1
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
2
|
Repetowski P, Warszyńska M, Kostecka A, Pucelik B, Barzowska A, Emami A, İşci Ü, Dumoulin F, Dąbrowski JM. Synthesis, Photo-Characterizations, and Pre-Clinical Studies on Advanced Cellular and Animal Models of Zinc(II) and Platinum(II) Sulfonyl-Substituted Phthalocyanines for Enhanced Vascular-Targeted Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48937-48954. [PMID: 39241197 PMCID: PMC11420872 DOI: 10.1021/acsami.4c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/08/2024]
Abstract
Two phthalocyanine derivatives tetra-peripherally substituted with tert-butylsulfonyl groups and coordinating either zinc(II) or platinum(II) ions have been synthesized and subsequently investigated in terms of their optical and photochemical properties, as well as biological activity in cellular, tissue-engineered, and animal models. Our research has revealed that both synthesized phthalocyanines are effective generators of reactive oxygen species (ROS). PtSO2tBu demonstrated an outstanding ability to generate singlet oxygen (ΦΔ = 0.87-0.99), while ZnSO2tBu in addition to 1O2 (ΦΔ = 0.45-0.48) generated efficiently other ROS, in particular ·OH. Considering future biomedical applications, the affinity of the tested phthalocyanines for biological membranes (partition coefficient; log Pow) and their primary interaction with serum albumin were also determined. To facilitate their biological administration, a water-dispersible formulation of these phthalocyanines was developed using Pluronic triblock copolymers to prevent self-aggregation and improve their delivery to cancer cells and tissues. The results showed a significant increase in cellular uptake and phototoxicity when phthalocyanines were incorporated into the customizable polymeric micelles. Moreover, the improved distribution in the body and photodynamic efficacy of the encapsulated phthalocyanines were investigated in hiPSC-delivered organoids and BALB/c mice bearing CT26 tumors. Both photosensitizers exhibit strong antitumor activity. Notably, vascular-targeted photodynamic therapy (V-PDT) led to complete tumor eradication in 84% of ZnSO2tBu and 100% of PtSO2tBu-treated mice, and no recurrence has so far been observed for up to five months after treatment. In the case of PtSO2tBu, the effect was significantly stronger, offering a wider range of light doses suitable for achieving effective PDT.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Kraków 30-348, Poland
| | - Marta Warszyńska
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Kraków 30-348, Poland
| | - Anna Kostecka
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
| | - Barbara Pucelik
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Łukasiewicz
Research Network—Kraków Institute of Technology, Kraków 30-418, Poland
| | - Agata Barzowska
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Łukasiewicz
Research Network—Kraków Institute of Technology, Kraków 30-418, Poland
| | - Atefeh Emami
- Faculty of
Engineering and Natural Sciences, Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Türkiye
| | - Ümit İşci
- Faculty
of Technology, Department of Metallurgical & Materials Engineering, Marmara University, Istanbul 34722, Türkiye
| | - Fabienne Dumoulin
- Faculty of
Engineering and Natural Sciences, Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Türkiye
| | | |
Collapse
|
3
|
Zhang Y, Lu Y, Li Y, Xu Y, Song W. Poly(Glutamic Acid)-Engineered Nanoplatforms for Enhanced Cancer Phototherapy. Curr Drug Deliv 2024; 21:326-338. [PMID: 36650626 DOI: 10.2174/1567201820666230116164511] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 01/19/2023]
Abstract
Phototherapies, including photothermal therapy and photodynamic therapy, have gained booming development over the past several decades for their attractive non-invasiveness nature, negligible adverse effects, minimal systemic toxicity, and high spatial selectivity. Phototherapy usually requires three components: light irradiation, photosensitizers, and molecular oxygen. Photosensitizers can convert light energy into heat or reactive oxygen species, which can be used in the tumor-killing process. The direct application of photosensitizers in tumor therapy is restricted by their poor water solubility, fast clearance, severe toxicity, and low cellular uptake. The encapsulation of photosensitizers into nanostructures is an attractive strategy to overcome these critical limitations. Poly(glutamic acid) (PGA) is a kind of poly(amino acid)s containing the repeating units of glutamic acid. PGA has superiority for cancer treatment because of its good biocompatibility, low immunogenicity, and modulated pH responsiveness. The hydrophilicity nature of PGA allows the physical entrapment of photosensitizers and anticancer drugs via the construction of amphiphilic polymers. Moreover, the pendent carboxyl groups of PGA enable chemical conjugation with therapeutic agents. In this mini-review, we highlight the stateof- the-art design and fabrication of PGA-based nanoplatforms for phototherapy. We also discuss the potential challenges and future perspectives of phototherapy, and clinical translation of PGA-based nanomedicines.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai-201318, P. R. China
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai-201318, P. R. China
| | - Yicong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai-200093, P. R. China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai-201318, P. R. China
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai-200093, P. R. China
| |
Collapse
|
4
|
Gergely LP, Yüceel Ç, İşci Ü, Spadin FS, Schneider L, Spingler B, Frenz M, Dumoulin F, Vermathen M. Comparing PVP and Polymeric Micellar Formulations of a PEGylated Photosensitizing Phthalocyanine by NMR and Optical Techniques. Mol Pharm 2023; 20:4165-4183. [PMID: 37493236 PMCID: PMC10410667 DOI: 10.1021/acs.molpharmaceut.3c00306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Phthalocyanines are ideal candidates as photosensitizers for photodynamic therapy (PDT) of cancer due to their favorable chemical and photophysical properties. However, their tendency to form aggregates in water reduces PDT efficacy and poses challenges in obtaining efficient forms of phthalocyanines for therapeutic applications. In the current work, polyvinylpyrrolidone (PVP) and micellar formulations were compared for encapsulating and monomerizing a water-soluble zinc phthalocyanine bearing four non-peripheral triethylene glycol chains (Pc1). 1H NMR spectroscopy combined with UV-vis absorption and fluorescence spectroscopy revealed that Pc1 exists as a mixture of regioisomers in monomeric form in dimethyl sulfoxide but forms dimers in an aqueous buffer. PVP, polyethylene glycol castor oil (Kolliphor RH40), and three different triblock copolymers with varying proportions of polyethylene and polypropylene glycol units (termed P188, P84, and F127) were tested as micellar carriers for Pc1. 1H NMR chemical shift analysis, diffusion-ordered spectroscopy, and 2D nuclear Overhauser enhancement spectroscopy was applied to monitor the encapsulation and localization of Pc1 at the polymer interface. Kolliphor RH40 and F127 micelles exhibited the highest affinity for encapsulating Pc1 in the micellar core and resulted in intense Pc1 fluorescence emission as well as efficient singlet oxygen formation along with PVP. Among the triblock copolymers, efficiency in binding and dimer dissolution decreased in the order F127 > P84 > P188. PVP was a strong binder for Pc1. However, Pc1 molecules are rather surface-attached and exist as monomer and dimer mixtures. The results demonstrate that NMR combined with optical spectroscopy offer powerful tools to assess parameters like drug binding, localization sites, and dynamic properties that play key roles in achieving high host-guest compatibility. With the corresponding adjustments, polymeric micelles can offer simple and easily accessible drug delivery systems optimizing phthalocyanines' properties as efficient photosensitizers.
Collapse
Affiliation(s)
- Lea P. Gergely
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern 3012, Switzerland
| | - Çiğdem Yüceel
- Department
of Chemical Engineering, Gebze Technical
University, Gebze 41400 Kocaeli, Turkey
| | - Ümit İşci
- Department
of Chemistry, Gebze Technical University, Gebze 41400 Kocaeli, Turkey
- Marmara
University, Faculty of Technology, Department
of Metallurgical & Materials Engineering, Istanbul 34722, Turkey
| | | | - Lukas Schneider
- Department
of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Bernhard Spingler
- Department
of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Martin Frenz
- Institute
of Applied Physics, University of Bern, Bern 3012, Switzerland
| | - Fabienne Dumoulin
- Faculty
of Engineering and Natural Sciences, Biomedical Engineering Department, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Turkey
| | - Martina Vermathen
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
5
|
Huis in ‘t Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:pharmaceutics15020330. [PMID: 36839652 PMCID: PMC9965442 DOI: 10.3390/pharmaceutics15020330] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Collapse
Affiliation(s)
- Ruben V. Huis in ‘t Veld
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Correspondence:
| | - Jeroen Heuts
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Sen Ma
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
6
|
Saw WS, Anasamy T, Anh Do TT, Lee HB, Chee CF, Isci U, Misran M, Dumoulin F, Chong WY, Kiew LV, Imae T, Chung LY. Nanoscaled PAMAM Dendrimer Spacer Improved the Photothermal-Photodynamic Treatment Efficiency of Photosensitizer-Decorated Confeito-Like Gold Nanoparticles for Cancer Therapy. Macromol Biosci 2022; 22:e2200130. [PMID: 35579182 DOI: 10.1002/mabi.202200130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Indexed: 11/11/2022]
Abstract
A critical factor in developing an efficient photosensitizer-gold nanoparticle (PS-AuNP) hybrid system with improved plasmonic photosensitization is to allocate a suitable space between AuNPs and PS. Poly(amidoamine) (PAMAM) dendrimer is selected as a spacer between the PS and confeito-like gold nanoparticles (confeito-AuNPs), providing the required distance (≈2.5-22.5 nm) for plasmon-enhanced singlet oxygen generation and heat production upon 638-nm laser irradiation and increase the cellular internalization of the nanoconjugates. The loading of the PS, tetrakis(4-carboxyphenyl) porphyrin (TCPP) and modified zinc phthalocyanine (ZnPc1) onto PAMAM-confeito-AuNPs demonstrate better in vitro cancer cell-killing efficacy, as the combined photothermal-photodynamic therapies (PTT-PDTs) outperforms the single treatment modalities (PTT or PDT alone). These PS-PAMAM-confeito-AuNPs also demonstrate higher phototoxicity than photosensitizers directly conjugated to confeito-AuNPs (TCPP-confeito-AuNPs and ZnPc1-confeito-AuNPs) against all breast cancer cell lines tested (MDA-MB-231, MCF7 and 4T1). In the in vivo studies, TCPP-PAMAM-confeito-AuNPs are biocompatible and exhibit a selective tumor accumulation effect, resulting in higher antitumor efficacy than free TCPP, PAMAM-confeito-AuNPs and TCPP-confeito-AuNPs. In vitro and in vivo evaluations confirm PAMAM effectiveness in facilitating cellular uptake, plasmon-enhanced singlet oxygen and heat generation. In summary, this study highlights the potential of integrating a PAMAM spacer in enhancing the plasmon effect-based photothermal-photodynamic anticancer treatment efficiency of PS-decorated confeito-AuNPs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wen Shang Saw
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Theebaa Anasamy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, 75150, Malaysia
| | - Thu Thi Anh Do
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia.,School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Umit Isci
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Turkey
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Fabienne Dumoulin
- Department of Medical Engineering, Faculty of Engineering, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Wu Yi Chong
- Photonics Research Centre, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Toyoko Imae
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei, 10607, Taiwan
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
7
|
Xu R, Dang D, Wang Z, Zhou Y, Xu Y, Zhao Y, Wang X, Yang Z, Meng L. Facilely prepared aggregation-induced emission (AIE) nanocrystals with deep-red emission for super-resolution imaging. Chem Sci 2022; 13:1270-1280. [PMID: 35222910 PMCID: PMC8809421 DOI: 10.1039/d1sc04254h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Organic nanocrystals (NCs) with high brightness are highly desirable for biological imaging. However, the preparation of NCs by a facile and fast method is still challenging. Herein, an aggregation-induced emission (AIE) luminogen of 4,4'-(5,6-difluorobenzo[c][1,2,5]thiadiazole-4,7-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (DTPA-BT-F) in the deep-red region is designed with intensive crystalline features to obtain NCs by kinetically controlled nanoprecipitation. The prepared AIE NCs with high brightness and good photo-stability are then applied in super-resolution imaging via stimulated emission depletion (STED) nanoscopy. As observed, the nanostructures in lysosomes of both fixed and live cells are well visualized with superior lateral resolutions under STED nanoscopy (full width at half maximum values, 107 and 108 nm) in contrast to that in confocal imaging (548 and 740 nm). More importantly, dynamic monitoring and long-term tracking of lysosomal movements in live HeLa cells, such as lysosomal contact, can also be carried out by using DTPA-BT-F NCs at a superior resolution. To the best of our knowledge, this is the first case of AIE NCs prepared by nanoprecipitation for STED nanoscopy, thus providing a new strategy to develop high performance imaging agents for super-resolution imaging.
Collapse
Affiliation(s)
- Ruohan Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Dongfeng Dang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Zhi Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Yu Zhou
- School of Physics, Xi'an Jiao Tong University Xi'an 710049 P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Yanzi Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Yizhen Zhao
- School of Physics, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Xiaochi Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Zhiwei Yang
- School of Physics, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| |
Collapse
|
8
|
Gourdon L, Cariou K, Gasser G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem Soc Rev 2022; 51:1167-1195. [PMID: 35048929 DOI: 10.1039/d1cs00609f] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are therapeutic techniques based on a photosensitizer (PS) and light. These techniques allow the spatial and temporal control of the activation of drugs with light. Transition metal complexes are attractive compounds as photoactivatable prodrugs since their excited states can be appropriately designed by subtle modifications of the ligands, the metal centre, or the oxidation state. However, most metal-based PSs contain heavy metals such as Ru, Os, Ir, Pt or Au, which are expensive and non-earth-abundant, contrary to first-row transition metals. In this context, the exploration of the photochemical properties of complexes based on first-row transition metals appears to be extremely promising. This did encourage several groups to develop promising PSs based on these metals. This review presents up-to-date state-of-the-art information on first-row-transition metal complexes, from titanium to zinc in regard to their application as PSs for phototherapeutic applications.
Collapse
Affiliation(s)
- Lisa Gourdon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
9
|
Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. NANOMATERIALS 2021; 11:nano11092426. [PMID: 34578740 PMCID: PMC8469866 DOI: 10.3390/nano11092426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
This perspective article summarizes the last decade’s developments in the field of phthalocyanine (Pc)-polymeric nanoparticle (NP) delivery systems for cancer photodynamic therapy (PDT), including studies with at least in vitro data. Moreover, special attention will be paid to the various strategies for enhancing the behavior of Pc-polymeric NPs in PDT, underlining the great potential of this class of nanomaterials as advanced Pcs’ nanocarriers for cancer PDT. This review shows that there is still a lot of research to be done, opening the door to new and interesting nanodelivery systems.
Collapse
|
10
|
Ahmetali E, Sen P, Süer NC, Nyokong T, Eren T, Şener MK. Photodynamic therapy activities of phthalocyanine-based macromolecular photosensitizers on MCF-7 breast cancer cells. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1934012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Erem Ahmetali
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| | - Pinar Sen
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - N. Ceren Süer
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Tarik Eren
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| | - M. Kasım Şener
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
11
|
Dag A, Cakilkaya E, Omurtag Ozgen PS, Atasoy S, Yigit Erdem G, Cetin B, Çavuş Kokuroǧlu A, Gürek AG. Phthalocyanine-Conjugated Glyconanoparticles for Chemo-photodynamic Combination Therapy. Biomacromolecules 2021; 22:1555-1567. [PMID: 33793222 DOI: 10.1021/acs.biomac.0c01811] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Combination cancer therapy based on multifunctional nanomaterials has attracted great attention. The present work focuses on the preparation of the glycopolymeric nanoparticle, which contains a photosensitizer (zinc(II)phthalocyanine, ZnPc) and an anticancer drug (Doxorubicin, Dox). First, a novel mono azide-functional ZnPc-N3 with seven hydrophilic ethylene oxide chains was synthesized. Next, ZnPc alone or together with Dox bearing glycopolymers was synthesized via the RAFT polymerization method and then self-assembled into glyconanoparticles (GNPs) with narrow particle size distribution. Then the evaluation of the biological activity of GNPs (GNPs-ZnPc and GNPs-ZnPc/Dox) for dual photodynamic therapy (PDT) and chemotherapy against human breast cancer cells was investigated. The constructed GNPs were identified via general characterization methods, including dynamic light scattering (DLS) and transmission electron microscopy (TEM). The prepared GNPs-ZnPc/Dox demonstrated remarkable photophysical and photochemical properties, involving good colloidal stability in biological conditions, pH-responsive drug release, and the capacity to generate singlet oxygen under light irradiation. The outer layer of nanoparticles covered by fructose sugar moieties achieves a targeted cancer therapy owing to GLUT5 (a well-known fructose transporter) overexpression toward breast cancer cells. In vitro experiments were then performed to evaluate the chemo/phototoxicity, cellular uptake, and anticancer efficacy of GNPs-ZnPc/Dox. In comparison with free Dox, human breast cancer cells treated with GNPs-ZnPc/Dox exhibited a higher cellular internalization via GLUT5 targeting. In particular, the GNPs-ZnPc/Dox nanoplatform revealed an excellent synergistic anticancer activity in comparison with free ZnPc-N3 and free Dox, representing a novel and promising chemo-photodynamic combination therapeutic methodology to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Aydan Dag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey.,Drug Application and Research Center, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Eda Cakilkaya
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Pinar Sinem Omurtag Ozgen
- Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, 34815 Istanbul, Turkey
| | - Sezen Atasoy
- Department of Biochemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Gulsah Yigit Erdem
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Busra Cetin
- Institute of Natural and Applied Sciences, Department of Chemistry, Gazi University, 06500 Ankara, Turkey
| | | | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| |
Collapse
|
12
|
Dang H, Yan L. Organic fluorescent nanoparticles with NIR-II emission for bioimaging and therapy. Biomed Mater 2021; 16:022001. [PMID: 33186922 DOI: 10.1088/1748-605x/abca4a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fluorescence imaging technology in the second near-infrared bio-channel (NIR-II) has the advantages of low light scattering and weak autofluorescence. It can obtain high spatial resolution imaging in deeper biological tissues and realize accurate diagnosis in the lesion. As a new cancer treatment method, photothermal therapy has the characteristics of obvious curative effect and small side effects. However, the hydrophobicity and non-selectivity of many fluorescent materials, aggregation-induced fluorescence quenching, and other problems lead to undesirable imaging results. Here, we reviewed the structure of the NIR-II fluorescent molecules and these dyes whose fluorescence tail emission is in the NIR-II bio-channel, discussed in detail how to realize the redshift of the dye wavelength, including modifying the push-pull electron system, extending the conjugated chain, and forming J-aggregates and other methods. We also summarize some strategies to improve brightness, including responsiveness, targeting, adjustment of aggregation mode, and aggregation-induced emission effect, thereby improving the imaging performance and therapeutic effect of NIR-II fluorescent dyes.
Collapse
Affiliation(s)
- Huiping Dang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96# 230026, People's Republic of China
| | | |
Collapse
|
13
|
Development and in vitro evaluation of BSA-coated liposomes containing Zn (II) phthalocyanine-containing ferrocene groups for photodynamic therapy of lung cancer. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Kopeček J, Yang J. Polymer nanomedicines. Adv Drug Deliv Rev 2020; 156:40-64. [PMID: 32735811 PMCID: PMC7736172 DOI: 10.1016/j.addr.2020.07.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Polymer nanomedicines (macromolecular therapeutics, polymer-drug conjugates, drug-free macromolecular therapeutics) are a group of biologically active compounds that are characterized by their large molecular weight. This review focuses on bioconjugates of water-soluble macromolecules with low molecular weight drugs and selected proteins. After analyzing the design principles, different structures of polymer carriers are discussed followed by the examination of the efficacy of the conjugates in animal models and challenges for their translation into the clinic. Two innovative directions in macromolecular therapeutics that depend on receptor crosslinking are highlighted: a) Combination chemotherapy of backbone degradable polymer-drug conjugates with immune checkpoint blockade by multivalent polymer peptide antagonists; and b) Drug-free macromolecular therapeutics, a new paradigm in drug delivery.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Pereira PMR, Parada B, Ribeiro-Rodrigues TM, Fontes-Ribeiro CA, Girão H, Tomé JPC, Fernandes R. Caveolin-1 Modulation Increases Efficacy of a Galacto-Conjugated Phthalocyanine in Bladder Cancer Cells Resistant to Photodynamic Therapy. Mol Pharm 2020; 17:2145-2154. [DOI: 10.1021/acs.molpharmaceut.0c00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Patrícia M. R. Pereira
- QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Belmiro Parada
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), 3004-561 Coimbra, Portugal
| | - Teresa M. Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Carlos A. Fontes-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| | - João P. C. Tomé
- QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CQE & Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
16
|
Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020; 160:136-169. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
The clinical success of polypeptides as polymeric drugs, covered by the umbrella term "polymer therapeutics," combined with related scientific and technological breakthroughs, explain their exponential growth in the development of polypeptide-drug conjugates as therapeutic agents. A deeper understanding of the biology at relevant pathological sites and the critical biological barriers faced, combined with advances regarding controlled polymerization techniques, material bioresponsiveness, analytical methods, and scale up-manufacture processes, have fostered the development of these nature-mimicking entities. Now, engineered polypeptides have the potential to combat current challenges in the advanced drug delivery field. In this review, we will discuss examples of polypeptide-drug conjugates as single or combination therapies in both preclinical and clinical studies as therapeutics and molecular imaging tools. Importantly, we will critically discuss relevant examples to highlight those parameters relevant to their rational design, such as linking chemistry, the analytical strategies employed, and their physicochemical and biological characterization, that will foster their rapid clinical translation.
Collapse
Affiliation(s)
- Tetiana Melnyk
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Snežana Đorđević
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
17
|
Lo PC, Rodríguez-Morgade MS, Pandey RK, Ng DKP, Torres T, Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem Soc Rev 2019; 49:1041-1056. [PMID: 31845688 DOI: 10.1039/c9cs00129h] [Citation(s) in RCA: 413] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phthalocyanines exhibit superior photoproperties that make them a surely attractive class of photosensitisers for photodynamic therapy of cancer. Several derivatives are at various phases of clinical trials, and efforts have been put continuously to improve their photodynamic efficacy. To this end, various strategies have been applied to develop advanced phthalocyanines with optimised photoproperties, dual therapeutic actions, tumour-targeting properties and/or specific activation at tumour sites. The advantageous properties and potential of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer are highlighted in this tutorial review.
Collapse
Affiliation(s)
- Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
18
|
Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int J Biochem Cell Biol 2019; 114:105575. [PMID: 31362060 DOI: 10.1016/j.biocel.2019.105575] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is a highly specific and clinically approved method for cancer treatment in which a nontoxic drug known as photosensitizer (PS) is administered to a patient. After selective tumor irradiation, an almost complete eradication of the tumor can be reached as a consequence of reactive oxygen species (ROS) generation, which not only damage tumor cells, but also lead to tumor-associated vasculature occlusion and the induction of an immune response. Despite exhaustive investigation and encouraging results, zinc(II) phthalocyanines (ZnPcs) have not been approved as PSs for clinical use yet. This review presents an overview on the physicochemical properties of ZnPcs and biological results obtained both in vitro and in more complex models, such as 3D cell cultures, chicken chorioallantoic membranes and tumor-bearing mice. Cell death pathways induced after PDT treatment with ZnPcs are discussed in each case. Finally, combined therapeutic strategies including ZnPcs and the currently available clinical trials are mentioned.
Collapse
|
19
|
Li T, Yan L. Functional Polymer Nanocarriers for Photodynamic Therapy. Pharmaceuticals (Basel) 2018; 11:E133. [PMID: 30513613 PMCID: PMC6315651 DOI: 10.3390/ph11040133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) is an appealing therapeutic modality in management of some solid tumors and other diseases for its minimal invasion and non-systemic toxicity. However, the hydrophobicity and non-selectivity of the photosensitizers, inherent serious hypoxia of tumor tissues and limited penetration depth of light restrict PDT further applications in clinic. Functional polymer nanoparticles can be used as a nanocarrier for accurate PDT. Here, we elucidate the mechanism and application of PDT in cancer treatments, and then review some strategies to administer the biodistribution and activation of photosensitizers (PSs) to ameliorate or utilize the tumor hypoxic microenvironment to enhance the photodynamic therapy effect.
Collapse
Affiliation(s)
- Tuanwei Li
- CAS Key Laboratory of Soft Matter Chemistry, iChEM, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, iChEM, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
20
|
Chambre L, Saw WS, Ekineker G, Kiew LV, Chong WY, Lee HB, Chung LY, Bretonnière Y, Dumoulin F, Sanyal A. Surfactant-Free Direct Access to Porphyrin-Cross-Linked Nanogels for Photodynamic and Photothermal Therapy. Bioconjug Chem 2018; 29:4149-4159. [DOI: 10.1021/acs.bioconjchem.8b00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Laura Chambre
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | | | - Gülçin Ekineker
- Department of Chemistry, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | | | | | | | | | - Yann Bretonnière
- Univ Lyon, ENS de Lyon,
CNRS UMR 5182, Université Lyon I, Laboratoire de Chimie, F-69342 Lyon, France
| | - Fabienne Dumoulin
- Department of Chemistry, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
21
|
Cheah HY, Gallon E, Dumoulin F, Hoe SZ, Japundžić-Žigon N, Glumac S, Lee HB, Anand P, Chung LY, Vicent MJ, Kiew LV. Near-Infrared Activatable Phthalocyanine–Poly-L-Glutamic Acid Conjugate: Enhanced in Vivo Safety and Antitumor Efficacy toward an Effective Photodynamic Cancer Therapy. Mol Pharm 2018; 15:2594-2605. [DOI: 10.1021/acs.molpharmaceut.8b00132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Elena Gallon
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain
| | - Fabienne Dumoulin
- Department of Chemistry, Gebze Technical University, P.O Box 141, 41400 Gebze, Kocaeli, Turkey
| | | | - Nina Japundžić-Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Republic of Serbia
| | - Sofija Glumac
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Republic of Serbia
| | | | - Prem Anand
- Gasing Veterinary Hospital, Gasing Indah, 46000 Petaling Jaya, Selangor, Malaysia
| | | | - Maria Jesus Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain
| | | |
Collapse
|
22
|
Blázquez-Castro A, Colombo LL, Vanzulli SI, Stockert JC. NIR laser pointer for in vivo photothermal therapy of murine LM3 tumor using intratumoral China ink as a photothermal agent. Lasers Med Sci 2018; 33:1307-1315. [DOI: 10.1007/s10103-018-2483-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/09/2018] [Indexed: 01/25/2023]
|
23
|
Zhang L, Wu L, Shi G, Sang X, Ni C. Studies on the preparation and controlled release of redox/pH-responsive zwitterionic nanoparticles based on poly-L-glutamic acid and cystamine. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:646-662. [DOI: 10.1080/09205063.2018.1433108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Liping Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Luyan Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Xinxin Sang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Caihua Ni
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Voon SH, Kue CS, Imae T, Saw WS, Lee HB, Kiew LV, Chung LY, Yusa SI. Doxorubicin-loaded micelles of amphiphilic diblock copolymer with pendant dendron improve antitumor efficacy: In vitro and in vivo studies. Int J Pharm 2017; 534:136-143. [DOI: 10.1016/j.ijpharm.2017.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022]
|
25
|
Mauriello-Jimenez C, Henry M, Aggad D, Raehm L, Cattoën X, Wong Chi Man M, Charnay C, Alpugan S, Ahsen V, Tarakci DK, Maillard P, Maynadier M, Garcia M, Dumoulin F, Gary-Bobo M, Coll JL, Josserand V, Durand JO. Porphyrin- or phthalocyanine-bridged silsesquioxane nanoparticles for two-photon photodynamic therapy or photoacoustic imaging. NANOSCALE 2017; 9:16622-16626. [PMID: 29082396 DOI: 10.1039/c7nr04677d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Porphyrin- or phthalocyanine-bridged silsesquioxane nanoparticles (BSPOR and BSPHT) were prepared. Their endocytosis in MCF-7 cancer cells was shown with two-photon excited fluorescence (TPEF) imaging. With two-photon excited photodynamic therapy (TPE-PDT), BSPOR was more phototoxic than BSPHT, which in contrast displayed a very high signal for photoacoustic imaging in mice.
Collapse
Affiliation(s)
- Chiara Mauriello-Jimenez
- Institut Charles Gerhardt Montpellier, UMR-5253 CNRS-UM-ENSCM, cc 1701, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|