1
|
Kumar DN, Chaudhuri A, Dehari D, Gamper AM, Kumar D, Agrawal AK. Oral delivery of dihydroartemisinin for the treatment of melanoma via bovine milk exosomes. Drug Deliv Transl Res 2025:10.1007/s13346-024-01785-6. [PMID: 39775463 DOI: 10.1007/s13346-024-01785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Cancer, particularly skin cancer, is a major cause of mortality worldwide, with melanoma being one of the most aggressive and challenging to treat types. Current therapeutic options, such as dacarbazine (DTIC), have limitations due to dose-related toxicities like liver toxicity. Therefore, there is a need for new and effective treatments for melanoma. Dihydroartemisinin (DHA), derived from artemisinin compounds known for their anti-malarial properties, has shown promise as an anti-cancer agent. However, the clinical use of DHA faces challenges such as low solubility and toxicity, which limit its therapeutic efficacy. To overcome these challenges, we developed an exosomal formulation of DHA to enhance its anti-cancer activity and reduce metastasis. Exosomes, biological vesicles, contain many biological macromolecules such as DNA, RNAs, and many other proteins, involved in intercellular communication, were isolated and loaded with DHA using the sonication method. The loaded exosomes were characterized for size (90-103 nm), polydispersity index (PDI: 0.119-0.123), and zeta potential (-23 to -28 mV). In vitro studies demonstrated the efficacy of DHA-loaded exosomes through cytotoxicity and apoptosis assays. The molecular mechanism of action was further elucidated using immunoblotting analysis, focusing on key proteins involved in apoptosis and metastasis regulation, including Bax, Bcl-2, survivin, and MMP-9. Furthermore, we observed a significant improvement in oral bioavailability (2.8-fold) with the exosomal formulation and enhanced in vivo anti-cancer activity of DHA. Notably, treatment with Exo-DHA resulted in strong enhancement of tumor growth suppression and reduced melanoma cell metastasis compared to free DHA.
Collapse
Affiliation(s)
- Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Armin M Gamper
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
- Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Gupta P, Neupane YR, Aqil M, Kohli K, Sultana Y. Lipid-based nanoparticle-mediated combination therapy for breast cancer management: a comprehensive review. Drug Deliv Transl Res 2023; 13:2739-2766. [PMID: 37261602 DOI: 10.1007/s13346-023-01366-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Breast cancer due to the unpredictable and complex etiopathology combined with the non-availability of any effective drug treatment has become the major root of concern for oncologists globally. The number of women affected by the said disease state is increasing at an alarming rate attributed to environmental and lifestyle changes indicating at the exploration of a novel treatment strategy that can eradicate this aggressive disease. So far, it is treated by promising nanomedicine monotherapy; however, according to the numerous studies conducted, the inadequacy of these nano monotherapies in terms of elevated toxicity and resistance has been reported. This review, therefore, puts forth a new multimodal strategic approach to lipid-based nanoparticle-mediated combination drug delivery in breast cancer, emphasizing the recent advancements. A basic overview about the combination therapy and its index is firstly given. Then, the various nano-based combinations of chemotherapeutics involving the combination delivery of synthetic and herbal agents are discussed along with their examples. Further, the recent exploration of chemotherapeutics co-delivery with small interfering RNA (siRNA) agents has also been explained herein. Finally, a section providing a brief description of the delivery of chemotherapeutic agents with monoclonal antibodies (mAbs) has been presented. From this review, we aim to provide the researchers with deep insight into the novel and much more effective combinational lipid-based nanoparticle-mediated nanomedicines tailored specifically for breast cancer treatment resulting in synergism, enhanced antitumor efficacy, and low toxic effects, subsequently overcoming the hurdles associated with conventional chemotherapy.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
- Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201308, India.
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
5
|
Gonzalez-Valdivieso J, Vallejo R, Rodriguez-Rojo S, Santos M, Schneider J, Arias FJ, Girotti A. CD44-targeted nanoparticles for co-delivery of docetaxel and an Akt inhibitor against colorectal cancer. BIOMATERIALS ADVANCES 2023; 154:213595. [PMID: 37639856 DOI: 10.1016/j.bioadv.2023.213595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/24/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
New strategies to develop drug-loaded nanocarriers with improved therapeutic efficacy are needed for cancer treatment. Herein we report a novel drug-delivery nanosystem comprising encapsulation of the chemotherapeutic drug docetaxel (DTX) and recombinant fusion of a small peptide inhibitor of Akt kinase within an elastin-like recombinamer (ELR) vehicle. This combined approach is also precisely targeted to colorectal cancer cells by means of a chemically conjugated DNA aptamer specific for the CD44 tumor marker. This 53 nm dual-approach nanosystem was found to selectively affect cell viability (2.5 % survival) and proliferation of colorectal cancer cells in vitro compared to endothelial cells (50 % survival), and to trigger both apoptosis- and necrosis-mediated cell death. Our findings also show that the nanohybrid particles remain stable under physiological conditions, trigger sustained drug release and possess an adequate pharmacokinetic profile after systemic intravenous administration. In vivo assays showed that these dual-approach nanohybrids significantly reduced the number of tumor polyps along the colorectal tract in a murine colorectal cancer model. Furthermore, systemic administration of advanced nanohybrids induced tissue recovery by improving the morphology of gastrointestinal crypts and the tissue architecture. Taken together, these findings indicate that our strategy of an advanced dual-approach nanosystem allows us to achieve successful controlled release of chemotherapeutics in cancer cells and may have a promising potential for colorectal cancer treatment.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain
| | - Reinaldo Vallejo
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; BioEcoUVa, Research Institute on Bioeconomy, High Pressure Process Group, University of Valladolid, Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Mergelina, Valladolid, Spain
| | - Soraya Rodriguez-Rojo
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Process Group, University of Valladolid, Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Mergelina, Valladolid, Spain
| | - Mercedes Santos
- BIOFORGE Research Group (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Valladolid, Spain
| | - Jose Schneider
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; Department of Obstetrics & Gynecology, University of Valladolid, School of Medicine, Valladolid, Spain
| | - Francisco Javier Arias
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; Unidad de excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), University of Valladolid CSIC, Valladolid, Spain.
| | - Alessandra Girotti
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; Unidad de excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), University of Valladolid CSIC, Valladolid, Spain.
| |
Collapse
|
6
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
7
|
Lopez-Mendez TB, Strippoli R, Trionfetti F, Calvo P, Cordani M, Gonzalez-Valdivieso J. Clinical Trials Involving Chemotherapy-Based Nanocarriers in Cancer Therapy: State of the Art and Future Directions. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Neves AR, Biswas S, Sousa Â, Costa D. Nanoconjugates and nanoconjugate formulations for improving drug delivery and therapeutic efficacy. ADVANCED NANOFORMULATIONS 2023:397-430. [DOI: 10.1016/b978-0-323-85785-7.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Negi S, Chaudhuri A, Kumar DN, Dehari D, Singh S, Agrawal AK. Nanotherapeutics in autophagy: a paradigm shift in cancer treatment. Drug Deliv Transl Res 2022; 12:2589-2612. [PMID: 35149969 DOI: 10.1007/s13346-022-01125-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 12/15/2022]
Abstract
Autophagy is a catabolic process in which an organism responds to its nutrient or metabolic emergencies. It involves the degradation of cytoplasmic proteins and organelles by forming double-membrane vesicles called "autophagosomes." They sequester cargoes, leading them to degradation in the lysosomes. Although autophagy acts as a protective mechanism for maintaining homeostasis through cellular recycling, it is ostensibly a cause of certain cancers, but a cure for others. In other words, insufficient autophagy, due to genetic or cellular dysfunctions, can lead to tumorigenesis. However, many autophagy modulators are developed for cancer therapy. Diverse nanoparticles have been documented to induce autophagy. Also, the highly stable nanoparticles show blockage to autophagic flux. In this review, we revealed a general mechanism by which autophagy can be induced or blocked via nanoparticles as well as several studies recently performed to prove the stated fact. In addition, we have also elucidated the paradoxical roles of autophagy in cancer and how their differential role at different stages of various cancers can affect its treatment outcomes. And finally, we summarize the breakthroughs in cancer disease treatments by using metallic, polymeric, and liposomal nanoparticles as potent autophagy modulators.
Collapse
Affiliation(s)
- Shloka Negi
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Deepa Dehari
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Sanjay Singh
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India.
| |
Collapse
|
10
|
Chaudhuri A, Ramesh K, Kumar DN, Dehari D, Singh S, Kumar D, Agrawal AK. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Chaudhuri A, Kumar DN, Shaik RA, Eid BG, Abdel-Naim AB, Md S, Ahmad A, Agrawal AK. Lipid-Based Nanoparticles as a Pivotal Delivery Approach in Triple Negative Breast Cancer (TNBC) Therapy. Int J Mol Sci 2022; 23:ijms231710068. [PMID: 36077466 PMCID: PMC9456313 DOI: 10.3390/ijms231710068] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeutic efficacy of the existing chemotherapeutics. Among the various nanoparticles, lipid-based nanoparticles (LNPs) viz. liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid nanocarriers, and lipid–polymer hybrid nanoparticles are developed for cancer treatment which is well confirmed and documented. LNPs include various therapeutic advantages as compared to conventional therapy and other nanoparticles, including increased loading capacity, enhanced temporal and thermal stability, decreased therapeutic dose and associated toxicity, and limited drug resistance. In addition to these, LNPs overcome physiological barriers which provide increased accumulation of therapeutics at the target site. Extensive efforts by the scientific community could make some of the liposomal formulations the clinical reality; however, the relatively high cost, problems in scaling up the formulations, and delivery in a more targetable fashion are some of the major issues that need to be addressed. In the present review, we have compiled the state of the art about different types of LNPs with the latest advances reported for the treatment of TNBC in recent years, along with their clinical status and toxicity in detail.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aftab Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
- Correspondence:
| |
Collapse
|
12
|
Katiyar SS, Patil R, Ghadi R, Kuche K, Kushwah V, Dora CP, Jain S. Lipid- and TPGS-Based Core-Shell-Type Nanocapsules Endowed with High Paclitaxel Loading and Enhanced Anticancer Potential. AAPS PharmSciTech 2022; 23:238. [PMID: 36002600 DOI: 10.1208/s12249-022-02389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
The current study elucidates the improved drug loading of paclitaxel (PTX) in lipid- and D-α-tocopheryl polyethylene glycol succinate (TPGS)-based core-shell-type lipid nanocapsules (PTX-TPGS-LNC) for augmenting the therapeutic efficacy and curbing the toxicity. PTX-TPGS-LNCs were formulated by employing anti-solvent precipitation technique and displayed a particle size of 162.1 ± 4.70 nm and % practical drug loading of 15.04 ± 2.44%. Electron microscopy revealed that PTX-TPGS-LNCs have spherical morphology and the inner core was surrounded by a relatively lighter region, i.e., layer of lipids and TPGS. The nature of loaded PTX inside the PTX-TPGS-LNC was also confirmed using DSC and PXRD analysis. The in vitro release study showed biphasic and sustained release pattern of PTX from PTX-TPGS-LNC and it showed ~ threefold higher PTX uptake in MCF-7 cell line in comparison to free PTX. Moreover, it was apparent from the cytotoxicity assay that PTX-TPGS-LNC displayed higher cytotoxicity in MCF-7 cells and revealed ~ 2.92-fold decrease in IC50 value as against free PTX when incubated for 72 h. The apoptotic index in case of PTX-TPGS-LNC was ~ twofold higher than free PTX. The pharmacokinetic profile of PTX-TPGS-LNC revealed a ~ 3.18-fold increase in t1/2 and a ~ 2.62-fold higher AUC(0→∞) compared to Intaxel®. Finally, treatment with PTX-TPGS-LNC demonstrated significant lowering in the % tumor burden and serum toxicity markers compared to marketed formulation Intaxel®. Thus, the lipid- and TPGS-based core-shell-type LNC with high PTX loading can advance the existing standards of therapy for overshadowing cancer.
Collapse
Affiliation(s)
- Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Ravindra Patil
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Chander Parkash Dora
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
13
|
Dehari D, Mehata AK, Priya V, Parbat D, Kumar D, Srivastava AK, Singh S, Agrawal AK. Luliconazole Nail Lacquer for the Treatment of Onychomycosis: Formulation, Characterization and In Vitro and Ex Vivo Evaluation. AAPS PharmSciTech 2022; 23:175. [PMID: 35750993 DOI: 10.1208/s12249-022-02324-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Onychomycosis is the most common fungal infection of the nail affecting the skin under the fingertips and the toes. Currently, available therapy for onychomycosis includes oral and topical therapies, either alone or in combination. Oral antifungal medication has been associated with poor drug bioavailability and potential gastrointestinal and systemic side effects. The objective of this study was to prepare and evaluate the luliconazole nail lacquer (LCZ-NL) for the effective treatment of onychomycosis. In the current work, LCZ-NL was formulated in combination with penetration enhancers to overcome poor penetration. A 32 full factorial formulation design of experiment (DOE) was applied for optimization of batches with consideration of dependent (drying time, viscosity, and rate of drug diffusion) and independent (solvent ratio and film former ratio) variables. The optimized formulation was selected based on drying time, viscosity, and rate of drug diffusion. The optimized formulation was further evaluated for % non-volatile content assay, smoothness of flow, water resistance, drug content, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), in vitro drug release, ex vivo transungual permeation, antifungal efficacy, and stability study. The optimized LCZ-NL contained 70:30 solvent ratio and 1:1 film former ratio and was found to have ~ 1.79-fold higher rate of drug diffusion in comparison with LULY™. DSC and XRD studies confirmed that luliconazole retains its crystalline property in the prepared formulation. Antifungal study against Trichophyton spp. showed that LCZ-NL has comparatively higher growth inhibition than LULY™. Hence, developed LCZ-NL can be a promising topical drug delivery system for treating onychomycosis.
Collapse
Affiliation(s)
- Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dharmnath Parbat
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Deepak Kumar
- Department of Microbiology, Institute of Medical Sciences (BHU), Varanasi, 221005, India
| | - Anand Kumar Srivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.,Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
14
|
Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, Kumar D, Agrawal AK. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals (Basel) 2022; 15:542. [PMID: 35631368 PMCID: PMC9143332 DOI: 10.3390/ph15050542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered one of the un-manageable types of breast cancer, involving devoid of estrogen, progesterone, and human epidermal growth factor receptor 2 (HER 2) receptors. Due to their ability of recurrence and metastasis, the management of TNBC remains a mainstay challenge, despite the advancements in cancer therapies. Conventional chemotherapy remains the only treatment regimen against TNBC and suffers several limitations such as low bioavailability, systemic toxicity, less targetability, and multi-drug resistance. Although various targeted therapies have been introduced to manage the hardship of TNBC, they still experience certain limitations associated with the survival benefits. The current research thus aimed at developing and improving the strategies for effective therapy against TNBC. Such strategies involved the emergence of nanoparticles. Nanoparticles are designated as nanocavalries, loaded with various agents (drugs, genes, etc.) to battle the progression and metastasis of TNBC along with overcoming the limitations experienced by conventional chemotherapy and targeted therapy. This article documents the treatment regimens of TNBC along with their efficacy towards different subtypes of TNBC, and the various nanotechnologies employed to increase the therapeutic outcome of FDA-approved drug regimens.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Deepa Dehari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA;
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| |
Collapse
|
15
|
Quantitative chemical profiling of cellulose acetate excipient via 13C-NMR spectroscopy in controlled release formulations. J Pharm Biomed Anal 2022; 217:114791. [DOI: 10.1016/j.jpba.2022.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
|
16
|
Gederaas OA, Sørensen AS, Lindgren M, Melø TB, Altin D, Flatby EMS, Høgset A, Hoff BH. Synthesis and in vitro evaluation of a novel thienopyrimidine with phototoxicity towards rat glioma F98 cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
Jain S, Desai MR, Nallamothu B, Kuche K, Chaudhari D, Katiyar SS. Partial inclusion complex assisted crosslinked β-cyclodextrin nanoparticles for improving therapeutic potential of docetaxel against breast cancer. Drug Deliv Transl Res 2022; 12:562-576. [PMID: 33774776 DOI: 10.1007/s13346-021-00956-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 11/25/2022]
Abstract
The present investigation demonstrates the development of crosslinked β-cyclodextrin nanoparticles (β-CD NPs) for enhancing the therapeutic efficacy of docetaxel (DTX) against breast cancer. Initially, a partial inclusion complex between β-CD and polypropylene glycol (PPG) was formed to induce self-assembly. This was followed by crosslinking of β-CDs using epichlorohydrin (EPI) and removal (by solubilization) of PPG to yield uniform β-CD NPs. The formed particles were used for loading DTX to form DTX β-CD NPs. The resultant DTX β-CD NPs exhibited particle size of 223.36 ± 17.73 nm with polydispersity index (PDI) of 0.13 ± 0.09 and showed entrapment efficiency of 54.53 ± 2%. Increased cell uptake (~5-fold), cytotoxicity (~3.3-fold), and apoptosis were observed in MDA-MB-231 cells when treated with DTX β-CD NPs in comparison to free DTX. Moreover, pharmacokinetic evaluation of DTX β-CD NPs revealed ~2 and ~5-fold increase in AUC0-∞ and mean residence time (MRT) of DTX when compared to Docepar®. Further, the anti-tumor activity using DMBA-induced cancer model showed that DTX β-CD NPs were capable of reducing the tumor volume to ~40%, whereas Docepar® was able to reduce tumor volume till ~80%. Finally, the toxicity evaluation of DTX β-CD NPs revealed no short-term nephrotoxicity and was confirmed by estimating the levels of biomarkers and histopathology of the organs. Thus, the proposed formulation strategy can yield uniformly formed β-CD NPs which can be effectively utilized for improving the therapeutic efficacy of DTX.
Collapse
Affiliation(s)
- Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | - Mahesh R Desai
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| | - Bhargavi Nallamothu
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| |
Collapse
|
18
|
Polymeric Nanoparticles: Exploring the Current Drug Development and Therapeutic Insight of Breast Cancer Treatment and Recommendations. Polymers (Basel) 2021; 13:polym13244400. [PMID: 34960948 PMCID: PMC8703470 DOI: 10.3390/polym13244400] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 02/06/2023] Open
Abstract
This manuscript aims to provide the latest update on polymeric nanoparticle drug delivery system for breast cancer treatment after 2015 and how research-oriented it is based on the available research data. Therefore, the authors have chosen breast cancer which is the most frequent and common reason for mortality in women worldwide. The first-line treatment for breast cancer treatment is chemotherapy, apart from surgery, radiation and hormonal therapy. Chemotherapy is associated with lesser therapeutics and undesirable side effects and hence. In addition, drug resistance affects the therapeutic dose to the target site. Although various nano-based formulations have been developed for effective treatment, the polymeric nanoparticles effectively avoid the lacunae of conventional chemotherapy. There has been an effort made to understand the chemotherapy drugs and their conventional formulation-related problems for better targeting and effective drug delivery for breast cancer treatment. Thus, the polymeric nanoparticles as a strategy overcome the associated problems with resulting dose reduction, enhanced bioavailability, reduced side effects, etc. This present review has compiled the research reports published from 2015 to 2021 from different databases, such as PubMed, Google Scholar, ScienceDirect, which are related to breast cancer treatment in which the drug delivery of numerous chemotherapeutic agents alone or in combination, including phytoconstituents formulated into various polymer-based nanoparticles.
Collapse
|
19
|
Milewska S, Niemirowicz-Laskowska K, Siemiaszko G, Nowicki P, Wilczewska AZ, Car H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int J Nanomedicine 2021; 16:6593-6644. [PMID: 34611400 PMCID: PMC8487283 DOI: 10.2147/ijn.s323831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotherapy is a part of nanomedicine that involves nanoparticles as carriers to deliver drugs to target locations. This novel targeting approach has been found to resolve various problems, especially those associated with cancer treatment. In nanotherapy, the carrier plays a crucial role in handling many of the existing challenges, including drug protection before early-stage degradations of active substances, allowing them to reach targeted cells and overcome cell resistance mechanisms. The present review comprises the following sections: the first part presents the introduction of pharmacoeconomics as a branch of healthcare economics, the second part covers various beneficial aspects of the use of nanocarriers for in vitro, in vivo, and pre- and clinical studies, as well as discussion on drug resistance problem and present solutions to overcome it. In the third part, progress in drug manufacturing and optimization of the process of nanoparticle synthesis were discussed. Finally, pharmacokinetic and toxicological properties of nanoformulations due to up-to-date studies were summarized. In this review, the most recent developments in the field of nanotechnology's economic impact, particularly beneficial applications in medicine were presented. Primarily focus on cancer treatment, but also discussion on other fields of application, which are strongly associated with cancer epidemiology and treatment, was made. In addition, the current limitations of nanomedicine and its huge potential to improve and develop the health care system were presented.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | | | - Piotr Nowicki
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| |
Collapse
|
20
|
Lugoloobi I, Maniriho H, Jia L, Namulinda T, Shi X, Zhao Y. Cellulose nanocrystals in cancer diagnostics and treatment. J Control Release 2021; 336:207-232. [PMID: 34102221 DOI: 10.1016/j.jconrel.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Cancer is currently a major threat to public health, being among the principal causes of death to the global population. With carcinogenesis mechanisms, cancer invasion, and metastasis remaining blurred, cancer diagnosis and novel drug delivery approaches should be developed urgently to enable management and treatment. A dream break-through would be a non-invasive instantaneous monitoring of cancer initiation and progression to fast-track diagnosis for timely specialist treatment decisions. These innovations would enhance the established treatment protocols, unlimited by evasive biological complexities during tumorigenesis. It is therefore contingent that emerging and future scientific technologies be equally biased towards such innovations by exploiting the apparent properties of new developments and materials especially nanomaterials. CNCs as nanomaterials have undisputable physical and excellent biological properties that enhanced their interest as biomedical materials. This article therefore highlights CNCs utility in cancer diagnosis and therapy. Their extraction, properties, modification, in-vivo/in-vitro medical applications, biocompatibility, challenges and future perspectives are precisely discussed.
Collapse
Affiliation(s)
- Ishaq Lugoloobi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | - Hillary Maniriho
- Department of Biochemistry and Human Molecular Genetics, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liang Jia
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Tabbisa Namulinda
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yili Zhao
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
21
|
Karunanidhi P, Verma N, Kumar DN, Agrawal AK, Singh S. Triphenylphosphonium functionalized Ficus religiosa L. extract loaded nanoparticles improve the mitochondrial function in oxidative stress induced diabetes. AAPS PharmSciTech 2021; 22:158. [PMID: 34009603 DOI: 10.1208/s12249-021-02016-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The present study was aimed to enhance the mitochondrial function in oxidative stress-induced diabetes. To achieve this, Ficus religiosa L. extract loaded solid lipid nanoparticles (ETNPs) were prepared and functionalized by using triphenylphosphonium. Developed nanoparticles demonstrated desired quality attributes with sustained release for up to 24 h and excellent storage stability for up to 180 days at 40 ± 2°C and 75 ± 5% relative humidity. In vitro cytotoxicity assessment showed no toxicity of ETNPs. Interestingly, oral administration of ETNPs to diabetic rats demonstrated improved mitochondrial function by normalizing the mitochondrial morphology, intracellular calcium ion concentration, complexes I, II, IV, and V activity, mitochondrial membrane potential, and antioxidant levels. Further, reduction in apoptotic markers viz. cytochrome-C, caspase-3, and caspase-9 was observed following the ETNP treatment. Moreover, significant reduction in blood glucose and glycosylated hemoglobin while significant improvement in plasma insulin was observed as compared to the diabetic group following the treatment with developed formulation. Furthermore, histopathology studies confirmed the safety of the developed formulation and thus, data in hand collectively suggest that proposed strategy can be effectively used to improve the mitochondrial function in oxidative stress-induced diabetes along with better control over blood glucose and glycosylated hemoglobin.
Collapse
|
22
|
Emerging nanotaxanes for cancer therapy. Biomaterials 2021; 272:120790. [PMID: 33836293 DOI: 10.1016/j.biomaterials.2021.120790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
The clinical application of taxane (including paclitaxel, docetaxel, and cabazitaxel)-based formulations is significantly impeded by their off-target distribution, unsatisfactory release, and acquired resistance/metastasis. Recent decades have witnessed a dramatic progress in the development of high-efficiency, low-toxicity nanotaxanes via the use of novel biomaterials and nanoparticulate drug delivery systems (nano-DDSs). Thus, in this review, the achievements of nanotaxanes-targeted delivery and stimuli-responsive nano-DDSs-in preclinical or clinical trials have been outlined. Then, emerging nanotherapeutics against tumor resistance and metastasis have been overviewed, with a particular emphasis on synergistic therapy strategies (e.g., combination with surgery, chemotherapy, radiotherapy, biotherapy, immunotherapy, gas therapy, phototherapy, and multitherapy). Finally, the latest oral nanotaxanes have been briefly discussed.
Collapse
|
23
|
Khalili L, Dehghan G, Hosseinpour Feizi MA, Sheibani N, Hamishekar H. Development of an albumin decorated lipid-polymer hybrid nanoparticle for simultaneous delivery of methotrexate and conferone to cancer cells. Int J Pharm 2021; 599:120421. [PMID: 33676992 DOI: 10.1016/j.ijpharm.2021.120421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 01/02/2023]
Abstract
Aiming to simultaneous target of methotrexate (MTX), as folate antagonist, and conferone (CON) in various cancer cells, the newly lipid/polymer hybrid nanoparticle containing an albumin targeted succinylchitosan shell and lipoid bilayer core composed of hydrogenated soy phosphatidylcholine and cholesterol was synthesized. The covalently conjugating albumin to the external surface of chitosan was accomplished using N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride and N- hydroxyl succinimide as an activating carboxylic group, and nanoliposomes were fabricated via thin film hydration-sonication method. The molecular structure of MTX@CON-targeted lipid/polymer hybrid nanoparticle (MTX@CON-TLPN) were characterized using FTIR spectroscopy, 1H NMR, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The newly nanoparticle with high encapsulation efficiency (85.12%, and 78.4%), acceptable loading capacity (9.8% and 4.6% for MTX and CON) and the stimuli responsiveness drug release behavior in simulated physiologic tumor tissue condition (pH 5.4, 40 °C) was successfully synthetized in the spherical shape with mean average size of approximately 290 nm and ζ-potential of +21 mv. The enhanced efficiency of the targeted nanoparticle was further confirmed using MTT endpoints, cell cycle modulation, apoptosis assessment, and cellular internalization assessments. Collectively, these findings establish the utility of our newly prepared nanoparticle for simultaneous delivery of multiple anti-cancer drugs.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Hamed Hamishekar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
24
|
Gonzalez-Valdivieso J, Girotti A, Schneider J, Arias FJ. Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. Int J Pharm 2021; 599:120438. [PMID: 33662472 DOI: 10.1016/j.ijpharm.2021.120438] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
Cancer has reached pandemic dimensions in the whole world. Although current medicine offers multiple treatment options against cancer, novel therapeutic strategies are needed due to the low specificity of chemotherapeutic drugs, undesired side effects and the presence of different incurable types of cancer. Among these new strategies, nanomedicine arises as an encouraging approach towards personalized medicine with high potential for present and future cancer patients. Therefore, nanomedicine aims to develop novel tools with wide potential in cancer treatment, imaging or even theranostic purposes. Even though numerous preclinical studies have been published with successful preliminary results, promising nanosystems have to face multiple obstacles before adoption in clinical practice as safe options for patients with cancer. In this MiniReview, we provide a short overview on the latest advances in current nanomedicine approaches, challenges and promising strategies towards more accurate cancer treatment.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain.
| | - Alessandra Girotti
- BIOFORGE Research Group (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain
| | - Jose Schneider
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; Department of Obstetrics & Gynecology, University of Valladolid, School of Medicine, 47005 Valladolid, Spain
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain
| |
Collapse
|
25
|
Katiyar SS, Ghadi R, Kushwah V, Dora CP, Jain S. Lipid and Biosurfactant Based Core–Shell-Type Nanocapsules Having High Drug Loading of Paclitaxel for Improved Breast Cancer Therapy. ACS Biomater Sci Eng 2020; 6:6760-6769. [DOI: 10.1021/acsbiomaterials.0c01290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sameer S. Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India
| | - Chander Parkash Dora
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
26
|
Soliman MS, Moin A, Hussain T, Gowda D, Dixit SR, Abu Lila AS. Development and optimization of dual drug-loaded nanoparticles for the potent anticancer effect on renal carcinoma. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Wang R, Yang Y, Yang M, Yuan D, Huang J, Chen R, Wang H, Hu L, Di L, Li J. Synergistic inhibition of metastatic breast cancer by dual-chemotherapy with excipient-free rhein/DOX nanodispersions. J Nanobiotechnology 2020; 18:116. [PMID: 32847586 PMCID: PMC7449082 DOI: 10.1186/s12951-020-00679-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The management of metastatic cancer remains a major challenge in cancer therapy worldwide. The targeted delivery of chemotherapeutic drugs through rationally designed formulations is one potential therapeutic option. Notably, excipient-free nanodispersions that are entirely composed of pharmaceutically active molecules have been evaluated as promising candidates for the next generation of drug formulations. Formulated from the self-assembly of drug molecules, these nanodispersions enable the safe and effective delivery of therapeutic drugs to local disease lesions. Here, we developed a novel and green approach for preparing nanoparticles via the self-assembly of rhein (RHE) and doxorubicin (DOX) molecules, named RHE/DOX nanoparticles (RD NPs); this assembly was associated with the interaction force and did not involve any organic solvents. RESULTS According to molecular dynamics (MD) simulations, DOX molecules tend to assemble around RHE molecules through intermolecular forces. This intermolecular retention of DOX was further improved by the nanosizing effect of RD NPs. Compared to free DOX, RD NPs exerted a slightly stronger inhibitory effect on 4T1 cells in the scratch healing assay. As a dual drug-loaded nanoformulation, the efficacy of RD NPs against tumor cells in vitro was synergistically enhanced. Compared to free DOX, the combination of DOX and RHE in nanoparticles exerted a synergistic effect with a combination index (CI) value of 0.51 and showed a stronger ability to induce cell apoptosis. Furthermore, the RD NP treatment not only effectively suppressed primary tumor growth but also significantly inhibited tumor metastasis both in vitro and in vivo, with a better safety profile. CONCLUSIONS The generation of pure nanodrugs via a self-assembly approach might hold promise for the development of more efficient and novel excipient-free nanodispersions, particularly for two small molecular antitumor drugs that potentially exert synergistic antiproliferative effects on metastatic breast cancer.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Yujie Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Mengmeng Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Dandan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Jinyu Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Rui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Honglan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China.
| |
Collapse
|
28
|
Moghaddam SV, Abedi F, Alizadeh E, Baradaran B, Annabi N, Akbarzadeh A, Davaran S. Lysine-embedded cellulose-based nanosystem for efficient dual-delivery of chemotherapeutics in combination cancer therapy. Carbohydr Polym 2020; 250:116861. [PMID: 33049815 DOI: 10.1016/j.carbpol.2020.116861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
Combination therapy by two or multiple drugs with different mechanisms of action is a promising strategy in cancer treatment. In this regard, a wide range of chemotherapeutics has used simultaneously to achieve the synergistic effect and overcome the adverse side effects of single-drug therapy. Herein, we developed a biocompatible nanoparticle-based system composed of nanocrystalline cellulose (NCC) and amino acid l-lysine for efficient co-delivery of model chemotherapeutic methotrexate (MTX) and polyphenol compound curcumin (CUR) to the MCF-7 and MDA-MB-231 cells. The drugs could release in a sustained and acidic-facilitate manner. In vitro cytotoxicity results represented the superior anti-tumor efficacy of the dual-drug-loaded nanocarriers. Possible inhibition of cell growth and induction of apoptosis in the cells treated with different formulations of CUR and MTX were explored by cell cycle analysis and DAPI staining. Overall, the engineered nanosystem can be used as suitable candidates to achieve efficient multi-drug delivery for combination cancer therapy.
Collapse
Affiliation(s)
| | - Fatemeh Abedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA.
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
29
|
Bathara M, Date T, Chaudhari D, Ghadi R, Kuche K, Jain S. Exploring the Promising Potential of High Permeation Vesicle-Mediated Localized Transdermal Delivery of Docetaxel in Breast Cancer To Overcome the Limitations of Systemic Chemotherapy. Mol Pharm 2020; 17:2473-2486. [PMID: 32496783 DOI: 10.1021/acs.molpharmaceut.0c00211] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The currently available systemic chemotherapy for treating breast cancer often results in serious systemic side effects and compromises patient compliance. The distinct anatomical features of human breasts (e.g., embryological origin of breast skin, highly developed internal lymphatic and venous circulation, and the presence of mammary fat layers) help in preferential accumulation of drugs into breasts after topical application on breast region. This unique feature is termed as localized transdermal delivery which could be utilized for effectively delivering anticancer agents to treat breast cancer and reducing the systemic side effects by limiting their presence in blood. However, the clinical effectiveness of this drug delivery approach is highly limited by barrier properties of skin reducing the permeation of anticancer drugs. In the present work, we have developed high permeation vesicles (HPVs) using phospholipids and synergistic combination of permeation enhancers (SCOPE) to improve the skin permeation of drugs. Docetaxel (DTX) was used as a model drug for hypothesis testing. The optimized SCOPE mixture composed of sodium oleate/sodium lauryl ether sulfate/propylene glycol in 64:16:20% w/w ratio. DTX HPVs were prepared using phospholipid: SCOPE, 8:2% w/w ratio. DTX HPVs exhibited as a uniform deformable vesicles with size range 124.2 ± 7.6 nm, significantly improved skin permeation profile, and sustained drug release until 48 h. Superior vesicle deformability, better vesicle membrane fluidization, and SCOPE mediated enhancement in skin fluidization were the prime factors behind enhancement of DTX permeation. The improved cellular uptake, reduced IC50 values, and higher apoptotic index of DTX HPVs in MCF-7 and MDA-MB-231 cells ensured the therapeutic effectiveness of HPV based therapy. Also, HPVs were found to be predominantly internalized inside cells through clathrin and caveolae-dependent endocytic pathways. Bioimaging analysis in mice confirmed the tumor penetration potential and effective accumulation of HPVs inside tumors after topical application. In vivo studies were carried out in comparison with marketed intravenous DTX injection (Taxotere) to compare the effectiveness of topical chemotherapy. The topical application of DTX HPV gel in tumor bearing mice resulted in nearly 4-fold tumor volume reduction which was equivalent to intravenous Taxotere therapy. Toxicity analysis of DTX HPV gel in comparison with intravenous Taxotere dosing showcased remarkably lower levels of toxicity biomarkers (aspartate transaminase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), and creatinine), indicating improved safety of topical chemotherapy. Overall results warranted the effectiveness of topical DTX chemotherapy to reduce tumor burden with substantially reduced risk of systemic toxicities in breast cancer.
Collapse
Affiliation(s)
- Minal Bathara
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, Punjab 160062, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, Punjab 160062, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, Punjab 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, Punjab 160062, India
| |
Collapse
|
30
|
Exploring the potential of novel pH sensitive lipoplexes for tumor targeted gene delivery with reduced toxicity. Int J Pharm 2020; 573:118889. [DOI: 10.1016/j.ijpharm.2019.118889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022]
|
31
|
Yan K, Zhang S, Zhang K, Miao Y, Qiu Y, Zhang P, Jia X, Zhao X. Enzyme-responsive polymeric micelles with fluorescence fabricated through aggregation-induced copolymer self-assembly for anticancer drug delivery. Polym Chem 2020. [DOI: 10.1039/d0py01328e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The TPE moiety with AIE is employed as functional hydrophobic chain to induce copolymer self-assembly and form polymeric micelle that can show enzyme-responsive drug delivery.
Collapse
Affiliation(s)
- Ke Yan
- Green Catalysis Center
- and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shujing Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Kun Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yalei Miao
- Green Catalysis Center
- and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yudian Qiu
- Green Catalysis Center
- and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Panke Zhang
- Green Catalysis Center
- and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xu Jia
- School of Materials and Chemical Engineering
- Zhongyuan University of Technology
- Zhengzhou 450007
- China
| | - Xubo Zhao
- Green Catalysis Center
- and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
32
|
Samanta K, Setua S, Kumari S, Jaggi M, Yallapu MM, Chauhan SC. Gemcitabine Combination Nano Therapies for Pancreatic Cancer. Pharmaceutics 2019; 11:E574. [PMID: 31689930 PMCID: PMC6920852 DOI: 10.3390/pharmaceutics11110574] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is one of the deadliest causes of cancer-related death in the United States, with a 5-year overall survival rate of 6 to 8%. These statistics suggest that immediate medical attention is needed. Gemcitabine (GEM) is the gold standard first-line single chemotherapy agent for pancreatic cancer but, after a few months, cells develop chemoresistance. Multiple clinical and experimental investigations have demonstrated that a combination or co-administration of other drugs as chemotherapies with GEM lead to superior therapeutic benefits. However, such combination therapies often induce severe systemic toxicities. Thus, developing strategies to deliver a combination of chemotherapeutic agents more securely to patients is needed. Nanoparticle-mediated delivery can offer to load a cocktail of drugs, increase stability and availability, on-demand and tumor-specific delivery while minimizing chemotherapy-associated adverse effects. This review discusses the available drugs being co-administered with GEM and the limitations associated during the process of co-administration. This review also helps in providing knowledge of the significant number of delivery platforms being used to overcome problems related to gemcitabine-based co-delivery of other chemotherapeutic drugs, thereby focusing on how nanocarriers have been fabricated, considering the modes of action, targeting receptors, pharmacology of chemo drugs incorporated with GEM, and the differences in the physiological environment where the targeting is to be done. This review also documents the focus on novel mucin-targeted nanotechnology which is under development for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Kamalika Samanta
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Saini Setua
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sonam Kumari
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meena Jaggi
- Department of Immunology and Microbiology, Institute for Cancer Immunotherapy, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, Institute for Cancer Immunotherapy, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA.
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, Institute for Cancer Immunotherapy, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA.
| |
Collapse
|
33
|
Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther Deliv 2019; 10:527-550. [DOI: 10.4155/tde-2019-0044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent decades, many novel methods by using nanoparticles (NPs) have been investigated for diagnosis, drug delivery and treatment of cancer. Accordingly, the potential of NPs as carriers is very significant for the delivery of anticancer drugs, because cancer treatment with NPs has led to the improvement of some of the drug delivery limitations such as low blood circulation time and bioavailability, lack of water solubility, drug adverse effect. In addition, the NPs protect drugs against enzymatic degradation and can lead to the targeted and/or controlled release of the drug. The present review focuses on the potential of NPs that can help the targeted and/or controlled delivery of anticancer agents for cancer therapy.
Collapse
|
34
|
Patel KK, Surekha DB, Tripathi M, Anjum MM, Muthu MS, Tilak R, Agrawal AK, Singh S. Antibiofilm Potential of Silver Sulfadiazine-Loaded Nanoparticle Formulations: A Study on the Effect of DNase-I on Microbial Biofilm and Wound Healing Activity. Mol Pharm 2019; 16:3916-3925. [PMID: 31318574 DOI: 10.1021/acs.molpharmaceut.9b00527] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilm resistance is one of the severe complications associated with chronic wound infections, which impose extreme microbial tolerance against antibiotic therapy. Interestingly, deoxyribonuclease-I (DNase-I) has been empirically proved to be efficacious in improving the antibiotic susceptibility against biofilm-associated infections. DNase-I hydrolyzes the extracellular DNA, a key component of the biofilm responsible for the cell adhesion and strength. Moreover, silver sulfadiazine, a frontline therapy in burn wound infections, exhibits delayed wound healing due to fibroblast toxicity. In this study, a chitosan gel loaded with solid lipid nanoparticles of silver sulfadiazine (SSD-SLNs) and supplemented with DNase-I has been developed to reduce the fibroblast cytotoxicity and overcome the biofilm-imposed resistance. The extensive optimization using the Box-Behnken design (BBD) resulted in the formation of SSD-SLNs with a smooth surface as confirmed by scanning electron microscopy and controlled release (83%) for up to 24 h. The compatibility between the SSD and other formulation excipients was confirmed by Fourier transform infrared, differential scanning calorimetry, and powder X-ray diffraction studies. Developed SSD-SLNs in combination with DNase-I inhibited around 96.8% of biofilm of Pseudomonas aeruginosa as compared to SSD with DNase-I (82.9%). In line with our hypothesis, SSD-SLNs were found to be less toxic (cell viability 90.3 ± 3.8% at 100 μg/mL) in comparison with SSD (Cell viability 76.9 ± 4.2%) against human dermal fibroblast cell line. Eventually, the results of the in vivo wound healing study showed complete wound healing after 21 days' treatment with SSD-SLNs along with DNase-I, whereas marketed formulations SSD and SSD-LSNs showed incomplete healing after 21 days. Data in hand suggest that the combination of SSD-SLNs with DNase-I is an effective treatment strategy against the biofilm-associated wound infections and accelerates wound healing.
Collapse
Affiliation(s)
- Krishna Kumar Patel
- Department of Pharmaceutical Engineering and Technology , Indian Institute of Technology (IIT-BHU) , Varanasi 221005 , India
| | - D Bhavya Surekha
- Department of Pharmaceutical Engineering and Technology , Indian Institute of Technology (IIT-BHU) , Varanasi 221005 , India
| | - Muktanand Tripathi
- Department of Microbiology , Institute of Medical Sciences, Banaras Hindu University , Varanasi 221005 , India
| | - Md Meraj Anjum
- Department of Pharmaceutical Engineering and Technology , Indian Institute of Technology (IIT-BHU) , Varanasi 221005 , India
| | - M S Muthu
- Department of Pharmaceutical Engineering and Technology , Indian Institute of Technology (IIT-BHU) , Varanasi 221005 , India
| | - Ragini Tilak
- Department of Microbiology , Institute of Medical Sciences, Banaras Hindu University , Varanasi 221005 , India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology , Indian Institute of Technology (IIT-BHU) , Varanasi 221005 , India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology , Indian Institute of Technology (IIT-BHU) , Varanasi 221005 , India
| |
Collapse
|
35
|
Tran TTD, Tran PHL. Nanoconjugation and Encapsulation Strategies for Improving Drug Delivery and Therapeutic Efficacy of Poorly Water-Soluble Drugs. Pharmaceutics 2019; 11:E325. [PMID: 31295947 PMCID: PMC6680391 DOI: 10.3390/pharmaceutics11070325] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 01/14/2023] Open
Abstract
Nanoconjugations have been demonstrated to be a dominant strategy for drug delivery and biomedical applications. In this review, we intend to describe several strategies for drug formulation, especially to improve the bioavailability of poorly water-soluble molecules for future application in the therapy of numerous diseases. The context of current studies will give readers an overview of the conjugation strategies for fabricating nanoparticles, which have expanded from conjugated materials to the surface conjugation of nanovehicles. Moreover, nanoconjugates for theranostics are also discussed and highlighted. Overall, these state-of-the-art conjugation methods and these techniques and applications for nanoparticulate systems of poorly water-soluble drugs will inspire scientists to explore and discover more productive techniques and methodologies for drug development.
Collapse
Affiliation(s)
- Thao T. D. Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam;
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
36
|
Jain S, Dongave SM, Date T, Kushwah V, Mahajan RR, Pujara N, Kumeria T, Popat A. Succinylated β-Lactoglobuline-Functionalized Multiwalled Carbon Nanotubes with Improved Colloidal Stability and Biocompatibility. ACS Biomater Sci Eng 2019; 5:3361-3372. [DOI: 10.1021/acsbiomaterials.9b00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Shesherao M. Dongave
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Rahul R. Mahajan
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Naisarg Pujara
- School of Pharmacy, The University of Queensland Brisbane, Queensland 4102, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland Brisbane, Queensland 4102, Australia
- Translational Research Institute, Mater Research Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland Brisbane, Queensland 4102, Australia
- Translational Research Institute, Mater Research Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
37
|
Li S, Li X, Ding J, Han L, Guo X. Anti-tumor efficacy of folate modified PLGA-based nanoparticles for the co-delivery of drugs in ovarian cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1271-1280. [PMID: 31114163 PMCID: PMC6497857 DOI: 10.2147/dddt.s195493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/14/2019] [Indexed: 01/09/2023]
Abstract
Background: Ovarian cancer is a leading cause of death in gynecologic malignancies. The high mortality is mainly caused by advanced stage at presentation in most patients. Even after the combination of cytoreductive surgery and systemic platinum and taxane treatment, most patients relapse and eventually succumb to the disease. Therefore, there is an urgent need for new treatments. Purpose: A novel folate (FA)-targeted co-delivery of docetaxel (DTX) and gemcitabine (GEM) nanoparticles (NPs) was developed to overcome ovarian cancer. Materials and methods: Physicochemical characteristics of NPs such as size, morphology, and release profiles were explored. In vitro and in vivo studies were carried out to assess the efficacy of their antitumor activity in target cells. Results: FA modified DTX and GEM co-loaded NPs were prepared using the solvent evaporation method. The NPs with a particle size of ~120nm were stable in the observation period. The hemolysis results indicated that FA-PEG2000-PLGA was potentially feasible for targeted antitumor drug delivery through blood circulation. In vitro release study suggested that in comparison with the free drug, PLGA-DTX/GEM NPs and FA-PEG2000-PLGA-DTX/GEM NPs had sustained-release properties. However, there was no obvious difference between the two NPs with the same drug in the release profile. Ovarian cancer cells in vitro efficiently took up the non-targeted and FA-targeted NPs; improved cytotoxicity was observed in the FA-targeted NPs, showing a 3.59- fold drop in the IC50 in SKOV-3 cells as compared to DTX/GEM alone. Cellular uptake showed that through surface modification, more drugs entered the cell successfully. Pharmacodynamics results showed a statistically significant effect on the rate of reduction of tumor volume for FA-PEG2000-PLGA-DTX/GEM NPs than other groups and no toxicity of organs. Conclusion: The present study indicates that the FA-PEG2000-PLGA-DTX/GEM NPs provides a promising platform for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Shu Li
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaofeng Li
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jianyi Ding
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lingfei Han
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoqing Guo
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
38
|
Novel biosurfactant and lipid core-shell type nanocapsular sustained release system for intravenous application of methotrexate. Int J Pharm 2019; 557:86-96. [DOI: 10.1016/j.ijpharm.2018.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023]
|
39
|
Date T, Paul K, Singh N, Jain S. Drug-Lipid Conjugates for Enhanced Oral Drug Delivery. AAPS PharmSciTech 2019; 20:41. [PMID: 30610658 DOI: 10.1208/s12249-018-1272-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
Oral drug delivery route is one of the most convenient and extensively utilised routes for drug administration. But there exists class of drugs which exhibit poor bioavailability on oral drug administration. Designing of drug-lipid conjugates (DLCs) is one of the rationale strategy utilised in overcoming this challenge. This review extensively covers the various dimensions of drug modification using lipids to attain improved oral drug delivery. DLCs help in improving oral delivery by providing benefits like improved permeability, stability in gastric environment, higher drug loading in carriers, formation of self-assembled nanostructures, etc. The clinical effectiveness of DLCs is highlighted from available marketed drug products along with many DLCs in phase of clinical trials. Conclusively, this drug modification strategy can potentially help in augmenting oral drug delivery in future.
Collapse
|
40
|
Katiyar SS, Kushwah V, Dora CP, Jain S. Lipid and TPGS based novel core-shell type nanocapsular sustained release system of methotrexate for intravenous application. Colloids Surf B Biointerfaces 2018; 174:501-510. [PMID: 30497012 DOI: 10.1016/j.colsurfb.2018.11.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/11/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Core shell nanocapsules present an interesting system for attaining high loading of drug. In an attempt, lipid and TPGS based novel core-shell nanocapsule were prepared to achieve high drug loading with sustained release of model hydrophilic drug methotrexate (MTX). Antisolvent nanoprecipitation was utilized for the formulation of nanoparticles. Optimized formulation depicted 223.6 ± 24.1 nm particle size, 0.243 ± 0.034 PDI, zeta potential -2.07 ± 0.51 mV and 15.03 ± 1.92%drug loading. In vitro release showed biphasic release for 12 h with initial burst phase followed by sustained release phase. Haemolytic study on RBCs revealed haemocompatible nature of MTX-TPGS nanoparticles compared to Biotrexate® (Zydus). In vitro cell culture studies depicted 3 folds and 2.66 folds increase in cellular uptake of MTX at 10 μg/ml and 15 μg/ml respectively for developed nanoparticles with 3.81 folds decrease in IC50 value as compared to Biotrexate®. Higher apoptosis and increased lysosomal membrane permeability were also depicted by MTX-TPGS nanoparticles. 2.45 folds increase in AUC and 3.68 folds increase in T1/2 was achieved in pharmacokinetic study. Significant reduction in tumor burden and serum biochemical parameters depicted efficacy and safety respectively of the formulation as compared to Biotrexate®. RBCs morphology was retained after MTX-TPGS exposure proving its haemocompatibility in vivo.
Collapse
Affiliation(s)
- Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, 160 062, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, 160 062, India
| | - Chander Parkash Dora
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, 160 062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, 160 062, India.
| |
Collapse
|
41
|
Shah P, Abadi LF, Gaikwad S, Chaudhari D, Kushwah V, Jain S, Bhutani KK, Kulkarni S, Singh IP. Synthesis and Biological Evaluation of 8-Hydroxyquinoline-hydrazones for Anti-HIV-1 and Anticancer Potential. ChemistrySelect 2018. [DOI: 10.1002/slct.201802283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Purvi Shah
- Department of Natural Products; National Institute of Pharmaceutical Education and Research (NIPER) Sector-67, S.A.S. Nagar; Punjab- 160062 India
| | - Leila F. Abadi
- Department of Virology; National AIDS Research Institute (NARI) 73 G block, MIDC, Bhosari, Pune; Maharashtra- 411026 India
| | - Shraddha Gaikwad
- Department of Virology; National AIDS Research Institute (NARI) 73 G block, MIDC, Bhosari, Pune; Maharashtra- 411026 India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology; Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar; Punjab- 160062 India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology; Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar; Punjab- 160062 India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology; Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar; Punjab- 160062 India
| | - Kamlesh K. Bhutani
- Department of Natural Products; National Institute of Pharmaceutical Education and Research (NIPER) Sector-67, S.A.S. Nagar; Punjab- 160062 India
| | - Smita Kulkarni
- Department of Virology; National AIDS Research Institute (NARI) 73 G block, MIDC, Bhosari, Pune; Maharashtra- 411026 India
| | - Inder P. Singh
- Department of Natural Products; National Institute of Pharmaceutical Education and Research (NIPER) Sector-67, S.A.S. Nagar; Punjab- 160062 India
| |
Collapse
|
42
|
Kushwah V, Katiyar SS, Agrawal AK, Saraf I, Singh IP, Lamprou DA, Gupta RC, Jain S. Implication of linker length on cell cytotoxicity, pharmacokinetic and toxicity profile of gemcitabine-docetaxel combinatorial dual drug conjugate. Int J Pharm 2018; 548:357-374. [PMID: 29981409 DOI: 10.1016/j.ijpharm.2018.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/23/2023]
Abstract
The present study investigates effect of linkers [zero length (without linker), short length linker (glycine and lysine) and long length linker (PEG1000, PEG2000 and PEG3500)] on pharmacokinetics and toxicity of docetaxel (DTX) and gemcitabine (GEM) bio-conjugates. Conjugates were synthesized via carbodiimide chemistry and characterized by 1H NMR and FTIR. Conjugation of DTX and GEM via linkers showed diverse physiochemical and plasma stability profile. Cellular uptake mechanism in MCF-7 and MDA-MB-231 cell lines revealed clathrin mediated internalization of bio-conjugates developed by using long length linkers, leading to higher cytotoxicity compared with free drug congeners. DTX-PEG3500-GEM and DTX-PEG2000-GEM demonstrated 4.21 and 3.81-fold higher AUC(0-∞) of GEM in comparison with GEM alone. DTX-PEG2000-GEM and DTX-PEG3500-GEM exhibited reduced hepato-, nephro- and haemolytic toxicity as evident via histopathology, biochemical markers and SEM analysis of RBCs. Conclusively, PEG2000 and PEG3500 significantly improved pharmacokinetics without any sign of toxicity and hence can be explored further for the development of dual-drug conjugates for better therapeutic efficacy.
Collapse
Affiliation(s)
- Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India; James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Ashish Kumar Agrawal
- James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA; Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT BHU), Varanasi, Uttar Pradesh, India
| | - Isha Saraf
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Dimitrios A Lamprou
- Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom; School of Pharmacy, Queen's University Belfast, Lisburn Road, Belfast, United Kingdom
| | - Ramesh C Gupta
- James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India.
| |
Collapse
|