1
|
Lin XC, Liu J, Hu M, Song L, Li M, Kou Q, Huang R, Sun L, Wen C. An Au@CuS@CuO 2 nanoplatform with peroxidase mimetic activity and self-supply H 2O 2 properties for SERS detection of GSH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126376. [PMID: 40378484 DOI: 10.1016/j.saa.2025.126376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
The abnormal fluctuations of glutathione (GSH) in vivo often reflect disease progression and are closely linked to human metabolism and physiological functions. Highly sensitive and selective detection of GSH is crucial for guiding early diagnosis and treatment; however, achieving this remains a significant challenge. In this study, we developed an enzyme activity sensor platform for the efficient detection of GSH. This platform utilizes Au@CuS core-shell materials loaded with CuO2 nanoparticles to create a composite nanosensor system. Under slightly acidic conditions, CuO2 on the nanomaterial's surface decomposes into H2O2 and Cu2+ ions. The generated H2O2 then reacts with tetramethylbenzidine (TMB) in the presence of peroxidase-like CuS to yield oxidized tetramethylbiphenyl (OXTMB), which generates a distinctive Raman signal. Upon addition of GSH to the system, the unique OXTMB signal diminishes due to GSH's strong antioxidant capacity and the consequent consumption of OXTMB. This sensing method enables sensitive detection of GSH, with a detection limit as low as 1.2 × 10-13 mol∙L-1. This approach holds promise for providing researchers with rapid and precise in vitro analysis of GSH, serving as an indicator for early disease diagnosis and real-time evaluation of treatment efficacy.
Collapse
Affiliation(s)
- Xiang-Cheng Lin
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Jian Liu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Miaomiao Hu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lingjun Song
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Minzhe Li
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Qinjie Kou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Rong Huang
- Department of Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lixian Sun
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
2
|
Wu Y, Wang Y, Mo T, Liu Q. Surface-enhanced Raman scattering-based strategies for tumor markers detection: A review. Talanta 2024; 280:126717. [PMID: 39167940 DOI: 10.1016/j.talanta.2024.126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The presence of malignant tumors poses a significant threat to people's life and well-being. As biochemical parameters indicate the occurrence and development of tumors, tumor markers play a pivotal role in early cancer detection, treatment, prognosis, efficient monitoring, and other aspects. Surface-enhanced Raman scattering (SERS) is considered a potent tool for the detection of tumor markers owing to its exceptional advantages encompassing high sensitivity, superior selectivity, rapid analysis speed, and photobleaching resistance nature. This review aims to provide a comprehensive understanding of SERS applications in the detection of tumor markers. Firstly, we introduce the SERS enhancement mechanism, classification of active substrates, and SERS detection techniques. Secondly, the latest research progress of in vitro SERS detection of different types of tumor markers in body fluids and the application of SERS imaging in biomedical imaging are highlighted in sections of the review. Finally, according to the current status of SERS detection of tumor markers, the challenges and problems of SERS in biomedical detection are discussed, and insights into future developments in SERS are offered.
Collapse
Affiliation(s)
- Yafang Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yinglin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Tao H, Weng S, Xu L, Ye J, Fan M, Wang Y, Lin Y, Lin D, Wang Q, Feng S. Target-triggered assembly of plasmon resonance nanostructures for quantitative detection of lncRNA in liver cancer cells via surface enhanced Raman spectroscopy. Biosens Bioelectron 2024; 261:116488. [PMID: 38905860 DOI: 10.1016/j.bios.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
Long-stranded non-coding RNAs (lncRNA) have important roles in disease as transcriptional regulators, mRNA processing regulators and protein synthesis factors. However, traditional methods for detecting lncRNA are time-consuming and labor-intensive, and the functions of lncRNA are still being explored. Here, we present a surface enhanced Raman spectroscopy (SERS) based biosensor for the detection of lncRNA associated with liver cancer (LC) as well as in situ cellular imaging. Using the dual SERS probes, quantitative detection of lncRNA (DAPK1-215) can be achieved with an ultra-low detection limit of 952 aM by the target-triggered assembly of core-satellite nanostructures. And the reliability of this assay can be further improved with the R2 value of 0.9923 by an internal standard probe that enables the signal dynamic calibration. Meanwhile, the high expression of DAPK1-215 mainly distributed in the cytoplasm was observed in LC cells compared with the normal ones using the SERS imaging method. Moreover, results of cellular function assays showed that DAPK1-215 promoted the migration and invasion of LC by significantly reducing the expression of the structural domain of death associated protein kinase. The development of this biosensor based on SERS can provide a sensitive and specific method for exploring the expression of lncRNA that would be a potential biomarker for the screening of LC.
Collapse
Affiliation(s)
- Hong Tao
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China
| | - Shuyun Weng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China
| | - Luyun Xu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China
| | - Jianqing Ye
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China
| | - Min Fan
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China
| | - Yong Wang
- Institute of Applied Genomics, Fuzhou University, Fuzhou, 350108, PR China
| | - Yao Lin
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medical University Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, PR China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China.
| | - Qingshui Wang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medical University Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, PR China.
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China.
| |
Collapse
|
4
|
Zangana S, Veres M, Bonyár A. Surface-Enhanced Raman Spectroscopy (SERS)-Based Sensors for Deoxyribonucleic Acid (DNA) Detection. Molecules 2024; 29:3338. [PMID: 39064915 PMCID: PMC11279622 DOI: 10.3390/molecules29143338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful technique for the detection and analysis of biomolecules due to its high sensitivity and selectivity. In recent years, SERS-based sensors have received significant attention for the detection of deoxyribonucleic acid (DNA) molecules, offering promising applications in fields such as medical diagnostics, forensic analysis, and environmental monitoring. This paper provides a concise overview of the principles, advancements, and potential of SERS-based sensors for DNA detection. First, the fundamental principles of SERS are introduced, highlighting its ability to enhance the Raman scattering signal by several orders of magnitude through the interaction between target molecules with metallic nanostructures. Then, the fabrication technologies of SERS substrates tailored for DNA detection are reviewed. The performances of SERS substrates previously reported for DNA detection are compared and analyzed in terms of the limit of detection (LOD) and enhancement factor (EF) in detail, with respect to the technical parameters of Raman spectroscopy (e.g., laser wavelength and power). Additionally, strategies for functionalizing the sensor surfaces with DNA-specific capture probes or aptamers are outlined. The collected data can be of help in selecting and optimizing the most suitable fabrication technology considering nucleotide sensing applications with Raman spectroscopy.
Collapse
Affiliation(s)
- Shireen Zangana
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
- HUN-REN Wigner Research Centre for Physics, 1525 Budapest, Hungary;
| | - Miklós Veres
- HUN-REN Wigner Research Centre for Physics, 1525 Budapest, Hungary;
| | - Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
- HUN-REN Wigner Research Centre for Physics, 1525 Budapest, Hungary;
| |
Collapse
|
5
|
Xie X, Yu W, Wang L, Yang J, Tu X, Liu X, Liu S, Zhou H, Chi R, Huang Y. SERS-based AI diagnosis of lung and gastric cancer via exhaled breath. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124181. [PMID: 38527410 DOI: 10.1016/j.saa.2024.124181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Distinct diagnosis between Lung cancer (LC) and gastric cancer (GC) according to the same biomarkers (e.g. aldehydes) in exhaled breath based on surface-enhanced Raman spectroscopy (SERS) remains a challenge in current studies. Here, an accurate diagnosis of LC and GC is demonstrated, using artificial intelligence technologies (AI) based on SERS spectrum of exhaled breath in plasmonic metal organic frameworks nanoparticle (PMN) film. In the PMN film with optimal structure parameters, 1780 SERS spectra are collected, in which 940 spectra come from healthy people (n = 49), another 440 come from LC patients (n = 22) and the rest 400 come from GC patients (n = 8). The SERS spectra are trained through artificial neural network (ANN) model with the deep learning (DL) algorithm, and the result exhibits a good identification accuracy of LC and GC with an accuracy over 89 %. Furthermore, combined with information of SERS peaks, the data mining in ANN model is successfully employed to explore the subtle compositional difference in exhaled breath from healthy people (H) and L/GC patients. This work achieves excellent noninvasive diagnosis of multiple cancer diseases in breath analysis and provides a new avenue to explore the feature of disease based on SERS spectrum.
Collapse
Affiliation(s)
- Xin Xie
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China
| | - Wenrou Yu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China
| | - Li Wang
- School of Optoelectronics Engineering, Chongqing University, Chongqing 401331, China
| | - Junjun Yang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China
| | - Xiaobin Tu
- Department of Oncology and Department of Hematology, Chongqing Wulong People's Hospital, Chongqing 408500, China
| | - Xiaochun Liu
- Department of Oncology and Department of Hematology, Chongqing Wulong People's Hospital, Chongqing 408500, China
| | - Shihong Liu
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Han Zhou
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China
| | - Runwei Chi
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China
| | - Yingzhou Huang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Lyu N, Hassanzadeh-Barforoushi A, Rey Gomez LM, Zhang W, Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. NANO CONVERGENCE 2024; 11:22. [PMID: 38811455 PMCID: PMC11136937 DOI: 10.1186/s40580-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Laura M Rey Gomez
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
7
|
Issatayeva A, Farnesi E, Cialla-May D, Schmitt M, Rizzi FMA, Milanese D, Selleri S, Cucinotta A. SERS-based methods for the detection of genomic biomarkers of cancer. Talanta 2024; 267:125198. [PMID: 37722343 DOI: 10.1016/j.talanta.2023.125198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Genomic biomarkers of cancer are based on changes in nucleic acids, which include abnormal expression levels of some miRNAs, point mutations in DNA sequences, and altered levels of DNA methylation. The presence of tumor-related nucleic acids in body fluids (blood, saliva, or urine) makes it possible to achieve a non-invasive early-stage cancer diagnosis. Currently existing techniques for the discovery of nucleic acids require complex, time-consuming, costly assays and have limited multiplexing abilities. Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that is able to provide molecular specificity combined with trace sensitivity. SERS has gained research attention as a tool for the detection of nucleic acids because of its promising potential: label-free SERS can decrease the complexity of assays currently used with fluorescence-based detection due to the absence of the label, while labeled SERS may outperform the gold standard in terms of the multiplexing ability. The first papers about SERS-based methods for the measurement of genomic biomarkers were written in 2008, and since then, more than 150 papers have been published. The aim of this paper is to review and evaluate the proposed SERS-based methods in terms of their level of development and their potential for liquid biopsy application, as well as to contribute to their further evolution by attracting research attention to the field. This goal will be reached by grouping, on the basis of their experimental protocol, all the published manuscripts on the topic and evaluating each group in terms of its limit of detection and applicability to real body fluids. Thus, the methods are classified according to their working principles into five main groups, including capture-based, displacement-based, sandwich-based, enzyme-assisted, and specialized protocols.
Collapse
Affiliation(s)
- Aizhan Issatayeva
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy.
| | - Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | | | - Daniel Milanese
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Stefano Selleri
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Annamaria Cucinotta
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| |
Collapse
|
8
|
Wang W, Rahman A, Kang S, Vikesland PJ. Investigation of the Influence of Stress on Label-Free Bacterial Surface-Enhanced Raman Spectra. Anal Chem 2023; 95:3675-3683. [PMID: 36757218 DOI: 10.1021/acs.analchem.2c04636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Label-free surface-enhanced Raman spectroscopy (SERS) has been proposed as a promising bacterial detection technique. However, the quality of the collected bacterial spectra can be affected by the time between sample acquisition and the SERS measurement. This study evaluated how storage stress stimuli influence the label-free SERS spectra of Pseudomonas syringae samples stored in phosphate buffered saline. The results indicate that when faced with nutrient limitations and changes in osmatic pressure, samples at room temperature (25 °C) exhibit more significant spectral changes than those stored at cold temperature (4 °C). At higher temperatures, bacterial communities secrete extracellular biomolecules that induce programmed cell death and result in increases in the supernatant SERS signals. Surviving cells consume cellular components to support their metabolism, thus leading to measurable declines in cell SERS intensity. Two-dimensional correlation spectroscopy analysis suggests that cellular component signatures decline sequentially in the following order: proteins, nucleic acids, and lipids. Extracellular nucleic acids, proteins, and carbohydrates are secreted in turn. After subtracting the SERS changes resulting from storage, we evaluated bacterial response to viral infection. P. syringae SERS profile changes enable accurate bacteriophage Phi6 quantification over the range of 104-1010 PFU/mL. The results indicate that storage conditions impact bacterial label-free SERS signals and that such influences need to be accounted for and if possible avoided when detecting bacteria or evaluating bacterial response to stress stimuli.
Collapse
Affiliation(s)
- Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Asifur Rahman
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Seju Kang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Wu NJW, Aquilina M, Qian BZ, Loos R, Gonzalez-Garcia I, Santini CC, Dunn KE. The Application of Nanotechnology for Quantification of Circulating Tumour DNA in Liquid Biopsies: A Systematic Review. IEEE Rev Biomed Eng 2023; 16:499-513. [PMID: 35302938 DOI: 10.1109/rbme.2022.3159389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Technologies for quantifying circulating tumour DNA (ctDNA) in liquid biopsies could enable real-time measurements of cancer progression, profoundly impacting patient care. Sequencing methods can be too complex and time-consuming for regular point-of-care monitoring, but nanotechnology offers an alternative, harnessing the unique properties of objects tens to hundreds of nanometres in size. This systematic review was performed to identify all examples of nanotechnology-based ctDNA detection and assess their potential for clinical use. Google Scholar, PubMed, Web of Science, Google Patents, Espacenet and Embase/MEDLINE were searched up to 23rd March 2021. The review identified nanotechnology-based methods for ctDNA detection for which quantitative measures (e.g., limit of detection, LOD) were reported and biologically relevant samples were used. The pre-defined inclusion criteria were met by 66 records. LODs ranged from 10 zM to 50nM. 25 records presented an LOD of 10fM or below. Nanotechnology-based approaches could provide the basis for the next wave of advances in ctDNA diagnostics, enabling analysis at the point-of-care, but none are currently used clinically. Further work is needed in development and validation; trade-offs are expected between different performance measures e.g., number of sequences detected and time to result.
Collapse
|
10
|
Yuan K, Jurado-Sánchez B, Escarpa A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review. J Nanobiotechnology 2022; 20:537. [PMID: 36544151 PMCID: PMC9771791 DOI: 10.1186/s12951-022-01711-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) is a very promising tool for the direct detection of biomarkers for the diagnosis of i.e., cancer and pathogens. Yet, current SERS strategies are hampered by non-specific interactions with co-existing substances in the biological matrices and the difficulties of obtaining molecular fingerprint information from the complex vibrational spectrum. Raman signal enhancement is necessary, along with convenient surface modification and machine-based learning to address the former issues. This review aims to describe recent advances and prospects in SERS-based approaches for cancer and pathogens diagnosis. First, direct SERS strategies for key biomarker sensing, including the use of substrates such as plasmonic, semiconductor structures, and 3D order nanostructures for signal enhancement will be discussed. Secondly, we will illustrate recent advances for indirect diagnosis using active nanomaterials, Raman reporters, and specific capture elements as SERS tags. Thirdly, critical challenges for translating the potential of the SERS sensing techniques into clinical applications via machine learning and portable instrumentation will be described. The unique nature and integrated sensing capabilities of SERS provide great promise for early cancer diagnosis or fast pathogens detection, reducing sanitary costs but most importantly allowing disease prevention and decreasing mortality rates.
Collapse
Affiliation(s)
- Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| |
Collapse
|
11
|
Premachandran S, Haldavnekar R, Das S, Venkatakrishnan K, Tan B. DEEP Surveillance of Brain Cancer Using Self-Functionalized 3D Nanoprobes for Noninvasive Liquid Biopsy. ACS NANO 2022; 16:17948-17964. [PMID: 36112671 DOI: 10.1021/acsnano.2c04187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brain cancers, one of the most fatal malignancies, require accurate diagnosis for guided therapeutic intervention. However, conventional methods for brain cancer prognosis (imaging and tissue biopsy) face challenges due to the complex nature and inaccessible anatomy of the brain. Therefore, deep analysis of brain cancer is necessary to (i) detect the presence of a malignant tumor, (ii) identify primary or secondary origin, and (iii) find where the tumor is housed. In order to provide a diagnostic technique with such exhaustive information here, we attempted a liquid biopsy-based deep surveillance of brain cancer using a very minimal amount of blood serum (5 μL) in real time. We hypothesize that holistic analysis of serum can act as a reliable source for deep brain cancer surveillance. To identify minute amounts of tumor-derived material in circulation, we synthesized an ultrasensitive 3D nanosensor, adopted SERS as a diagnostic methodology, and undertook a DEEP neural network-based brain cancer surveillance. Detection of primary and secondary tumor achieved 100% accuracy. Prediction of intracranial tumor location achieved 96% accuracy. This modality of using patient sera for deep surveillance is a promising noninvasive liquid biopsy tool with the potential to complement current brain cancer diagnostic methodologies.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Sunit Das
- Scientist, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
12
|
Gong T, Das CM, Yin MJ, Lv TR, Singh NM, Soehartono AM, Singh G, An QF, Yong KT. Development of SERS tags for human diseases screening and detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Munir T, Akbar MS, Ahmed S, Sarfraz A, Sarfraz Z, Sarfraz M, Felix M, Cherrez-Ojeda I. A Systematic Review of Internet of Things in Clinical Laboratories: Opportunities, Advantages, and Challenges. SENSORS (BASEL, SWITZERLAND) 2022; 22:8051. [PMID: 36298402 PMCID: PMC9611742 DOI: 10.3390/s22208051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The Internet of Things (IoT) is the network of physical objects embedded with sensors, software, electronics, and online connectivity systems. This study explores the role of IoT in clinical laboratory processes; this systematic review was conducted adhering to the PRISMA Statement 2020 guidelines. We included IoT models and applications across preanalytical, analytical, and postanalytical laboratory processes. PubMed, Cochrane Central, CINAHL Plus, Scopus, IEEE, and A.C.M. Digital library were searched between August 2015 to August 2022; the data were tabulated. Cohen's coefficient of agreement was calculated to quantify inter-reviewer agreements; a total of 18 studies were included with Cohen's coefficient computed to be 0.91. The included studies were divided into three classifications based on availability, including preanalytical, analytical, and postanalytical. The majority (77.8%) of the studies were real-tested. Communication-based approaches were the most common (83.3%), followed by application-based approaches (44.4%) and sensor-based approaches (33.3%) among the included studies. Open issues and challenges across the included studies included scalability, costs and energy consumption, interoperability, privacy and security, and performance issues. In this study, we identified, classified, and evaluated IoT applicability in clinical laboratory systems. This study presents pertinent findings for IoT development across clinical laboratory systems, for which it is essential that more rigorous and efficient testing and studies be conducted in the future.
Collapse
Affiliation(s)
- Tahir Munir
- Department of Research, Nishtar Medical University, Multan 66000, Pakistan
| | | | - Sadia Ahmed
- Department of Research, Punjab Medical College, Faisalabad 38000, Pakistan
| | - Azza Sarfraz
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi 74800, Pakistan
| | - Zouina Sarfraz
- Department of Research and Publications, Fatima Jinnah Medical University, Lahore 54000, Pakistan
| | - Muzna Sarfraz
- Department of Research, King Edward Medical University, Lahore 54000, Pakistan
| | - Miguel Felix
- Department of Pulmonology, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Ivan Cherrez-Ojeda
- Department of Pulmonology, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| |
Collapse
|
14
|
Avci E, Yilmaz H, Sahiner N, Tuna BG, Cicekdal MB, Eser M, Basak K, Altıntoprak F, Zengin I, Dogan S, Çulha M. Label-Free Surface Enhanced Raman Spectroscopy for Cancer Detection. Cancers (Basel) 2022; 14:5021. [PMID: 36291805 PMCID: PMC9600112 DOI: 10.3390/cancers14205021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Blood is a vital reservoir housing numerous disease-related metabolites and cellular components. Thus, it is also of interest for cancer diagnosis. Surface-enhanced Raman spectroscopy (SERS) is widely used for molecular detection due to its very high sensitivity and multiplexing properties. Its real potential for cancer diagnosis is not yet clear. In this study, using silver nanoparticles (AgNPs) as substrates, a number of experimental parameters and scenarios were tested to disclose the potential for this technique for cancer diagnosis. The discrimination of serum samples from cancer patients, healthy individuals and patients with chronic diseases was successfully demonstrated with over 90% diagnostic accuracies. Moreover, the SERS spectra of the blood serum samples obtained from cancer patients before and after tumor removal were compared. It was found that the spectral pattern for serum from cancer patients evolved into the spectral pattern observed with serum from healthy individuals after the removal of tumors. The data strongly suggests that the technique has a tremendous potential for cancer detection and screening bringing the possibility of early detection onto the table.
Collapse
Affiliation(s)
- Ertug Avci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Hulya Yilmaz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey
| | - Nurettin Sahiner
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Chemistry, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Munevver Burcu Cicekdal
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Mehmet Eser
- Department of General Surgery, School of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Kayhan Basak
- Department of Pathology, Kartal Dr. Lütfi Kırdar City Hospital, University of Health Sciences, Istanbul 34865, Turkey
| | - Fatih Altıntoprak
- Department of General Surgery, Research and Educational Hospital, Sakarya University, Serdivan 54100, Turkey
| | - Ismail Zengin
- Department of General Surgery, Research and Educational Hospital, Sakarya University, Serdivan 54100, Turkey
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Mustafa Çulha
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey
- The Knight Cancer Institute, Cancer Early Detection Advanced Research Center (CEDAR), Oregon Health and Science University, Portland, OR 97239, USA
- Department of Chemistry and Physics, College of Science and Mathematics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Trojanowicz R, Vestri A, Rippa M, Zyss J, Matczyszyn K, Petti L. DNA Antiadhesive Layer for Reusable Plasmonic Sensors: Nanostructure Pitch Effect. ACS OMEGA 2022; 7:31682-31690. [PMID: 36120011 PMCID: PMC9475616 DOI: 10.1021/acsomega.2c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A long-term reusable sensor that provides the opportunity to easily regenerate the active surface and minimize the occurrence of undesired absorption events is an appealing solution that helps to cut down the costs and improve the device performances. Impressive advances have been made in the past years concerning the development of novel cutting-edge sensors, but the reusability can currently represent a challenge. Direct shielding of the sensor surface is not always applicable, because it can impact the device performance. This study reports an antiadhesive layer (AAL) made of 90 mg/mL DNA sodium salt from salmon testes (ssstDNA) for passivating gold plasmonic sensor surfaces. Our gold two-dimensional (2D) nanostructured plasmonic metasurfaces modified with AAL were used for DNA quantification. AAL is thin enough that the plasmonic sensor remains sensitive to subsequent deposition of DNA, which serves as an analyte. AAL protects the gold surface from unwanted nonspecific adsorption by enabling wash-off of the deposited analyte after analysis and thus recovery of the LSPR peak position (rLSPR). The calibration curve obtained on a single nanostructure (Achiral Octupolar, 100 nm pitch) gave an LOD = 105 ng/mL and an extraordinary dynamic range, performances comparable or superior to those of commercial UV-vis spectrometers for acid nucleic dosage. Two different analytes were tested: ssstDNA (∼2000 bp) in deionized water and double-strand DNA (dsDNA) of 546-1614 bp in 100 mM Tris buffer and 10 mM MgCl2. The two nanostructures (Achiral Octupolar 25 and 100) were found to have the same sensitivity to DNA in deionized water but different sensitivity to DNA in a salt/buffer solution, opening a potential for solute discrimination. To the best of our knowledge, this is the first report on the use of AAL made of several kilobase-pairs-long dsDNA to produce a reusable plasmonic sensor. The working principle and limitations are drawn based on the LSPR and SERS study.
Collapse
Affiliation(s)
- Remigiusz
K. Trojanowicz
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Ambra Vestri
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| | - Massimo Rippa
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| | - Joseph Zyss
- LUMIN
Laboratory and Institut d’Alembert, Ecole Normale Supérieure
Paris-Saclay, CNRS, Université Paris-Saclay, 4, avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Katarzyna Matczyszyn
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Lucia Petti
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| |
Collapse
|
16
|
Chen Y, Jiang P, Lei S, Chen X, Yao S, Jiang D, Lin D, Jia X, Hu J. Optical tweezers and Raman spectroscopy for single-cell classification of drug resistance in acute lymphoblastic leukemia. JOURNAL OF BIOPHOTONICS 2022; 15:e202200117. [PMID: 35642096 DOI: 10.1002/jbio.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Laser Tweezers Raman Spectroscopy (LTRS) is a combination of laser tweezers and Raman spectroscopy. It is a physical tool based on the mechanical effects of the laser, which can be used to study single living cells in suspension in a fast and non-destructive way. Our work aims to establish a methodology system based on LTRS to rapidly and non-destructively detect the resistance of acute lymphoblastic leukemia (ALL) cells and to provide a new idea for the evaluation of the resistance of ALL cells. Two specific adriamycin-resistant and parental ALL cells BALL-1 and Nalm6 were included in this study. Adriamycin resistant cells can induce the spectral differences, which can be detected by LTRS initially. To ensure the accuracy of the results, we use the principal components analysis (PCA) as well as the classification and regression trees (CRT) algorithms, which show that the specificity and sensitivity of LTRS are above 90%. In addition, to further clarify the chemoresistance status of ALL cells, we used the CRT models and receiver operating characteristic (ROC) curves which are based on the band data to look for some important bands and band intensity ratios that have strong pointing significance. Our work proves that LTRS analysis combined with multivariate statistical analyses have great potential to be a novel analytical strategy at the single-cell level for rapidly evaluating the chemoresistance status of ALL cells.
Collapse
Affiliation(s)
- Yang Chen
- Department of Laboratory Medicine, the School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peifang Jiang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shuyi Lei
- Department of Medical Imaging Technology, Fujian Medical University, Fuzhou, China
| | - Xiaoli Chen
- Department of Medical Imaging Technology, Fujian Medical University, Fuzhou, China
| | - Shuting Yao
- Department of Medical Imaging Technology, Fujian Medical University, Fuzhou, China
| | - Dongmei Jiang
- Department of Medical Imaging Technology, Fujian Medical University, Fuzhou, China
| | - Donghong Lin
- Department of Laboratory Medicine, the School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Xianggang Jia
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Jianda Hu
- Department of Laboratory Medicine, the School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
17
|
Yang Z, Su HS, You EM, Liu S, Li Z, Zhang Y. High Uniformity and Enhancement Au@AgNS 3D Substrates for the Diagnosis of Breast Cancer. ACS OMEGA 2022; 7:15223-15230. [PMID: 35572747 PMCID: PMC9089677 DOI: 10.1021/acsomega.2c01453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Breast cancer appears to be one of the leading causes of cancer-related morbidity and mortality for women worldwide. The accurate and rapid diagnosis of breast cancer is hence critical for the treatment and prognosis of patients. With the vibrational fingerprint information and high detection sensitivity, surface-enhanced Raman spectroscopy (SERS) has been extensively applied in biomedicine. Here, an optimized bimetallic nanosphere (Au@Ag NS) 3D substrate was fabricated for the aim of the diagnosis of breast cancer based on the SERS analysis of the extracellular metabolites. The unique stacking mode of 3D Au@Ag NSs provided multiple plasmonic hot spots according to the theoretical calculations of the electromagnetic field distribution. The low relative standard deviation (RSD = 2.7%) and high enhancement factor (EF = 1.42 × 105) proved the uniformity and high sensitivity. More importantly, the normal breast cells and breast cancer cells could be readily distinguished from the corresponding SERS spectra based on the extracellular metabolites. Furthermore, the clear clusters of SERS spectra from MCF-7 and MDA-MB-231 extracellular metabolites in the orthogonal partial least-squares discriminant analysis plot indicate the distinct metabolic fingerprint between breast cancer cells, which imply their potential clinical application in the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Zhengxia Yang
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute
of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen
Institute of Rare Earth Materials, Haixi Institute, Xiamen Key Laboratory
of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Hai-Sheng Su
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute
of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen
Institute of Rare Earth Materials, Haixi Institute, Xiamen Key Laboratory
of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - En-Ming You
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
| | - Siying Liu
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute
of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen
Institute of Rare Earth Materials, Haixi Institute, Xiamen Key Laboratory
of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Zihang Li
- Wenzhou-Kean
University, 88 Daxue
Road, Ouhai, Wenzhou, Zhejiang
Province 325060, China
| | - Yun Zhang
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute
of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen
Institute of Rare Earth Materials, Haixi Institute, Xiamen Key Laboratory
of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- Ganjiang
Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P. R. China
| |
Collapse
|
18
|
Zhu L, Zhao D, Xu L, Sun M, Song Y, Liu M, Li M, Zhang J. A Fluorescent "Turn-On" Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1262. [PMID: 35457970 PMCID: PMC9027387 DOI: 10.3390/nano12081262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
Abstract
Early diagnosis of cancer is of paramount significance for the therapeutic intervention of cancers. Although the detection of circulating cell-free DNA (cfDNA) has emerged as a promising, minimally invasive approach for early cancer diagnosis, there is an urgent need to develop a highly sensitive and rapid method to precisely identify plasma cfDNA from clinical samples. Herein, we report a robust fluorescent "turn-on" clutch probe based on non-emissive QDs-Ru complexes to rapidly recognize EGFR gene mutation in plasma cfDNA from lung cancer patients. In this system, the initially quenched emission of QDs is recovered while the red emission of Ru(II) complexes is switched on. This is because the Ru(II) complexes can specifically intercalate into the double-stranded DNA (dsDNA) to form Ru-dsDNA complexes and simultaneously liberate free QDs from the QDs-Ru complexes, which leads to the occurrence of an overlaid red fluorescence. In short, the fluorescent "turn-on" clutch probe offers a specific, rapid, and sensitive paradigm for the recognition of plasma cfDNA biomarkers from clinical samples, providing a convenient and low-cost approach for the early diagnosis of cancer and other gene-mutated diseases.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Lixin Xu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Meng Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Mingrui Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| |
Collapse
|
19
|
Dawuti W, Zheng X, Liu H, Zhao H, Dou J, Sun L, Chu J, Lin R, Lü G. Urine surface-enhanced Raman spectroscopy combined with SVM algorithm for rapid diagnosis of liver cirrhosis and hepatocellular carcinoma. Photodiagnosis Photodyn Ther 2022; 38:102811. [PMID: 35304310 DOI: 10.1016/j.pdpdt.2022.102811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
In this paper, we investigated the feasibility of using urine surface-enhanced Raman spectroscopy (SERS) for the rapid screening of patients with liver cirrhosis and hepatocellular carcinoma (HCC). The SERS spectra were recorded from the urine of 49 liver cirrhosis, 55 HCC, and 50 healthy volunteers using a Raman spectrometer. The normalized mean Raman spectra showed the difference of specific biomolecules associated with the illnesses, and the metabolism of specific nucleic acids and amino acids is abnormal in patients with liver cirrhosis and HCC. Based on the SVM algorithm, the urine SERS method could identify liver cirrhosis (sensitivity 88.9%, specificity 83.3%, and accuracy 85.9%) and HCC (sensitivity 85.5%, specificity 84.0%, and accuracy 84.8%). It has a higher diagnostic sensitivity for HCC than serum Alpha fetoprotein (AFP). This exploratory study showed that the urine SERS spectra combined with the SVM algorithm has indicated great potential in the noninvasive identification of liver cirrhosis and HCC.
Collapse
Affiliation(s)
- Wubulitalifu Dawuti
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiangxiang Zheng
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Hui Liu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jingrui Dou
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Sun
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jin Chu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Guodong Lü
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
20
|
Electrically Controlled Enrichment of Analyte for Ultrasensitive SERS-Based Plasmonic Sensors. NANOMATERIALS 2022; 12:nano12050844. [PMID: 35269329 PMCID: PMC8912275 DOI: 10.3390/nano12050844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023]
Abstract
Recently, sensors using surface-enhanced Raman scattering (SERS) detectors combined with superhydrophobic/superhydrophilic analyte concentration systems showed the ability to reach detection limits below the femto-molar level. However, a further increase in the sensitivity of these sensors is limited by the impossibility of the concentration systems to deposit the analyte on an area of less than 0.01 mm2. This article proposes a fundamentally new approach to the analyte enrichment, based on the effect of non-uniform electrostatic field on the evaporating droplet. This approach, combined with the optimized geometry of a superhydrophobic/superhydrophilic concentration system allows more than a six-fold reduction of the deposition area. Potentially, this makes it possible to improve the detection limit of the plasmonic sensors by the same factor, bringing it down to the attomolar level.
Collapse
|
21
|
Canetta E. Current and Future Advancements of Raman Spectroscopy Techniques in Cancer Nanomedicine. Int J Mol Sci 2021; 22:13141. [PMID: 34884946 PMCID: PMC8658204 DOI: 10.3390/ijms222313141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
Raman scattering is one of the most used spectroscopy and imaging techniques in cancer nanomedicine due to its high spatial resolution, high chemical specificity, and multiplexity modalities. The flexibility of Raman techniques has led, in the past few years, to the rapid development of Raman spectroscopy and imaging for nanodiagnostics, nanotherapy, and nanotheranostics. This review focuses on the applications of spontaneous Raman spectroscopy and bioimaging to cancer nanotheranostics and their coupling to a variety of diagnostic/therapy methods to create nanoparticle-free theranostic systems for cancer diagnostics and therapy. Recent implementations of confocal Raman spectroscopy that led to the development of platforms for monitoring the therapeutic effects of anticancer drugs in vitro and in vivo are also reviewed. Another Raman technique that is largely employed in cancer nanomedicine, due to its ability to enhance the Raman signal, is surface-enhanced Raman spectroscopy (SERS). This review also explores the applications of the different types of SERS, such as SERRS and SORS, to cancer diagnosis through SERS nanoprobes and the detection of small-size biomarkers, such as exosomes. SERS cancer immunotherapy and immuno-SERS (iSERS) microscopy are reviewed.
Collapse
Affiliation(s)
- Elisabetta Canetta
- Faculty of Sport, Applied Health and Performance Science, St Mary's University, Twickenham, London TW1 4SX, UK
| |
Collapse
|
22
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
23
|
Lin Y, Gao S, Zheng M, Tang S, Lin K, Xie S, Yu Y, Lin J. A microsphere nanoparticle based-serum albumin targeted adsorption coupled with surface-enhanced Raman scattering for breast cancer detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120039. [PMID: 34144332 DOI: 10.1016/j.saa.2021.120039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 05/20/2023]
Abstract
The serum albumin level is inseparable associated with survival in patients with breast cancer, and simultaneously serve as a good indicator of prognosis of cancer. Here, we proposed a novel extraction-isolation analysis method of albumin for breast cancer detection utilizing hydroxyapatite particles (HAp) to targeted adsorb albumin from serum relying on its specific adsorption capacity. An ideal protein-release reagent was used for isolating albumin from the surface of HAp, and meanwhile ensuring that the structure and property of albumin was not suffered damage. The surface-enhanced Raman scattering (SERS) signal of extracted albumin was obtained, and partial least squares (PLS) and linear discriminant analysis (LDA) analysis approach were employed to analyze SERS spectra data, with the aim to assess the capability of HAp method for identifying breast cancer, yielding an ideal diagnostic accuracy of 98.6%, demonstrating promising potential as a non-invasive and sensitive nanotechnology for breast cancer screening.
Collapse
Affiliation(s)
- Yamin Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Siqi Gao
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Mengmeng Zheng
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Shuzhen Tang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Kecan Lin
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Shusen Xie
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Yun Yu
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Juqiang Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
24
|
Revealing DNA Structure at Liquid/Solid Interfaces by AFM-Based High-Resolution Imaging and Molecular Spectroscopy. Molecules 2021; 26:molecules26216476. [PMID: 34770895 PMCID: PMC8587808 DOI: 10.3390/molecules26216476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
DNA covers the genetic information in all living organisms. Numerous intrinsic and extrinsic factors may influence the local structure of the DNA molecule or compromise its integrity. Detailed understanding of structural modifications of DNA resulting from interactions with other molecules and surrounding environment is of central importance for the future development of medicine and pharmacology. In this paper, we review the recent achievements in research on DNA structure at nanoscale. In particular, we focused on the molecular structure of DNA revealed by high-resolution AFM (Atomic Force Microscopy) imaging at liquid/solid interfaces. Such detailed structural studies were driven by the technical developments made in SPM (Scanning Probe Microscopy) techniques. Therefore, we describe here the working principles of AFM modes allowing high-resolution visualization of DNA structure under native (liquid) environment. While AFM provides well-resolved structure of molecules at nanoscale, it does not reveal the chemical structure and composition of studied samples. The simultaneous information combining the structural and chemical details of studied analyte allows achieve a comprehensive picture of investigated phenomenon. Therefore, we also summarize recent molecular spectroscopy studies, including Tip-Enhanced Raman Spectroscopy (TERS), on the DNA structure and its structural rearrangements.
Collapse
|
25
|
Lin T, Song YL, Kuang P, Chen S, Mao Z, Zeng TT. Nanostructure-based surface-enhanced Raman scattering for diagnosis of cancer. Nanomedicine (Lond) 2021; 16:2389-2406. [PMID: 34530631 DOI: 10.2217/nnm-2021-0298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer is a malignant disease that seriously affects human health and life. Early diagnosis and timely treatment can significantly improve the survival rate of cancer patients. Surface-enhanced Raman scattering (SERS) is an optical technology that can detect and image samples at the single-molecule level. It has the advantages of rapidity, high specificity, high sensitivity and no damage to the sample. The performance of SERS is highly dependent on the properties, size and morphology of the SERS substrate. Preparation of SERS substrates with good reproducibility and chemical stability is a key factor in realizing the wide application of SERS technology in cancer diagnosis. In this review we provide a detailed presentation of the latest research on SERS in cancer diagnosis and the detection of cancer biomarkers, mainly focusing on nanotechnological approaches in cancer diagnosis by using SERS. We also consider the future development of nanostructure-based SERS in cancer diagnosis.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya-Li Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pu Kuang
- Department of Hematology, Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhigang Mao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting-Ting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
26
|
Gao S, Lin Y, Zheng M, Lin Y, Lin K, Xie S, Yu Y, Lin J. Label-free determination of liver cancer stages using surface-enhanced Raman scattering coupled with preferential adsorption of hydroxyapatite microspheres. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3885-3893. [PMID: 34382625 DOI: 10.1039/d1ay00946j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here, we explored a label-free albumin targeted analysis method by utilizing hydroxyapatite (HAp) to adsorb-release serum albumin, in conjunction with surface-enhanced Raman scattering (SERS) for screening liver cancer (LC) at different tumor (T) stages. Excitingly, albumin can be preferentially adsorbed by HAp as compared with other serum proteins. Moreover, we developed a novel strategy using a high concentration of PO43- solution as the albumin-release agent. This method overcomes the shortcomings of the traditional purification technology of serum albumin, which requires acid to release protein, and ensures that the structure and properties of albumin are not damaged. The SERS spectra of serum albumin obtained from three sample groups were analyzed to verify the feasibility of this new method: healthy volunteers (n = 35), LC patients with T1 stage (n = 25) and LC patients with T2-T4 stage (n = 23). Furthermore, principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to classify the early T (T1) stage LC vs. normal group and advanced T (T2-T4) stage LC vs. normal group, yielding high diagnostic accuracies of 90.00% and 96.55%, respectively, which showed a 10% improvement in diagnostic accuracy for the early stage detection of cancer as compared with previous studies. The results of this exploratory work demonstrated that HAp-adsorbed-released serum albumin combined with SERS analysis has great potential for label-free, noninvasive and sensitive detection of different T stages of liver cancer.
Collapse
Affiliation(s)
- Siqi Gao
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Yamin Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Mengmeng Zheng
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Yating Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Kecan Lin
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Shusen Xie
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Yun Yu
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Juqiang Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
27
|
Miao X, Fang Q, Xiao X, Liu S, Wu R, Yan J, Nie B, Liu J. Integrating Cycled Enzymatic DNA Amplification and Surface-Enhanced Raman Scattering for Sensitive Detection of Circulating Tumor DNA. Front Mol Biosci 2021; 8:676065. [PMID: 34017856 PMCID: PMC8129026 DOI: 10.3389/fmolb.2021.676065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
Circulating tumor DNA (ctDNA) represents an emerging biomarker of liquid biopsies for the development of precision cancer diagnostics and therapeutics. However, sensitive detection of ctDNA remains challenging, due to their short half-life and low concentrations in blood samples. In this study, we report a new method to address this challenge by integrating cycled enzymatic DNA amplification technique and Au nanoparticle@silicon-assisted surface-enhanced Raman scattering (SERS) technique. We have demonstrated a reproducible identification of a single-base-mutated ctDNA sequence of diffuse intrinsic pontine gliomas (DIPGs), with the limit of detection (LOD) as low as 9.1 fM in the spiked blood samples. This approach can be used to analyze trace amounts of ctDNA in translational medicine for early diagnosis, therapeutic effect monitoring, and prognosis of patients with cancer.
Collapse
Affiliation(s)
- Xinxing Miao
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Qianqian Fang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Xiang Xiao
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Sidi Liu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Renfei Wu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Jun Yan
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Baoqing Nie
- School of Electronic and Information Engineering, Soochow University, Suzhou, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Perumal J, Wang Y, Attia ABE, Dinish US, Olivo M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: a review of recent advancements. NANOSCALE 2021; 13:553-580. [PMID: 33404579 DOI: 10.1039/d0nr06832b] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The growing demand for reliable and robust methodology in bio-chemical sensing calls for the continuous advancement of sensor technologies. Over the last two decades, surface-enhanced Raman spectroscopy (SERS) has emerged as one of the most promising analytical techniques for sensitive and trace analysis or detection in biomedical and agri-food applications. SERS overcomes the inherent sensitivity limitation associated with Raman spectroscopy, which provides vibrational "fingerprint" spectra of molecules that makes it unique and versatile among other spectroscopy techniques. This paper comprehensively reviews the recent advancements of SERS for biomedical, food and agricultural applications over the last 6 years, and we envision that, in the near future, some of these platforms have the potential to be translated as a point-of-care and rapid sensor for real-life end-user applications. The merits and limitations of various SERS sensor designs are analysed and discussed based on critical features such as sensitivity, specificity, usability, repeatability and reproducibility. We conclude by highlighting the opportunities and challenges in the field while stressing the technological gaps to be addressed in realizing commercially viable point-of-care SERS sensors for practical biomedical and agri-food technological applications.
Collapse
Affiliation(s)
- Jayakumar Perumal
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| | - Yusong Wang
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| | - Amalina Binte Ebrahim Attia
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| | - U S Dinish
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| | - Malini Olivo
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| |
Collapse
|
29
|
Huang H, Li H. Tumor heterogeneity and the potential role of liquid biopsy in bladder cancer. Cancer Commun (Lond) 2020; 41:91-108. [PMID: 33377623 PMCID: PMC7896752 DOI: 10.1002/cac2.12129] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease that characterized by genomic instability and a high mutation rate. Heterogeneity in tumor may partially explain the diversity of responses to targeted therapies and the various clinical outcomes. A combination of cytology and cystoscopy is the standard methodology for BC diagnosis, prognosis, and disease surveillance. However, genomics analyses of single tumor‐biopsy specimens may underestimate the mutational burden of heterogeneous tumors. Liquid biopsy, as a promising technology, enables analysis of tumor components in the bodily fluids, such as blood and urine, at multiple time points and provides a minimally invasive approach that can track the evolutionary dynamics and monitor tumor heterogeneity. In this review, we describe the multiple faces of BC heterogeneity at the genomic and transcriptional levels and how they affect clinical care and outcomes. We also summarize the outcomes of liquid biopsy in BC, which plays a potential role in revealing tumor heterogeneity. Finally, we discuss the challenges that must be addressed before liquid biopsy can be widely used in clinical treatment.
Collapse
Affiliation(s)
- Hai‐Ming Huang
- Department of Clinical LaboratoryPeking University First HospitalBeijing100034P. R. China
| | - Hai‐Xia Li
- Department of Clinical LaboratoryPeking University First HospitalBeijing100034P. R. China
| |
Collapse
|
30
|
Lin J, Huang Z, Lin X, Wu Q, Quan K, Cheng Y, Zheng M, Xu J, Dai Y, Qiu H, Lin D, Feng S. Rapid and label-free urine test based on surface-enhanced Raman spectroscopy for the non-invasive detection of colorectal cancer at different stages. BIOMEDICAL OPTICS EXPRESS 2020; 11:7109-7119. [PMID: 33408983 PMCID: PMC7747921 DOI: 10.1364/boe.406097] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 05/09/2023]
Abstract
The concept of being able to urinate in a cup and screen for colorectal cancer (CRC) is fascinating to the public at large. Here, a simple and label-free urine test based on surface-enhanced Raman spectroscopy (SERS) was employed for CRC detection. Significant spectral differences among normal, stages I-II, and stages III-IV CRC urines were observed. Using discriminant function analysis, the diagnostic sensitivities of 95.8%, 80.9%, and 84.3% for classification of normal, stages I-II, and stages III-IV CRC were achieved in training model, indicating the great promise of urine SERS as a rapid, convenient and noninvasive method for CRC staging detection.
Collapse
Affiliation(s)
- Jinyong Lin
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou, 350007, China
- These authors contributed equally to this work
| | - Zongwei Huang
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
- These authors contributed equally to this work
| | - Xueliang Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou, 350007, China
| | - Qiong Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou, 350007, China
| | - Kerun Quan
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Yanming Cheng
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Mingzhi Zheng
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Jiaying Xu
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Yitao Dai
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Hejin Qiu
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou, 350007, China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
31
|
Turcas C, Moisoiu V, Stefancu A, Jurj A, Iancu SD, Teodorescu P, Pasca S, Bojan A, Trifa A, Iluta S, Zimta AA, Petrushev B, Zdrenghea M, Bumbea H, Coriu D, Dima D, Leopold N, Tomuleasa C. SERS-Based Assessment of MRD in Acute Promyelocytic Leukemia? Front Oncol 2020; 10:1024. [PMID: 32695677 PMCID: PMC7336895 DOI: 10.3389/fonc.2020.01024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by a unique chromosome translocation t(15;17)(q24;q21), which leads to the PML/RARA gene fusion formation. However, it is acknowledged that this rearrangement alone is not able to induce the whole leukemic phenotype. In addition, epigenetic processes, such as DNA methylation, may play a crucial role in leukemia pathogenesis. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), involves the covalent transfer of a methyl group (-CH3) to the fifth carbon of the cytosine ring in the CpG dinucleotide and results in the formation of 5-methylcytosine (5-mC). The aberrant gene promoter methylation can be an alternative mechanism of tumor suppressor gene inactivation. Understanding cancer epigenetics and its pivotal role in oncogenesis, can offer us not only attractive targets for epigenetic treatment but can also provide powerful tools in monitoring the disease and estimating the prognosis. Several genes of interest, such as RARA, RARB, p15, p16, have been studied in APL and their methylation status was correlated with potential diagnostic and prognostic significance. In the present manuscript we comprehensively examine the current knowledge regarding DNA methylation in APL pathogenesis. We also discuss the perspectives of using the DNA methylation patterns as reliable biomarkers for measurable residual disease (MRD) monitoring and as a predictor of relapse. This work also highlights the possibility of detecting aberrant methylation profiles of circulating tumor DNA (ctDNA) through liquid biopsies, using the conventional methods, such as methylation-specific polymerase chain reaction (MS-PCR), sequencing methods, but also revolutionary methods, such as surface-enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Cristina Turcas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Vlad Moisoiu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Faculty of Physics, Babeş Bolyai University, Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, Babeş Bolyai University, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stefania D Iancu
- Faculty of Physics, Babeş Bolyai University, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Bojan
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Adrian Trifa
- Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bobe Petrushev
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Horia Bumbea
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniel Coriu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Delia Dima
- Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, Babeş Bolyai University, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
32
|
Qiu S, Li M, Liu J, Chen X, Lin T, Xu Y, Chen Y, Weng Y, Pan Y, Feng S, Lin X, Zhang L, Lin D. Study on the chemodrug-induced effect in nasopharyngeal carcinoma cells using laser tweezer Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:1819-1833. [PMID: 32341850 PMCID: PMC7173897 DOI: 10.1364/boe.388785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 05/08/2023]
Abstract
To explore the effect in nasopharyngeal carcinoma (NPC) cells after treatment with chemodrugs, Raman profiles were characterized by laser tweezer Raman spectroscopy. Two NPC cell lines (CNE2 and C666-1) were treated with gemcitabine, cisplatin, and paclitaxel, respectively. The high-quality Raman spectra of cells without or with treatments were recorded at the single-cell level with label-free laser tweezers Raman spectroscopy (LTRS) and analyzed for the differences of alterations of Raman profiles. Tentative assignments of Raman peaks indicated that the cellular specific biomolecular changes associated with drug treatment include changes in protein structure (e.g. 1655 cm-1), changes in DNA/RNA content and structure (e.g. 830 cm-1), destruction of DNA/RNA base pairs (e.g. 785 cm-1), and reduction in lipids (e.g. 970 cm-1). Besides, both principal components analysis (PCA) combined with linear discriminant analysis (LDA) and the classification and regression trees (CRT) algorithms were employed to further analyze and classify the spectral data between control group and treated group, with the best discriminant accuracy of 96.7% and 90.0% for CNE2 and C666-1 group treated with paclitaxel, respectively. This exploratory work demonstrated that LTRS technology combined with multivariate statistical analysis has promising potential to be a novel analytical strategy at the single-cell level for the evaluation of NPC-related chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sufang Qiu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
- These authors contributed equally to this work
| | - Miaomiao Li
- Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou 350014, China
- These authors contributed equally to this work
| | - Jun Liu
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou 350014, China
- Department of Medical Oncology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou 350014, China
| | - Xiaochuan Chen
- Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou 350014, China
| | - Ting Lin
- Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yunchao Xu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Yang Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, China
| | - Youliang Weng
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yuhui Pan
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou 350014, China
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Lurong Zhang
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Duo Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
33
|
Blanco-Formoso M, Alvarez-Puebla RA. Cancer Diagnosis through SERS and Other Related Techniques. Int J Mol Sci 2020; 21:ijms21062253. [PMID: 32214017 PMCID: PMC7139671 DOI: 10.3390/ijms21062253] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer heterogeneity increasingly requires ultrasensitive techniques that allow early diagnosis for personalized treatment. In addition, they should preferably be non-invasive tools that do not damage surrounding tissues or contribute to body toxicity. In this context, liquid biopsy of biological samples such as urine, blood, or saliva represents an ideal approximation of what is happening in real time in the affected tissues. Plasmonic nanoparticles are emerging as an alternative or complement to current diagnostic techniques, being able to detect and quantify novel biomarkers such as specific peptides and proteins, microRNA, circulating tumor DNA and cells, and exosomes. Here, we review the latest ideas focusing on the use of plasmonic nanoparticles in coded and label-free surface-enhanced Raman scattering (SERS) spectroscopy. Moreover, surface plasmon resonance (SPR) spectroscopy, colorimetric assays, dynamic light scattering (DLS) spectroscopy, mass spectrometry or total internal reflection fluorescence (TIRF) microscopy among others are briefly examined in order to highlight the potential and versatility of plasmonics.
Collapse
Affiliation(s)
- Maria Blanco-Formoso
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| |
Collapse
|
34
|
Abstract
This is a review of relevant Raman spectroscopy (RS) techniques and their use in structural biology, biophysics, cells, and tissues imaging towards development of various medical diagnostic tools, drug design, and other medical applications. Classical and contemporary structural studies of different water-soluble and membrane proteins, DNA, RNA, and their interactions and behavior in different systems were analyzed in terms of applicability of RS techniques and their complementarity to other corresponding methods. We show that RS is a powerful method that links the fundamental structural biology and its medical applications in cancer, cardiovascular, neurodegenerative, atherosclerotic, and other diseases. In particular, the key roles of RS in modern technologies of structure-based drug design are the detection and imaging of membrane protein microcrystals with the help of coherent anti-Stokes Raman scattering (CARS), which would help to further the development of protein structural crystallography and would result in a number of novel high-resolution structures of membrane proteins—drug targets; and, structural studies of photoactive membrane proteins (rhodopsins, photoreceptors, etc.) for the development of new optogenetic tools. Physical background and biomedical applications of spontaneous, stimulated, resonant, and surface- and tip-enhanced RS are also discussed. All of these techniques have been extensively developed during recent several decades. A number of interesting applications of CARS, resonant, and surface-enhanced Raman spectroscopy methods are also discussed.
Collapse
|