1
|
Zheng L, Wang Z, Liu H, Wang N, Liu J, Ma M, Jia X, Qian M, Liu Y, Li M, Wei Z, Xiang Y. Yeast-Derived Manganese and Zinc Metal-Organic Framework Composite as a Vaccine Adjuvant for Enhanced Humoral and Cellular Immune Responses. ACS NANO 2025; 19:17900-17916. [PMID: 40293251 DOI: 10.1021/acsnano.5c04365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
To control pandemics, a universal adjuvant platform that can deliver antigens and stimulate the immune system that rapidly elicits humoral and cellular immune responses is needed, especially one that can stimulate the body's immune system to produce protective immunological memory. However, the design, composition, and mechanism of adjuvants have presented considerable challenges. The types of adjuvants currently approved in clinics are rare and are far from meeting the requirements of vaccine development. In this study, we prepared a yeast-derived manganese and zinc metal-organic framework (MOF) composite particle adjuvant by self-assembling Mn-MOF-74 and ZIF-8 on the surface of yeast and named it yeast@Mn-MOF-74@ZIF-8 (yMZ). yMZ was able to promote the maturation and activation of dendritic cells (DCs), enhance the uptake and presentation of antigens by DCs, increase the production of adaptive immune cells with memory, enhance humoral and cellular immune responses, and promote the activation of the germinal center. Additionally, yMZ allowed for effective control of antigen release and exhibited good biosafety in vivo. In this study, yMZ showed good adjuvant effects on subunits and inactivated vaccines, indicating that it is a next-generation adjuvant candidate with potential application prospects.
Collapse
Affiliation(s)
- Lanlan Zheng
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Zi Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Hang Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Nianxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Junjun Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Mengyao Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Xinhao Jia
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Mengwei Qian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Yidan Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Muzi Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Zhanyong Wei
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Yuqiang Xiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| |
Collapse
|
2
|
Zhang M, Wang C, Pan J, Cui H, Zhao X. Advancing novel veterinary vaccines: From comprehensive antigen and adjuvant design to preparation process optimization. Int Immunopharmacol 2025; 145:113784. [PMID: 39672026 DOI: 10.1016/j.intimp.2024.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Vaccination stands as the paramount and cost-effective strategy for the prevention and management of animal infectious diseases. With the advances in biological technology, materials science and industrial optimization, substantial progress has been made in the development of innovative veterinary vaccines. A majority of the novel vaccines under current investigation tend to stimulate multiple immune pathways and to achieve long-term resistance against infectious diseases, yet it remains imperative to concentrate research efforts on the efficient utilization of vaccines, mitigating toxic side effects, and ensuring safe production processes. This article presents an overview of research progress in veterinary vaccines, encompassing comprehensive antigen design, adjuvant formulation advancements, preparation process optimization, and rigorous immune efficacy evaluation. It summarizes cutting-edge vaccines derived from in vitro synthesis and in vivo application, emphasizing immunogenic components and immune response mechanisms. It also highlights novel biological adjuvants that enhance immune efficacy, diversify raw materials, and possess targeted functions, while comprehensively exploring advancements in production methodologies and compatible vaccine products. By establishing a foundation for the integrated use of these innovative veterinary vaccines, this work facilitates future interdisciplinary cooperation in their advancement, aiming to accelerate the achievement of herd immunity through concerted efforts.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Korangath P, Jin L, Yang CT, Healy S, Guo X, Ke S, Grüttner C, Hu C, Gabrielson K, Foote J, Clarke R, Ivkov R. Iron Oxide Nanoparticles Inhibit Tumor Progression and Suppress Lung Metastases in Mouse Models of Breast Cancer. ACS NANO 2024; 18:10509-10526. [PMID: 38564478 PMCID: PMC11025112 DOI: 10.1021/acsnano.3c12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-β (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.
Collapse
Affiliation(s)
- Preethi Korangath
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Lu Jin
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Chun-Ting Yang
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Sean Healy
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Xin Guo
- Department
of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Suqi Ke
- Department
of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer
Centre, School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21231, United States
| | | | - Chen Hu
- Department
of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer
Centre, School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21231, United States
| | - Kathleen Gabrielson
- Department
of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jeremy Foote
- Department
of Microbiology, School of Medicine, University
of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Robert Clarke
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Robert Ivkov
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department
of Oncology, Sidney Kimmel Comprehensive Cancer Centre, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department
of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Tan J, Ding B, Chen H, Meng Q, Li J, Yang C, Zhang W, Li X, Han D, Zheng P, Ma P, Lin J. Effects of Skeleton Structure of Mesoporous Silica Nanoadjuvants on Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305567. [PMID: 37702141 DOI: 10.1002/smll.202305567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Indexed: 09/14/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have been widely praised as nanoadjuvants in vaccine/tumor immunotherapy thanks to their excellent biocompatibility, easy-to-modify surface, adjustable particle size, and remarkable immuno-enhancing activity. However, the application of MSNs is still greatly limited by some severe challenges including the unclear and complicated relationships of structure and immune effect. Herein, three commonly used MSNs with different skeletons including MSN with tetrasulfide bonds (TMSN), MSN containing ethoxy framework (EMSN), and pure -Si-O-Si- framework of MSN (MSN) are comprehensively compared to study the impact of chemical construction on immune effect. The results fully demonstrate that the three MSNs have great promise in improving cellular immunity for tumor immunotherapy. Moreover, the TMSN performs better than the other two MSNs in antigen loading, cellular uptake, reactive oxygen species (ROS) generation, lymph node targeting, immune activation, and therapeutic efficiency. The findings provide a new paradigm for revealing the structure-function relationship of mesoporous silica nanoadjuvants, paving the way for their future clinical application.
Collapse
Affiliation(s)
- Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chunzheng Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wenying Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyang Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Di Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pan Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Kong F, Jia H, Xiao Q, Fang L, Wang Q. Prevention and Control of Swine Enteric Coronaviruses in China: A Review of Vaccine Development and Application. Vaccines (Basel) 2023; 12:11. [PMID: 38276670 PMCID: PMC10820180 DOI: 10.3390/vaccines12010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Swine enteric coronaviruses (SECs) cause significant economic losses to the pig industry in China. Although many commercialized vaccines against transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are available, viruses are still widespread. The recent emergence of porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV), for which no vaccines are available, increases the disease burden. In this review, we first introduced the genomic organization and epidemiology of SECs in China. Then, we discussed the current vaccine development and application in China, aiming to provide suggestions for better prevention and control of SECs in China and other countries.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Huilin Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Qi Xiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Masalova OV, Lesnova EI, Kalsin VA, Klimova RR, Fedorova NE, Kozlov VV, Demidova NA, Yurlov KI, Konoplyannikov MA, Nikolaeva TN, Pronin AV, Baklaushev VP, Kushch AA. Human Mesenchymal Stem Cells Modified with the NS5A Gene of Hepatitis C Virus Induce a Cellular Immune Response Exceeding the Response to DNA Immunization with This Gene. BIOLOGY 2023; 12:792. [PMID: 37372076 PMCID: PMC10295215 DOI: 10.3390/biology12060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
Hepatitis C virus (HCV) is one of the basic culprits behind chronic liver disease, which may result in cirrhosis and hepatocarcinoma. In spite of the extensive research conducted, a vaccine against HCV has not been yet created. We have obtained human mesenchymal stem cells (hMSCs) and used them for expressing the HCV NS5A protein as a model vaccination platform. Sixteen hMSC lines of a different origin were transfected with the pcNS5A-GFP plasmid to obtain genetically modified MSCs (mMSCs). The highest efficiency was obtained by the transfection of dental pulp MSCs. C57BL/6 mice were immunized intravenously with mMSCs, and the immune response was compared with the response to the pcNS5A-GFP plasmid, which was injected intramuscularly. It was shown that the antigen-specific lymphocyte proliferation and the number of IFN-γ-synthesizing cells were two to three times higher after the mMSC immunization compared to the DNA immunization. In addition, mMSCs induced more CD4+ memory T cells and an increase in the CD4+/CD8+ ratio. The results suggest that the immunostimulatory effect of mMSCs is associated with the switch of MSCs to the pro-inflammatory phenotype and a decrease in the proportion of myeloid derived suppressor cells. Thus, the possibility of using human mMSCs for the creation of a vaccine against HCV has been shown for the first time.
Collapse
Affiliation(s)
- Olga V. Masalova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Ekaterina I. Lesnova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Vladimir A. Kalsin
- Federal Research Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of the Russian Federation, 115682 Moscow, Russia; (V.A.K.); (M.A.K.); (V.P.B.)
| | - Regina R. Klimova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Natalya E. Fedorova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Vyacheslav V. Kozlov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Natalya A. Demidova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Kirill I. Yurlov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Mikhail A. Konoplyannikov
- Federal Research Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of the Russian Federation, 115682 Moscow, Russia; (V.A.K.); (M.A.K.); (V.P.B.)
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Tatyana N. Nikolaeva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Alexander V. Pronin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Vladimir P. Baklaushev
- Federal Research Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of the Russian Federation, 115682 Moscow, Russia; (V.A.K.); (M.A.K.); (V.P.B.)
| | - Alla A. Kushch
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| |
Collapse
|
7
|
Tan J, Ding B, Zheng P, Chen H, Ma P, Lin J. Hollow Aluminum Hydroxide Modified Silica Nanoadjuvants with Amplified Immunotherapy Effects through Immunogenic Cell Death Induction and Antigen Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202462. [PMID: 35896867 DOI: 10.1002/smll.202202462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
In spite of the widespread application of vaccine adjuvants in various preventive vaccines at present, the existing adjuvants are still hindered by weak cellular immunity responses in therapeutic cancer vaccines. Herein, a hollow silica nanoadjuvant containing aluminum hydroxide spikes on the surface (SiAl) is synthesized for the co-loading of chemotherapeutic drug doxorubicin (Dox) and tumor fragment (TF) as tumor antigens (SiAl@Dox@TF). The obtained nanovaccines show significantly elevated anti-tumor immunity responses thanks to silica and aluminum-based composite nanoadjuvant-mediated tumor antigen release and Dox-induced immunogenic cell death (ICD). In addition, the highest frequencies of dendritic cells (DCs), CD4+ T cells, CD8+ T cells, and memory T cells as well as the best mice breast cancer (4T1) tumor growth inhibitory are also observed in SiAl@Dox@TF group, indicating favorable potential of SiAl nanoadjuvants for further applications. This work is believed to provide inspiration for the design of new-style nanoadjuvants and adjuvant-based cancer vaccines.
Collapse
Affiliation(s)
- Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Pan Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Institute of Frontier and Interdisciplinary Science and Institute of Molecular Sciences and Engineering, Shandong University, Qindao, 266237, China
| | - Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
Zhao FJ, Liu LT, Wang Z, Wang NX, Ma MY, Jia XH, Lu SJ, Xiang YQ, Zheng LL, Hu H. Development and immunogenicity evaluation of porcine deltacoronavirus inactivated vaccine with different adjuvants in mice. Vaccine 2022; 40:4211-4219. [PMID: 35691873 PMCID: PMC9181634 DOI: 10.1016/j.vaccine.2022.05.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in pigs of various ages, especially in suckling piglets, and there are no effective measures to prevent and control PDCoV currently. In this study, two adjuvants Al(OH)3 and ODN2395 working through different mechanisms were used to prepare inactivated PDCoV vaccines, and the immune effects of PDCoV inactivated vaccines were assessed in mice. From the results, we found that both PDCoV/Al(OH)3 vaccine and PDCoV/2395 vaccine could induce IgG and neutralizing antibodies with high levels in mice. At the same time, cytokines of IFN-γ, IL-4 and chemokine ligand of CXCL13 in serum were significantly increased after immunization, and reached the highest levels in PDCoV/2395 vaccine group, which suggested that PDCoV/2395 could promote the production of both Th1 and Th2 polarized cytokines. In addition, histopathological observations showed that vaccination helped mice resist PDCoV infection. These results indicated that both the two inactivated vaccines have good immune effects. Moreover, the PDCoV/2395 vaccine worked better than the PDCoV/Al(OH)3 vaccine for PDCoV/2395 having the good ability to induce both humoral and cellular immunogenicity. The PDCoV/2395 inactivated vaccine developed in this study might be an effective tool for the prevention of PDCoV infection.
Collapse
Affiliation(s)
- Fu-Jie Zhao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lin-Tao Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zi Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Nian-Xiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Meng-Yao Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xin-Hao Jia
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Si-Jia Lu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yu-Qiang Xiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lan-Lan Zheng
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Hui Hu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
9
|
Guan LJ, Pei SX, Song JJ, Zhan PF, Han YN, Xue Y, Ding K, Zhao ZQ. Screening immune adjuvants for an inactivated vaccine against Erysipelothrix rhusiopathiae. Front Vet Sci 2022; 9:922867. [PMID: 35958306 PMCID: PMC9360596 DOI: 10.3389/fvets.2022.922867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, we screened adjuvants for an inactivated vaccine against Erysipelothrix rhusiopathiae (E. rhusiopathiae). Inactivated cells of E. rhusiopathiae strain HG-1 were prepared as the antigen in five adjuvanted inactivated vaccines, including a mineral-oil-adjuvanted vaccine (Oli vaccine), aluminum-hydroxide-gel-adjuvanted vaccine (Alh vaccine), ISA201-biphasic-oil-emulsion-adjuvanted vaccine (ISA201 vaccine), GEL02-water-soluble-polymer-adjuvanted vaccine (GEL vaccine), and IMS1313-water-soluble-nanoparticle-adjuvanted vaccine (IMS1313 vaccine). The safety test results of subcutaneous inoculation in mice showed that Oli vaccine had the most severe side effects, with a combined score of 35, followed by the ISA201 vaccine (25 points), Alh vaccine (20 points), GEL vaccine (10 points), and IMS1313 vaccine (10 points). A dose of 1.5LD50 of strain HG-1 was used to challenge the mice intraperitoneally, 14 days after their second immunization. The protective efficacy of Oli vaccine and Alh vaccine was 100% (8/8), whereas that of the other three adjuvanted vaccines was 88% (7/8). Challenge with 2.5LD50 of strain HG-1 resulted in a 100% survival rate, demonstrating the 100% protective efficacy of the Oli vaccine, followed by the GEL vaccine (71%, 5/7), IMS1313 vaccine (57%, 4/7), ISA201 vaccine (43%, 3/7), and Alh vaccine (29%, 2/7). Challenge with 4LD50 of strain HG-1 showed 100% (7/7) protective efficacy of the Oli vaccine and 71% (5/7) protective efficacy of the GEL vaccine, whereas the protective efficacy of other three adjuvanted vaccine was 14% (1/7). The Alh and GEL vaccines were selected for comparative tests in piglets, and both caused minor side effects. A second immunization with these two adjuvanted vaccines conferred 60 and 100% protective efficacy, respectively, after the piglets were challenged via an ear vein with 8LD100 of strain HG-1. After challenge with 16LD100 of strain HG-1, the Alh and GEL vaccines showed 40% and 100% protective efficacy, respectively. Our results suggested that GEL is the optimal adjuvant for an inactivated vaccine against E. rhusiopathiae.
Collapse
Affiliation(s)
- Li-Jun Guan
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shi-Xuan Pei
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ji-Jian Song
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Peng-Fei Zhan
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yi-Nong Han
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yun Xue
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ke Ding
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhan-Qin Zhao
- Lab of Veterinary Microbiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Zhan-Qin Zhao
| |
Collapse
|
10
|
Flower-like mesoporous silica nanoparticles as an antigen delivery platform to promote systemic immune response. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102541. [PMID: 35181525 DOI: 10.1016/j.nano.2022.102541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/06/2021] [Accepted: 02/04/2022] [Indexed: 12/31/2022]
Abstract
Virus-like particles (VLPs), a kind of superior subunit vaccine, are assembled from the viral structural proteins with similar capsids to viruses. However, the efficiency of cell uptake is not satisfactory. We prepared flower-like mesoporous silica nanoparticles (SiNPs) with large pore channels and interior cavities to solve the problem. The highly loaded VLPs-SiNPs composites not only enhanced the stability of VLPs, but also delivered antigen to cells and improved the cellular uptake efficiency. Compared with naked VLPs, mice intramuscularly immunized with the VLPs-SiNPs composite induced higher specific antibodies, greater lymphocyte activation and higher level of cytokine secretion. Moreover, the VLPs-SiNPs composite as vaccine also promoted mucosal immune response through intranasal immune pathway. Therefore, the VLPs-SiNPs enable to induce strong cellular, humoral, and slight mucosal immune response through different immunization routes. These results are potentially useful for vaccine formulations and may provide further reference for vaccine design and delivery systems.
Collapse
|
11
|
Mitarotonda R, Giorgi E, Eufrasio-da-Silva T, Dolatshahi-Pirouz A, Mishra YK, Khademhosseini A, Desimone MF, De Marzi M, Orive G. Immunotherapeutic nanoparticles: From autoimmune disease control to the development of vaccines. BIOMATERIALS ADVANCES 2022; 135:212726. [PMID: 35475005 PMCID: PMC9023085 DOI: 10.1016/j.bioadv.2022.212726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
Abstract
The development of nanoparticles (NPs) with potential therapeutic uses represents an area of vast interest in the scientific community during the last years. Recently, the pandemic caused by COVID-19 motivated a race for vaccines creation to overcome the crisis generated. This is a good demonstration that nanotechnology will most likely be the basis of future immunotherapy. Moreover, the number of publications based on nanosystems has significantly increased in recent years and it is expected that most of these developments can go on to experimentation in clinical stages soon. The therapeutic use of NPs to combat different diseases such as cancer, allergies or autoimmune diseases will depend on their characteristics, their targets, and the transported molecules. This review presents an in-depth analysis of recent advances that have been developed in order to obtain novel nanoparticulate based tools for the treatment of allergies, autoimmune diseases and for their use in vaccines. Moreover, it is highlighted that by providing targeted delivery an increase in the potential of vaccines to induce an immune response is expected in the future. Definitively, the here gathered analysis is a good demonstration that nanotechnology will be the basis of future immunotherapy.
Collapse
Affiliation(s)
- Romina Mitarotonda
- Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700) Lujan, Buenos Aires, Argentina
| | - Exequiel Giorgi
- Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700) Lujan, Buenos Aires, Argentina
| | - Tatiane Eufrasio-da-Silva
- Department of Health Technology, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark; Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, 6525EX Nijmegen, the Netherlands
| | | | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Jonsson Comprehensive Cancer Center, Department of Radiology, University of California, Los Angeles, CA 90095, USA
| | - Martin F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Mauricio De Marzi
- Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700) Lujan, Buenos Aires, Argentina.
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
12
|
Abstract
A favorable outcome of the COVID-19 crisis might be achieved with massive vaccination. The proposed vaccines contain several different vaccine active principles (VAP), such as inactivated virus, antigen, mRNA, and DNA, which are associated with either standard adjuvants or nanomaterials (NM) such as liposomes in Moderna's and BioNTech/Pfizer's vaccines. COVID-19 vaccine adjuvants may be chosen among liposomes or other types of NM composed for example of graphene oxide, carbon nanotubes, micelles, exosomes, membrane vesicles, polymers, or metallic NM, taking inspiration from cancer nano-vaccines, whose adjuvants may share some of their properties with those of viral vaccines. The mechanisms of action of nano-adjuvants are based on the facilitation by NM of targeting certain regions of immune interest such as the mucus, lymph nodes, and zones of infection or blood irrigation, the possible modulation of the type of attachment of the VAP to NM, in particular VAP positioning on the NM external surface to favor VAP presentation to antigen presenting cells (APC) or VAP encapsulation within NM to prevent VAP degradation, and the possibility to adjust the nature of the immune response by tuning the physico-chemical properties of NM such as their size, surface charge, or composition. The use of NM as adjuvants or the presence of nano-dimensions in COVID-19 vaccines does not only have the potential to improve the vaccine benefit/risk ratio, but also to reduce the dose of vaccine necessary to reach full efficacy. It could therefore ease the overall spread of COVID-19 vaccines within a sufficiently large portion of the world population to exit the current crisis.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France. .,Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France.,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
13
|
Zheng L, Zhao F, Ru J, Liu L, Wang Z, Wang N, Shu X, Wei Z, Guo H. Evaluation of the Effect of Inactivated Transmissible Gastroenteritis Virus Vaccine with Nano Silicon on the Phenotype and Function of Porcine Dendritic Cells. Viruses 2021; 13:v13112158. [PMID: 34834964 PMCID: PMC8620756 DOI: 10.3390/v13112158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023] Open
Abstract
A transmissible gastroenteritis virus (TGEV) is a porcine enteropathogenic coronavirus, causing acute swine enteric disease especially in suckling piglets. Mesoporous silica nanoparticles (MSNs) are safe vaccine adjuvant, which could enhance immune responses. Our previous research confirmed that nano silicon had immune-enhancing effects with inactivated TGEV vaccine. In this study, we further clarified the immune-enhancing mechanism of the inactivated TGEV vaccine with MSNs on porcine dendritic cells (DCs). Our results indicated that the inactivated TGEV vaccine with MSNs strongly enhanced the activation of the DCs. Expressions of TLR3, TLR5, TLR7, TLR9, and TLR10, cytokines IFN-α, IL-1β, IL-6, IL-12, and TNF-α, cytokine receptor CCR-7 of immature DCs were characterized and showed themselves to be significantly higher in the inactivated TGEV vaccine with the MSN group. In summary, the inactivated TGEV vaccine with MSNs has effects on the phenotype and function of porcine DCs, which helps to better understand the immune-enhancing mechanism.
Collapse
Affiliation(s)
- Lanlan Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Fujie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Jiaxi Ru
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Lintao Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Zi Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Nianxiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Xiangli Shu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
- Correspondence: (Z.W.); (H.G.)
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
- Correspondence: (Z.W.); (H.G.)
| |
Collapse
|
14
|
Gunathilake TMSU, Ching YC, Uyama H, Chuah CH. Nanotherapeutics for treating coronavirus diseases. J Drug Deliv Sci Technol 2021; 64:102634. [PMID: 34127930 PMCID: PMC8190278 DOI: 10.1016/j.jddst.2021.102634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Viral diseases have recently become a threat to human health and rapidly become a significant cause of mortality with a continually exacerbated unfavorable socio-economic impact. Coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), have threatened human life, with immense accompanying morbidity rates; the COVID-19 (caused by SARS-CoV-2) epidemic has become a severe threat to global public health. In addition, the design process of antiviral medications usually takes years before the treatments can be made readily available. Hence, it is necessary to invest scientifically and financially in a technology platform that can then be quickly repurposed on demand to be adequately positioned for this kind of pandemic situation through lessons learned from the previous pandemics. Nanomaterials/nanoformulations provide such platform technologies, and a proper investigation into their basic science and biological interactions would be of great benefit for potential vaccine and therapeutic development. In this respect, intelligent and advanced nano-based technologies provide specific physico-chemical properties, which can help fix the key issues related to the treatments of viral infections. This review aims to provide an overview of the latest research on the effective use of nanomaterials in the treatment of coronaviruses. Also raised are the problems, perspectives of antiviral nanoformulations, and the possibility of using nanomaterials effectively against current pandemic situations.
Collapse
Affiliation(s)
- Thennakoon M Sampath U Gunathilake
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yern Chee Ching
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Rezaei F, Keshvari H, Shokrgozar MA, Doroud D, Gholami E, Khabiri A, Farokhi M. Nano-adjuvant based on silk fibroin for the delivery of recombinant hepatitis B surface antigen. Biomater Sci 2021; 9:2679-2695. [PMID: 33605970 DOI: 10.1039/d0bm01518k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nanotechnology has a vital role in vaccine development. Nano-adjuvants, as robust delivery systems, could stimulate immune responses. Using nanoparticles (NPs) in vaccine formulations enhances the target delivery, immunogenicity, and stability of the antigens. Herein, silk fibroin nanoparticles (SFNPs) were used as a nano-adjuvant for delivering recombinant hepatitis B surface antigen (HBsAg). HBsAg was loaded physically and chemically on the surface of SFNPs. The HBsAg-loaded SFNPs had a spherical morphology. The in vitro release studies showed that HBsAg had a continuous and slow release from SFNPs during 56 days. During this time, ∼45.6% and 34.1% HBsAg was released from physical-SFNPs and chemical-SFNPs, respectively. HBsAg-loaded SFNPs were also stable for six months with slight changes in the size, surface charge, and morphology. The results of circular dichroism (CD) and fluorescence spectroscopy indicated that the released HBsAg preserved the native secondary and tertiary structures. The quantitative cellular uptake study also showed that physical-SFNPs were taken up more into J774A.1 macrophage cells than chemical-SFNPs. After 28 and 56 days post-injection, the immunogenicity studies showed that the specific total IgG, IgG1, and IgG2a levels against HBsAg were significantly higher in the physically loaded group than in the chemically loaded group and commercial hepatitis B vaccine. IgG2a levels were detected only in mice immunized with physical-SFNPs. However, the low levels of IL-4 and IFN-γ were produced in all vaccinated groups and differences in mean values were not significant compared with control groups. Results indicated an improvement in the levels of anti-HBsAg IgG in mice immunized with the physical-SFNPs group compared to other groups.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhao F, Liu L, Xu M, Shu X, Zheng L, Wei Z. Assessments of different inactivating reagents in formulating transmissible gastroenteritis virus vaccine. Virol J 2020; 17:163. [PMID: 33097081 PMCID: PMC7582447 DOI: 10.1186/s12985-020-01433-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022] Open
Abstract
Background Transmissible gastroenteritis virus (TGEV) causes enteric infection in piglets, characterized by vomiting, severe diarrhea and dehydration, and the mortality in suckling piglets is often high up to 100%. Vaccination is an effective measure to control the disease caused by TGEV. Methods In this study, cell-cultured TGEV HN-2012 strain was inactivated by formaldehyde (FA), β-propiolactone (BPL) or binaryethylenimine (BEI), respectively. Then the inactivated TGEV vaccine was prepared with freund's adjuvant, and the immunization effects were evaluated in mice. The TGEV-specific IgG level was detected by ELISA. The positive rates of CD4+, CD8+, CD4+IFN-γ+, CD4+IL-4+ T lymphocytes were detected by flow cytometry assay. Lymphocyte proliferation assay and gross pathology and histopathology examination were also performed to assess the three different inactivating reagents in formulating TGEV vaccine. Results The results showed that the TGEV-specific IgG level in FA group (n = 17) was earlier and stronger, while the BEI group produced much longer-term IgG level. The lymphocyte proliferation test demonstrated that the BEI group had a stronger ability to induce spleen lymphocyte proliferation. The positive rates of CD4+ and CD8+ T lymphocyte subsets of peripheral blood lymphocyte in BEI group was higher than that in FA group and BPL groups by flow cytometry assay. The positive rate of CD4+IFN-γ+ T lymphocyte subset was the highest in the BPL group, and the positive rate of CD4+IL-4+ T lymphocyte subset was the highest in the FA group. There were no obvious pathological changes in the vaccinated mice and the control group after the macroscopic and histopathological examination. Conclusions These results indicated that all the three experimental groups could induce cellular and humoral immunity, and the FA group had the best humoral immunity effect, while the BEI group showed its excellent cellular immunity effect.
Collapse
Affiliation(s)
- Fujie Zhao
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Lintao Liu
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Menglong Xu
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Xiangli Shu
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Lanlan Zheng
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China.
| | - Zhanyong Wei
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China. .,Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
17
|
Zhang Y, Xia L, Yuan Y, Li Q, Han L, Yang G, Hu H. Rhodanine derivative LJ001 inhibits TGEV and PDCoV replication in vitro. Virus Res 2020; 289:198167. [PMID: 32956749 PMCID: PMC7501054 DOI: 10.1016/j.virusres.2020.198167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
LJ001 have the antiviral activity against TGEV or PDCoV infection in vitro. LJ001 inhibits TGEV or PDCoV infection at the replication stages of viral life cycle. LJ001 may serve as a new candidate for treatment of swine enteric coronavirus infection.
Transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) are members of the family coronaviridae and mainly cause acute diarrhea/vomiting, dehydration and mortality in piglets, which lead to huge economic losses to the swine industry. Rhodanine derivative LJ001 has been verified to be effective against some enveloped virus infections in vitro. In this study, we evaluated the antiviral activity of LJ001 towards TGEV and PDCoV replication on swine testicular(ST) cells. Our results showed the 50 % cellular cytotoxicity (CC50) value of LJ001 was 146.4 μM on ST cell. The virus titers of TGEV and PDCoV were obviously decreased in the presence of LJ001 with the concentrations of 3.125 and 12.5 μM, and LJ001 potently inhibited TGEV and PDCoV infection at the replication stages of viral life cycle. Further study indicated that LJ001 inhibited TGEV and PDCoV replication by inhibition of viral RNA and protein synthesis, and reducing virus yields at 12 and 24 h post-inoculation. These data indicated that LJ001 had antiviral activities on TGEV and PDCoV replications in vitro, which may serve as a new candidate for treatment of coronaviruses infections.
Collapse
Affiliation(s)
- Yunfei Zhang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China
| | - Lu Xia
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China
| | - Yixin Yuan
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, PR China
| | - Qianqian Li
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, PR China
| | - Li Han
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China
| | - Guoyu Yang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China.
| | - Hui Hu
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, PR China.
| |
Collapse
|