1
|
Dong Q, LeFevre GH, Mattes TE. Black Carbon Impacts on Paraburkholderia xenovorans Strain LB400 Cell Enrichment and Activity: Implications toward Lower-Chlorinated Polychlorinated Biphenyls Biodegradation Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3895-3907. [PMID: 38356175 PMCID: PMC10902836 DOI: 10.1021/acs.est.3c09183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Volatilization of lower-chlorinated polychlorinated biphenyls (LC-PCBs) from sediment poses health threats to nearby communities and ecosystems. Biodegradation combined with black carbon (BC) materials is an emerging bioaugmentation approach to remove PCBs from sediment, but development of aerobic biofilms on BC for long-term, sustained LC-PCBs remediation is poorly understood. This work aimed to characterize the cell enrichment and activity of biphenyl- and benzoate-grown Paraburkholderia xenovorans strain LB400 on various BCs. Biphenyl dioxygenase gene (bphA) abundance on four BC types demonstrated corn kernel biochar hosted at least 4 orders of magnitude more attached cells per gram than other feedstocks, and microscopic imaging revealed the attached live cell fraction was >1.5× more on corn kernel biochar than GAC. BC characteristics (i.e., sorption potential, pore size, pH) appear to contribute to cell attachment differences. Reverse transcription qPCR indicated that BC feedstocks significantly influenced bphA expression in attached cells. The bphA transcript-per-gene ratio of attached cells was >10-fold more than suspended cells, confirmed by transcriptomics. RNA-seq also demonstrated significant upregulation of biphenyl and benzoate degradation pathways on attached cells, as well as revealing biofilm formation potential/cell-cell communication pathways. These novel findings demonstrate aerobic PCB-degrading cell abundance and activity could be tuned by adjusting BC feedstocks/attributes to improve LC-PCBs biodegradation potential.
Collapse
Affiliation(s)
- Qin Dong
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Gregory H. LeFevre
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Timothy E. Mattes
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Ramage G, Borghi E, Rodrigues CF, Kean R, Williams C, Lopez-Ribot J. Our current clinical understanding of Candida biofilms: where are we two decades on? APMIS 2023; 131:636-653. [PMID: 36932821 DOI: 10.1111/apm.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Clinically we have been aware of the concept of Candida biofilms for many decades, though perhaps without the formal designation. Just over 20 years ago the subject emerged on the back of progress made from the bacterial biofilms, and academic progress pace has continued to mirror the bacterial biofilm community, albeit at a decreased volume. It is apparent that Candida species have a considerable capacity to colonize surfaces and interfaces and form tenacious biofilm structures, either alone or in mixed species communities. From the oral cavity, to the respiratory and genitourinary tracts, wounds, or in and around a plethora of biomedical devices, the scope of these infections is vast. These are highly tolerant to antifungal therapies that has a measurable impact on clinical management. This review aims to provide a comprehensive overight of our current clinical understanding of where these biofilms cause infections, and we discuss existing and emerging antifungal therapies and strategies.
Collapse
Affiliation(s)
- Gordon Ramage
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
| | - Elisa Borghi
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Milan, Italy
| | - Célia Fortuna Rodrigues
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
| | - Ryan Kean
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Biological Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Craig Williams
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Microbiology Department, Morecambe Bay NHS Trust, Lancaster, UK
| | - Jose Lopez-Ribot
- Department of Biology and the South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Redfern J, Tosheva L, Malic S, Butcher M, Ramage G, Verran J. The denture microbiome in health and disease: an exploration of a unique community. Lett Appl Microbiol 2022; 75:195-209. [PMID: 35634756 PMCID: PMC9546486 DOI: 10.1111/lam.13751] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022]
Abstract
The United Nations suggests the global population of denture wearers (an artificial device that acts as a replacement for teeth) is likely to rise significantly by the year 2050. Dentures become colonized by microbial biofilms, the composition of which is influenced by complex factors such as patient’s age and health, and the nature of the denture material. Since colonization (and subsequent biofilm formation) by some micro‐organisms can significantly impact the health of the denture wearer, the study of denture microbiology has long been of interest to researchers. The specific local and systemic health risks of denture plaque are different from those of dental plaque, particularly with respect to the presence of the opportunist pathogen Candida albicans and various other nonoral opportunists. Here, we reflect on advancements in our understanding of the relationship between micro‐organisms, dentures, and the host, and highlight how our growing knowledge of the microbiome, biofilms, and novel antimicrobial technologies may better inform diagnosis, treatment, and prevention of denture‐associated infections, thereby enhancing the quality and longevity of denture wearers.
Collapse
Affiliation(s)
- J Redfern
- Department of Natural Sciences, Faculty of Science and Engineering Manchester Metropolitan University UK
| | - L Tosheva
- Department of Natural Sciences, Faculty of Science and Engineering Manchester Metropolitan University UK
| | - S Malic
- Department of Life Sciences, Faculty of Science and Engineering Manchester Metropolitan University UK
| | - M Butcher
- Department of Oral Sciences, Glasgow Dental School, School of Medicine, Dentistry and Nursing University of Glasgow UK
| | - G Ramage
- Department of Oral Sciences, Glasgow Dental School, School of Medicine, Dentistry and Nursing University of Glasgow UK
| | - J Verran
- Department of Life Sciences, Faculty of Science and Engineering Manchester Metropolitan University UK
| |
Collapse
|
4
|
Le PH, Nguyen DHK, Medina AA, Linklater DP, Loebbe C, Crawford RJ, MacLaughlin S, Ivanova EP. Surface Architecture Influences the Rigidity of Candida albicans Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:567. [PMID: 35159912 PMCID: PMC8840568 DOI: 10.3390/nano12030567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Atomic force microscopy (AFM) was used to investigate the morphology and rigidity of the opportunistic pathogenic yeast, Candida albicans ATCC 10231, during its attachment to surfaces of three levels of nanoscale surface roughness. Non-polished titanium (npTi), polished titanium (pTi), and glass with respective average surface roughness (Sa) values of 389 nm, 14 nm, and 2 nm, kurtosis (Skur) values of 4, 16, and 4, and skewness (Sskw) values of 1, 4, and 1 were used as representative examples of each type of nanoarchitecture. Thus, npTi and glass surfaces exhibited similar Sskw and Skur values but highly disparate Sa. C. albicans cells that had attached to the pTi surfaces exhibited a twofold increase in rigidity of 364 kPa compared to those yeast cells attached to the surfaces of npTi (164 kPa) and glass (185 kPa). The increased rigidity of the C. albicans cells on pTi was accompanied by a distinct round morphology, condensed F-actin distribution, lack of cortical actin patches, and the negligible production of cell-associated polymeric substances; however, an elevated production of loose extracellular polymeric substances (EPS) was observed. The differences in the physical response of C. albicans cells attached to the three surfaces suggested that the surface nanoarchitecture (characterized by skewness and kurtosis), rather than average surface roughness, could directly influence the rigidity of the C. albicans cells. This work contributes to the next-generation design of antifungal surfaces by exploiting surface architecture to control the extent of biofilm formation undertaken by yeast pathogens and highlights the importance of performing a detailed surface roughness characterization in order to identify and discriminate between the surface characteristics that may influence the extent of cell attachment and the subsequent behavior of the attached cells.
Collapse
Affiliation(s)
- Phuc H. Le
- STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia; (P.H.L.); (D.H.K.N.); (A.A.M.); (D.P.L.); (R.J.C.)
- ARC Research Hub for Australian Steel Manufacturing, STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Duy H. K. Nguyen
- STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia; (P.H.L.); (D.H.K.N.); (A.A.M.); (D.P.L.); (R.J.C.)
| | - Arturo Aburto Medina
- STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia; (P.H.L.); (D.H.K.N.); (A.A.M.); (D.P.L.); (R.J.C.)
- ARC Research Hub for Australian Steel Manufacturing, STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Denver P. Linklater
- STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia; (P.H.L.); (D.H.K.N.); (A.A.M.); (D.P.L.); (R.J.C.)
| | | | - Russell J. Crawford
- STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia; (P.H.L.); (D.H.K.N.); (A.A.M.); (D.P.L.); (R.J.C.)
| | | | - Elena P. Ivanova
- STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia; (P.H.L.); (D.H.K.N.); (A.A.M.); (D.P.L.); (R.J.C.)
| |
Collapse
|
5
|
Interkingdom interactions on the denture surface: Implications for oral hygiene. Biofilm 2019; 1:100002. [PMID: 32201858 PMCID: PMC7067236 DOI: 10.1016/j.bioflm.2019.100002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 11/23/2022] Open
Abstract
Background Evidence to support the role of Candida species in oral disease is limited. Often considered a commensal, this opportunistic yeast has been shown to play a role in denture related disease, though whether it is an active participant or innocent bystander remains to be determined. This study sought to understand the role of Candida species alongside the bacterial microbiome in a denture patient cohort, exploring how the microbiology of the denture was affected by oral hygiene practices. Materials and methods In vitro denture cleansing studies were performed on a complex 9-species interkingdom denture biofilm model, with quantitative assessment of retained bacterial and fungal viable bioburdens. Patient hygiene measures were also collected from 131 patients, including OHIP, frequency of denture cleansing, oral hygiene measure and patient demographics. The bacterial microbiome was analysed from each patient, alongside quantitative PCR assessment of ITS (fungal) and 16S (bacterial) bioburden from denture, mucosa and intact dentition. Results It was shown that following in vitro denture cleansing C. albicans were unresponsive to treatment, whereas bacterial biofilms could repopulate 100-fold, but were susceptible to subsequent treatment. Within the patient cohort, oral hygiene did not impact candidal or bacterial composition, nor diversity. The levels of Candida did not significantly influence the bacterial microbiome, though an observed gradient was suggestive of a microbial composition change in response to Candida load, indicating interkingdom interaction rather than an oral hygiene effect. Indeed, correlation analysis was able to show significant correlations between Candida species and key genera (Lactobacillus, Scardovia, Fusobacterium). Conclusions Overall, this study has shown that the denture microbiome/mycobiome is relatively resilient to oral hygiene challenges, but that Candida species have potential interactions with key oral genera. These interactions may have a bearing on shaping community structure and a shift from health to disease when the opportunity arises.
Collapse
|
6
|
Ramage G, O'Donnell L, Sherry L, Culshaw S, Bagg J, Czesnikiewicz-Guzik M, Brown C, McKenzie D, Cross L, MacInnes A, Bradshaw D, Varghese R, Gomez Pereira P, Jose A, Sanyal S, Robertson D. Impact of frequency of denture cleaning on microbial and clinical parameters - a bench to chairside approach. J Oral Microbiol 2018; 11:1538437. [PMID: 30598732 PMCID: PMC6225516 DOI: 10.1080/20002297.2018.1538437] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/24/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023] Open
Abstract
Objective: Robust scientific and clinical evidence of how to appropriately manage denture plaque is lacking. This two-part study (i) developed an in vitro model of denture plaque removal, and (ii) assessed effectiveness of these approaches in a randomised clinical trial. Method: (i) a complex denture plaque model was developed using the dominant microbial genera from a recent microbiome analyses. Biofilms formed on polymethylmethacrylate were brushed daily with a wet toothbrush, then either treated daily for 5 days or only on Days 1 and 5 with Polident® denture cleanser tablets (3 min soaking). Quantitative and qualitative microbiological assessments were performed. (ii), an examiner-blind, randomised, crossover study of complete maxillary denture wearers was performed (n = 19). Either once-daily for 7 days or on Day 7 only, participants soaked dentures for 15 min using Corega® denture cleansing tables, then brushed. Denture plaque microbiological assessment used sterilized filter paper discs. Results: The in vitro model showed daily cleaning with denture cleanser plus brushing significantly reduced microbial numbers compared to intermittent denture cleaning with daily brushing (p < 0.001). The clinical component of the study showed a statistically significant reduction in denture plaque microbial numbers in favour of daily versus weekly treatment (aerobic bacteria p = 0.0144). Both in vitro and in vivo studies showed that denture plaque biofilm composition were affected by different treatment arms. Conclusions: This study demonstrated that daily denture cleansing regimens are superior to intermittent denture cleansing, and that cleansing regimens can induce denture plaque compositional changes. Clinicaltrials.gov registration: NCT02780661.
Collapse
Affiliation(s)
- Gordon Ramage
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lindsay O'Donnell
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Leighann Sherry
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shauna Culshaw
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jeremy Bagg
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Marta Czesnikiewicz-Guzik
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Clare Brown
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Debbie McKenzie
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Laura Cross
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew MacInnes
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | - Anto Jose
- GSK Consumer Healthcare, Weybridge, UK
| | | | - Douglas Robertson
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Fungi at the Scene of the Crime: Innocent Bystanders or Accomplices in Oral Infections? CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0100-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Lagree K, Mon HH, Mitchell AP, Ducker WA. Impact of surface topography on biofilm formation by Candida albicans. PLoS One 2018; 13:e0197925. [PMID: 29912894 PMCID: PMC6005505 DOI: 10.1371/journal.pone.0197925] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/10/2018] [Indexed: 11/27/2022] Open
Abstract
Candida albicans is a fungal pathogen that causes serious biofilm-based infections. Here we have asked whether surface topography may affect C. albicans biofilm formation. We tested biofilm growth of the prototypical wild-type strain SC5314 on a series of polydimethylsiloxane (PDMS) solids. The surfaces were prepared with monolayer coatings of monodisperse spherical silica particles that were fused together into a film using silica menisci. The surface topography was varied by varying the diameter of the silica particles that were used to form the film. Biofilm formation was observed to be a strong function of particle size. In the particle size range 4.0-8.0 μm, there was much more biofilm than in the size range 0.5-2.0 μm. The behavior of a clinical isolate from a clade separate from SC5314, strain p76067, showed results similar to that of SC5314. Our results suggest that topographic coatings may be a promising approach to reduce C. albicans biofilm infections.
Collapse
Affiliation(s)
- Katherine Lagree
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Htwe H. Mon
- Department of Chemical Engineering, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States of America
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - William A. Ducker
- Department of Chemical Engineering, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|