1
|
Yi J, Chen YS. How can nanotechnology be leveraged to produce multifunctional contrast agents to improve imaging and diagnostics? Nanomedicine (Lond) 2025:1-4. [PMID: 40337948 DOI: 10.1080/17435889.2025.2501515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Affiliation(s)
- Junxi Yi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yun-Sheng Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Mechanical Science & Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Sun G, Wang L, Dong Z, Zhang Y, Yang Y, Hu M, Fang H. The Current Status, Hotspots, and Development Trends of Nanoemulsions: A Comprehensive Bibliometric Review. Int J Nanomedicine 2025; 20:2937-2968. [PMID: 40093547 PMCID: PMC11910037 DOI: 10.2147/ijn.s502490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Nanoemulsions, which are characterized by their nanometer-scale droplets, have gained significant attention in different fields, such as medicine, food, cosmetics, and agriculture, because of their unique properties. With an increasing number of countries engaging in research on nanoemulsions, interest in their properties, preparation methods, and applications has increased. Hence, tracing the relevant research on nanoemulsions published in the past ten years on a global scale, by conducting data mining and visualization analysis on a sufficiently large text dataset through bibliometrics, sorting out and summarizing certain indicators, the development history, research status and research hotspots in the field of nanoemulsions can be clearly revealed, providing reference value and significance for subsequent research. This bibliometric review examines the research landscape of nanoemulsions from 2013-2023 via the SCI-E and SSCI databases, providing insights into the current status, hotspots, and future trends of this field. To offer a comprehensive overview, this analysis includes publication counts, author keywords, institutional contributions, research areas, prolific authors, highly cited papers and hot research papers. The findings reveal that China led in nanoemulsions research, followed by USA, India, and Brazil, with the University of Massachusetts emerging as a key player with the highest average number of citations per article (ACPP) and h-index. Food Chemistry, Pharmaceutics, and the Journal of Drug Delivery Science and Technology are among the top journals publishing in this area. Chemistry, pharmacology, and pharmacy emerged as the primary research domains, with McClements DJ as the most prolific and influential author. In keyword analysis, essential oil nanoemulsions are currently the main preparation direction, and various characteristics of nanoemulsions, such as their bioavailability, stability, biocompatibility, and antioxidant and antibacterial properties, have also been studied extensively. Research hotspots are focused mostly on the development of new applications and technologies for nanoemulsions.
Collapse
Affiliation(s)
- Guojun Sun
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| | - Liying Wang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| | - Zuojun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| | - Yanxiao Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| | - Yan Yang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| | - Miao Hu
- Zhejiang Guangsha Vocational and Technical University of Construction, Jinhua, People’s Republic of China
| | - Hui Fang
- Library, Zhejiang University of Technology, Hangzhou, People’s Republic of China
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| |
Collapse
|
3
|
Tufano I, Vecchione R, Panzetta V, Battista E, Casale C, Imparato G, Netti PA. Multistage Nanocarrier Based on an Oil Core-Graphene Oxide Shell. Pharmaceutics 2024; 16:827. [PMID: 38931947 PMCID: PMC11207637 DOI: 10.3390/pharmaceutics16060827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Potent synthetic drugs, as well as biomolecules extracted from plants, have been investigated for their selectivity toward cancer cells. The main limitation in cancer treatment is the ability to bring such molecules within each single cancer cell, which requires accumulation in the peritumoral region followed by homogeneous spreading within the entire tissue. In the last decades, nanotechnology has emerged as a powerful tool due to its ability to protect the drug during blood circulation and allow enhanced accumulation around the leaky regions of the tumor vasculature. However, the ideal size for accumulation of around 100 nm is too large for effective penetration into the dense collagen matrix. Therefore, we propose a multistage system based on graphene oxide nanosheet-based quantum dots (GOQDs) with dimensions that are 12 nm, functionalized with hyaluronic acid (GOQDs-HA), and deposited using the layer-by-layer technique onto an oil-in-water nanoemulsion (O/W NE) template that is around 100 nm in size, previously stabilized by a biodegradable polymer, chitosan. The choice of a biodegradable core for the nanocarrier is to degrade once inside the tumor, thus promoting the release of smaller compounds, GOQDs-HA, carrying the adsorbed anticancer compound, which in this work is represented by curcumin as a model bioactive anticancer molecule. Additionally, modification with HA aims to promote active targeting of stromal and cancer cells. Cell uptake experiments and preliminary penetration experiments in three-dimensional microtissues were performed to assess the proposed multistage nanocarrier.
Collapse
Affiliation(s)
- Immacolata Tufano
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, 80138 Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Valeria Panzetta
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, 80138 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80138 Naples, Italy
| | - Edmondo Battista
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80138 Naples, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, 80138 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
4
|
Edris A, Abdelrahman M, Osman W, Sherif AE, Ashour A, Garelnabi EAE, Ibrahim SRM, Bafail R, Samman WA, Ghazawi KF, Mohamed GA, Alzain AA. Design of Novel Letrozole Analogues Targeting Aromatase for Breast Cancer: Molecular Docking, Molecular Dynamics, and Theoretical Studies on Gold Nanoparticles. Metabolites 2023; 13:metabo13050583. [PMID: 37233624 DOI: 10.3390/metabo13050583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
The use of aromatase inhibitors is an established therapy for estrogen-dependent breast cancer in postmenopausal women. However, the only commercially available aromatase inhibitor, letrozole, is not highly selective; in addition to aromatase, it has an affinity for binding to desmolase, an enzyme involved in steroidogenesis, which explains the main side effects. Therefore, we designed new compounds based on the structure of letrozole. More than five thousand compounds were constructed based on the letrozole structure. Then, these compounds were screened for their binding ability toward the target protein, aromatase. Quantum docking, Glide docking, and ADME studies showed 14 new molecules with docking scores of ≤-7 kcal/mol, compared to the docking score of -4.109 kcal/mol of the reference, letrozole. Moreover, molecular dynamics (MD) and post-MD MM-GBSA calculations were calculated for the top three compounds, and the results supported in their interaction's stability. Finally, the density-functional theory (DFT) study applied to the top compound to study the interaction with gold nanoparticles revealed the most stable position for the interaction with the gold nanoparticles. The results of this study confirmed that these newly designed compounds could be useful starting points for lead optimization. Further in vitro and in vivo studies are recommended for these compounds to verify these promising results experimentally.
Collapse
Affiliation(s)
- Alaa Edris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Mohammed Abdelrahman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Wadah Osman
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum 11111, Sudan
| | - Asmaa E Sherif
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Elrashied A E Garelnabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum 11111, Sudan
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Rawan Bafail
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Waad A Samman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina 30078, Saudi Arabia
| | - Kholoud F Ghazawi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| |
Collapse
|
5
|
Bottinor WJ, Deng X, Bandyopadhyay D, Coburn G, Havens C, Carr M, Saurers D, Judkins C, Gong W, Yu C, Friedman DL, Borinstein SC, Soslow JH. Myocardial Strain during Surveillance Screening Is Associated with Future Cardiac Dysfunction among Survivors of Childhood, Adolescent and Young Adult-Onset Cancer. Cancers (Basel) 2023; 15:cancers15082349. [PMID: 37190277 DOI: 10.3390/cancers15082349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Cardiovascular disease is a leading contributor to mortality among childhood, adolescent and young adult (C-AYA) cancer survivors. While serial cardiovascular screening is recommended in this population, optimal screening strategies, including the use of echocardiography-based myocardial strain, are not fully defined. Our objective was to determine the relationship between longitudinal and circumferential strain (LS, CS) and fractional shortening (FS) among survivors. This single-center cohort study retrospectively measured LS and CS among C-AYAs treated with anthracycline/anthracenedione chemotherapy. The trajectory of LS and CS values over time were examined among two groups of survivors: those who experienced a reduction of >5 fractional shortening (FS) units from pre-treatment to the most recent echocardiogram, and those who did not. Using mixed modeling, LS and CS were used to estimate FS longitudinally. A receiver operator characteristic curve was generated to determine the ability of our model to correctly predict an FS ≤ 27%. A total of 189 survivors with a median age of 14 years at diagnosis were included. Among the two survivor groups, the trajectory of LS and CS differed approximately five years from cancer diagnosis. A statistically significant inverse relationship was demonstrated between FS and LS -0.129, p = 0.039, as well as FS and CS -0.413, p < 0.001. The area under the curve for an FS ≤ 27% was 91%. Among C-AYAs, myocardial strain measurements may improve the identification of individuals with cardiotoxicity, thereby allowing earlier intervention.
Collapse
Affiliation(s)
- Wendy J Bottinor
- Department of Internal Medicine, Division of Cardiovascular Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Xiaoyan Deng
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - Gary Coburn
- Department of Pediatrics, Division of Pediatric Cardiology, Vanderbilt University, Nashville, TN 37232, USA
| | - Corey Havens
- Department of Pediatrics, Division of Pediatric Cardiology, Vanderbilt University, Nashville, TN 37232, USA
| | - Melissa Carr
- Department of Pediatrics, Division of Pediatric Cardiology, Vanderbilt University, Nashville, TN 37232, USA
| | - Daniel Saurers
- Department of Pediatrics, Division of Pediatric Cardiology, Vanderbilt University, Nashville, TN 37232, USA
| | - Chantelle Judkins
- Department of Pediatrics, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wu Gong
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA
| | - Debra L Friedman
- Department of Pediatrics, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Scott C Borinstein
- Department of Pediatrics, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan H Soslow
- Department of Pediatrics, Division of Pediatric Cardiology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Soltan MA, Eldeen MA, Sajer BH, Abdelhameed RFA, Al-Salmi FA, Fayad E, Jafri I, Ahmed HEM, Eid RA, Hassan HM, Al-Shraim M, Negm A, Noreldin AE, Darwish KM. Integration of Chemoinformatics and Multi-Omics Analysis Defines ECT2 as a Potential Target for Cancer Drug Therapy. BIOLOGY 2023; 12:biology12040613. [PMID: 37106813 PMCID: PMC10135641 DOI: 10.3390/biology12040613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Epithelial cell transforming 2 (ECT2) is a potential oncogene and a number of recent studies have correlated it with the progression of several human cancers. Despite this elevated attention for ECT2 in oncology-related reports, there is no collective study to combine and integrate the expression and oncogenic behavior of ECT2 in a panel of human cancers. The current study started with a differential expression analysis of ECT2 in cancerous versus normal tissue. Following that, the study asked for the correlation between ECT2 upregulation and tumor stage, grade, and metastasis, along with its effect on patient survival. Moreover, the methylation and phosphorylation status of ECT2 in tumor versus normal tissue was assessed, in addition to the investigation of the ECT2 effect on the immune cell infiltration in the tumor microenvironment. The current study revealed that ECT2 was upregulated as mRNA and protein levels in a list of human tumors, a feature that allowed for the increased filtration of myeloid-derived suppressor cells (MDSC) and decreased the level of natural killer T (NKT) cells, which ultimately led to a poor prognosis survival. Lastly, we screened for several drugs that could inhibit ECT2 and act as antitumor agents. Collectively, this study nominated ECT2 as a prognostic and immunological biomarker, with reported inhibitors that represent potential antitumor drugs.
Collapse
Affiliation(s)
- Mohamed A Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Bayan H Sajer
- Department of Biological Sciences, College of Science, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Fawziah A Al-Salmi
- Biology Department, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Refaat A Eid
- Pathology Department, College of Medicine, King Khalid University, P.O. Box 62529, Abha 61421, Saudi Arabia
| | - Hesham M Hassan
- Pathology Department, College of Medicine, King Khalid University, P.O. Box 62529, Abha 61421, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Mubarak Al-Shraim
- Pathology Department, College of Medicine, King Khalid University, P.O. Box 62529, Abha 61421, Saudi Arabia
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22516, Egypt
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Tang K, Cai Z, Lv Y, Liu R, Chen Q, Gu J. Scientometric Research on Trend Analysis of Nano-Based Sustained Drug Release Systems for Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15041168. [PMID: 37111653 PMCID: PMC10145462 DOI: 10.3390/pharmaceutics15041168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Nanomaterials, such as the nanoparticle (NP), nanomicelle, nanoscaffold, and nano-hydrogel, have been researched as nanocarriers for drug delivery more and more recently. Nano-based drug sustained release systems (NDSRSs) have been used in many medical fields, especially wound healing. However, as we know, no scientometric analysis has been seen on applying NDSRSs in wound healing, which could be of great importance to the relevant researchers. This study collected publications from 1999 to 2022 related to NDSRSs in wound healing from the Web of Science Core Collection (WOSCC) database. We employed scientometric methods to comprehensively analyze the dataset from different perspectives using CiteSpace, VOSviewer, and Bibliometrix. The results indicated that China published the most significant number of documents in the last two decades, Islamic Azad Univ was the most productive institution, and Jayakumar, R was the most influential author. Regarding the analysis of keywords, trend topics indicate that "antibacterial", "chitosan (CS)", "scaffold", "hydrogel", "silver nanoparticle", and "growth factors (GFs)" are the hot topics in recent years. We anticipate that our work will provide a comprehensive overview of research in this field and help scholars better understand the research hotspots and frontiers in this area, thus inspiring further explorations in the future.
Collapse
Affiliation(s)
- Kuangyun Tang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Zhengyu Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yanhan Lv
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Li R, Inbaraj BS, Chen BH. Quantification of Xanthone and Anthocyanin in Mangosteen Peel by UPLC-MS/MS and Preparation of Nanoemulsions for Studying Their Inhibition Effects on Liver Cancer Cells. Int J Mol Sci 2023; 24:3934. [PMID: 36835343 PMCID: PMC9965517 DOI: 10.3390/ijms24043934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Mangosteen peel, a waste produced during mangosteen processing, has been reported to be rich in xanthone and anthocyanin, both of which possess vital biological activities such as anti-cancer properties. The objectives of this study were to analyze various xanthones and anthocyanins in mangosteen peel by UPLC-MS/MS for the subsequent preparation of both xanthone and anthocyanin nanoemulsions to study their inhibition effects on liver cancer cells HepG2. Results showed that methanol was the optimal solvent for the extraction of xanthones and anthocyanins, with a total amount of 68,543.39 and 2909.57 μg/g, respectively. A total of seven xanthones, including garcinone C (513.06 μg/g), garcinone D (469.82 μg/g), γ-mangostin (11,100.72 μg/g), 8-desoxygartanin (1490.61 μg/g), gartanin (2398.96 μg/g), α-mangostin (51,062.21 μg/g) and β-mangostin (1508.01 μg/g), as well as two anthocyanins including cyanidin-3-sophoroside (2889.95 μg/g) and cyanidin-3-glucoside (19.72 μg/g), were present in mangosteen peel. The xanthone nanoemulsion was prepared by mixing an appropriate portion of soybean oil, CITREM, Tween 80 and deionized water, while the anthocyanin nanoemulsion composed of soybean oil, ethanol, PEG400, lecithin, Tween 80, glycerol and deionized water was prepared as well. The mean particle size of the xanthone extract and nanoemulsion were, respectively, 22.1 and 14.0 nm as determined by DLS, while the zeta potential was -87.7 and -61.5 mV. Comparatively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells, with the IC50 being 5.78 μg/mL for the former and 6.23 μg/mL for the latter. However, the anthocyanin nanoemulsion failed to inhibit growth of HepG2 cells. Cell cycle analysis revealed that the proportion of the sub-G1 phase followed a dose-dependent increase, while that of the G0/G1 phase showed a dose-dependent decline for both xanthone extracts and nanoemulsions, with the cell cycle being possibly arrested at the S phase. The proportion of late apoptosis cells also followed a dose-dependent rise for both xanthone extracts and nanoemulsions, with the latter resulting in a much higher proportion at the same dose. Similarly, the activities of caspase-3, caspase-8 and caspase-9 followed a dose-dependent increase for both xanthone extracts and nanoemulsions, with the latter exhibiting a higher activity at the same dose. Collectively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells. Further research is needed to study the anti-tumor effect in vivo.
Collapse
Affiliation(s)
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
9
|
Chen SN, Nan FH, Liu MW, Yang MF, Chang YC, Chen S. Evaluation of Immune Modulation by β-1,3; 1,6 D-Glucan Derived from Ganoderma lucidum in Healthy Adult Volunteers, A Randomized Controlled Trial. Foods 2023; 12:659. [PMID: 36766186 PMCID: PMC9914031 DOI: 10.3390/foods12030659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fungi-derived β-glucan, a type of glucopolysaccharide, has been shown to possess immune-modulatory properties in clinical settings. Studies have indicated that β-glucan derived from Ganoderma lucidum (commonly known as Reishi) holds particular promise in this regard, both in laboratory and in vivo settings. To further investigate the efficacy and safety of Reishi β-glucan in human subjects, a randomized, double-blinded, placebo-controlled clinical trial was conducted among healthy adult volunteers aged 18 to 55. Participants were instructed to self-administer the interventions or placebos on a daily basis for 84 days, with bloodwork assessments conducted at the beginning and end of the study. The results of the trial showed that subjects in the intervention group, who received Reishi β-glucan, exhibited a significant enhancement in various immune cell populations, including CD3+, CD4+, CD8+ T-lymphocytes, as well as an improvement in the CD4/CD8 ratio and natural killer cell counts when compared to the placebo group. Additionally, a statistically significant difference was observed in serum immunoglobulin A levels and natural killer cell cytotoxicity between the intervention and placebo groups. Notably, the intervention was found to be safe and well tolerated, with no statistically significant changes observed in markers of kidney or liver function in either group. Overall, the study provides evidence for the ability of Reishi β-glucan to modulate immune responses in healthy adults, thereby potentially bolstering their defense against opportunistic infections.
Collapse
Affiliation(s)
- Shiu-Nan Chen
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Fan-Hua Nan
- College of Life Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ming-Wei Liu
- Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242062, Taiwan
| | - Min-Feng Yang
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Chih Chang
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Sherwin Chen
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
CD36-Fatty Acid-Mediated Metastasis via the Bidirectional Interactions of Cancer Cells and Macrophages. Cells 2022; 11:cells11223556. [PMID: 36428985 PMCID: PMC9688315 DOI: 10.3390/cells11223556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding microenvironment mark the tumour survival and promotion functions, which allow the cancer cells to become invasive and initiate the metastatic cascade. Importantly, these interactions have been closely associated with metabolic reprogramming, which can modulate the differentiation and functions of immune cells and thus initiate the antitumour response. The purpose of this report is to review the CD36 receptor, a prominent cell receptor in metabolic activity specifically in fatty acid (FA) uptake, for the metabolic symbiosis of cancer-macrophage. In this review, we provide an update on metabolic communication between tumour cells and macrophages, as well as how the immunometabolism indirectly orchestrates the tumour metastasis.
Collapse
|
11
|
Advances in the Application of Nanomaterials to the Treatment of Melanoma. Pharmaceutics 2022; 14:pharmaceutics14102090. [PMID: 36297527 PMCID: PMC9610396 DOI: 10.3390/pharmaceutics14102090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Melanoma can be divided into cutaneous melanoma, uveal melanoma, mucosal melanoma, etc. It is a very aggressive tumor that is prone to metastasis. Patients with metastatic melanoma have a poor prognosis and shorter survival. Although current melanoma treatments have been dramatically improved, there are still many problems such as systemic toxicity and the off-target effects of drugs. The use of nanoparticles may overcome some inadequacies of current melanoma treatments. In this review, we summarize the limitations of current therapies for cutaneous melanoma, uveal melanoma, and mucosal melanoma, as well as the adjunct role of nanoparticles in different treatment modalities. We suggest that nanomaterials may have an effective intervention in melanoma treatment in the future.
Collapse
|
12
|
Does Older Age Modify Associations between Endocrine Disrupting Chemicals and Fecundability? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138074. [PMID: 35805732 PMCID: PMC9265974 DOI: 10.3390/ijerph19138074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022]
Abstract
Urinary concentrations of several endocrine disrupting chemicals, including phthalate metabolites, bisphenol A (BPA), and benzophenone (BP)-type ultraviolet (UV) filters, have been associated with a longer time-to-pregnancy (TTP). Potential modification of these associations by couple’s age has not been studied. TTP was defined as the number of prospectively observed menstrual cycles a couple attempted pregnancy until the occurrence of a human chorionic gonadotropic-detected pregnancy. Urinary concentrations of two BP-type UV filters and three phthalate metabolites were measured at baseline. Fecundability odds ratios (FORs) and 95% confidence intervals (CIs) were estimated for each chemical adjusting for age, body mass index, serum cotinine, creatinine, and accounting for right censoring and left truncation. Models evaluated effect modification between EDC concentrations and TTP by partner’s age, dichotomized at 35 years. Separate models were run for male and female partners. No significant effect modification was observed for any EDC for either partner, but data were suggestive of a longer TTP among females aged ≥35 years, particularly for BP-2 (FOR = 0.61, 95% CI 0.36, 1.05) and 4-hydroxybenzophenone (FOR = 0.71, 95% CI: 0.46, 1.09) reflecting 39% and 29% reductions in fecundability, respectively. We saw no evidence of effect modification by couples’ age on associations between TTP and urinary phthalate or BPA metabolite concentrations. Across the EDCs we examined, we found little evidence that age modifies TTP-exposure associations.
Collapse
|
13
|
Pyrazole-Curcumin Suppresses Cardiomyocyte Hypertrophy by Disrupting the CDK9/CyclinT1 Complex. Pharmaceutics 2022; 14:pharmaceutics14061269. [PMID: 35745840 PMCID: PMC9227296 DOI: 10.3390/pharmaceutics14061269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
The intrinsic histone acetyltransferase (HAT), p300, has an important role in the development and progression of heart failure. Curcumin (CUR), a natural p300-specific HAT inhibitor, suppresses hypertrophic responses and prevents deterioration of left-ventricular systolic function in heart-failure models. However, few structure–activity relationship studies on cardiomyocyte hypertrophy using CUR have been conducted. To evaluate if prenylated pyrazolo curcumin (PPC) and curcumin pyrazole (PyrC) can suppress cardiomyocyte hypertrophy, cultured cardiomyocytes were treated with CUR, PPC, or PyrC and then stimulated with phenylephrine (PE). PE-induced cardiomyocyte hypertrophy was inhibited by PyrC but not PPC at a lower concentration than CUR. Western blotting showed that PyrC suppressed PE-induced histone acetylation. However, an in vitro HAT assay showed that PyrC did not directly inhibit p300-HAT activity. As Cdk9 phosphorylates both RNA polymerase II and p300 and increases p300-HAT activity, the effects of CUR and PyrC on the kinase activity of Cdk9 were examined. Phosphorylation of p300 by Cdk9 was suppressed by PyrC. Immunoprecipitation-WB showed that PyrC inhibits Cdk9 binding to CyclinT1 in cultured cardiomyocytes. PyrC may prevent cardiomyocyte hypertrophic responses by indirectly suppressing both p300-HAT activity and RNA polymerase II transcription elongation activity via inhibition of Cdk9 kinase activity.
Collapse
|
14
|
Procopio A, Lagreca E, Jamaledin R, La Manna S, Corrado B, Di Natale C, Onesto V. Recent Fabrication Methods to Produce Polymer-Based Drug Delivery Matrices (Experimental and In Silico Approaches). Pharmaceutics 2022; 14:872. [PMID: 35456704 PMCID: PMC9027538 DOI: 10.3390/pharmaceutics14040872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
The study of novel drug delivery systems represents one of the frontiers of the biomedical research area. Multi-disciplinary scientific approaches combining traditional or engineered technologies are used to provide major advances in improving drug bioavailability, rate of release, cell/tissue specificity and therapeutic index. Biodegradable and bio-absorbable polymers are usually the building blocks of these systems, and their copolymers are employed to create delivery components. For example, poly (lactic acid) or poly (glycolic acid) are often used as bricks for the production drug-based delivery systems as polymeric microparticles (MPs) or micron-scale needles. To avoid time-consuming empirical approaches for the optimization of these formulations, in silico-supported models have been developed. These methods can predict and tune the release of different drugs starting from designed combinations. Starting from these considerations, this review has the aim of investigating recent approaches to the production of polymeric carriers and the combination of in silico and experimental methods as promising platforms in the biomedical field.
Collapse
Affiliation(s)
- Anna Procopio
- Biomechatronics Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Elena Lagreca
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, 80131 Naples, Italy; (E.L.); (R.J.)
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, 80131 Naples, Italy; (E.L.); (R.J.)
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Brunella Corrado
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80131 Naples, Italy;
| | - Concetta Di Natale
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80131 Naples, Italy;
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-Nanotec), Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
15
|
Di Natale C, De Gregorio V, Lagreca E, Mauro F, Corrado B, Vecchione R, Netti PA. Engineered Bacterial Cellulose Nanostructured Matrix for Incubation and Release of Drug-Loaded Oil in Water Nanoemulsion. Front Bioeng Biotechnol 2022; 10:851893. [PMID: 35356776 PMCID: PMC8959586 DOI: 10.3389/fbioe.2022.851893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
Bacterial cellulose (BC) is a highly pure form of cellulose produced by bacteria, which possesses numerous advantages such as good mechanical properties, high chemical flexibility, and the ability to assemble in nanostructures. Thanks to these features, it achieved a key role in the biomedical field and in drug delivery applications. BC showed its ability to modulate the release of several drugs and biomolecules to the skin, thus improving their clinical outcomes. This work displays the loading of a 3D BC nanonetwork with an innovative drug delivery nanoemulsion system. BC was optimized by static culture of SCOBY (symbiotic colony of bacteria and yeast) and characterized by morphological and ultrastructural analyses, which indicate a cellulose fiber diameter range of 30–50 nm. BC layers were then incubated at different time points with a nanocarrier based on a secondary nanoemulsion (SNE) previously loaded with a well-known antioxidant and anti-inflammatory agent, namely, coenzyme-Q10 (Co-Q10). Incubation of Co-Q10–SNE in the BC nanonetwork and its release were analyzed by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical Materials, Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Vincenza De Gregorio
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Naples, Italy
| | - Elena Lagreca
- Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical Materials, Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Francesca Mauro
- Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical Materials, Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Brunella Corrado
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Naples, Italy
| | - Raffaele Vecchione
- Istituto Italiano di Tecnologia, Naples, Italy
- *Correspondence: Raffaele Vecchione,
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical Materials, Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Alshahrani SM. A judicious review on the applications of chemotherapeutic loaded nanoemulsions in cancer management. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Díez‐Villares S, Ramos‐Docampo MA, da Silva‐Candal A, Hervella P, Vázquez‐Ríos AJ, Dávila‐Ibáñez AB, López‐López R, Iglesias‐Rey R, Salgueiriño V, de la Fuente M. Manganese Ferrite Nanoparticles Encapsulated into Vitamin E/Sphingomyelin Nanoemulsions as Contrast Agents for High-Sensitive Magnetic Resonance Imaging. Adv Healthc Mater 2021; 10:e2101019. [PMID: 34415115 PMCID: PMC11469163 DOI: 10.1002/adhm.202101019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/20/2021] [Indexed: 12/20/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most powerful non-invasive imaging modalities used in clinics due to its great spatial resolution and excellent soft-tissue contrast, though still less sensitive than other techniques such as the nuclear imaging modalities. This lack of sensitivity can be improved with the use of contrast agents based on nanomaterials. In recent years, researchers have focused on the development of magnetic nanoparticles, given their role as enhancers of the contrast signal based on the magnetic resonance. Manganese ferrite nanoparticles stand out, given their high magnetic susceptibility and magnetic soft nature. Herein, 10 nm MnFe2 O4 nanoparticles, functionalized with the natural antioxidant vitamin E (VitE-MFO) are encapsulated into simple, biodegradable and non-toxic nanoemulsions (NEs), by a reproducible one-step method obtaining stable 150 nm-sized magnetic nanoemulsions (VitE-MFO-NEs). After encapsulation, the superparamagnetic properties of VitE-MFO are maintained and MR imaging studies reveal an extremely high transverse relaxivity for VitE-MFO-NEs (652.9 × 10-3 m-1 s-1 ), twofold higher than VitE-MFO value. Moreover, VitE-MFO-NEs show great in vivo biocompatibility and good signal in in vivo and ex vivo MRI, which indicates their great potential for biomedical imaging enhancing the negative MR contrast and significantly improving the sensitivity of MRI.
Collapse
Affiliation(s)
- Sandra Díez‐Villares
- Nano‐Oncology and Translational Therapeutics GroupHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
- University of Santiago de Compostela (USC)Santiago de Compostela15706Spain
- Biomedical Research Networking Center on Oncology (CIBERONC)Madrid28029Spain
| | - Miguel A. Ramos‐Docampo
- Departamento de Física AplicadaUniversidade de VigoVigo36310Spain
- CINBIOUniversidade de VigoVigo36310Spain
| | - Andrés da Silva‐Candal
- Clinical Neurosciences Research LaboratoryHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
| | - Pablo Hervella
- Clinical Neurosciences Research LaboratoryHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
| | - Abi J. Vázquez‐Ríos
- Nano‐Oncology and Translational Therapeutics GroupHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
- Biomedical Research Networking Center on Oncology (CIBERONC)Madrid28029Spain
| | - Ana B. Dávila‐Ibáñez
- Roche‐CHUS Joint‐UnitTranslational Medical Oncology GroupHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
| | - Rafael López‐López
- Biomedical Research Networking Center on Oncology (CIBERONC)Madrid28029Spain
- Roche‐CHUS Joint‐UnitTranslational Medical Oncology GroupHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
| | - Ramón Iglesias‐Rey
- Clinical Neurosciences Research LaboratoryHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
| | - Verónica Salgueiriño
- Departamento de Física AplicadaUniversidade de VigoVigo36310Spain
- CINBIOUniversidade de VigoVigo36310Spain
| | - María de la Fuente
- Nano‐Oncology and Translational Therapeutics GroupHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
- Biomedical Research Networking Center on Oncology (CIBERONC)Madrid28029Spain
| |
Collapse
|
18
|
Battaglia L, Scomparin A, Dianzani C, Milla P, Muntoni E, Arpicco S, Cavalli R. Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics 2021; 13:1617. [PMID: 34683910 PMCID: PMC8540596 DOI: 10.3390/pharmaceutics13101617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma is one of the most aggressive solid tumors, with a low survival for the metastatic stage. Currently, clinical melanoma treatments include surgery, chemotherapy, targeted therapy, immunotherapy and radiotherapy. Of note, innovative therapeutic regimens concern the administration of multitarget drugs in tandem, in order to improve therapeutic efficacy. However, also, if this drug combination is clinically relevant, the patient's response is not yet optimal. In this scenario, nanotechnology-based delivery systems can play a crucial role in the clinical treatment of advanced melanoma. In fact, their nano-features enable targeted drug delivery at a cellular level by overcoming biological barriers. Various nanomedicines have been proposed for the treatment of cutaneous melanoma, and a relevant number of them are undergoing clinical trials. In Italy, researchers are focusing on the pharmaceutical development of nanoformulations for malignant melanoma therapy. The present review reports an overview of the main melanoma-addressed nanomedicines currently under study in Italy, alongside the state of the art of melanoma therapy. Moreover, the latest Italian advances concerning the pre-clinical evaluation of nanomedicines for melanoma are described.
Collapse
Affiliation(s)
- Luigi Battaglia
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Anna Scomparin
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
- . Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chiara Dianzani
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Paola Milla
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Elisabetta Muntoni
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Silvia Arpicco
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Roberta Cavalli
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| |
Collapse
|
19
|
Profeta M, Di Natale C, Lagreca E, Mollo V, Netti PA, Vecchione R. Cell Membrane-Coated Oil in Water Nano-Emulsions as Biomimetic Nanocarriers for Lipophilic Compounds Conveyance. Pharmaceutics 2021; 13:1069. [PMID: 34371760 PMCID: PMC8309122 DOI: 10.3390/pharmaceutics13071069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, we developed ultra-stable oil in water nano-emulsions (O/W NEs), able to carry both internal and external cargos (Somes), such as lipophilic compounds and hydrophilic coatings, respectively, that we call here NEsoSomes. O/W NEs are an excellent bioengineering tool for drug and molecules delivery, due to their ability to dissolve a large number of hydrophobic compounds and protect them from hydrolysis and degradation under biological conditions. At present, no report is available on the combination of cell membrane coatings with such nanocarriers, probably due to their typical instability feature. Since then, we have reported, for the first time, a new cell membrane (CM)-coated nanomaterial composed of membranes extracted from glioblastoma cancer cells (U87-MG) deposited on NEsoSomes, through a liquid-liquid interface method, to produce highly controllable membrane caked nano-capsules, namely CM-NEsoSomes. CM-NEsoSomes were physically characterized by dynamic light scattering (DLS) over time and their correct morphology was analyzed by confocal and transmission electron microscopy (TEM) microscopy. Moreover, CM-NEsoSomes biocompatibility was tested on the healthy model cell line, performing cell cytotoxicity and uptake assay, showing nanocarriers uptake by cells with no induced cytotoxicity.
Collapse
Affiliation(s)
- Martina Profeta
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy; (M.P.); (C.D.N.); (E.L.); (V.M.); (P.A.N.)
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy; (M.P.); (C.D.N.); (E.L.); (V.M.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| | - Elena Lagreca
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy; (M.P.); (C.D.N.); (E.L.); (V.M.); (P.A.N.)
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy; (M.P.); (C.D.N.); (E.L.); (V.M.); (P.A.N.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy; (M.P.); (C.D.N.); (E.L.); (V.M.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy; (M.P.); (C.D.N.); (E.L.); (V.M.); (P.A.N.)
| |
Collapse
|
20
|
Song M, Kim J, Shin H, Kim Y, Jang H, Park Y, Kim SJ. Development of Magnetic Torque Stimulation (MTS) Utilizing Rotating Uniform Magnetic Field for Mechanical Activation of Cardiac Cells. NANOMATERIALS 2020; 10:nano10091684. [PMID: 32867131 PMCID: PMC7557977 DOI: 10.3390/nano10091684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Regulation of cell signaling through physical stimulation is an emerging topic in biomedicine. Background: While recent advances in biophysical technologies show capabilities for spatiotemporal stimulation, interfacing those tools with biological systems for intact signal transfer and noncontact stimulation remains challenging. Here, we describe the use of a magnetic torque stimulation (MTS) system combined with engineered magnetic particles to apply forces on the surface of individual cells. MTS utilizes an externally rotating magnetic field to induce a spin on magnetic particles and generate torsional force to stimulate mechanotransduction pathways in two types of human heart cells—cardiomyocytes and cardiac fibroblasts. Methods: The MTS system operates in a noncontact mode with two magnets separated (60 mm) from each other and generates a torque of up to 15 pN µm across the entire area of a 35-mm cell culture dish. The MTS system can mechanically stimulate both types of human heart cells, inducing maturation and hypertrophy. Results: Our findings show that application of the MTS system under hypoxic conditions induces not only nuclear localization of mechanoresponsive YAP proteins in human heart cells but also overexpression of hypertrophy markers, including β-myosin heavy chain (βMHC), cardiotrophin-1 (CT-1), microRNA-21 (miR-21), and transforming growth factor beta-1 (TGFβ-1). Conclusions: These results have important implications for the applicability of the MTS system to diverse in vitro studies that require remote and noninvasive mechanical regulation.
Collapse
Affiliation(s)
- Myeongjin Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Jongseong Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Hyundo Shin
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea;
| | - Yekwang Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Hwanseok Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
- Correspondence: (Y.P.); (S.-J.K.); Tel.: +82-2-2286-1460 (Y.P.)
| | - Seung-Jong Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
- Correspondence: (Y.P.); (S.-J.K.); Tel.: +82-2-2286-1460 (Y.P.)
| |
Collapse
|
21
|
Lang X, Wang T, Sun M, Chen X, Liu Y. Advances and applications of chitosan-based nanomaterials as oral delivery carriers: A review. Int J Biol Macromol 2020; 154:433-445. [DOI: 10.1016/j.ijbiomac.2020.03.148] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
|
22
|
Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 2020; 25:1174-1188. [PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Theranostics has the potential to revolutionize the diagnosis, treatment, and prognosis of cancer, where novel drug delivery systems could be used to detect the disease at an early stage with instantaneous treatment. Various preclinical approaches of nanoemulsions with entrapped contrast and chemotherapeutic agents have been documented to act specifically on the tumor microenvironment (TME) for both diagnostic and therapeutic purposes. However, bringing these theranostic nanoemulsions through preclinical trials to patients requires several fundamental hurdles to be overcome, including the in vivo behavior of the delivery tool, degradation, and clearance from the system, as well as long-term toxicities. Here, we discuss recent advances in the application of nanoemulsions in molecular imaging with simultaneous therapeutic efficacy in a single delivery system.
Collapse
Affiliation(s)
- Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
23
|
Simonetti V, Quagliariello V, Franzini M, Iaffaioli RV, Maurea N, Valdenassi L. Ozone Exerts Cytoprotective and Anti-Inflammatory Effects in Cardiomyocytes and Skin Fibroblasts after Incubation with Doxorubicin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2169103. [PMID: 31827546 PMCID: PMC6885772 DOI: 10.1155/2019/2169103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Skin reactions and cardiotoxicity are one of the most common side effects of doxorubicin in cancer patients. The main mechanisms based on the etiopathogenesis of these reactions are mediated by the overproduction of proinflammatory cytokines, metalloproteases, and the disruption of mitochondrial homeostasis. Ozone therapy demonstrated anti-inflammatory effects in several preclinical and clinical studies. The aim of this research is based on the evaluation of cardioprotective and dermatoprotective effects of ozone during incubation with doxorubicin, giving preliminary evidences for further studies in the field of cardio-oncology. METHODS Human skin fibroblast cells and human fetal cardiomyocytes were exposed to doxorubicin at subclinical concentration (100 nM) alone or combined with ozone concentrated from 10 up to 50 μg/mL. Cell viability and multiple anti-inflammatory studies were performed in both cell lines, with particular attention on the quantification of interleukins, leukotriene B4, NF-κB, and Nrf2 expressions during treatments. RESULTS Ozone decreased significantly the cytotoxicity of doxorubicin in skin fibroblasts and cardiomyocytes after 24 h of incubation. The best cytoprotective effect of ozone was reached to 30 μg/mL with a plateau phase at higher concentration. Ozone also demonstrated anti-inflammatory effects decreasing significantly the interleukins and proinflammatory mediators in both cells. CONCLUSION Ozone exerts cardioprotective and dermatoprotective effects during incubation with doxorubicin, and the involved mechanisms are mediated by its anti-inflammatory effects. The overall picture described herein is a pilot study for preclinical studies in oncology.
Collapse
Affiliation(s)
- V. Simonetti
- “Kaos” ONLUS Foundation, Turin, Italy
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy
| | - V. Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - M. Franzini
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy
- University of Pavia, Pavia, Italy
| | - R. V. Iaffaioli
- ASMO (Association of Multidisciplinary Study in Oncology) and Mediterranean Diet, Piazza Nicola Amore, Napoli, Italy
| | - N. Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - L. Valdenassi
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy
- University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Calcagno V, Vecchione R, Quagliariello V, Marzola P, Busato A, Giustetto P, Profeta M, Gargiulo S, Cicco CD, Yu H, Cassani M, Maurea N, Mancini M, Pellegrino T, Netti PA. Oil Core-PEG Shell Nanocarriers for In Vivo MRI Imaging. Adv Healthc Mater 2019; 8:e1801313. [PMID: 30614638 DOI: 10.1002/adhm.201801313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/12/2018] [Indexed: 11/11/2022]
Abstract
Oil-in-water emulsions represent a promising carrier for in vivo imaging because of the possibility to convey poorly water-soluble species. To promote accumulation at the tumor site and prolong circulation time, reduction of carrier size and surface PEGylation plays a fundamental role. In this work a novel, simple method to design an oil-core/PEG-shell nanocarrier is reported. A PEG-shell is grown around a monodisperse oil-in-water nanoemulsion with a one-pot method, using the radical polymerization of poly(ethylene glycol)diacrylate. PEG polymerization is triggered by UV, obtaining a PEG-shell with tunable thickness. This core-shell nanosystem combines the eluding feature of the PEG with the ability to confine high payloads of lipophilic species. Indeed, the core is successfully loaded with a lipophilic contrast agent, namely super paramagnetic iron oxide nanocubes. Interestingly, it is demonstrated an in vitro and an in vivo MRI response of the nanocapsules. Additionally, when the nanosystem loaded with nanocubes is mixed with a fluorescent contrast agent, indo-cyanine green, a relevant in vitro photoacoustic effect is observed. Moreover, viability and cellular uptake studies show no significant cell cytotoxicity. These results, together with the choice of low cost materials and the scale up production, make this nanocarrier a potential platform for in vivo imaging.
Collapse
Affiliation(s)
- Vincenzo Calcagno
- Center for Advanced Biomaterials for Health Care@CRIB; Istituto Italiano di Tecnologia; Naples 80125 Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care@CRIB; Istituto Italiano di Tecnologia; Naples 80125 Italy
| | - Vincenzo Quagliariello
- Division of Cardiology; Istituto Nazionale Tumori -IRCCS- Fondazione G.Pascale; Naples 80131 Italy
| | - Pasquina Marzola
- Department of Computer Science; Research Area in Experimental and Applied Physics; University of Verona; Verona 37134 Italy
| | - Alice Busato
- Department of Computer Science; Research Area in Experimental and Applied Physics; University of Verona; Verona 37134 Italy
| | - Pierangela Giustetto
- Fujifilm VisualSonics Consultant; Joop Geesinkweg 140 Amsterdam 1114 AB The Netherlands
| | - Martina Profeta
- Center for Advanced Biomaterials for Health Care@CRIB; Istituto Italiano di Tecnologia; Naples 80125 Italy
| | - Sara Gargiulo
- Institute of Biostructures and Bioimaging; National Council of Research; Naples 80145 Italy
| | - Chiara Di Cicco
- Center for Advanced Biomaterials for Health Care@CRIB; Istituto Italiano di Tecnologia; Naples 80125 Italy
| | - Hui Yu
- Center for Advanced Biomaterials for Health Care@CRIB; Istituto Italiano di Tecnologia; Naples 80125 Italy
| | | | - Nicola Maurea
- Division of Cardiology; Istituto Nazionale Tumori -IRCCS- Fondazione G.Pascale; Naples 80131 Italy
| | - Marcello Mancini
- Institute of Biostructures and Bioimaging; National Council of Research; Naples 80145 Italy
| | | | - Paolo A. Netti
- Center for Advanced Biomaterials for Health Care@CRIB; Istituto Italiano di Tecnologia; Naples 80125 Italy
| |
Collapse
|
25
|
Ponzoni M, Curnis F, Brignole C, Bruno S, Guarnieri D, Sitia L, Marotta R, Sacchi A, Bauckneht M, Buschiazzo A, Rossi A, Di Paolo D, Perri P, Gori A, Sementa AR, Emionite L, Cilli M, Tamma R, Ribatti D, Pompa PP, Marini C, Sambuceti G, Corti A, Pastorino F. Enhancement of Tumor Homing by Chemotherapy-Loaded Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802886. [PMID: 30294852 DOI: 10.1002/smll.201802886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Targeted delivery of anticancer drugs with nanocarriers can reduce side effects and ameliorate therapeutic efficacy. However, poorly perfused and dysfunctional tumor vessels limit the transport of the payload into solid tumors. The use of tumor-penetrating nanocarriers might enhance tumor uptake and antitumor effects. A peptide containing a tissue-penetrating (TP) consensus motif, capable of recognizing neuropilin-1, is here fused to a neuroblastoma-targeting peptide (pep) previously developed. Neuroblastoma cell lines and cells derived from both xenografts and high-risk neuroblastoma patients show overexpression of neuropilin-1. In vitro studies reveal that TP-pep binds cell lines and cells derived from neuroblastoma patients more efficiently than pep. TP-pep, after coupling to doxorubicin-containing stealth liposomes (TP-pep-SL[doxorubicin]), enhances their uptake by cells and cytotoxic effects in vitro, while increasing tumor-binding capability and homing in vivo. TP-pep-SL[doxorubicin] treatment enhances the Evans Blue dye accumulation in tumors but not in nontumor tissues, pointing to selective increase of vascular permeability in tumor tissues. Compared to pep-SL[doxorubicin], TP-pep-SL[doxorubicin] shows an increased antineuroblastoma activity in three neuroblastoma animal models mimicking the growth of neuroblastoma in humans. The enhancement of drug penetration in tumors by TP-pep-targeted nanoparticles may represent an innovative strategy for neuroblastoma.
Collapse
Affiliation(s)
- Mirco Ponzoni
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Flavio Curnis
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Leopoldo Sitia
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Roberto Marotta
- Electron Microscopy Laboratory, Nanochemistry Department, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Angelina Sacchi
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
| | - Andrea Rossi
- Department of Pathology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Daniela Di Paolo
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Alessandro Gori
- Dipartimento di Scienze Chimiche e Tecnologie dei Materiali, Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, 20131, Milan, Italy
| | - Angela R Sementa
- Department of Pathology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCSS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCSS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124, Bari, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16131, Genoa, Italy
- CNR Institute of Molecular Bioimaging and Physiology, 20133, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16131, Genoa, Italy
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Fabio Pastorino
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| |
Collapse
|
26
|
Quagliariello V, Vecchione R, Coppola C, Di Cicco C, De Capua A, Piscopo G, Paciello R, Narciso V, Formisano C, Taglialatela-Scafati O, Iaffaioli RV, Botti G, Netti PA, Maurea N. Cardioprotective Effects of Nanoemulsions Loaded with Anti-Inflammatory Nutraceuticals against Doxorubicin-Induced Cardiotoxicity. Nutrients 2018; 10:E1304. [PMID: 30223482 PMCID: PMC6164259 DOI: 10.3390/nu10091304] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin is a highly active antineoplastic agent, but its clinical use is limited because of its cardiotoxicity. Although nutraceuticals endowed with anti-inflammatory properties exert cardioprotective activity, their bioavailability and stability are inconsistent. In an attempt to address this issue, we evaluated whether bioavailable nanoemulsions loaded with nutraceuticals (curcumin and fresh and dry tomato extracts rich in lycopene) protect cardiomyoblasts (H9C2 cells) from doxorubicin-induced toxicity. Nanoemulsions were produced with a high-pressure homogenizer. H9C2 cells were incubated with nanoemulsions loaded with different nutraceuticals alone or in combination with doxorubicin. Cell viability was evaluated with a modified MTT method. The levels of the lipid peroxidation products malondialdehyde (MDA) and 4-hydroxy-2-butanone (4-HNA), and of the cardiotoxic-related interleukins IL-6, IL-8, IL-1β and IL-10, tumor necrosis factor-alpha (TNF-α), and nitric oxide were analyzed in cardiomyoblasts. The hydrodynamic size of nanoemulsions was around 100 nm. Cell viability enhancement was 35⁻40% higher in cardiomyoblasts treated with nanoemulsion + doxorubicin than in cardiomyoblasts treated with doxorubicin alone. Nanoemulsions also protected against oxidative stress as witnessed by a reduction of MDA and 4-HNA. Notably, nanoemulsions inhibited the release of IL-6, IL-8, IL-1β, TNF-α and nitric oxide by around 35⁻40% and increased IL-10 production by 25⁻27% versus cells not treated with emulsions. Of the nutraceuticals evaluated, lycopene-rich nanoemulsions had the best cardioprotective profile. In conclusion, nanoemulsions loaded with the nutraceuticals described herein protect against cardiotoxicity, by reducing inflammation and lipid oxidative stress. These results set the stage for studies in preclinical models.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori⁻IRCCS-Fondazione G.Pascale, 80131 Napoli, Italy.
| | - Raffaele Vecchione
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Carmela Coppola
- Division of Cardiology, Istituto Nazionale Tumori⁻IRCCS-Fondazione G.Pascale, 80131 Napoli, Italy.
| | - Chiara Di Cicco
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Alberta De Capua
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Giovanna Piscopo
- Division of Cardiology, Istituto Nazionale Tumori⁻IRCCS-Fondazione G.Pascale, 80131 Napoli, Italy.
| | - Rolando Paciello
- Division of Cardiology, Istituto Nazionale Tumori⁻IRCCS-Fondazione G.Pascale, 80131 Napoli, Italy.
| | - Viviana Narciso
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy.
| | - Carmen Formisano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy.
| | | | - Rosario Vincenzo Iaffaioli
- Department of Medical Oncology, Istituto Nazionale Tumori⁻IRCCS-Fondazione G.Pascale, 80131 Napoli, Italy.
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori⁻IRCCS-Fondazione G.Pascale, 80131 Napoli, Italy.
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori⁻IRCCS-Fondazione G.Pascale, 80131 Napoli, Italy.
| |
Collapse
|
27
|
Srinivasan SY, Paknikar KM, Bodas D, Gajbhiye V. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine (Lond) 2018; 13:1221-1238. [PMID: 29882719 DOI: 10.2217/nnm-2017-0379] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanoparticles (MNPs) are very attractive especially for biomedical applications, among which, iron oxide nanoparticles have received substantial attention in the past decade due to the elemental composition that makes them biocompatible and degradable. However recently, other magnetic nanomaterials such as spinel ferrites that can provide improved magnetic properties such as coercivity and anisotropy without compromising on inherent advantages of iron oxide nanoparticles are being researched for better applicability of MNPs. Among various spinel ferrites, cobalt ferrite (CoFe2O4) nanoparticles (NPs) are one of the most explored MNPs. Therefore, the intention of this article is to provide a comprehensive review of CoFe2O4 NPs and their inherent properties that make them exceptional candidates, different synthesis methods that influence their properties, and applications of CoFe2O4 NPs and their relevant applications that have been considered in biotechnology and bioengineering.
Collapse
Affiliation(s)
- Sumithra Y Srinivasan
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| |
Collapse
|
28
|
Quarta A, Rodio M, Cassani M, Gigli G, Pellegrino T, del Mercato LL. Multilayered Magnetic Nanobeads for the Delivery of Peptides Molecules Triggered by Intracellular Proteases. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35095-35104. [PMID: 28858466 PMCID: PMC6091500 DOI: 10.1021/acsami.7b05709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
In this work, the versatility of layer-by-layer technology was combined with the magnetic response of iron oxide nanobeads to prepare magnetic mesostructures with a degradable multilayer shell into which a dye quenched ovalbumin conjugate (DQ-OVA) was loaded. The system was specifically designed to prove the protease sensitivity of the hybrid mesoscale system and the easy detection of the ovalbumin released. The uptake of the nanostructures in the breast cancer cells was followed by the effective release of DQ-OVA upon activation via the intracellular proteases degradation of the polymer shells. Monitoring the fluorescence rising due to DQ-OVA digestion and the cellular dye distribution, together with the electron microscopy studying, enabled us to track the shell degradation and the endosomal uptake pathway that resulted in the release of the digested fragments of DQ ovalbumin in the cytosol.
Collapse
Affiliation(s)
- Alessandra Quarta
- CNR NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Marina Rodio
- Italian Institute
of Technology (IIT), via Morego 30, 16163 Genova, Italy
| | - Marco Cassani
- Italian Institute
of Technology (IIT), via Morego 30, 16163 Genova, Italy
- Department of Chemistry, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Giuseppe Gigli
- CNR NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- Department
of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy
| | - Teresa Pellegrino
- Italian Institute
of Technology (IIT), via Morego 30, 16163 Genova, Italy
| | - Loretta L. del Mercato
- CNR NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
29
|
Kulkarni JA, Tam YYC, Chen S, Tam YK, Zaifman J, Cullis PR, Biswas S. Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. NANOSCALE 2017; 9:13600-13609. [PMID: 28876010 DOI: 10.1039/c7nr03272b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A straightforward "bottom-up" synthesis is described for efficient entrapment of inorganic hydrophobic nanoparticles (HNPs) consisting of iron oxide, gold, or quantum dots within the hydrophobic core of lipid nanoparticles (LNPs). These LNPs consist of hydrophobic "core" lipids such as triolein surrounded by a monolayer of amphipathic "surface" lipids, such as phosphatidylcholine and polyethylene-glycol-lipid. It is shown that rapid, controlled mixing of HNPs, core lipids and surface lipids in an organic solvent with an aqueous phase resulted in stable, monodisperse LNPs containing HNPs (LNP-HNP). This method allows 40-fold more hydrophobic iron oxide nanoparticles (IONPs) to be entrapped within an LNP than previous methods and can be readily extended to encapsulate other HNPs. The LNP-HNP diameter can be modulated over the range of 35-150 nm by varying the flow rate during particle synthesis or by varying the core-to-surface lipid ratio. LNP-IONPs can be generated using a variety of "core" lipids, including other triglycerides as well as cholesteryl-palmitate and tocopherol. Finally, it is shown that LNP-IONPs are accumulated in the liver, resulting in enhanced contrast for in vivo MRI. It is concluded that the bottom-up approach for encapsulating HNPs within LNPs has advantages of homogeneity, reproducibility and stability required for biomedical applications.
Collapse
Affiliation(s)
- Jayesh A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T1Z3, Canada.
| | | | | | | | | | | | | |
Collapse
|