1
|
Alharbi HM. Exploring the Frontier of Biopolymer-Assisted Drug Delivery: Advancements, Clinical Applications, and Future Perspectives in Cancer Nanomedicine. Drug Des Devel Ther 2024; 18:2063-2087. [PMID: 38882042 PMCID: PMC11178098 DOI: 10.2147/dddt.s441325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The burgeoning global mortality rates attributed to cancer have precipitated a critical reassessment of conventional therapeutic modalities, most notably chemotherapy, due to their pronounced adverse effects. This reassessment has instigated a paradigmatic shift towards nanomedicine, with a particular emphasis on the potentialities of biopolymer-assisted drug delivery systems. Biopolymers, distinguished by their impeccable biocompatibility, versatility, and intrinsic biomimetic properties, are rapidly ascending as formidable vectors within the cancer theragnostic arena. This review endeavors to meticulously dissect the avant-garde methodologies central to biopolymer-based nanomedicine, exploring their synthesis, functional mechanisms, and subsequent clinical ramifications. A key focus of this analysis is the pioneering roles and efficacies of lipid-based, polysaccharide, and composite nano-carriers in enhancing drug delivery, notably amplifying the enhanced permeation and retention effect. This examination is further enriched by referencing flagship nano formulations that have received FDA endorsement, thereby underscoring the transformative potential and clinical viability of biopolymer-based nanomedicines. Furthermore, this discourse illuminates groundbreaking advancements in the realm of photodynamic therapy and elucidates the implications of advanced imaging techniques in live models. Conclusively, this review not only synthesizes current research trajectories but also delineates visionary pathways for the integration of cutting-edge biomaterials in cancer treatment. It charts a course for future explorations within the dynamic domain of biopolymer-nanomedicine, thereby contributing to a deeper understanding and enhanced application of these novel therapeutic strategies.
Collapse
Affiliation(s)
- Hanan M Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Bhattacharya T, Preetam S, Ghosh B, Chakrabarti T, Chakrabarti P, Samal SK, Thorat N. Advancement in Biopolymer Assisted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2023; 6:3959-3983. [PMID: 37699558 PMCID: PMC10583232 DOI: 10.1021/acsabm.3c00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department
of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Nondestructive
Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering,
College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subham Preetam
- Centre
for Biotechnology, Siksha O Anusandhan (Deemed
to be University), Bhubaneswar 751024, Odisha, India
- Daegu
Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Basab Ghosh
- KIIT
School of Biotechnology, Kalinga Institute
of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tulika Chakrabarti
- Department
of Chemistry, Sir Padampat Singhania University, Bhatewar, Udaipur 313601, Rajasthan, India
| | | | - Shailesh Kumar Samal
- Section of
Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
3
|
Husni P, Lim C, Taek Oh K. Tumor microenvironment stimuli-responsive lipid-drug conjugates for cancer treatment. Int J Pharm 2023; 639:122942. [PMID: 37037397 DOI: 10.1016/j.ijpharm.2023.122942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Lipid drug conjugates (LDCs) have attracted considerable attention in the fields of drug delivery and pharmacology due to their ability to target specific cells, increase drug solubility, reduce toxicity, and improve therapeutic efficacy. These unique features make LDCs promising candidates for the treatment cancer, inflammation, and infectious diseases. In fact, by choosing specific linkers between the lipid and drug molecules, stimuli-responsive LDCs can be designed to target cancer cells based on the unique properties of the tumor microenvironment. Despite the fact that many reviews have described LDCs, few articles have focused on tumor microenvironmental stimuli-responsive LDCs for cancer treatment. Therefore, the key elements of these types of LDCs in cancer treatment will be outlined and discussed in this paper. Our paper goes into detail on the concepts and benefits of LDCs, the various types of tumor microenvironment stimuli-responsive LDCs (such as pH, redox, enzyme, or reactive oxygen species-responsive LDCs), and the current status of LDCs in clinical trials.
Collapse
Affiliation(s)
- Patihul Husni
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chaemin Lim
- College of Pharmacy, Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
4
|
Bhattacharya T, Shin GH, Kim JT. Carbon Dots: Opportunities and Challenges in Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15031019. [PMID: 36986879 PMCID: PMC10059251 DOI: 10.3390/pharmaceutics15031019] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Recently, carbon dots (CDs) have been actively studied and reported for their various properties. In particular, the specific characteristics of carbon dots have been considered as a possible technique for cancer diagnosis and therapy. This is also a cutting-edge technology that offers fresh ideas for treating various disorders. Though carbon dots are still in their infancy and have not yet shown their value to society, their discovery has already resulted in some noteworthy advancements. The application of CDs indicates conversion in natural imaging. Photography using CDs has demonstrated extraordinary appropriateness in bio-imaging, the discovery of novel drugs, the delivery of targeted genes, bio-sensing, photodynamic therapy, and diagnosis. This review seeks to provide a comprehensive understanding of CDs, including their benefits, characteristics, applications, and mode of action. In this overview, many CD design strategies will be highlighted. In addition, we will discuss numerous studies on cytotoxic testing to demonstrate the safety of CDs. The current study will address the production method, mechanism, ongoing research, and application of CDs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
- Correspondence: (G.H.S.); (J.T.K.)
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (G.H.S.); (J.T.K.)
| |
Collapse
|
5
|
Ren G, Li Y, Ping C, Duan D, Li N, Tang J, Wang R, Guo W, Niu X, Ji Q, Zhang G, Wang R, Zhang S. Docetaxel prodrug and hematoporphyrin co-assembled nanoparticles for anti-tumor combination of chemotherapy and photodynamic therapy. Drug Deliv 2022; 29:3358-3369. [PMID: 36397301 PMCID: PMC9848415 DOI: 10.1080/10717544.2022.2147280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To realize the synergistic anti-tumor effect of chemotherapy and photodynamic therapy, the mono sulfide-modified docetaxel (DTX) prodrugs (DSD) provided by our laboratory and hematoporphyrin (HP) were used to physically prepare co-assembled nanoparticles (DSD/HP NPs) by nano-precipitation. For the first time, this study showed its characteristics, in vitro anti-tumor activity, pharmacokinetic behavior in rats, in vivo distribution, and pharmacodynamic effects on 4T1 tumor-bearing Bal b/c mice. DSD/HP NPs optimized by single-factor and response surface optimization had several distinct characteristics. First, it had dark purple appearance with particle size of 105.16 ± 1.24 nm, PDI of 0.168 ± 0.15, entrapment efficiency and drug loading of DSD and HP in DSD/HP NPs of 96.27 ± 1.03% and 97.70 ± 0.20%, 69.22 ± 1.03% and 20.03 ± 3.12%, respectively. Second, it had good stability and could release DTX and HP slowly in the media of pH 7.4 PBS with 10 mM DTT (H2O2). Moreover, DSD/HP NPs along with NiR treatment significantly inhibited 4T1 cells proliferation, and induced more reactive oxygen species and cells apoptosis. In vivo pharmacokinetic and pharmacodynamic studies showed that DSD/HP NPs could prolong the drug circulation time in rats, increase drug distribution in tumor site, obviously inhibit tumor growth, and decrease the exposure of drug to normal tissues. Therefore, DSD/HP NPs as a promising co-assembled nano-drug delivery system could potentially improve the therapeutic efficiency of chemotherapeutic drug and achieve better anti-tumor effects due to the combination of chemotherapy and photodynamic therapy.
Collapse
Affiliation(s)
- Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan, China,CONTACT Guolian Ren
| | - Yujie Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Canqi Ping
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Danyu Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Ning Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jiaqi Tang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Wenju Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, China,Department of Pharmacy, Shanxi Bethune Hospital, Taiyuan, China
| | - Xiaomin Niu
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Qiuyue Ji
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Guoshun Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Ruili Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China,Shuqiu Zhang School of Pharmacy, Shanxi Medical University, 56 Xinjian South Road, Taiyuan030001, China
| |
Collapse
|
6
|
Li G, Sun B, Li Y, Luo C, He Z, Sun J. Small-Molecule Prodrug Nanoassemblies: An Emerging Nanoplatform for Anticancer Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101460. [PMID: 34342126 DOI: 10.1002/smll.202101460] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The antitumor efficiency and clinical translation of traditional nanomedicines is mainly restricted by low drug loading, complex preparation technology, and potential toxicity caused by the overused carrier materials. In recent decades, small-molecule prodrug nanoassemblies (SMP-NAs), which are formed by the self-assembly of prodrugs themselves, have been widely investigated with distinct advantages of ultrahigh drug-loading and negligible excipients-trigged adverse reaction. Benefited from the simple preparation process, SMP-NAs are widely used for chemotherapy, phototherapy, immunotherapy, and tumor diagnosis. In addition, combination therapy based on the accurate co-delivery behavior of SMP-NAs can effectively address the challenges of tumor heterogeneity and multidrug resistance. Recent trends in SMP-NAs are outlined, and the corresponding self-assembly mechanisms are discussed in detail. Besides, the smart stimuli-responsive SMP-NAs and the combination therapy based on SMP-NAs are summarized, with special emphasis on the structure-function relationships. Finally, the outlooks and potential challenges of SMP-NAs in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaqiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
7
|
Amphiphilic small molecular mates match hydrophobic drugs to form nanoassemblies based on drug-mate strategy. Asian J Pharm Sci 2021; 17:129-138. [PMID: 35261649 PMCID: PMC8888179 DOI: 10.1016/j.ajps.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 01/14/2023] Open
Abstract
Nanomedicine has made great progress in the targeted therapy of cancer. Here, we established a novel drug-mate strategy by studying the formulation of nanodrugs at the molecular level. In the drug-mate combination, the drug is a hydrophobic drug that is poorly soluble in water, and the mate is an amphiphilic small molecule (SMA) that has both hydrophilic and lipophilic properties. We proposed that the hydrophobic drug could co-assemble with a suitable SMA on a nanoscale without additive agents. The proof-of-concept methodology and results were presented to support our hypothesis. We selected five hydrophobic drugs and more than ten amphiphilic small molecules to construct a library. Through molecular dynamic simulation and quantum chemistry computation, we speculated that the formation of nanoassemblies was related to the binding energy of the drug-mate, and the drug-mate interaction must overcome drug-drug interaction. Furthermore, the obtained SF/VECOONa nanoassemblieswas selected as a model, which had an ultra-high drug loading content (46%), improved pharmacokinetics, increased bioavailability, and enhanced therapeutic efficacy. In summary, the drug-mate strategy is an essential resource to design exact SMA for many hydrophobic drugs and provides a reference for the design of a carrier-free drug delivery system.
Collapse
|
8
|
Khan S, Vahdani Y, Hussain A, Haghighat S, Heidari F, Nouri M, Haj Bloukh S, Edis Z, Mahdi Nejadi Babadaei M, Ale-Ebrahim M, Hasan A, Sharifi M, Bai Q, Hassan M, Falahati M. Polymeric micelles functionalized with cell penetrating peptides as potential pH-sensitive platforms in drug delivery for cancer therapy: A review. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
9
|
Xu MQ, Zhong T, Yao X, Li ZY, Li H, Wang JR, Feng ZH, Zhang X. Effect of XlogP and hansen solubility parameters on the prediction of small molecule modified docetaxel, doxorubicin and irinotecan conjugates forming stable nanoparticles. Drug Deliv 2021; 28:1603-1615. [PMID: 34319209 PMCID: PMC8330778 DOI: 10.1080/10717544.2021.1958107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Small molecule-chemotherapeutic drug conjugate nanoparticles (SMCDC NPs) has a great advantage in improving drug loading. However, the factors which influence these conjugates forming stable nanoparticles (NPs) are currently unclear. In our previous studies, we synthesized a series of fatty acid-paclitaxel conjugates and suggested that the changes in the hydrophobic parameters (XlogP), solubility parameters and crystallinity of these fatty acid-paclitaxel conjugates were the key factors for affecting these small molecule-chemotherapeutic drug conjugates (SMCDCs) forming stable NPs in water. Here, we selected clinically widely used chemotherapeutic drug (docetaxel (DTX), doxorubicin (DOX) and irinotecan (Ir)) as model drug, and chose three straight-chain fatty acids (acetic acid (Ac), hexanoic acid (HA) and stearic acid (SA)) and one branched small molecule (N-(tert-butoxycarbonyl) glycine (B-G)) to synthesize 12 SMCDCs. Our results indicated that our prediction criterions obtained from paclitaxel conjugates were also appropriated for these synthesized SMCDCs. We suggested that the present studies expanded the scope of application of the above-mentioned influencing factors, provided research ideas for the rational design of SMCDC forming NPs and a basis for screening NPs with good anticancer activity.
Collapse
Affiliation(s)
- Mei-Qi Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ting Zhong
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xin Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhuo-Yue Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jing-Ru Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhen-Han Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
10
|
Pharmacokinetics and antimalarial activities of reduction-responsive releasing dihydroartemisinin prodrug self-assembled nanoparticles in rodents. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Zheng Y, Ying X, Su Y, Jin X, Xu Q, Li Y. Kinetically-stable small-molecule prodrug nanoassemblies for cancer chemotherapy. Int J Pharm 2021; 597:120369. [PMID: 33577910 DOI: 10.1016/j.ijpharm.2021.120369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
Abstract
Self-delivering nanocarrier based on the small-molecule prodrug nanoassemblies (NAs) have been widely used for the efficient delivery of chemotherapeutics, but the effect of kinetic stability of NAs on their delivery performance has not been illuminated. In this study, two camptothecin (CPT)-oleic acid (OA) prodrugs were used to fabricate self-assembling nanorods with similar size distribution, zeta potential and morphology but having sharply different kinetic stability, which provided an ideal platform to investigate the effects of kinetic stability. It is found that the nanorods with high kinetic stability showed a lower in vitro cytotoxicity, but were more effective to inhibit the tumor growth probably by decreasing the premature CPT release and subsequent generation of the inactive carboxylate CPT. However, such kinetically stable nanorods also resulted in the increased toxicity, probably due to the high prodrug accumulation in tissues after multiple injections. These results outlined the pivotal role of kinetic stability in determining antitumor efficacy of prodrug NAs, which provided a new insight into the delivery mechanism for the small-molecule prodrug self-delivering nanosystems.
Collapse
Affiliation(s)
- Yaxin Zheng
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Xue Ying
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Yue Su
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Xuan Jin
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Qiulin Xu
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Yang Li
- Department of Pharmaceutics, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
12
|
Mirhadi E, Mashreghi M, Faal Maleki M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Redox-sensitive nanoscale drug delivery systems for cancer treatment. Int J Pharm 2020; 589:119882. [PMID: 32941986 DOI: 10.1016/j.ijpharm.2020.119882] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
|
13
|
Karaosmanoglu S, Zhou M, Shi B, Zhang X, Williams GR, Chen X. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 2020; 329:805-832. [PMID: 33045313 DOI: 10.1016/j.jconrel.2020.10.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Clinical applications of many anti-cancer drugs are restricted due to their hydrophobic nature, requiring use of harmful organic solvents for administration, and poor selectivity and pharmacokinetics resulting in off-target toxicity and inefficient therapies. A wide variety of carrier-based nanoparticles have been developed to tackle these issues, but such strategies often fail to encapsulate drug efficiently and require significant amounts of inorganic and/or organic nanocarriers which may cause toxicity problems in the long term. Preparation of nano-formulations for the delivery of water insoluble drugs without using carriers is thus desired, requiring elegantly designed strategies for products with high quality, stability and performance. These strategies include simple self-assembly or involving chemical modifications via coupling drugs together or conjugating them with various functional molecules such as lipids, carbohydrates and photosensitizers. During nanodrugs synthesis, insertion of redox-responsive linkers and tumor targeting ligands endows them with additional characteristics like on-target delivery, and conjugation with immunotherapeutic reagents enhances immune response alongside therapeutic efficacy. This review aims to summarize the methods of making carrier-free nanodrugs from hydrophobic drug molecules, evaluating their performance, and discussing the advantages, challenges, and future development of these strategies.
Collapse
Affiliation(s)
- Sena Karaosmanoglu
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, PR China.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK.
| |
Collapse
|
14
|
Meng F, Kwon S, Wang J, Yeo Y. Immunoactive drug carriers in cancer therapy. BIOMATERIALS FOR CANCER THERAPEUTICS 2020:53-94. [DOI: 10.1016/b978-0-08-102983-1.00003-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Kang T, Li Y, Wang Y, Zhu J, Yang L, Huang Y, Xiong M, Liu J, Wang S, Huang M, Wei X, Gou M. Modular Engineering of Targeted Dual-Drug Nanoassemblies for Cancer Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36371-36382. [PMID: 31490057 DOI: 10.1021/acsami.9b11881] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combination of chemotherapeutics and immunomodulators can generate synergistic anticancer efficacy, exerting efficient chemoimmunotherapy for cancer treatment. Nanoparticulate delivery systems hold great promise to promote synergistic anticancer efficacy for the codelivery of drugs. However, there remain challenges to precisely coencapsulate and deliver combinational drugs at designed ratios due to the difference of compatibility between drugs and nanocarriers. In this study, coassembled nanoparticles of lipophilic prodrugs (LPs) were designed to codeliver chemotherapeutics and immunomodulators for cancer treatment. Such nanoassemblies (NAs) could act as platforms to ratiometrically coencapsulate chemotherapeutics and immunomodulators. Based on this method, NAs formed by the self-assembly of iRGD peptide derivatives, paclitaxel (PTX) LPs, and imiquimod (R837) LPs were demonstrated to target the tumor at unified pharmacokinetics, further inducing the effective tumor inhibition and tumor recurrence prevention. This work provided an alternative to prepare chemoimmunotherapeutic NAs with advantages of ratiometric drug coencapsulation and unified pharmacokinetics, which may advance the future cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Tianyi Kang
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen , Guangdong , 518055 P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang X, Cheng X, He L, Zeng X, Zheng Y, Tang R. Self-Assembled Indomethacin Dimer Nanoparticles Loaded with Doxorubicin for Combination Therapy in Resistant Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28597-28609. [PMID: 31314480 DOI: 10.1021/acsami.9b05855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An ortho-ester-linked indomethacin (IND) dimer-based nanodrug delivery system was prepared to improve the therapeutic effect of doxorubicin (DOX) by reversing the multidrug resistance. The synthesized dimer (IND-OE) could form stable nanoparticles (IND-OE/DOX) loaded with DOX via the single-emulsion method. Compare to insensitive nanoparticles (IND-C12/DOX), IND-OE/DOX showed a rapid degradation behavior and accelerated drug release at mildly acidic environments. In vitro cell experiments verified that IND-OE nanoparticles could increase DOX concentration due to the efficient intracellular drug release by the degradation of the ortho ester as well as reduced DOX efflux by IND-mediated P-gp downregulation. In vivo studies further demonstrated that IND-OE/DOX displayed the maximized synergetic antitumor efficacy than free DOX or IND-C12/DOX, and the tumor inhibition rates versus saline were 46.78% (free DOX), 60.23% (IND-C12/DOX), and 80.62% (IND-OE/DOX). Overall, this strategy of combination with chemosensitizers and ortho ester linkage has great potential to serve as an amplifying chemotherapy platform against various drug-resistant tumors.
Collapse
Affiliation(s)
- Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences , Anhui University , 111 Jiulong Road , Hefei , Anhui Province 230601 , P. R. China
| | - Xu Cheng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences , Anhui University , 111 Jiulong Road , Hefei , Anhui Province 230601 , P. R. China
| | - Le He
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences , Anhui University , 111 Jiulong Road , Hefei , Anhui Province 230601 , P. R. China
| | - Xiaoli Zeng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences , Anhui University , 111 Jiulong Road , Hefei , Anhui Province 230601 , P. R. China
| | - Yan Zheng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences , Anhui University , 111 Jiulong Road , Hefei , Anhui Province 230601 , P. R. China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences , Anhui University , 111 Jiulong Road , Hefei , Anhui Province 230601 , P. R. China
| |
Collapse
|
17
|
Hydrophobic drug self-delivery systems as a versatile nanoplatform for cancer therapy: A review. Colloids Surf B Biointerfaces 2019; 180:202-211. [DOI: 10.1016/j.colsurfb.2019.04.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
|
18
|
Chelora J, Zhang J, Wan Y, Cui X, Zhao J, Meng XM, Wang P, Lee CS. Plant-Derived Single-Molecule-Based Nanotheranostics for Photoenhanced Chemotherapy and Ferroptotic-Like Cancer Cell Death. ACS APPLIED BIO MATERIALS 2019; 2:2643-2649. [DOI: 10.1021/acsabm.9b00311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jipsa Chelora
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
| | - Jinfeng Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
| | - Junfang Zhao
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Min Meng
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pengfei Wang
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Nano-organic Photoelectronic Laboratory (NOPEL), TIPC, CAS-CityU Joint Laboratory, Dongguan, Guangdong 523000, P. R. China
| |
Collapse
|
19
|
Yuan Q, Wang Y, Song R, Hou X, Yu K, Zheng J, Zhang J, Pu X, Han J, Zong L. Study on Formulation, in vivo Exposure, and Passive Targeting of Intravenous Itraconazole Nanosuspensions. Front Pharmacol 2019; 10:225. [PMID: 30983994 PMCID: PMC6447661 DOI: 10.3389/fphar.2019.00225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/22/2019] [Indexed: 12/28/2022] Open
Abstract
The pharmacokinetic profile of a drug can be different when delivered as a nanosuspension compared with a true solution, which may in turn affect the therapeutic effect of the drug. The goal of this study was to prepare itraconazole nanosuspensions (ITZ-Nanos) stabilized by an amphipathic polymer, polyethylene glycol-poly (benzyl aspartic acid ester) (PEG-PBLA), by the precipitation-homogenization, and study the pharmacokinetic profile of the ITZ-Nanos. The particle size and morphology of nanosuspensions were determined by Zetasizer and field emission scanning electron microscope (SEM), respectively. The dissolution profile was evaluated using a paddle method according to Chinese Pharmacopoeia 2015. The level of ITZ in plasma and tissues was measured by a HPLC method. The optimized ITZ-Nanos had an average particle size of 268.1 ± 6.5 nm and the particles were in a rectangular form. The dissolution profile of ITZ-Nanos was similar to that of commercial ITZ injections, with nearly 90% ITZ released in the first 5 min. The ITZ-Nanos displayed different pharmacokinetic properties compared with the commercial ITZ injections, including a decreased initial drug concentration, increased plasma half-life and mean residence time (MRT), and increased concentration in the liver, lung, and spleen. The ITZ-Nanos can change the in vivo distribution of ITZ and result in passive targeting to the organs with mononuclear phagocyte systems (MPS).
Collapse
Affiliation(s)
- Qi Yuan
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Yanling Wang
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Rufeng Song
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Xianqiao Hou
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Keke Yu
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Jiaojiao Zheng
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Juanmei Zhang
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Xiaohui Pu
- School of Pharmacy, Institute of Materia Medica, Henan University, Kaifeng, China
| | - Jihong Han
- School of Pharmacy, The Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| | - Lanlan Zong
- School of Pharmacy, The Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
20
|
Redox-sensitive prodrug nanoassemblies based on linoleic acid-modified docetaxel to resist breast cancers. Acta Pharm Sin B 2019; 9:421-432. [PMID: 30972286 PMCID: PMC6437471 DOI: 10.1016/j.apsb.2018.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/12/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Prodrug nanoassemblies, which can refrain from large excipients, achieve higher drug loading and control drug release, have been placed as the priority in drug delivery system. Reasoning that glutathione (GSH) and reactive oxygen species (ROS) are highly upgraded in tumor tissues which makes them attractive targets for drug delivery system, we designed and synthetized a novel prodrug which utilized mono thioether bond as a linker to bridge linoleic acid (LA) and docetaxel (DTX). This mono thioether-linked conjugates (DTX-S-LA) could self-assemble into nanoparticles without the aid of much excipients. The mono thioether endowed the nanoparticles redox sensitivity resulting in specific release at the tumor tissue. Our studies demonstrated that the nanoassemblies had uniform particle size, high stability and fast release behavior. DTX-S-LA nanoassemblies outperformed DTX solution in pharmacokinetic profiles for it had longer circulation time and higher area under curve (AUC). Compared with DTX solution, the redox dual-responsive nanoassemblies had comparable cytotoxic activity. Besides, the antitumor efficacy was evaluated in mice bearing 4T1 xenograft. It turned out this nanoassemblies could enhance anticancer efficacy by increasing the dose because of higher tolerance. Overall, these results indicated that the redox sensitivity nanoassemblies may have a great potential to cancer therapy.
Collapse
Key Words
- ALT, alanine transaminase
- AST, aspartate transaminase
- AUC, area under the curve
- Antitumor efficacy
- BUN, blood urea nitrogen
- C-6, coumarin-6
- CREA, creatinine
- DDS, drug delivery system
- DMSO, dimethyl sulfoxide
- DSPE-PEG2K, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000]
- DTT, d,l-dithiothreitol
- DTX, docetaxel
- Docetaxel
- EDCI, N-(3-dimethylaminopropyl)-N′-ethyl carbodiimide hydrochloride
- FBS, fetal bovine serum
- GSH, glutathione
- H2O2, hydrogen peroxide
- HOBt, 1-hydroxybenzotriazole monohydrate
- HPLC, high-performance liquid chromatography
- IC50, half maximal inhibitory concentration
- LA, linoleic acid
- Linoleic acid
- MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
- Mono thioether bond
- Nanoassemblies
- PBS, phosphate buffer saline
- PDI, polydispersity index
- PTX, paclitaxel
- Pharmacokinetics
- ROS, reactive oxygen species
- SD, standard deviation
- TLC, thin layer chromatography
Collapse
|
21
|
Han L, Wang T, Mu S, Yin X, Liang S, Fang H, Liu Y, Zhang N. Unified D-α-Tocopherol 5-Fu/SAHA bioconjugates self-assemble as complex nanodrug for optimized combination therapy. Nanomedicine (Lond) 2018; 13:1285-1301. [DOI: 10.2217/nnm-2017-0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: To optimize the synergistic efficacy of combination therapy with controlled molar ratio, complex small molecule-based nanodrug (Co-SMND) of 5-fluorouracil (5-Fu)/vorinostat (SAHA) was developed. Materials & methods: Co-SMND with various ratios of 5-Fu-D-α-tocopherol (VE)/SAHA-VE were prepared and characterized including co-assembly mechanism, hydrolytic stability, cytotoxicity, synergistic effect and apoptosis inducing ability. The antitumor activity, systematic toxicity and biodistribution of optimized Co-SMND were evaluated in CT-26 bearing BALB/c mouse. Results: Maximal synergistic effect of Co-SMND could be obtained via simply adjusting the feeding molar ratio. The optimized Co-SMND showed superior in vivo antitumor efficacy, upregulated security and selective intratumoral accumulation. Conclusion: Such Co-SMND is of great significance for future clinical translation, and would be an efficient platform for combination chemotherapy.
Collapse
Affiliation(s)
- Leiqiang Han
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Tianqi Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Shengjun Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Xiaolan Yin
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Shuang Liang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan 250012, Shandong, China
| |
Collapse
|
22
|
Feng Y, Zhu Y, Wan J, Yang X, Firempong CK, Yu J, Xu X. Enhanced oral bioavailability, reduced irritation and increased hypolipidemic activity of self-assembled capsaicin prodrug nanoparticles. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
23
|
Zhong T, Hao YL, Yao X, Zhang S, Duan XC, Yin YF, Xu MQ, Guo Y, Li ZT, Zheng XC, Li H, Zhang X. Effect of XlogP and Hansen Solubility Parameters on Small Molecule Modified Paclitaxel Anticancer Drug Conjugates Self-Assembled into Nanoparticles. Bioconjug Chem 2018; 29:437-444. [PMID: 29300459 DOI: 10.1021/acs.bioconjchem.7b00767] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small molecule modified anticancer drug conjugates (SMMDCs) can self-assemble into nanoparticles (NPs) as therapeutic NP platforms for cancer treatment. Here we demonstrate that the XlogP and Hansen solubility parameters of paclitaxel (PTX) SMMDCs is essential for SMMDCs self-assembling into NPs. The amorphous state of PTX SMMDCs will also affect SMMDCs self-assembling into NPs. However, the antitumor activity of these PTX SMMDCs NPs decreased along with their XlogP values, indicating that a suitable XlogP value for designing the SMMDCs is important for self-assembling into NPs and for possessing antitumor activity. For higher level XlogP SMMDCs, a degradable linker should be considered in the design of SMMDCs to overcome the problem of lower antitumor activity. It is preferable that the hydrophilic groups in the SMMDCs should be present on the surface of self-assembling NPs.
Collapse
Affiliation(s)
- Ting Zhong
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems and ‡Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Yan-Li Hao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems and ‡Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Xin Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems and ‡Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Shuang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems and ‡Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Xiao-Chuan Duan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems and ‡Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Yi-Fan Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems and ‡Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Mei-Qi Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems and ‡Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Yang Guo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems and ‡Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Zhan-Tao Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems and ‡Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Xiu-Chai Zheng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems and ‡Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Hui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems and ‡Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Xuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems and ‡Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| |
Collapse
|
24
|
Lan C, Zhao S. Self-assembled nanomaterials for synergistic antitumour therapy. J Mater Chem B 2018; 6:6685-6704. [DOI: 10.1039/c8tb01978a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent progress on self-assembled nanodrugs for anticancer treatment was discussed.
Collapse
Affiliation(s)
- Chuanqing Lan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
25
|
Ren G, Chen P, Tang J, Wang R, Duan S, Wang R, Xie Y, Zhang S. Construction and cellular uptake evaluation of redox-responsive docetaxel prodrug self-assembled nanoparticles. Drug Dev Ind Pharm 2017; 44:598-607. [DOI: 10.1080/03639045.2017.1405435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Pei Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiaqi Tang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuai Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruili Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yin Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
26
|
Zhang S, Guan J, Sun M, Zhang D, Zhang H, Sun B, Guo W, Lin B, Wang Y, He Z, Luo C, Sun J. Self-delivering prodrug-nanoassemblies fabricated by disulfide bond bridged oleate prodrug of docetaxel for breast cancer therapy. Drug Deliv 2017; 24:1460-1469. [PMID: 28950729 PMCID: PMC8241025 DOI: 10.1080/10717544.2017.1381201] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 11/01/2022] Open
Abstract
Breast cancer leads to high mortality of women in the world. Docetaxel (DTX) has been widely applied as one of the first-line chemotherapeutic drugs for breast cancer therapy. However, the clinical outcome of DTX is far from satisfaction due to its poor drug delivery efficiency. Herein, a novel disulfide bond bridged oleate prodrug of DTX was designed and synthesized to construct self-delivering prodrug-based nanosystem for improved anticancer efficacy of DTX. The uniquely engineered prodrug-nanoassemblies showed redox-responsive drug release, increased cellular uptake and comparable cytotoxicity against 4T1 breast cancer cells when compared with free DTX. In vivo, oleate prodrug-based nanoparticles (NPs) demonstrated significantly prolonged systemic circulation and increased accumulation in tumor site. As a result, prodrug NPs produced a notable antitumor activity in 4T1 breast cancer xenograft in BALB/c mice. This prodrug-based self-assembly and self-delivery strategy could be utilized to improve the delivery efficiency of DTX for breast cancer treatment.
Collapse
Affiliation(s)
- Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Jibin Guan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Mengchi Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Dong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Haotian Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Weiling Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang, China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
27
|
Jiang M, Han X, Guo W, Li W, Chen J, Ren G, Sun B, Wang Y, He Z. Star-shape paclitaxel prodrug self-assembled nanomedicine: combining high drug loading and enhanced cytotoxicity. RSC Adv 2016. [DOI: 10.1039/c6ra23169a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Star-shape paclitaxel prodrugs self-assembled nanoparticles combining high drug loading and enhanced cytotoxicity.
Collapse
Affiliation(s)
- Mengjuan Jiang
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Xiangfei Han
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Weiling Guo
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Wei Li
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- China
| | - Jinling Chen
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- China
| | - Guolian Ren
- School of Pharmacy
- Shanxi Medical University
- China
| | - Bingjun Sun
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yongjun Wang
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Zhonggui He
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| |
Collapse
|