VEGFR1 and VEGFR2 in human umbilical vein endothelial (HUVE) and 4T1 mammary carcinoma cells. GNP-VGB3 induced cell cycle arrest, ROS overproduction and apoptosis and inhibited proliferation and migration of endothelial and tumor cells more effectively than unconjugated VGB3 or GNP. In a murine 4T1 mammary carcinoma tumor model, GNP-VGB3 more strongly than VGB3 and GNP inhibited tumor growth and metastasis, and increased animal survival without causing weight loss. The superior antitumor effects were associated with durable targeting of VEGFR1 and VEGFR2, thereby inhibiting signaling pathways of proliferation, migration, differentiation, epithelial-to-mesenchymal transition, and survival in tumor tissues. MicroCT imaging and inductively coupled plasma mass spectrometry showed that GNP-VGB3 specifically target tumors and exhibit greater accumulation within tumors than the free GNPs. CONCLUSION Conjugation to GNPs not only improved the efficacy of VGB3 peptide but also extended the intervals between treatments without adverse effects. These results suggest that GNP-VGB3 is a promising candidate for clinical translation.
Collapse
Affiliation(s)
- Pegah Zanjanchi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 8174673441, Iran
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, 1417614411, Iran.
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 8174673441, Iran.
| | - Mostafa Shourian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, 4199613776, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Meireles IBDCJ, Cipreste MF, Gastelois PL, Macedo WADA, Gomes DA, de Sousa EMB. Synthesis and characterization of gold nanorods coated by mesoporous silica MCM-41 as a platform bioapplication in photohyperthermia. NANOTECHNOLOGY 2021; 32:505720. [PMID: 34547742 DOI: 10.1088/1361-6528/ac28db] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles have been widely investigated for biomedical applications due to their optical properties. These particles present the interesting feature of absorbing light when stimulated with laser radiation to generate heating. Among the possible morphologies for synthetic gold nanoparticles, gold nanorods have properties of great interest for applications in the photohyperthermia processes. Due to their morphology, gold nanorods can absorb light at longer wavelengths comprising specific regions of the electromagnetic spectrum, such as the region of the biological window, in which laser radiation has less interaction with tissues. However, these nanoparticles present limitations in biomedical applications, such as low colloidal and thermal stabilities that can be overcome by coating the gold nanorods with silica MCM-41. The silicate covering can provide greater stability for gold nanorods and allow multifunctionality in treating different diseases through photohyperthermia. This work developed a specific chemical route through seed and growth solutions to synthesize gold nanorods with controlled particle size, rod morphology, and silica covering for photohyperthermia applications. The synthesized samples were characterized through a multi-technique approach that successfully demonstrated the presence of gold nanorods inside the silica coating, presenting high stability and desirable textural and morphological characteristics for bioapplications. Furthermore, silica-coated gold nanorods exhibit high biocompatibility and great performance in generating therapeutic heating by absorbing laser radiation in the biological window range, making the system developed in this work a promising agent in photohyperthermia.
Collapse
Affiliation(s)
| | | | - Pedro Lana Gastelois
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901 Belo Horizonte, MG, Brazil
| | | | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia-ICB-UFMG, 31270-901 Belo Horizonte, MG, Brazil
| | | |
Collapse
|
11
|
Applications of Aptamer-Bound Nanomaterials in Cancer Therapy. BIOSENSORS-BASEL 2021; 11:bios11090344. [PMID: 34562934 PMCID: PMC8468797 DOI: 10.3390/bios11090344] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
Cancer is still a major disease that threatens human life. Although traditional cancer treatment methods are widely used, they still have many disadvantages. Aptamers, owing to their small size, low toxicity, good specificity, and excellent biocompatibility, have been widely applied in biomedical areas. Therefore, the combination of nanomaterials with aptamers offers a new method for cancer treatment. First, we briefly introduce the situation of cancer treatment and aptamers. Then, we discuss the application of aptamers in breast cancer treatment, lung cancer treatment, and other cancer treatment methods. Finally, perspectives on challenges and future applications of aptamers in cancer therapy are discussed.
Collapse
|
12
|
Patel N, Ghali L, Roitt I, Munoz LP, Bayford R. Exploiting the efficacy of Tyro3 and folate receptors to enhance the delivery of gold nanoparticles into colorectal cancer cells in vitro. NANOSCALE ADVANCES 2021; 3:5373-5386. [PMID: 36132641 PMCID: PMC9419080 DOI: 10.1039/d1na00318f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/15/2021] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the fourth most common cancer in the world. Due to its asymptomatic nature, CRC is diagnosed at an advanced stage where the survival rate is <5%. Besides, CRC treatment using chemotherapy, radiotherapy and surgery often causes undesirable side-effects. As such, gold nanoparticles (GNPs) are envisaged in the field for the diagnosis and treatment of CRC. GNPs have unique physical, chemical and electrical properties at the nanoscale which make them suitable for application in biomedicine. However, for GNPs to become clinically effective, their internalisation efficiency in cancer cells must be enhanced. Folate receptor-α (FR) is overexpressed in CRC cells wherein FR helps in the uptake of folic acid within the cells. Tyro3, a novel tyrosine kinase receptor, drives cell proliferation and its overexpression is correlated with poor prognosis in CRC. Their upregulated expression in CRC cells relative to normal cells makes them an ideal target for GNPs using active targeting. Therefore, in this study receptors FR and Tyro3 were simultaneously targeted using specific antibody-coated GNPs in order to enhance the uptake and internalisation of GNPs in CRC cells in vitro. Four different types of coated-GNPs were synthesised GNPs-PEG, GNPs-anti-FR, GNPs-anti-Tyro3 and GNPs-anti-(FR + Tyro3) and incubated (0-50 ng) with three CRC cell lines namely CRL1790, CRL2159 and HCT116. Simultaneous targeting of these receptors by GNPs-anti-(FR + Tyro3) was found to be the most effective in internalisation in CRC cells compared with GNPs targeted singly to FR or Tyro3 (p <0.05). Besides this, results show that Tyro3 mediated similar internalisation efficacy to FR (p <0.05) in CRC cells using ICP-OES.
Collapse
Affiliation(s)
- Nakul Patel
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Lucy Ghali
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Ivan Roitt
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Leonardo Puntoja Munoz
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Richard Bayford
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| |
Collapse
|
13
|
Selectivity of diallyl trisulfides (DATS) in reducing HAuCl4 to produce gold nanoparticles: a detailed investigation. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Namasivayam SKR, Venkatachalam G, Bharani RSA, Kumar JA, Sivasubramanian S. Molecular intervention of colon cancer and inflammation manifestation by tannin capped biocompatible controlled sized gold nanoparticles from Terminalia bellirica: A green strategy for pharmacological drug formulation based on nanotechnology principles. 3 Biotech 2021; 11:401. [PMID: 34422541 PMCID: PMC8349386 DOI: 10.1007/s13205-021-02944-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Among the diverse nanomaterials, gold nanoparticles (AuNps) are utilised for various therapeutic application due to the distinct physical, chemical properties and biocompatibility. Synthesis of gold nanoparticles using plants is the promising route. This method is low cost, eco-friendly and higher biological activities. In this present study, Gold nanoparticles were synthesised from fruit extract of Terminalia bellirica fruit extract. Their anticancer and anti-inflammatory activity was evaluated against colorectal cancer cell line (HT29) and TNBS-induced zebrafish model. Highly stable tannin capped gold nanoparticles were synthesised from fruit extract broth of Terminalia bellirica rapidly. Structural and functional properties of the synthesised nanoparticles were studied by Fourier transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM) equipped with energy-dispersive atomic X-ray spectroscopy (EDAX) and X-ray diffraction (XRD). All the characterisation studies reveal highly stable, crystalline, phytochemicals, mainly tannin doped, spherical, 28 nm controlled sized gold nanoparticles. The molecular mechanism of anticancer activity was studied by determining cancer markers' expression, which was studied using quantitative real-time polymerase chain reaction (qPCR). Antioxidative enzymes' status and apoptosis changes were also investigated. Synthesised nanoparticles brought a drastic reduction of all the tested cancer markers' expression. Notable changes in antioxidative enzymes' status and a good sign of apoptosis were observed in nanoparticles' treatment. The anti-inflammatory activity was studied against TNBS-induced zebrafish model, which was confirmed by determining inflammatory markers' expression TNF-α, iNOS (induced Nitric Oxide Synthase) and histopathological examination. Nanoparticles' treatment recorded a drastic reduction of inflammatory markers' expression. No marked sign of inflammation was also observed in histopathological analysis of the nanoparticles' treatment group. The present study suggests the possible utilisation of T. bellirica-mediated gold nanoparticles as an effective therapeutic agent against a prolonged inflammatory disease that progressively develops into cancer.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Centre for Bioresource Research & Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - Gayathri Venkatachalam
- Centre for Bioresource Research & Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - R S Arvind Bharani
- Centre for Bioresource Research & Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - J Aravind Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - S Sivasubramanian
- Department of Chemical Engineering, Higher College of Technology, Muscat, Oman
| |
Collapse
|
15
|
Priebe A, Sastre J, Futscher MH, Jurczyk J, Puydinger Dos Santos MV, Romanyuk YE, Michler J. Detection of Au + Ions During Fluorine Gas-Assisted Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) for the Complete Elemental Characterization of Microbatteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41262-41274. [PMID: 34470101 DOI: 10.1021/acsami.1c10352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to excellent electric conductivity and chemical inertness, Au can be used in new microdevices for energy applications, microelectronics, and biomedical solutions. However, the chemical analysis of Au-containing systems using time-of-flight secondary ion mass spectrometry (TOF-SIMS) can be difficult because of the negative ionization of Au, as most metals form positive ions, and therefore cannot be detected from the same analytical volume. In this work, we present the potential of fluorine gas coinjection for altering the polarity, from the negative to positive, of Au secondary ions generated under Ga+ beam bombardment. The importance of detecting Au+ ions and representing their spatial distribution in nanoscale was demonstrated using a novel solid electrolyte for Li-ion solid-state batteries, amorphous Li7La3Zr2O12 (aLLZO). This allowed for assessing the migration of mobile Li+ ions outside the aLLZO layer and alloying the Au layer with Li, which explained the presence of an internal electric field observed during the polarization measurements. Remarkably, during fluorine gas-assisted TOF-SIMS measurements, the trace amount of Au content (5 ppm) was detected in a Pt layer (unattainable under standard vacuum conditions). In conclusion, fluorine gas-assisted TOF-SIMS can help understanding operation mechanisms and potential degradation processes of microdevices and therefore help optimizing their functionality.
Collapse
Affiliation(s)
- Agnieszka Priebe
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland
| | - Jordi Sastre
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600 Switzerland
| | - Moritz H Futscher
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600 Switzerland
| | - Jakub Jurczyk
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Marcos V Puydinger Dos Santos
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland
| | - Yaroslav E Romanyuk
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600 Switzerland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland
| |
Collapse
|
16
|
Abbasi M, Yaqoob M, Haque RA, Iqbal MA. Potential of Gold Candidates against Human Colon Cancer. Mini Rev Med Chem 2021; 21:69-78. [PMID: 32767935 DOI: 10.2174/1389557520666200807130721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
Development of novel metallodrugs with pharmacological profile plays a significant role in modern medicinal chemistry and drug design. Metal complexes have shown remarkable clinical results in current cancer therapy. Gold complexes have attained attention due to their high antiproliferative potential. Gold-based drugs are used for the treatment of rheumatoid arthritis. Gold-containing compounds with selective and specific targets are capable to assuage the symptoms of a range of human diseases. Gold (I) species with labile ligands (such as Cl in TEPAuCl) interact with isolated DNA; therefore, this biomolecule has been considered as a target for gold drugs. Gold (I) has a high affinity towards sulfur and selenium. Due to this, gold (I) drugs readily interact with cysteine or selenocysteine residue of the enzyme to form protein-gold(I) thiolate or protein-gold (I) selenolate complexes that lead to inhibition of the enzyme activity. Au(III) compounds due to their square-planner geometriesthe same as found in cisplatin, represent a good source for the development of anti-tumor agents. This article aims to review the most important applications of gold products in the treatment of human colon cancer and to analyze the complex interplay between gold and the human body.
Collapse
Affiliation(s)
- Mahvish Abbasi
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| | - Munazzah Yaqoob
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| | - Rosenani A Haque
- School of Chemical Sciences, Universiti Sains Malaysia, 11800-USM, Penang, Malaysia
| | | |
Collapse
|
17
|
Varied-shaped gold nanoparticles with nanogram killing efficiency as potential antimicrobial surface coatings for the medical devices. Sci Rep 2021; 11:12546. [PMID: 34131207 PMCID: PMC8206335 DOI: 10.1038/s41598-021-91847-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
Medical device-associated infections are a serious medical threat, particularly for patients with impaired mobility and/or advanced age. Despite a variety of antimicrobial coatings for medical devices being explored to date, only a limited number have been introduced for clinical use. Research into new bactericidal agents with the ability to eradicate pathogens, limit biofilm formation, and exhibit satisfactory biocompatibility, is therefore necessary and urgent. In this study, a series of varied-morphology gold nanoparticles in shapes of rods, peanuts, stars and spherical-like, porous ones with potent antibacterial activity were synthesized and thoroughly tested against spectrum of Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus clinical strains, as well as spectrum of uropathogenic Escherichia coli isolates. The optimization of gold nanoparticles synthesis allowed to develop nanomaterials, which are proved to be significantly more potent against tested microbes compared with the gold nanoformulations reported to date. Notably, their antimicrobial spectrum includes strains with different drug resistance mechanisms. Facile and cost-efficient synthesis of gold nanoparticles, remarkable bactericidal efficiency at nanogram doses, and low toxicity, underline their potential for development as a new coatings, as indicated by the example of urological catheters. The presented research fills a gap in microbial studies of non-spherical gold nanoparticles for the development of antimicrobial coatings targeting multidrug-resistant pathogens responsible for device-associated nosocomial infections.
Collapse
|
18
|
Kundu P, Singh D, Singh A, Sahoo SK. Cancer Nanotheranostics: A Nanomedicinal Approach for Cancer Therapy and Diagnosis. Anticancer Agents Med Chem 2021; 20:1288-1299. [PMID: 31429694 DOI: 10.2174/1871520619666190820145930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/27/2022]
Abstract
The panorama of cancer treatment has taken a considerable leap over the last decade with the advancement in the upcoming novel therapies combined with modern diagnostics. Nanotheranostics is an emerging science that holds tremendous potential as a contrivance by integrating therapy and imaging in a single probe for cancer diagnosis and treatment thus offering the advantage like tumor-specific drug delivery and at the same time reduced side effects to normal tissues. The recent surge in nanomedicine research has also paved the way for multimodal theranostic nanoprobe towards personalized therapy through interaction with a specific biological system. This review presents an overview of the nano theranostics approach in cancer management and a series of different nanomaterials used in theranostics and the possible challenges with future directions.
Collapse
Affiliation(s)
- Paromita Kundu
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Deepika Singh
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Abhalaxmi Singh
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Sanjeeb K Sahoo
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| |
Collapse
|
19
|
Piktel E, Ościłowska I, Suprewicz Ł, Depciuch J, Marcińczyk N, Chabielska E, Wolak P, Wollny T, Janion M, Parlinska-Wojtan M, Bucki R. ROS-Mediated Apoptosis and Autophagy in Ovarian Cancer Cells Treated with Peanut-Shaped Gold Nanoparticles. Int J Nanomedicine 2021; 16:1993-2011. [PMID: 33727811 PMCID: PMC7955786 DOI: 10.2147/ijn.s277014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Background Even with considerable improvement in treatment of epithelial ovarian cancer achieved in recent years, an increasing chemotherapy resistance and disease 5-year relapse is recorded for a majority part of patients that encourages the search for better therapeutic options. Gold nanoparticles (Au NPs) due to plethora of unique physiochemical features are thoroughly tested as drug delivery, radiosensitizers, as well as photothermal and photodynamic therapy agents. Importantly, due to highly controlled synthesis, it is possible to obtain nanomaterials with directed size and shape. Methods In this work, we developed novel elongated-type gold nanoparticles in the shape of nanopeanuts (AuP NPs) and investigated their cytotoxic potential against ovarian cancer cells SKOV-3 using colorimetric and fluorimetric methods, Western blot, flow cytometry, and fluorescence microscopy. Results Peanut-shaped gold nanoparticles showed high anti-cancer activity in vitro against SKOV-3 cells at doses of 1–5 ng/mL upon 72 hours treatment. We demonstrate that AuP NPs decrease the viability and proliferation capability of ovarian cancer cells by triggering cell apoptosis and autophagy, as evidenced by flow cytometry and Western blot analyses. The overproduction of reactive oxygen species (ROS) was noted to be a critical mediator of AuP NPs-mediated cell death. Conclusion These data indicate that gold nanopeanuts might be developed as nanotherapeutics against ovarian cancer.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Ilona Ościłowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, PL-31342, Poland
| | - Natalia Marcińczyk
- Department of Biopharmacy, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Przemysław Wolak
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, 25-317, Poland
| | - Tomasz Wollny
- Holy Cross Cancer Center in Kielce, Kielce, 25-734, Poland
| | - Marianna Janion
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, 25-317, Poland
| | | | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-222, Poland
| |
Collapse
|
20
|
Zhang Y, Tan J, Zhou L, Shan X, Liu J, Ma Y. Synthesis and Application of AS1411-Functionalized Gold Nanoparticles for Targeted Therapy of Gastric Cancer. ACS OMEGA 2020; 5:31227-31233. [PMID: 33324832 PMCID: PMC7726946 DOI: 10.1021/acsomega.0c04605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/10/2020] [Indexed: 05/09/2023]
Abstract
Gastric cancer therapy is still a big challenge, and nanomedicines bring much more hope. It is essential to develop multifunctional nanoparticles, especially those with high targeted capacity and antitumor effects, to improve gastric cancer therapy. In this study, we constructed AS1411 aptamer-based gold nanoparticles with appropriate size facilitating endocytosis and actively targeted drug delivery for gastric cancer cells via the specific AS1411-nucleolin interaction. The AS1411-based nanoparticles showed obviously increased targeted capacity towards AGS cells compared to random ssDNA-based nanoparticles. Meanwhile, compared to L929 cells, the AS1411-based nanoparticles showed selective drug uptake and delivery for AGS cells. Importantly, the AS1411-based nanoparticles exhibited significantly stronger antitumor effects on AGS cells under laser irradiation compared to chemotherapy alone. Our nanoparticles combined targeted drug delivery and efficient antitumor effects within one single nanoplatform, which are promising to be applied as targeted nanomedicines against gastric cancer.
Collapse
Affiliation(s)
- Yajie Zhang
- Department
of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
- Department
of Gastroenterology, Shengjing Hospital
of China Medical University, Shenyang 110004, China
| | - Jingwei Tan
- Department
of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Lu Zhou
- Department
of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Xiaoqing Shan
- Department
of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Jianling Liu
- Department
of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Yong Ma
- Department
of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
21
|
Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2186. [PMID: 33147800 PMCID: PMC7692849 DOI: 10.3390/nano10112186] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a rapidly growing field that uses nanomaterials for the diagnosis, treatment and prevention of various diseases, including cancer. Various biocompatible nanoplatforms with diversified capabilities for tumor targeting, imaging, and therapy have materialized to yield individualized therapy. However, due to their unique properties brought about by their small size, safety concerns have emerged as their physicochemical properties can lead to altered pharmacokinetics, with the potential to cross biological barriers. In addition, the intrinsic toxicity of some of the inorganic materials (i.e., heavy metals) and their ability to accumulate and persist in the human body has been a challenge to their translation. Successful clinical translation of these nanoparticles is heavily dependent on their stability, circulation time, access and bioavailability to disease sites, and their safety profile. This review covers preclinical and clinical inorganic-nanoparticle based nanomaterial utilized for cancer imaging and therapeutics. A special emphasis is put on the rational design to develop non-toxic/safe inorganic nanoparticle constructs to increase their viability as translatable nanomedicine for cancer therapies.
Collapse
Affiliation(s)
- Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Saisree Ravi
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Joy D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
Padya BS, Pandey A, Pisay M, Koteshwara KB, Chandrashekhar Hariharapura R, Bhat KU, Biswas S, Mutalik S. Stimuli-responsive and cellular targeted nanoplatforms for multimodal therapy of skin cancer. Eur J Pharmacol 2020; 890:173633. [PMID: 33049302 DOI: 10.1016/j.ejphar.2020.173633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Interdisciplinary applications of nanopharmaceutical sciences have tremendous potential for enhancing pharmacokinetics, efficacy and safety of cancer therapy. The limitations of conventional therapeutic platforms used for skin cancer therapy have been largely overcome by the use of nanoplatforms. This review discusses various nanotechnological approaches experimented for the treatment of skin cancer. The review describes various polymeric, lipidic and inorganic nanoplatforms for efficient therapy of skin cancer. The stimuli-responsive nanoplatforms such as pH-responsive as well as temperature-responsive platforms have also been reviewed. Different strategies for potentiating the nanoparticles application for cancer therapy such as surface engineering, conjugation with drugs, stimulus-responsive and multimodal effect have also been discussed and compared with the available conventional treatments. Although, nanopharmaceuticals face challenges such as toxicity, cost and scale-up, efforts put-in to improve these drawbacks with continuous research would deliver exciting and promising results in coming days.
Collapse
Affiliation(s)
- Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Muralidhar Pisay
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K B Koteshwara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Chandrashekhar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kuruveri Udaya Bhat
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Mangalore, Karnataka, 575025, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
23
|
Jiang F, Zhu Y, Gong C, Wei X. Atherosclerosis and Nanomedicine Potential: Current Advances and Future Opportunities. Curr Med Chem 2020; 27:3534-3554. [PMID: 30827225 DOI: 10.2174/0929867326666190301143952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is the leading inducement of cardiovascular diseases, which ranks the first cause of global deaths. It is an arterial disease associated with dyslipidemia and changes in the composition of the vascular wall. Besides invasive surgical strategy, the current conservative clinical treatment for atherosclerosis falls into two categories, lipid regulating-based therapy and antiinflammatory therapy. However, the existing strategies based on conventional drug delivery systems have shown limited efficacy against disease development and plenty of side effects. Nanomedicine has great potential in the development of targeted therapy, controlled drug delivery and release, the design of novel specific drugs and diagnostic modalities, and biocompatible scaffolds with multifunctional characteristics, which has led to an evolution in the diagnosis and treatment of atherosclerosis. This paper will focus on the latest nanomedicine strategies for atherosclerosis diagnosis and treatment as well as discussing the potential therapeutic targets during atherosclerosis progress, which could form the basis of development of novel nanoplatform against atherosclerosis.
Collapse
Affiliation(s)
- Fan Jiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunqi Zhu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xin Wei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
24
|
Wang N, Fuh JYH, Dheen ST, Senthil Kumar A. Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. J Biomed Mater Res B Appl Biomater 2020; 109:160-179. [PMID: 32776481 DOI: 10.1002/jbm.b.34688] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
Bone defects and diseases are devastating, and can lead to severe functional deficits or even permanent disability. Nevertheless, orthopedic implants and scaffolds can facilitate the growth of incipient bone and help us to treat bone defects and diseases. Currently, a wide range of biomaterials with distinct biocompatibility, biodegradability, porosity, and mechanical strength is used in bone-related research. However, most orthopedic implants and scaffolds have certain limitations and diverse complications, such as limited corrosion resistance, low cell proliferation, and bacterial adhesion. With recent advancements in materials science and nanotechnology, metallic and metallic oxide nanoparticles have become the subject of significant interest as they offer an ample variety of options to resolve the existing problems in the orthopedic industry. More importantly, these nanoparticles possess unique physicochemical and mechanical properties not found in conventional materials, and can be incorporated into orthopedic implants and scaffolds to enhance their antimicrobial ability, bioactive molecular delivery, mechanical strength, osteointegration, and cell labeling and imaging. However, many metallic and metallic oxide nanoparticles can also be toxic to nearby cells and tissues. This review article will discuss the applications and functions of metallic and metallic oxide nanoparticles in orthopedic implants and bone tissue engineering.
Collapse
Affiliation(s)
- Niyou Wang
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| | - S Thameem Dheen
- Department of Anatomy, 4 Medical Drive, National University of Singapore, Singapore, Singapore
| | - A Senthil Kumar
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Tomşa AM, Picoş A, Picoş AM, Răchişan AL. Mitochondrial nanotargeting in malignancies (Review). Exp Ther Med 2020; 20:3444-3451. [PMID: 32905128 DOI: 10.3892/etm.2020.9023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
Malignancies represent a burden for the health system worldwide. Treating them represents a challenge through the prism of the cancer cell behaviour and the serious systemic side effects that usually occur. Both traditional (chemotherapy, radiotherapy and surgery) and associated therapies (immunotherapy and hormone therapy) have reached a plateau. The new trend for the management of malignancies includes nanoparticles (NPs) which are studied for both their diagnostic and therapeutical use. NPs can be designed in various ways, many of them targeting mitochondria causing cellular apoptosis. This review summarizes the main characteristics of NPs that are studied in different cancers to highlight their mechanism of action. Since mitochondria play a key role in the cellular homeostasis, they represent the main target for the experimental current studies. While there are NPs approved by the FDA for clinical use, most of them are still under extended research and still need to prove their efficacy and biocompatibility, preferable with minimal systemic side effects.
Collapse
Affiliation(s)
- Anamaria Magdalena Tomşa
- Department of Mother and Child, Second Pediatric Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Picoş
- Department of Oral Rehabilitation, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alina Monica Picoş
- Department of Prosthetics and Dental Materials, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Liana Răchişan
- Department of Mother and Child, Second Pediatric Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Zhang Y, Zhou L, Tan J, Liu J, Shan X, Ma Y. Laser-triggered collaborative chemophotothermal effect of gold nanoparticles for targeted colon cancer therapy. Biomed Pharmacother 2020; 130:110492. [PMID: 32682110 DOI: 10.1016/j.biopha.2020.110492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology has shown advantages for cancer treatment. Multimodal nanoparticles (NPs) combining chemotherapy and photothermal therapy are promising and elicit synergetic benefit. However, there were still less multifunctional nanomaterials with good targeting and anti-tumor property applied as the colon cancer therapeutic strategy. In this study, we designed the gold NPs modified with AS1411 and DNA riched of GC intercalation (hairpin DNA) with doxorubicin (DOX) for targeted chemotherapy and NIR laser-triggered chemo-photothermal effect (PTT). We took advantage of PTT effect to realize DOX release from hairpin DNA. We also demonstrated AS1411 based NPs exhibited remarkable targeted binding towards SW480 colon cancer cells in vitro and enhanced uptake inside the cells. Strikingly, AS1411 based NPs exhibited the most efficient cytotoxicity and markedly enhanced inhibition effect on cells proliferation to SW480 cells under laser exposure when compared to the NPs merely with PTT or chemotherapy. Our study appears to provide an alternative nanoplatform with good targeted and chemo-photothermal therapy against colon cancer.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lu Zhou
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Jingwei Tan
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Jianling Liu
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Xiaoqing Shan
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Yong Ma
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
27
|
Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 2020; 25:1174-1188. [PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Theranostics has the potential to revolutionize the diagnosis, treatment, and prognosis of cancer, where novel drug delivery systems could be used to detect the disease at an early stage with instantaneous treatment. Various preclinical approaches of nanoemulsions with entrapped contrast and chemotherapeutic agents have been documented to act specifically on the tumor microenvironment (TME) for both diagnostic and therapeutic purposes. However, bringing these theranostic nanoemulsions through preclinical trials to patients requires several fundamental hurdles to be overcome, including the in vivo behavior of the delivery tool, degradation, and clearance from the system, as well as long-term toxicities. Here, we discuss recent advances in the application of nanoemulsions in molecular imaging with simultaneous therapeutic efficacy in a single delivery system.
Collapse
Affiliation(s)
- Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
28
|
Ding Y, Sun Z, Tong Z, Zhang S, Min J, Xu Q, Zhou L, Mao Z, Xia H, Wang W. Tumor microenvironment-responsive multifunctional peptide coated ultrasmall gold nanoparticles and their application in cancer radiotherapy. Theranostics 2020; 10:5195-5208. [PMID: 32373207 PMCID: PMC7196283 DOI: 10.7150/thno.45017] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/22/2020] [Indexed: 11/05/2022] Open
Abstract
Two important features are required for promising radiosensitizers: one is selective tumor cell targeting to enhance the therapeutic outcome via lethal DNA damage and the other is rapid clearance to enable excellent biocompatibility for potential clinical application. Herein, ultrasmall gold nanoparticles (Au NPs) with diameter smaller than 5 nm were prepared and covered with a multifunctional peptide to endow them with selective tumor cell uptake capability. Combined with X-ray irradiation, the responsive Au NPs demonstrated superior radio-sensitizing toxicity and rapid renal clearance in vivo. Methods: A responsive peptide (Tat-R-EK) consists of three build blocks were used: a cell and even nuclear penetrating block derived from human immunodeficiency virus-1 transactivator of transcription protein (Tat), an cathepsin B cleavable linker, and a zwitterionic antifouling block. Ultrasmall Au NPs were prepared and then covered by the peptide via the Au-S bonds between gold and thiol groups from cysteine. The morphology, colloidal stability and the responsiveness of obtained Au@Tat-R-EK NPs were studied using transmittance electron microscopy and dynamic laser scattering. The selective cancer cell uptake and accumulation of Au@Tat-R-EK NPs in cancer tissue were studied via ICP-MS in vitro and in vivo, respectively. The cytotoxicity of Au@Tat-R-EK NPs on HepG2 cancer cells was evaluated in terms of cell viability, DNA damage, intracellular reactive oxygen species generation, and apoptosis analysis. Finally, the biocompatibility and tumor destruction ability against orthotopic LM3 liver cancers were verified in vivo. Results: Multifunctional peptide modified ultrasmall Au NPs were successfully prepared. The Au NPs exhibited enough colloidal stability and cathepsin B-responsive surface change, leading to selectively uptake by cancer cells in vitro and accumulation to tumor sites in vivo. Combined with X-ray irradiation, the responsive Au NPs demonstrated superior radio-sensitizing cytotoxicity in vitro and therapeutic outcome on mouse liver cancer in vivo. The ultrasmall size enables rapid clearance of the Au NPs, guarantees the biocompatibility in vivo for potential clinical applications. Conclusion: Some obstacles faced by the Au NPs-based radiotherapy, such as short circulation half-life, non-specific distribution, slow clearance and low radio-sensitizing effect, were effective solved through rational design of the smart nanomedicine. This work provides new insight in designing tumor microenvironment-responsive nanomedicine in cancer radiotherapy.
Collapse
|
29
|
Jefremow A, Neurath MF. Nanoparticles in Gastrooncology. Visc Med 2020; 36:88-94. [PMID: 32355665 PMCID: PMC7184848 DOI: 10.1159/000506908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastrointestinal malignancies have the greatest incidence and cancer-associated death rates worldwide. Routine therapeutic modalities include surgery, chemotherapy and radiation but they often fail to reach the goal of cancer-free survival. SUMMARY In the light of this urgent medical need for the treatment of GI tumors, nanotech-nology-based approaches, i.e. nanomedicine, promise new therapeutic options. Using nanoparticles instead of classically designed drugs, targeting anticancer agents directly to the tumor site may revolutionize both diagnostic and therapeutic tools thereby facilitating the identification and elimination of malignant cells. Importantly, diagnostic insight and therapeutic effects can be achieved simultaneously through the same nanoparticle. Additionally, a nanoparticle may be loaded with more than one agent, thereby further increasing the value and power of the nanotechnology approach in oncologic therapeutic concepts. Although most insight into mechanisms of nanomedicine has been gained from in vitro and preclinical in vivo models, few clinical trials have been conducted, and nanomedicine-based concepts are already part of standard treatment algorithms. However, despite substantial progress it remains a challenge to design nanoparticles that feature all desirable characteristics at the same time. KEY MESSAGES This review seeks to provide substantial insight into the current status of nanomedicine-based approaches employed for diagnostic and/or therapeutic purposes in the field of gastrointestinal cancers by highlighting achievements and pointing out unresolved issues that need to be further addressed by future research attempts.
Collapse
Affiliation(s)
| | - Markus F. Neurath
- Department of Internal Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
30
|
Doxorubicin conjugated AuNP/biopolymer composites facilitate cell cycle regulation and exhibit superior tumor suppression potential in KRAS mutant colorectal cancer. J Biotechnol 2019; 306:149-158. [DOI: 10.1016/j.jbiotec.2019.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
|
31
|
Quality control of gold nanoparticles as pharmaceutical ingredients. Int J Pharm 2019; 569:118583. [DOI: 10.1016/j.ijpharm.2019.118583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
|
32
|
Xia Q, Huang J, Feng Q, Chen X, Liu X, Li X, Zhang T, Xiao S, Li H, Zhong Z, Xiao K. Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int J Nanomedicine 2019; 14:6957-6970. [PMID: 32021157 PMCID: PMC6717860 DOI: 10.2147/ijn.s214008] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023] Open
Abstract
Background Gold nanoparticles (AuNPs) have shown great promise in biomedical applications. However, the interaction of AuNPs with biological systems, its underlying mechanisms and influencing factors need to be further elucidated. Purpose The aim of this study was to systematically investigate the effects of particle size on the uptake and cytotoxicity of AuNPs in normal cells and cancer cells as well as their biological distribution in vivo. Results Our data demonstrated that the uptake of AuNPs increased in HepG2 cancer cells but decreased in L02 normal cells, with the increase of particle size (5-50 nm). In both cancer cells and normal cells, small (5 nm) AuNPs exhibited greater cytotoxicity than large ones (20 and 50 nm). Interestingly, 5 nm AuNPs induced both apoptosis and necrosis in HepG2 cells through the production of reactive oxygen species (ROS) and the activation of pro-caspase3, whereas it mainly induced necrosis in L02 cells through the overexpression of TLR2 and the release of IL-6 and IL-1a cytokines. Among them, 50 nm AuNPs showed the longest blood circulation and highest distribution in liver and spleen, and the treatment of 5 nm AuNPs but not 20 nm and 50 nm AuNPs resulted in the increase of neutrophils and slight hepatotoxicity in mice. Conclusion Our results indicate that the particle size of AuNPs and target cell type are critical determinants of cellular uptake, cytotoxicity and underlying mechanisms, and biological distribution in vivo, which deserves careful consideration in the future biomedical applications.
Collapse
Affiliation(s)
- Qiyue Xia
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.,Toxicology Department, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan Province, China
| | - Jinxing Huang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qiyi Feng
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xuanming Chen
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xinyi Liu
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaojie Li
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Ting Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuwen Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Li
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zhihui Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Kangcheng Biotech Co., Ltd, Chengdu, Sichuan Province, China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.,Sichuan Kangcheng Biotech Co., Ltd, Chengdu, Sichuan Province, China
| |
Collapse
|
33
|
Casein-Conjugated Gold Nanoparticles for Amperometric Detection of Leishmania infantum. BIOSENSORS-BASEL 2019; 9:bios9020068. [PMID: 31137793 PMCID: PMC6627895 DOI: 10.3390/bios9020068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
Abstract
Sensitive and reliable approaches targeting the detection of Leishmania are critical for effective early diagnosis and treatment of leishmaniasis. In this frame, this paper describes a rapid quantification assay to detect Leishmania parasites based on the combination of the electrocatalytic ability of gold nanoparticles (AuNPs) to act as a catalyst for the hydrogen formation reaction along with the specificity of the interaction between casein and the major surface protease of the Leishmania parasite, GP63. First, pure and casein-modified AuNPs were prepared and characterized by scanning electron microscopy and ultraviolet-visible spectroscopy. Then, casein-conjugated AuNPs were incubated with Leishsmania parasites in solution; the formed complex was collected by centrifugation, treated by acidic solution, and the pelleted AuNPs were placed on screen-printed carbon electrodes (SPCEs) and chronoamperometric measurements were carried out. Our results suggest that it is possible to detect Leishmania parasites, with a limit less than 1 parasite/mL. A linear response over a wide concentration interval, ranging from 2 × 10-2 to 2 × 105 parasites/mL, was achieved. Additionally, a pretreatment of Leishmania parasites with Amphotericin B, diminished their interaction with casein. This findings and methodology are very useful for drug efficacy assessment.
Collapse
|
34
|
Rajasekharreddy P, Huang C, Busi S, Rajkumari J, Tai MH, Liu G. Green Synthesized Nanomaterials as Theranostic Platforms for Cancer Treatment: Principles, Challenges and the Road Ahead. Curr Med Chem 2019; 26:1311-1327. [DOI: 10.2174/0929867324666170309124327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/15/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Abstract
With the emergence of nanotechnology, new methods have been developed for engineering various nanoparticles for biomedical applications. Nanotheranostics is a burgeoning research field with tremendous prospects for the improvement of diagnosis and treatment of various cancers. However, the development of biocompatible and efficient drug/gene delivery theranostic systems still remains a challenge. Green synthetic approach of nanoparticles with low capital and operating expenses, reduced environmental pollution and better biocompatibility and stability is a latest and novel field, which is advantageous over chemical or physical nanoparticle synthesis methods. In this article, we summarize the recent research progresses related to green synthesized nanoparticles for cancer theranostic applications, and we also conclude with a look at the current challenges and insight into the future directions based on recent developments in these areas.
Collapse
Affiliation(s)
- Pala Rajasekharreddy
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618-1908, United States
| | - Chao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry- 605014, India
| | - Jobina Rajkumari
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry- 605014, India
| | - Ming-Hong Tai
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
35
|
Fuller MA, Köper I. Biomedical applications of polyelectrolyte coated spherical gold nanoparticles. NANO CONVERGENCE 2019; 6:11. [PMID: 31016413 PMCID: PMC6478786 DOI: 10.1186/s40580-019-0183-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 05/28/2023]
Abstract
Surface modified gold nanoparticles are becoming more and more popular for use in biomaterials due to the possibility for specific targeting and increased biocompatibility. This review provides a summary of the recent literature surrounding polyelectrolyte coatings on spherical gold nanoparticles and their potential biomedical applications. The synthesis and layer-by layer coating approach are briefly discussed together with common characterisation methods. The potential applications and recent developments in drug delivery, gene therapy, photothermal therapy and imaging are summarized as well as the effects on cellular uptake and toxicity. Finally, the future outlook for polyelectrolyte coated gold nanoparticles is explored, focusing on their use in biomedicine.
Collapse
Affiliation(s)
- Melanie A. Fuller
- Flinders Institute for NanoScale Science and Technology, Flinders University, Bedford Park, SA 5042 Australia
| | - Ingo Köper
- Flinders Institute for NanoScale Science and Technology, Flinders University, Bedford Park, SA 5042 Australia
| |
Collapse
|
36
|
Poudel K, Gautam M, Jin SG, Choi HG, Yong CS, Kim JO. Copper sulfide: An emerging adaptable nanoplatform in cancer theranostics. Int J Pharm 2019; 562:135-150. [PMID: 30904728 DOI: 10.1016/j.ijpharm.2019.03.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Copper sulfide nanoparticles (CuS NPs), emerging nanoplatforms with dual diagnostic and therapeutic applications, are being actively investigated in this era of "war on cancer" owing to their versatility and adaptability. This article discusses the pros and cons of using CuS NPs in diagnostics, therapeutics, and theranostics. The first section introduces CuS NPs and discusses the features that render them more advantageous than other established nanoplatforms in cancer management. Subsequent sections include specific in vitro and in vivo results of different studies showing the potential of CuS NPs as nanoplatforms. Methods used for visualization (photoacoustic imaging and magnetic resonance imaging) of CuS NPs and treatment (phototherapy and combinatorial therapy) have also been discussed. Furthermore, the challenges and opportunities associated with using CuS NPs have been elucidated. Further investigations on CuS NPs are required to translate it for clinical applications.
Collapse
Affiliation(s)
- Kishwor Poudel
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Republic of Korea
| | - Milan Gautam
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Republic of Korea.
| |
Collapse
|
37
|
Liu R, Zhang H, Zhang F, Wang X, Liu X, Zhang Y. Polydopamine doped reduced graphene oxide/mesoporous silica nanosheets for chemo-photothermal and enhanced photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:138-145. [PMID: 30606519 DOI: 10.1016/j.msec.2018.10.093] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/11/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
|
38
|
Navyatha B, Nara S. Gold nanostructures as cancer theranostic probe: promises and hurdles. Nanomedicine (Lond) 2019; 14:766-796. [DOI: 10.2217/nnm-2018-0170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gold nanostructures (GNSts) have emerged as substitute for conventional contrast agents in imaging techniques and therapeutic probes due to their tunable surface plasmon resonance and optical properties in near-infrared region. Thus GNSts provide platform for the amalgamation of diagnosis and treatment (theranostics) into a single molecule for a more precise treatment. Hence, the article talks about the application of GNSts in imaging techniques and provide a holistic view on differently shaped GNSts in cancer theranostics. However, with promises GNSts also face various hurdles for their use as theranostic probe which are primarily associated with toxicity. Finally, the article attempts to discuss the challenges faced by GNSts and the way ahead that need to be traversed to place them in nanomedicine.
Collapse
Affiliation(s)
- Bankuru Navyatha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Prayagraj, Uttar Pradesh, 211004, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
39
|
Mahato K, Nagpal S, Shah MA, Srivastava A, Maurya PK, Roy S, Jaiswal A, Singh R, Chandra P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech 2019; 9:57. [PMID: 30729081 PMCID: PMC6352626 DOI: 10.1007/s13205-019-1577-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/12/2019] [Indexed: 01/13/2023] Open
Abstract
Gold nanoparticles (AuNPs) have found a wide range of biomedical and environmental monitoring applications (viz. drug delivery, diagnostics, biosensing, bio-imaging, theranostics, and hazardous chemical sensing) due to their excellent optoelectronic and enhanced physico-chemical properties. The modulation of these properties is done by functionalizing them with the synthesized AuNPs with polymers, surfactants, ligands, drugs, proteins, peptides, or oligonucleotides for attaining the target specificity, selectivity and sensitivity for their various applications in diagnostics, prognostics, and therapeutics. This review intends to highlight the contribution of such AuNPs in state-of-the-art ventures of diverse biomedical applications. Therefore, a brief discussion on the synthesis of AuNPs has been summarized prior to comprehensive detailing of their surface modification strategies and the applications. Here in, we have discussed various ways of AuNPs functionalization including thiol, phosphene, amine, polymer and silica mediated passivation strategies. Thereafter, the implications of these passivated AuNPs in sensing, surface-enhanced Raman spectroscopy (SERS), bioimaging, drug delivery, and theranostics have been extensively discussed with the a number of illustrations.
Collapse
Affiliation(s)
- Kuldeep Mahato
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| | - Sahil Nagpal
- Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Mahero Ayesha Shah
- Julius Maximilians Universität Würzburg, Faculty of medicine Uniklinik, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ananya Srivastava
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana Mahendergarh, Haryana, 123031 India
| | - Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Renu Singh
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities 2004 Folwell Ave, Saint Paul, MN 55108 USA
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| |
Collapse
|
40
|
Singh M, Nabavi E, Zhou Y, Gallina ME, Zhao H, Ruenraroengsak P, Porter AE, Ma D, Cass AEG, Hanna GB, Elson DS. Laparoscopic fluorescence image-guided photothermal therapy enhances cancer diagnosis and treatment. Nanotheranostics 2019; 3:89-102. [PMID: 30899637 PMCID: PMC6427937 DOI: 10.7150/ntno.28585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023] Open
Abstract
Endoscopy is the gold standard investigation in the diagnosis of gastrointestinal cancers and the management of early and pre-malignant lesions either by resection or ablation. Recently gold nanoparticles have shown promise in cancer diagnosis and therapeutics (theranostics). The combination of multifunctional gold nanoparticles with near infrared fluorescence endoscopy for accurate mapping of early or pre-malignant lesions can potentially enhance diagnostic efficiency while precisely directing endoscopic near infrared photothermal therapy for established cancers. The integration of endoscopy with near infrared fluorescence imaging and photothermal therapy was aided by the accumulation of our multifunctionalized PEG-GNR-Cy5.5-anti-EGFR-antibody gold nanorods within gastrointestinal tumor xenografts in BALB/c mice. Control mice (with tumors) received either gold nanorods or photothermal therapy, while study mice received both treatment modalities. Local (tumor-centric) and systemic effects were examined for 30 days. Clear endoscopic near infrared fluorescence signals were observed emanating specifically from tumor sites and these corresponded precisely to the tumor margins. Endoscopic fluorescence-guided near infrared photothermal therapy successfully induced tumor ablations in all 20 mice studied, with complete histological clearance and minimal collateral damage. Multi-source analysis from histology, electron microscopy, mass spectrometry, blood, clinical evaluation, psychosocial and weight monitoring demonstrated the inherent safety of this technology. The combination of this innovative nanotechnology with gold standard clinical practice will be of value in enhancing the early optical detection of gastrointestinal cancers and a useful adjunct for its therapy.
Collapse
Affiliation(s)
- Mohan Singh
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK SW7 2AZ.,Department of Surgery and Cancer, Imperial College London, London, UK SW7 2AZ
| | - Elham Nabavi
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK SW7 2AZ.,Department of Surgery and Cancer, Imperial College London, London, UK SW7 2AZ
| | - Yu Zhou
- Department of Chemistry, Imperial College London, London, UK SW7 2AZ
| | - Maria Elena Gallina
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK SW7 2AZ.,Department of Chemistry, Imperial College London, London, UK SW7 2AZ
| | - Hailin Zhao
- Department of Surgery and Cancer, Imperial College London, London, UK SW7 2AZ
| | - Pakatip Ruenraroengsak
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK SW7 2AZ.,Department of Surgery and Cancer, Imperial College London, London, UK SW7 2AZ.,Department of Materials, Imperial College London, London, UK SW7 2AZ
| | | | - Daqing Ma
- Department of Surgery and Cancer, Imperial College London, London, UK SW7 2AZ
| | - Anthony E G Cass
- Department of Chemistry, Imperial College London, London, UK SW7 2AZ
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, London, UK SW7 2AZ
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK SW7 2AZ.,Department of Surgery and Cancer, Imperial College London, London, UK SW7 2AZ
| |
Collapse
|
41
|
Zhao Y, Fletcher NL, Liu T, Gemmell AC, Houston ZH, Blakey I, Thurecht KJ. In vivo therapeutic evaluation of polymeric nanomedicines: effect of different targeting peptides on therapeutic efficacy against breast cancer. Nanotheranostics 2018; 2:360-370. [PMID: 30324082 PMCID: PMC6170333 DOI: 10.7150/ntno.27142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/12/2018] [Indexed: 01/18/2023] Open
Abstract
Targeted nanomedicines offer many advantages over macromolecular therapeutics that rely only on passive accumulation within the tumour environment. The aim of this work was to investigate the in vivo anticancer efficiency of polymeric nanomedicines that were conjugated with peptide aptamers that show high affinity for receptors on many cancer cells. In order to assess the ability for the nanomedicine to treat cancer and investigate how structure affected the behavior of the nanomedicine, three imaging modalities were utilized, including in vivo optical imaging, multispectral optoacoustic tomography (MSOT) and ex vivo confocal microscopy. An 8-mer (A8) or 13-mer (A13) peptide aptamer that have been shown to exhibit high affinity for heat shock protein 70 (HSP70) was covalently-bound to hyperbranched polymer (HBP) nanoparticles with the purpose of both cellular targeting, as well as the potential to impart some level of chemo-sensitization to the cells. Furthermore, doxorubicin was bound to the polymeric carrier as the anticancer drug, and Cyanine-5.5 (Cy5.5) was incorporated into the polymer as a monomeric fluorophore to aid in monitoring the behavior of the nanomedicine. Enhanced tumour regression was observed in nude mice bearing MDA-MB-468 xenografts when the nanocarriers were targeted using the peptide ligands, compared to control groups treated with free DOX or HBP without aptamer. The accumulated DOX level in solid tumours was 5.5 times higher in mice treated with the targeted therapeutic, than mice treated with free DOX, and 2.6 times higher than the untargeted nanomedicine that relied only on passive accumulation. The results suggest that aptamer-targeted therapeutics have great potential for improving accumulation of nanomedicines in tumours for therapy.
Collapse
Affiliation(s)
- Yongmei Zhao
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Tianqing Liu
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Anna C Gemmell
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Zachary H Houston
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Idriss Blakey
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| |
Collapse
|
42
|
Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A, Jangjoo S, Mohammadinejad R, Varma RS. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. NANOMATERIALS 2018; 8:nano8090634. [PMID: 30134524 PMCID: PMC6164883 DOI: 10.3390/nano8090634] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023]
Abstract
Nanoparticles (NPs) are currently used in diagnosis and treatment of many human diseases, including autoimmune diseases and cancer. However, cytotoxic effects of NPs on normal cells and living organs is a severe limiting factor that hinders their use in clinic. In addition, diversity of NPs and their physico-chemical properties, including particle size, shape, surface area, dispersity and protein corona effects are considered as key factors that have a crucial impact on their safe or toxicological behaviors. Current studies on toxic effects of NPs are aimed to identify the targets and mechanisms of their side effects, with a focus on elucidating the patterns of NP transport, accumulation, degradation, and elimination, in both in vitro and in vitro models. NPs can enter the body through inhalation, skin and digestive routes. Consequently, there is a need for reliable information about effects of NPs on various organs in order to reveal their efficacy and impact on health. This review covers the existing knowledge base on the subject that hopefully prepares us better to address these challenges.
Collapse
Affiliation(s)
- Marziyeh Ajdary
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran P.O. Box 1449614525, Iran.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran P.O Box 14965/161, Iran.
| | - Marveh Rahmati
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran P.O. Box 13145-158, Iran.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branches, Islamic Azad University of Tehran, Tehran P.O. Box 1916893813, Iran.
| | - Mohammad Mahboubi
- Department of Midwifery and Reproductive Health, Faculty of Nursing and Midwifery, Abadan School of Medical Sciences, Abadan P.O. Box 517, Iran.
| | - Ali Mandegary
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman P.O. Box 1355576169, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Pharmacology & Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman P.O. Box 7616911319, Iran.
| | - Saranaz Jangjoo
- School of Medicine, International Branch, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman P.O. Box 1355576169, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
43
|
Target challenging-cancer drug delivery to gastric cancer tissues with a fucose graft epigallocatechin-3-gallate-gold particles nanocomposite approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:147-153. [PMID: 29705507 DOI: 10.1016/j.jphotobiol.2018.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 01/22/2023]
Abstract
Inhibiting component of therapy with (-)-epigallocatechin-3-gallate (EGCG) is low bioavailability of fresh tea polyphenols that outcome from insecurity under stomach related circumstances, insufficient transcellular transport. As needs are, fucose- carboxymethyl chitosan (FU-CMC) graft EGCG with gold nanoparticles (GNPs) (FU-CMC-EGCG-GNPs) nanocomposites were prepared and managed peritumorally to assess their anticancer action. The physicochemical properties of as-prepared nanocomposite were evaluated by FTIR spectroscopy, UV-visible absorption spectra, XRD, FESEM-EDX and HRTEM-SAD. Additionally, the viability and cell uptake assays revealed that the as-prepared nanocomposite successfully repressed the propagation of gastric tumor cells. In vivo anticancer treatment of FU-CMC-EGCG-GNPs nanocomposites showed more anticancer action contrasted with pure EGCG. Immuno-histological investigations established a superior numeral of apoptotic tissues in the as-prepared FU-CMC-EGCG-GNPs nanocomposites contrasted with pure EGCG. Overall, the as-prepared FU-CMC-EGCG-GNPs nanocomposite affords a proficient medicine delivery stage for chemotherapy.
Collapse
|
44
|
Daza EA, Schwartz-Duval AS, Volkman K, Pan D. Facile Chemical Strategy to Hydrophobically Modify Solid Nanoparticles Using Inverted Micelle-Based Multicapsule for Efficient Intracellular Delivery. ACS Biomater Sci Eng 2018; 4:1357-1367. [PMID: 33418666 DOI: 10.1021/acsbiomaterials.8b00061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Theranostic nanoparticles have incredible potential for biomedical applications by enabling visual confirmation of therapeutic efficacy. Numerous issues challenge their clinical translation and are primarily related to the complex chemistry and scalability of synthesizing Nanoparticles. We report a 2-step chemical strategy for high-throughput intracellular delivery of organic and inorganic solid nanoparticles. This process takes an additional step beyond hydrophobic surface modification facilitated by inverted micelle transfer, toward the packing of multiple solid nanoparticles into a soft-shelled lipid capsule, termed the Nano-multicapsule (NMC). This technique is high yielding and does not require the complex purification steps in anaerobic/hydrophobic reactions for hydrophobic modification. To demonstrate the efficacy across different material compositions, we separately entrapped ∼10 nm gold and carbon nanoparticles (AuNP and CNP) within inverted micelles, and subsequently NMCs, then quantified their internalization in a human breast cancer cell line. For encapsulated AuNPs (NMC-AuNP), we confirmed greater cellular internalization of gold through ICP-OES and TEM analyses. Raman spectroscopic analysis of cells treated with encapsulated CNPs (NMC-CNP) also exhibited high degrees of uptake with apparent intracellular localization as opposed to free CNP treatment.
Collapse
Affiliation(s)
- Enrique A Daza
- Biomedical Research Center, Carle Foundation Hospital, 502 North Busey Avenue, Urbana, Illinois 61801, United States
| | - Aaron S Schwartz-Duval
- Biomedical Research Center, Carle Foundation Hospital, 502 North Busey Avenue, Urbana, Illinois 61801, United States
| | | | - Dipanjan Pan
- Biomedical Research Center, Carle Foundation Hospital, 502 North Busey Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
45
|
Sun L, Riedel R, Stanciu SG, Yang F, Hampp N, Xu L, Wu A. Investigations on the elasticity of functional gold nanoparticles using single-molecule force spectroscopy. J Mater Chem B 2018; 6:2960-2971. [DOI: 10.1039/c7tb03309e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this focused review we turn our attention towards several approaches for detecting the elasticity of NPs, systematically summarizing the divergent elasticity values of distinct gold nanoparticles (AuNPs) with different surfaces.
Collapse
Affiliation(s)
- Li Sun
- College of Science
- Nanjing Forestry University
- Nanjing
- P. R. China
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices
| | - René Riedel
- Fachbereich Chemie
- Philipps Universität Marburg
- Marburg
- Germany
| | - Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing
- University Politehnica of Bucharest
- Bucharest
- Romania
| | - Fang Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Norbert Hampp
- Fachbereich Chemie
- Philipps Universität Marburg
- Marburg
- Germany
| | - Li Xu
- College of Science
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| |
Collapse
|
46
|
Molinaro R, Corbo C, Livingston M, Evangelopoulos M, Parodi A, Boada C, Agostini M, Tasciotti E. Inflammation and Cancer: In Medio Stat Nano. Curr Med Chem 2018; 25:4208-4223. [PMID: 28933296 PMCID: PMC5860929 DOI: 10.2174/0929867324666170920160030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 06/06/2017] [Accepted: 07/02/2017] [Indexed: 12/21/2022]
Abstract
Cancer treatment still remains a challenge due to the several limitations of currently used chemotherapeutics, such as their poor pharmacokinetics, unfavorable chemical properties, as well as inability to discriminate between healthy and diseased tissue. Nanotechnology offered potent tools to overcome these limitations. Drug encapsulation within a delivery system permitted i) to protect the payload from enzymatic degradation/ inactivation in the blood stream, ii) to improve the physicochemical properties of poorly water-soluble drugs, like paclitaxel, and iii) to selectively deliver chemotherapeutics to the cancer lesions, thus reducing the off-target toxicity, and promoting the intracellular internalization. To accomplish this purpose, several strategies have been developed, based on biological and physical changes happening locally and systemically as a consequence of tumorigenesis. Here, we will discuss the role of inflammation in the different steps of tumor development and the strategies based on the use of nanoparticles that exploit the inflammatory pathways in order to selectively target the tumor-associated microenvironment for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Roberto Molinaro
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Claudia Corbo
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Megan Livingston
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Alessandro Parodi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Christian Boada
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, 64710, Mexico
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, 35124, Italy
- Nanoinspired Biomedicine Laboratory, Institute of Pediatric Research, Fondazione Citta della Speranza, 35129, Padua, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, United States
| |
Collapse
|
47
|
Koohi SR, Derakhshan MA, Faridani F, Muhammad Nejad S, Amanpour S, Tajerian R, Yarmahmoodi M, Faridi‐Majidi R. Plasmonic photothermal therapy of colon cancer cells utilising gold nanoshells: an in vitro study. IET Nanobiotechnol 2017; 12:196-200. [PMCID: PMC8676656 DOI: 10.1049/iet-nbt.2017.0144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/19/2017] [Accepted: 09/24/2017] [Indexed: 11/04/2023] Open
Abstract
In this study, gold nanoshell (GNS) were synthesised utilising the Halas method. The obtained nanoparticles (NPs) were characterised by Fourier‐transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis spectroscopy and dynamic light scattering. FTIR spectra demonstrated the successful functionalisation of silica NP with 3‐aminopropyl trimethoxysilane. SEM and TEM images showed the morphology and diameter of the synthesised silica NPs (137 ± 26 nm) and GNS. UV–Vis spectrum illustrated the maximum absorbance of the resultant GNS and their average hydrodynamic diameter was 159 nm. For in vitro study, HCT‐116 cells were exposed to gold nanoshells and intense pulsed light in different experiment groups. The results showed that exposing the cells to nanoshells and 30 s irradiation would efficiently decrease the viability percentage of the cells to about 30% compared with the control. A continued exposure of 4 min decreased the viability of the cancer cells to 20%. The results demonstrated that photothermal therapy would be promising in treatment of colon cancer cells utilising gold nanoshells.
Collapse
Affiliation(s)
- Samira Rasouli Koohi
- Department of Medical NanotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Mohammad Ali Derakhshan
- Department of Medical NanotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Faramarz Faridani
- Research Center of Sciences and Technologies in MedicineImam Khomeini HospitalTehranIran
| | - Samad Muhammad Nejad
- Cancer Research CenterCancer Institute, Tehran University of Medical SciencesTehranIran
| | - Saeid Amanpour
- Cancer Biology Research CenterCancer Institute, Tehran University of Medical SciencesTehranIran
| | - Roksana Tajerian
- Department of Medical NanotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Masood Yarmahmoodi
- Research Centre of Biomedical Technology and Robotics (RCBTR)Tehran University of Medical SciencesTehranIran
| | - Reza Faridi‐Majidi
- Department of Medical NanotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
48
|
Ren G, Chen P, Tang J, Wang R, Duan S, Wang R, Xie Y, Zhang S. Construction and cellular uptake evaluation of redox-responsive docetaxel prodrug self-assembled nanoparticles. Drug Dev Ind Pharm 2017; 44:598-607. [DOI: 10.1080/03639045.2017.1405435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Pei Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiaqi Tang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuai Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruili Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yin Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
49
|
Harris-Birtill D, Singh M, Zhou Y, Shah A, Ruenraroengsak P, Gallina ME, Hanna GB, Cass AEG, Porter AE, Bamber J, Elson DS. Gold nanorod reshaping in vitro and in vivo using a continuous wave laser. PLoS One 2017; 12:e0185990. [PMID: 29045438 PMCID: PMC5646757 DOI: 10.1371/journal.pone.0185990] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/23/2017] [Indexed: 11/19/2022] Open
Abstract
Gold nanorods (GNRs) are increasingly being investigated for cancer theranostics as they possess features which lend themselves in equal measures as contrast agents and catalysts for photothermal therapy. Their optical absorption spectral peak wavelength is determined by their size and shape. Photothermal therapy using GNRs is typically established using near infrared light as this allows sufficient penetration into the tumour matrix. Continuous wave (CW) lasers are the most commonly applied source of near infrared irradiation on GNRs for tumour photothermal therapy. It is perceived that large tumours may require fractionated or prolonged irradiation. However the true efficacy of repeated or protracted CW irradiation on tumour sites using the original sample of GNRs remains unclear. In this study spectroscopy and transmission electron microscopy are used to demonstrate that GNRs reshape both in vitro and in vivo after CW irradiation, which reduces their absorption efficiency. These changes were sustained throughout and beyond the initial period of irradiation, resulting from a spectral blue-shift and a considerable diminution in the absorption peak of GNRs. Solid subcutaneous tumours in immunodeficient BALB/c mice were subjected to GNRs and analysed with electron microscopy pre- and post-CW laser irradiation. This phenomenon of thermally induced GNR reshaping can occur at relatively low bulk temperatures, well below the bulk melting point of gold. Photoacoustic monitoring of GNR reshaping is also evaluated as a potential clinical aid to determine GNR absorption and reshaping during photothermal therapy. Aggregation of particles was coincidentally observed following CW irradiation, which would further diminish the subsequent optical absorption capacity of irradiated GNRs. It is thus established that sequential or prolonged applications of CW laser will not confer any additional photothermal effect on tumours due to significant attenuations in the peak optical absorption properties of GNRs following primary laser irradiation.
Collapse
Affiliation(s)
- David Harris-Birtill
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Mohan Singh
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Yu Zhou
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Anant Shah
- Joint Department of Physics and CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, London, United Kingdom
| | - Pakatip Ruenraroengsak
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, United Kingdom
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, United Kingdom
| | - Maria Elena Gallina
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - George B. Hanna
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Anthony E. G. Cass
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Alexandra E. Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, United Kingdom
| | - Jeffrey Bamber
- Joint Department of Physics and CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, London, United Kingdom
| | - Daniel S. Elson
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
50
|
White SB, Kim DH, Guo Y, Li W, Yang Y, Chen J, Gogineni VR, Larson AC. Biofunctionalized Hybrid Magnetic Gold Nanoparticles as Catalysts for Photothermal Ablation of Colorectal Liver Metastases. Radiology 2017; 285:809-819. [PMID: 28707960 DOI: 10.1148/radiol.2017161497] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose To demonstrate that anti-MG1 conjugated hybrid magnetic gold nanoparticles (HNPs) act as a catalyst during photothermal ablation (PTA) of colorectal liver metastases, and thus increase ablation zones. Materials and Methods All experiments were performed with approval of the institutional animal care and use committee. Therapeutic and diagnostic multifunctional HNPs conjugated with anti-MG1 monoclonal antibodies were synthesized, and the coupling efficiency was determined. Livers of 19 Wistar rats were implanted with 5 × 106 rat colorectal liver metastasis cell line cells. The rats were divided into three groups according to injection: anti-MG1-coupled HNPs (n = 6), HNPs only (n = 6), and cells only (control group, n = 7). Voxel-wise R2 and R2* magnetic resonance (MR) imaging measurements were obtained before, immediately after, and 24 hours after injection. PTA was then performed with a fiber-coupled near-infrared (808 nm) diode laser with laser power of 0.56 W/cm2 for 3 minutes, while temperature changes were measured. Tumors were assessed for necrosis with hematoxylin-eosin staining. Organs were analyzed with inductively coupled plasma mass spectrometry to assess biodistribution. Therapeutic efficacy and tumor necrosis area were compared by using a one-way analysis of variance with post hoc analysis for statistically significant differences. Results The coupling efficiency was 22 μg/mg (55%). Significant differences were found between preinfusion and 24-hour postinfusion measurements of both T2 (repeated measures analysis of variance, P = .025) and T2* (P < .001). Significant differences also existed for T2* measurements between the anti-MG1 HNP and HNP-only groups (P = .034). Mean temperature ± standard deviation with PTA in the anti-MG1-coated HNP, HNP, and control groups was 50.2°C ± 7.8, 51°C ± 4.4, and 39.5°C ± 2.0, respectively. Inductively coupled plasma mass spectrometry revealed significant tumor targeting and splenic sequestration. Mean percentages of tumor necrosis in the anti-MG1-coated HNP, HNP, and control groups were 38% ± 29, 14% ± 17, and 7% ± 8, respectively (P = .043). Conclusion Targeted monoclonal antibody-conjugated HNPs can serve as a catalyst for photothermal ablation of colorectal liver metastases by increasing ablation zones. © RSNA, 2017.
Collapse
Affiliation(s)
- Sarah B White
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Dong-Hyun Kim
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Yang Guo
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Weiguo Li
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Yihe Yang
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Jeane Chen
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Venkateswara R Gogineni
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| | - Andrew C Larson
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wis (S.B.W., V.R.G.); Department of Radiology (S.B.W., D.H.K., Y.G., W.L., Y.Y., J.C., A.C.L.) and Robert H. Lurie Comprehensive Cancer Center (D.H.K., A.C.L.), Northwestern University, 710 N Fairbanks Ct, Olson 8th floor 8-317, Chicago, IL 60611; Department of Chemical and Biological Engineering (J.C.) and Department of Biomedical Engineering (A.C.L.), Northwestern University, Evanston, Ill
| |
Collapse
|