1
|
Khandaker MU, Osman H, Issa SAM, Uddin MM, Ullah MH, Wahbi H, Hanfi MY. Newly predicted halide perovskites Mg 3AB 3 (A = N, Bi; B = F, Br, I) for next-generation photovoltaic applications: a first-principles study. RSC Adv 2025; 15:5766-5780. [PMID: 39980992 PMCID: PMC11840809 DOI: 10.1039/d4ra09093d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
The research examines the exceptional physical characteristics of Mg3AB3 (A = N, Bi; B = F, Br, I) perovskite compounds through density functional theory to assess their feasibility for photovoltaic applications. Mechanical characterization further supports their stability where out of all the compounds, Mg3BiI3 demonstrates high ductility, while Mg3NF3 and Mg3BiBr3 possess a brittle nature. The calculated elastic constants and anisotropy factors also substantiate their mechanical stability, while there is an observed declining trend in Debye temperature with increase in atomic number. From the electronic point of view, Mg3NF3 can be considered as a wide-bandgap insulator with the bandgap of 6.789 eV, whereas Mg3BiBr3 and Mg3BiI3 can be classified as semiconductors suitable for photovoltaic applications bandgaps of 1.626 eV and 0.867 eV, respectively. The optical characteristics of such materials are excellent and pronounced by high absorption coefficients, low reflectivity, and good dielectrics, which are very important in the collection of solar energy. Among them, Mg3BiBr3 and Mg3BiI3 possess high light absorption coefficient, moderate reflectivity, and good electrical conductivity, indicating that they are quite suitable for applying the photoelectric conversion materials for solar cells. In addition, thermal analysis shows that Mg3NF3 is a good heat sink material, Mg3BiBr3 and Mg3BiI3 are favorable for thermal barrier coating materials. Due to their high absorption coefficients, low reflectance and suitable conductivity, both Mg3BiBr3 and Mg3BiI3 could be regarded as the most appropriate materials for the creation of the next generation of photovoltaic converters.
Collapse
Affiliation(s)
- Mayeen Uddin Khandaker
- Applied Physics Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
- Faculty of Graduate Studies, Daffodil International University Daffodil Smart City, Birulia, Savar Dhaka 1216 Bangladesh
- Department of Physics, College of Science, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University P. O. Box 2425 Taif 21944 Saudi Arabia
| | - Shams A M Issa
- Physics Department, Faculty of Science, University of Tabuk Tabuk Saudi Arabia
| | - M M Uddin
- Department of Physics, Chittagong University of Engineering and Technology Chattogram 4349 Bangladesh
| | - Md Habib Ullah
- Department of Physics, American International University-Bangladesh 408/1, Kuratoli, Khilkhet Dhaka 1229 Bangladesh
| | - Hajir Wahbi
- Department of Chemistry, Faculty of Science, Northern Border University Arar 91431 Saudi Arabia
| | - M Y Hanfi
- Ural Federal University Ekaterinburg 620002 Russia
- Nuclear Materials Authority P. O. Box 530, El-Maadi Cairo Egypt
| |
Collapse
|
2
|
Fasahat S, Schäfer B, Xu K, Fiuza-Maneiro N, Gómez-Graña S, Alonso MI, Polavarapu L, Goñi AR. Absence of Anomalous Electron-Phonon Coupling in the Near-Ambient Gap Temperature Renormalization of CsPbBr 3 Nanocrystals. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:453-463. [PMID: 40115613 PMCID: PMC11921149 DOI: 10.1021/acs.jpcc.4c06265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/07/2024] [Accepted: 12/06/2024] [Indexed: 03/23/2025]
Abstract
Metal halide perovskites exhibit a fairly linear increase of the bandgap with increasing temperature, when crystallized in a tetragonal or cubic phase. In general, both thermal expansion and electron-phonon interaction effects contribute equally to this variation of the gap with temperature. Herein, we have disentangled both contributions in the case of colloidal CsPbBr3 nanocrystals (NCs) by means of photoluminescence (PL) measurements as a function of temperature (from 80 K to ambient) and hydrostatic pressure (from atmospheric to ca. 1 GPa). At around room temperature, CsPbBr3 NCs also show a linear increase of the bandgap with temperature with a slope similar to that of the archetypal methylammonium lead iodide (MAPbI3) perovskite. This is somehow unexpected in view of the recent observations in mixed-cation Cs x MA1-x PbI3 single crystals with low Cs content, for which Cs incorporation caused a reduction by a factor of 2 in the temperature slope of the gap. This effect was ascribed to an anomalous electron-phonon interaction induced by the coupling with vibrational modes admixed with the Cs translational dynamics inside the cage voids. Thus, no trace of anomalous coupling is found in CsPbBr3 NCs. However, we managed to show that the linear temperature renormalization exhibited by the gap of CsPbBr3 NCs is shared with most metal halide perovskites, due to a common bonding/antibonding and atomic orbital character of the electronic band-edge states. In this way, we provide a deeper understanding of the gap temperature dependence in the general case when the A-site cation dynamics is not involved in the electron-phonon interaction.
Collapse
Affiliation(s)
- Shima Fasahat
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Benedikt Schäfer
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Kai Xu
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Nadesh Fiuza-Maneiro
- CINBIO, Materials Chemistry and Physics Group, Department of Physical Chemistry, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain
| | - Sergio Gómez-Graña
- CINBIO, Materials Chemistry and Physics Group, Department of Physical Chemistry, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain
| | - M Isabel Alonso
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Lakshminarayana Polavarapu
- CINBIO, Materials Chemistry and Physics Group, Department of Physical Chemistry, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain
| | - Alejandro R Goñi
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
3
|
Yue L, Tian F, Liu R, Li Z, Li R, Li C, Li Y, Yang D, Li X, Li Q, Zhang L, Liu B. Dramatic switchable polarities in conduction type and self-driven photocurrent of BiI 3 via pressure engineering. Natl Sci Rev 2025; 12:nwae419. [PMID: 39764507 PMCID: PMC11702651 DOI: 10.1093/nsr/nwae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025] Open
Abstract
The intentional manipulation of carrier characteristics serves as a fundamental principle underlying various energy-related and optoelectronic semiconductor technologies. However, achieving switchable and reversible control of the polarity within a single material to design optimized devices remains a significant challenge. Herein, we successfully achieved dramatic reversible p-n switching during the semiconductor‒semiconductor phase transition in BiI3 via pressure, accompanied by a substantial improvement in their photoelectric properties. Carrier polarity flipping was monitored by measuring the photocurrent dominated by the photothermoelectric (PTE) effect in a zero-bias two-terminal device. Accompanying the p-n transition, a switch between positive and negative photocurrents was observed in BiI3, providing a feasible method to determine the conduction type of materials via photoelectric measurements. Furthermore, the combined effects of the photoconductivity and PTE mechanism improved the photoresponse and extended the detection bandwidth to encompass the optical communication waveband (1650 nm) under an external bias. The remarkable photoelectric properties were attributed to the enhanced energy band dispersion and increased charge density of BiI3 under pressure. These findings highlight the effective and flexible modulation of carrier properties through pressure engineering and provide a foundation for designing and implementing multifunctional logic circuits and optoelectronic devices.
Collapse
Affiliation(s)
- Lei Yue
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Fuyu Tian
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Ran Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Zonglun Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Ruixin Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Chenyi Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Yanchun Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Yang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Quanjun Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Lijun Zhang
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Song J, Li T, Li W, Xiao Z, Chen B, Li D, Ducharme S, Lu Y, Huang J, Zia R, Hong X. Enabling Fast Photoresponse in Hybrid Perovskite/MoS 2 Photodetectors by Separating Local Photocharge Generation and Recombination. NANO LETTERS 2024; 24:14307-14314. [PMID: 39495890 DOI: 10.1021/acs.nanolett.4c03950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Interfacing CH3NH3PbI3 (MAPbI3) with 2D van der Waals materials in lateral photodetectors can suppress the dark current and driving voltage, while the interlayer charge separation also renders slower charge dynamics. In this work, we show that more than one order of magnitude faster photoresponse time can be achieved in MAPbI3/MoS2 lateral photodetectors by locally separating the photocharge generation and recombination through a parallel channel of single-layer MAPbI3. Photocurrent (Iph) mapping reveals electron diffusion lengths of about 20 μm in single-layer MAPbI3 and 4 μm in the MAPbI3/MoS2 heterostructure. The illumination-power scaling of Iph and time-resolved photoluminescence studies point to the dominant roles of the heterostructure region in photogeneration and single-layer MAPbI3 in charge recombination. Our results shed new light on the material design that can concurrently enhance photoresponsivity, reduce driving voltage, and sustain high operation speed, paving the path for developing high-performance lateral photodetectors based on hybrid perovskites.
Collapse
Affiliation(s)
- Jingfeng Song
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Tianlin Li
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Wenhao Li
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Zhiyong Xiao
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Bo Chen
- Department of Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dawei Li
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Stephen Ducharme
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Yongfeng Lu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jinsong Huang
- Department of Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rashid Zia
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Xia Hong
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
5
|
Hosen A. Investigating the effects of hydrostatic pressure on the physical properties of cubic Sr 3BCl 3 (B = As, Sb) for improved optoelectronic applications: A DFT study. Heliyon 2024; 10:e35855. [PMID: 39220978 PMCID: PMC11365404 DOI: 10.1016/j.heliyon.2024.e35855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
This article explores changes in the structural, electronic, elastic, and optical properties of the novel cubic Sr3BCl3 (B = As, Sb) with increasing pressure. This research aims to decrease the electronic band gap of Sr3BCl3 (B = As, Sb) by applying pressure, with the objective of enhancing the optical properties and evaluating the potential of these compounds for use in optoelectronic applications. It has been revealed that both the lattice parameter and cell volume exhibit a declining pattern as pressure increases. At ambient pressure, analysis of the band structure revealed that both Sr3AsCl3 and Sr3SbCl3 are direct band gap semiconductors. With increasing pressure up to 25 GPa the electronic band gap of Sr3AsCl3 (Sr3SbCl3) reduces from 1.70 (1.72) eV to 0.35 (0.10) eV. However, applying hydrostatic pressure enables the attainment of optimal bandgaps for Sr3AsCl3 and Sr3SbCl3, offering theoretical backing for the adjustment of Sr3BCl3 (B = As, Sb) perovskite's bandgaps. The electron and hole effective masses in this perovskite exhibit a gradual decrease as pressure rises from 0 to 25 GPa, promoting the conductivity of both electrons and holes. The elastic properties are calculated using the Thermo-PW tool, revealing that they are anisotropic, ductile, mechanically stable, and resistant to plastic deformation. Importantly, these mechanical properties of both compounds are significantly enhanced under pressure. Optical properties, including the absorption and extinction coefficients, dielectric function, refractive index, reflectivity, and loss function, were calculated within the 0-20 eV range under different pressure conditions. The calculated optical properties highlight the versatility and suitability of Sr3AsCl3 and Sr3SbCl3 perovskites for pressure-tunable optoelectronic devices.
Collapse
Affiliation(s)
- Asif Hosen
- Department of Materials Science and Engineering, Khulna University of Engineering & Technology (KUET), Khulna, 9203, Bangladesh
| |
Collapse
|
6
|
Dong B, Xie Y, Lou Y. The Effect of Component Defects on the Performance of Perovskite Devices and the Low-Cost Preparation of High-Purity PbI 2. Molecules 2024; 29:3810. [PMID: 39202888 PMCID: PMC11357023 DOI: 10.3390/molecules29163810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
The efficiency and reproducibility of perovskite solar cells (PSCs) are significantly influenced by the purity of lead iodide (PbI2) in the raw materials used. Pb(OH)I has been identified as the primary impurity generated from PbI2 in water-based synthesis. Consequently, a comprehensive investigation into the impact of Pb(OH)I impurities on film and device performance is essential. In this study, PbI2, with varying stoichiometries, was synthesized to examine the effects of different Pb(OH)I levels on perovskite device performance. The characterization results revealed that even trace amounts of Pb(OH)I impede the formation of precursor prenucleation clusters. These impurities also increase the energy barrier of the α-phase and facilitate the transition of the intermediate phase to the δ-phase. These effects result in poor perovskite film morphology and sub-optimal photovoltaic device performance. To address these issues, a cost-effective method for preparing high-stoichiometry PbI2 was developed. The formation of Pb(OH)I was effectively inhibited through several strategies: adjusting solution pH and temperature, modifying material addition order, simplifying the precipitation-recrystallization process, and introducing H3PO2 as an additive. These modifications enabled the one-step synthesis of high-purity PbI2. PSCs prepared using this newly synthesized high-stoichiometry PbI2 demonstrated photovoltaic performance comparable to those fabricated with commercial PbI2 (purity ≥ 99.999%). Our novel method offers a cost-effective alternative for synthesizing high-stoichiometry PbI2, thereby providing a viable option for the production of high-performance PSCs.
Collapse
Affiliation(s)
| | | | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; (B.D.); (Y.X.)
| |
Collapse
|
7
|
Miah MH, Khandaker MU, Rahman MB, Nur-E-Alam M, Islam MA. Band gap tuning of perovskite solar cells for enhancing the efficiency and stability: issues and prospects. RSC Adv 2024; 14:15876-15906. [PMID: 38756852 PMCID: PMC11097048 DOI: 10.1039/d4ra01640h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024] Open
Abstract
The intriguing optoelectronic properties, diverse applications, and facile fabrication techniques of perovskite materials have garnered substantial research interest worldwide. Their outstanding performance in solar cell applications and excellent efficiency at the lab scale have already been proven. However, owing to their low stability, the widespread manufacturing of perovskite solar cells (PSCs) for commercialization is still far off. Several instability factors of PSCs, including the intrinsic and extrinsic instability of perovskite materials, have already been identified, and a variety of approaches have been adopted to improve the material quality, stability, and efficiency of PSCs. In this review, we have comprehensively presented the significance of band gap tuning in achieving both high-performance and high-stability PSCs in the presence of various degradation factors. By investigating the mechanisms of band gap engineering, we have highlighted its pivotal role in optimizing PSCs for improved efficiency and resilience.
Collapse
Affiliation(s)
- Md Helal Miah
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj-8100 Bangladesh
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
- Faculty of Graduate Studies, Daffodil International University Daffodil Smart City, Birulia, Savar Dhaka-1216 Bangladesh
| | - Md Bulu Rahman
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj-8100 Bangladesh
| | - Mohammad Nur-E-Alam
- Institute of Sustainable Energy, Universiti Tenaga Nasional Jalan IKRAM-UNITEN Kajang 43000 Selangor Malaysia
- School of Science, Edith Cowan University 270 Joondalup Drive Joondalup-6027 WA Australia
| | - Mohammad Aminul Islam
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Jalan Universiti 50603 Kuala Lumpur Malaysia
| |
Collapse
|
8
|
Schröder VRF, Fratzscher N, Zorn Morales N, Rühl DS, Hermerschmidt F, Unger EL, List-Kratochvil EJW. Bicolour, large area, inkjet-printed metal halide perovskite light emitting diodes. MATERIALS HORIZONS 2024; 11:1989-1996. [PMID: 38353605 DOI: 10.1039/d3mh02025h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
We demonstrate a bicoloured metal halide perovskite (MHP) light emitting diode (LED) fabricated in two sequential inkjet printing steps. By adjusting the printing parameters, we selectively and deliberately redissolve and recrystallize the first printed emissive layer to add a pattern emitting in a different color. The red light emitting features (on a green light emitting background) have a minimum size of 100 μm and originate from iodide-rich domains in a phase-segregated, mixed MHP. This phase forms between the first layer, a bromide-based MHP, which is partially dissolved by printing, and the second layer, an iodide-containing MHP. With an optimised printing process we can retain the active layer integrity and fabricate bicolour, large area MHP-based LEDs with up to 1600 mm2 active area. The two emission peaks at 535 nm and 710 nm are well separated and produce a strong visual contrast.
Collapse
Affiliation(s)
- Vincent R F Schröder
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Nicolas Fratzscher
- Institut für Physik, Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany.
| | - Nicolas Zorn Morales
- Institut für Physik, Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany.
| | - Daniel Steffen Rühl
- Institut für Physik, Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany.
| | - Felix Hermerschmidt
- Institut für Physik, Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany.
| | - Eva L Unger
- Department Solution Processing of Hybrid Materials & Devices, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin, Germany
- Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
- Chemical Physics and NanoLund, Lund University, PO Box 124, 22100 Lund, Sweden
| | - Emil J W List-Kratochvil
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut für Physik, Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany.
| |
Collapse
|
9
|
Srathongsian L, Kaewprajak A, Naikaew A, Seriwattanachai C, Phuphathanaphong N, Inna A, Chotchuangchutchaval T, Passatorntaschakorn W, Kumnorkaew P, Sahasithiwat S, Wongratanaphisan D, Ruankham P, Supruangnet R, Nakajima H, Pakawatpanurut P, Kanjanaboos P. Cs and Br tuning to achieve ultralow-hysteresis and high-performance indoor triple cation perovskite solar cell with low-cost carbon-based electrode. iScience 2024; 27:109306. [PMID: 38495820 PMCID: PMC10940937 DOI: 10.1016/j.isci.2024.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/26/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
With high efficacy for electron-photon conversion under low light, perovskite materials show great potential for indoor solar cell applications to power small electronics for internet of things (IoTs). To match the spectrum of an indoor LED light source, triple cation perovskite composition was varied to adjust band gap values via Cs and Br tuning. However, increased band gaps lead to morphology, phase instability, and defect issues. 10% Cs and 30% Br strike the right balance, leading to low-cost carbon-based devices with the highest power conversion efficiency (PCE) of 31.94% and good stability under low light cycles. With further improvement in device stack and size, functional solar cells with the ultralow hysteresis index (HI) of 0.1 and the highest PCE of 30.09% with an active area of 1 cm2 can be achieved. A module from connecting two such cells in series can simultaneously power humidity and temperature sensors under 1000 lux.
Collapse
Affiliation(s)
- Ladda Srathongsian
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Anusit Kaewprajak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Atittaya Naikaew
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chaowaphat Seriwattanachai
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Napan Phuphathanaphong
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Anuchytt Inna
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thana Chotchuangchutchaval
- Center of Sustainable Energy and Engineering Materials (SEEM), College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
- Department of Mechanical Engineering Technology, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Woraprom Passatorntaschakorn
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pisist Kumnorkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Somboon Sahasithiwat
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Duangmanee Wongratanaphisan
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pipat Ruankham
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Hideki Nakajima
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Pasit Pakawatpanurut
- Department of Chemistry and Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH CIC), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Pongsakorn Kanjanaboos
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH CIC), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Ali S, Ismail PM, Khan M, Dang A, Ali S, Zada A, Raziq F, Khan I, Khan MS, Ateeq M, Khan W, Bakhtiar SH, Ali H, Wu X, Shah MIA, Vinu A, Yi J, Xia P, Qiao L. Charge transfer in TiO 2-based photocatalysis: fundamental mechanisms to material strategies. NANOSCALE 2024; 16:4352-4377. [PMID: 38275275 DOI: 10.1039/d3nr04534j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Semiconductor-based photocatalysis has attracted significant interest due to its capacity to directly exploit solar energy and generate solar fuels, including water splitting, CO2 reduction, pollutant degradation, and bacterial inactivation. However, achieving the maximum efficiency in photocatalytic processes remains a challenge owing to the speedy recombination of electron-hole pairs and the limited use of light. Therefore, significant endeavours have been devoted to addressing these issues. Specifically, well-designed heterojunction photocatalysts have been demonstrated to exhibit enhanced photocatalytic activity through the physical distancing of electron-hole pairs generated during the photocatalytic process. In this review, we provide a systematic discussion ranging from fundamental mechanisms to material strategies, focusing on TiO2-based heterojunction photocatalysts. Current efforts are focused on developing heterojunction photocatalysts based on TiO2 for a variety of photocatalytic applications, and these projects are explained and assessed. Finally, we offer a concise summary of the main insights and challenges in the utilization of TiO2-based heterojunction photocatalysts for photocatalysis. We expect that this review will serve as a valuable resource to improve the efficiency of TiO2-based heterojunctions for energy generation and environmental remediation.
Collapse
Affiliation(s)
- Sharafat Ali
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Pir Muhammad Ismail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Muhammad Khan
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Alei Dang
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Sajjad Ali
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Fazal Raziq
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Imran Khan
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, Changsha, 410083, People's Republic of China
| | - Muhammad Shakeel Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Syedul Hasnain Bakhtiar
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haider Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Xiaoqiang Wu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Muhammad Ishaq Ali Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Pengfei Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Liang Qiao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
11
|
Afre RA, Pugliese D. Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies. MICROMACHINES 2024; 15:192. [PMID: 38398920 PMCID: PMC10890723 DOI: 10.3390/mi15020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Perovskite solar cells (PSCs) are gaining popularity due to their high efficiency and low-cost fabrication. In recent decades, noticeable research efforts have been devoted to improving the stability of these cells under ambient conditions. Moreover, researchers are exploring new materials and fabrication techniques to enhance the performance of PSCs under various environmental conditions. The mechanical stability of flexible PSCs is another area of research that has gained significant attention. The latest research also focuses on developing tin-based PSCs that can overcome the challenges associated with lead-based perovskites. This review article provides a comprehensive overview of the latest advances in materials, fabrication techniques, and stability enhancement strategies for PSCs. It discusses the recent progress in perovskite crystal structure engineering, device construction, and fabrication procedures that has led to significant improvements in the photo conversion efficiency of these solar devices. The article also highlights the challenges associated with PSCs such as their poor stability under ambient conditions and discusses various strategies employed to enhance their stability. These strategies include the use of novel materials for charge transport layers and encapsulation techniques to protect PSCs from moisture and oxygen. Finally, this article provides a critical assessment of the current state of the art in PSC research and discusses future prospects for this technology. This review concludes that PSCs have great potential as a low-cost alternative to conventional silicon-based solar cells but require further research to improve their stability under ambient conditions in view of their definitive commercialization.
Collapse
Affiliation(s)
- Rakesh A. Afre
- Centre of Excellence in Nanotechnology (CoEN), Faculty of Engineering, Assam down town University (AdtU), Guwahati 781026, Assam, India;
| | - Diego Pugliese
- National Institute of Metrological Research (INRiM), Strada delle Cacce 91, 10135 Torino, Italy
| |
Collapse
|
12
|
Patel MJ, Som NN, Gupta SK, Gajjar PN. Two-dimensional CsPbI 3/CsPbBr 3 vertical heterostructure: a potential photovoltaic absorber. Sci Rep 2023; 13:21551. [PMID: 38057362 DOI: 10.1038/s41598-023-48753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
First-principles methods have been employed here to calculate structural, electronic and optical properties of CsPbI3 and CsPbBr3, in monolayer and heterostructure (HS) (PbI2-CsBr (HS1), CsI-CsBr (HS2), CsI-PbBr2 (HS3) and PbI2-PbBr2 (HS4)) configurations. Imaginary frequencies are absent in phonon dispersion curves of CsPbI3 and CsPbBr3 monolayers which depicts their dynamical stability. Values of interfacial binding energies signifies stability of our simulated heterostructures. The CsPbI3 monolayer, CsPbBr3 monolayer, HS1, HS2, HS3 and HS4 possess direct bandgap of 2.19 eV, 2.73 eV, 2.41 eV, 2.11 eV, 1.88 eV and 2.07 eV, respectively. In the HS3, interface interactions between its constituent monolayers causes substantial decrease in its resultant bandgap which suggests its solar cell applications. Static dielectric constants of all simulated heterostructures are higher when compared to those of pristine monolayers which demonstrates that these heterostructures possess low charge carrier recombination rate. In optical absorption plots of materials, the plot of HS3 displayed a red shift and depicted absorption of a substantial part of visible spectrum. Later on, via Shockley-Queisser limit we have calculated solar cell parameters of all the reported structures. The calculations showed that HS2, HS3 and HS4 showcased enhanced power conversion efficiency compared to CsPbI3 and CsPbBr3 monolayers when utilized as an absorber layer in solar cells.
Collapse
Affiliation(s)
- Manushi J Patel
- Department of Physics, University School of Sciences, Gujarat University, Ahmedabad, 380 009, Gujarat, India
| | - Narayan N Som
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142, Warsaw, Poland
| | - Sanjeev K Gupta
- Computational Materials and Nanoscience Group, Department of Physics and Electronics, St. Xavier's College, Ahmedabad, 380 009, Gujarat, India.
| | - P N Gajjar
- Department of Physics, University School of Sciences, Gujarat University, Ahmedabad, 380 009, Gujarat, India.
| |
Collapse
|
13
|
Magliano E, Mariani P, Agresti A, Pescetelli S, Matteocci F, Taheri B, Cricenti A, Luce M, Di Carlo A. Semitransparent Perovskite Solar Cells with Ultrathin Protective Buffer Layers. ACS APPLIED ENERGY MATERIALS 2023; 6:10340-10353. [PMID: 37886223 PMCID: PMC10598631 DOI: 10.1021/acsaem.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023]
Abstract
Semitransparent perovskite solar cells (ST-PSCs) are increasingly important in a range of applications, including top cells in tandem devices and see-through photovoltaics. Transparent conductive oxides (TCOs) are commonly used as transparent electrodes, with sputtering being the preferred deposition method. However, this process can damage exposed layers, affecting the electrical performance of the devices. In this study, an indium tin oxide (ITO) deposition process that effectively suppresses sputtering damage was developed using a transition metal oxides (TMOs)-based buffer layer. An ultrathin (<10 nm) layer of evaporated vanadium oxide or molybdenum oxide was found to be effective in protecting against sputtering damage in ST-PSCs for tandem applications, as well as in thin perovskite-based devices for building-integrated photovoltaics. The identification of minimal parasitic absorption, the high work function and the analysis of oxygen vacancies denoted that the TMO layers are suitable for use in ST-PSCs. The highest fill factor (FF) achieved was 76%, and the efficiency (16.4%) was reduced by less than 10% when compared with the efficiency of gold-based PSCs. Moreover, up-scaling to 1 cm2-large area ST-PSCs with the buffer layer was successfully demonstrated with an FF of ∼70% and an efficiency of 15.7%. Comparing the two TMOs, the ST-PSC with an ultrathin V2Ox layer was slightly less efficient than that with MoOx, but its superior transmittance in the near infrared and greater light-soaking stability (a T80 of 600 h for V2Ox compared to a T80 of 12 h for MoOx) make V2Ox a promising buffer layer for preventing ITO sputtering damage in ST-PSCs.
Collapse
Affiliation(s)
- Erica Magliano
- C.H.O.S.E.
(Center for Hybrid and Organic Solar Energy), Electronic Engineering
Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Paolo Mariani
- C.H.O.S.E.
(Center for Hybrid and Organic Solar Energy), Electronic Engineering
Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Antonio Agresti
- C.H.O.S.E.
(Center for Hybrid and Organic Solar Energy), Electronic Engineering
Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Sara Pescetelli
- C.H.O.S.E.
(Center for Hybrid and Organic Solar Energy), Electronic Engineering
Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Fabio Matteocci
- C.H.O.S.E.
(Center for Hybrid and Organic Solar Energy), Electronic Engineering
Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Babak Taheri
- ENEA
- Centro Ricerche Frascati, Via Enrico Fermi, 45, 00044, Frascati, Rome, Italy
| | - Antonio Cricenti
- Istituto
di Struttura della Materia (CNR-ISM) National Research Council, via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Marco Luce
- Istituto
di Struttura della Materia (CNR-ISM) National Research Council, via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Aldo Di Carlo
- C.H.O.S.E.
(Center for Hybrid and Organic Solar Energy), Electronic Engineering
Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
- Istituto
di Struttura della Materia (CNR-ISM) National Research Council, via del Fosso del Cavaliere 100, 00133, Rome, Italy
| |
Collapse
|
14
|
Wang QS, Yuan YC, Li CF, Zhang ZR, Xia C, Pan WG, Guo RT. Research Progress on Photocatalytic CO 2 Reduction Based on Perovskite Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301892. [PMID: 37194985 DOI: 10.1002/smll.202301892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Photocatalytic CO2 reduction to valuable fuels is a promising way to alleviate anthropogenic CO2 emissions and energy crises. Perovskite oxides have attracted widespread attention as photocatalysts for CO2 reduction by virtue of their high catalytic activity, compositional flexibility, bandgap adjustability, and good stability. In this review, the basic theory of photocatalysis and the mechanism of CO2 reduction over perovskite oxide are first introduced. Then, perovskite oxides' structures, properties, and preparations are presented. In detail, the research progress on perovskite oxides for photocatalytic CO2 reduction is discussed from five aspects: as a photocatalyst in its own right, metal cation doping at A and B sites of perovskite oxides, anion doping at O sites of perovskite oxides and oxygen vacancies, loading cocatalyst on perovskite oxides, and constructing heterojunction with other semiconductors. Finally, the development prospects of perovskite oxides for photocatalytic CO2 reduction are put forward. This article should serve as a useful guide for creating perovskite oxide-based photocatalysts that are more effective and reasonable.
Collapse
Affiliation(s)
- Qing-Shan Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200090, China
| | - Yi-Chao Yuan
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200090, China
| | - Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Cheng Xia
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
15
|
Ribeiro G, Ferreira G, Menda UD, Alexandre M, Brites MJ, Barreiros MA, Jana S, Águas H, Martins R, Fernandes PA, Salomé P, Mendes MJ. Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2447. [PMID: 37686955 PMCID: PMC10489900 DOI: 10.3390/nano13172447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
By taking advantage of the outstanding intrinsic optoelectronic properties of perovskite-based photovoltaic materials, together with the strong near-infrared (NIR) absorption and electronic confinement in PbS quantum dots (QDs), sub-bandgap photocurrent generation is possible, opening the way for solar cell efficiencies surpassing the classical limits. The present study shows an effective methodology for the inclusion of high densities of colloidal PbS QDs in a MAPbI3 (methylammonium lead iodide) perovskite matrix as a means to enhance the spectral window of photon absorption of the perovskite host film and allow photocurrent production below its bandgap. The QDs were introduced in the perovskite matrix in different sizes and concentrations to study the formation of quantum-confined levels within the host bandgap and the potential formation of a delocalized intermediate mini-band (IB). Pronounced sub-bandgap (in NIR) absorption was optically confirmed with the introduction of QDs in the perovskite. The consequent photocurrent generation was demonstrated via photoconductivity measurements, which indicated IB establishment in the films. Despite verifying the reduced crystallinity of the MAPbI3 matrix with a higher concentration and size of the embedded QDs, the nanostructured films showed pronounced enhancement (above 10-fold) in NIR absorption and consequent photocurrent generation at photon energies below the perovskite bandgap.
Collapse
Affiliation(s)
- G. Ribeiro
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
- INL, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.A.F.); (P.S.)
| | - G. Ferreira
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| | - U. D. Menda
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| | - M. Alexandre
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| | - M. J. Brites
- LNEG, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal; (M.J.B.)
| | - M. A. Barreiros
- LNEG, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal; (M.J.B.)
| | - S. Jana
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| | - H. Águas
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| | - R. Martins
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| | - P. A. Fernandes
- INL, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.A.F.); (P.S.)
- CIETI, Departamento de Física, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal
- Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - P. Salomé
- INL, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.A.F.); (P.S.)
- i3N, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. J. Mendes
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| |
Collapse
|
16
|
Varadwaj PR, Varadwaj A, Marques HM, Yamashita K. Methylammonium Tetrel Halide Perovskite Ion Pairs and Their Dimers: The Interplay between the Hydrogen-, Pnictogen- and Tetrel-Bonding Interactions. Int J Mol Sci 2023; 24:10554. [PMID: 37445738 DOI: 10.3390/ijms241310554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The structural stability of the extensively studied organic-inorganic hybrid methylammonium tetrel halide perovskite semiconductors, MATtX3 (MA = CH3NH3+; Tt = Ge, Sn, Pb; X = Cl, Br, I), arises as a result of non-covalent interactions between an organic cation (CH3NH3+) and an inorganic anion (TtX3-). However, the basic understanding of the underlying chemical bonding interactions in these systems that link the ionic moieties together in complex configurations is still limited. In this study, ion pair models constituting the organic and inorganic ions were regarded as the repeating units of periodic crystal systems and density functional theory simulations were performed to elucidate the nature of the non-covalent interactions between them. It is demonstrated that not only the charge-assisted N-H···X and C-H···X hydrogen bonds but also the C-N···X pnictogen bonds interact to stabilize the ion pairs and to define their geometries in the gas phase. Similar interactions are also responsible for the formation of crystalline MATtX3 in the low-temperature phase, some of which have been delineated in previous studies. In contrast, the Tt···X tetrel bonding interactions, which are hidden as coordinate bonds in the crystals, play a vital role in holding the inorganic anionic moieties (TtX3-) together. We have demonstrated that each Tt in each [CH3NH3+•TtX3-] ion pair has the capacity to donate three tetrel (σ-hole) bonds to the halides of three nearest neighbor TtX3- units, thus causing the emergence of an infinite array of 3D TtX64- octahedra in the crystalline phase. The TtX44- octahedra are corner-shared to form cage-like inorganic frameworks that host the organic cation, leading to the formation of functional tetrel halide perovskite materials that have outstanding optoelectronic properties in the solid state. We harnessed the results using the quantum theory of atoms in molecules, natural bond orbital, molecular electrostatic surface potential and independent gradient models to validate these conclusions.
Collapse
Affiliation(s)
- Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| | - Helder M Marques
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Pokryshkin NS, Mantsevich VN, Timoshenko VY. Anti-Stokes Photoluminescence in Halide Perovskite Nanocrystals: From Understanding the Mechanism towards Application in Fully Solid-State Optical Cooling. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1833. [PMID: 37368263 DOI: 10.3390/nano13121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Anti-Stokes photoluminescence (ASPL) is an up-conversion phonon-assisted process of radiative recombination of photoexcited charge carriers when the ASPL photon energy is above the excitation one. This process can be very efficient in nanocrystals (NCs) of metalorganic and inorganic semiconductors with perovskite (Pe) crystal structure. In this review, we present an analysis of the basic mechanisms of ASPL and discuss its efficiency depending on the size distribution and surface passivation of Pe-NCs as well as the optical excitation energy and temperature. When the ASPL process is sufficiently efficient, it can result in an escape of most of the optical excitation together with the phonon energy from the Pe-NCs. It can be used in optical fully solid-state cooling or optical refrigeration.
Collapse
Affiliation(s)
- Nikolay S Pokryshkin
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Phys-Bio Institute, University "MEPhI", 115409 Moscow, Russia
| | | | - Victor Y Timoshenko
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
18
|
Raturi A, Mittal P, Choudhary S. Strain tunability of the properties of Fe- doped lithium niobate for optoelectronic applications: Theoretical insights. MAIN GROUP CHEMISTRY 2023. [DOI: 10.3233/mgc-220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
This work elucidates the impact of strain on the optical and electronic properties of Fe-doped lithium niobate using density functional theory. The Fe-doped lithium niobate is applied with the tensile and compressive strain (10% and 20%) and optical properties are analyzed. Lithium niobate, a large bandgap material (bandgap 3.56 eV), has absorption limited to the UV region of the optical spectrum only. For the Fe-doped lithium niobate, the bandgap is 1.38 eV, with low absorption in the visible region. The computed results show that the tensile and compressive strains have significantly narrowed down the bandgap of Fe-doped lithium niobate in compression to the unstrained structures. The decrease in the bandgap is largest for the tensile strain of 20% among all the applied strains. Further, visible light absorption is also improved due to the application of strain. The improvement in visible light absorption is highest for the tensile strain of 20% with absorption completely shifted in the desired visible region. The improved visible absorption due to the applied strain makes Fe-doped lithium niobate a potential candidate for optoelectronics and solar applications.
Collapse
Affiliation(s)
- Ashish Raturi
- Department of Electronics and Communication Engineering, Delhi Technological University, New Delhi, India
| | - Poornima Mittal
- Department of Electronics and Communication Engineering, Delhi Technological University, New Delhi, India
| | - Sudhanshu Choudhary
- Department of Electronics and Communication Engineering, National Institute of Technology, Kurukshetra, India
| |
Collapse
|
19
|
Zuo L, Li Z, Chen H. Ion Migration and Accumulation in Halide Perovskite Solar Cells
†. CHINESE J CHEM 2023. [DOI: 10.1002/cjoc.202200505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Lijian Zuo
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
- Zhejiang University‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou Zhejiang 310014 China
| | - Zexin Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
20
|
Li D, Dong X, Cheng P, Song L, Wu Z, Chen Y, Huang W. Metal Halide Perovskite/Electrode Contacts in Charge-Transporting-Layer-Free Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203683. [PMID: 36319474 PMCID: PMC9798992 DOI: 10.1002/advs.202203683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Metal halide perovskites have drawn substantial interest in optoelectronic devices in the past decade. Perovskite/electrode contacts are crucial for constructing high-performance charge-transporting-layer-free perovskite devices, such as solar cells, field-effect transistors, artificial synapses, memories, etc. Many studies have evidenced that the perovskite layer can directly contact the electrodes, showing abundant physicochemical, electronic, and photoelectric properties in charge-transporting-layer-free perovskite devices. Meanwhile, for perovskite/metal contacts, some critical interfacial physical and chemical processes are reported, including band bending, interface dipoles, metal halogenation, and perovskite decomposition induced by metal electrodes. Thus, a systematic summary of the role of metal halide perovskite/electrode contacts on device performance is essential. This review summarizes and discusses charge carrier dynamics, electronic band engineering, electrode corrosion, electrochemical metallization and dissolution, perovskite decomposition, and interface engineering in perovskite/electrode contacts-based electronic devices for a comprehensive understanding of the contacts. The physicochemical, electronic, and morphological properties of various perovskite/electrode contacts, as well as relevant engineering techniques, are presented. Finally, the current challenges are analyzed, and appropriate recommendations are put forward. It can be expected that further research will lead to significant breakthroughs in their application and promote reforms and innovations in future solid-state physics and materials science.
Collapse
Affiliation(s)
- Deli Li
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072P. R. China
- Fujian cross Strait Institute of Flexible Electronics (Future Technologies)Fujian Normal UniversityFuzhou350117P. R. China
| | - Xue Dong
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072P. R. China
| | - Peng Cheng
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072P. R. China
| | - Lin Song
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072P. R. China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072P. R. China
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and EngineeringNorthwestern Polytechnical University127 West Youyi RoadXi'an710072P. R. China
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced MaterialsNanjing University of Posts and TelecommunicationsNanjing210023P. R. China
| |
Collapse
|
21
|
Heidrich R, Heinze KL, Berwig S, Ge J, Scheer R, Pistor P. Impact of dynamic co-evaporation schemes on the growth of methylammonium lead iodide absorbers for inverted solar cells. Sci Rep 2022; 12:19167. [DOI: 10.1038/s41598-022-23132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractA variety of different synthesis methods for the fabrication of solar cell absorbers based on the lead halide perovskite methylammonium lead iodide (MAPbI3, MAPI) have been successfully developed in the past. In this work, we elaborate upon vacuum-based dual source co-evaporation as an industrially attractive processing technology. We present non-stationary processing schemes and concentrate on details of co-evaporation schemes where we intentionally delay the start/end points of one of the two evaporated components (MAI and PbI2). Previously, it was found for solar cells based on a regular n-i-p structure, that the pre-evaporation of PbI$$_2$$
2
is highly beneficial for absorber growth and solar cell performance. Here, we apply similar non-stationary processing schemes with pre/post-deposition sequences for the growth of MAPI absorbers in an inverted p-i-n solar cell architecture. Solar cell parameters as well as details of the absorber growth are compared for a set of different evaporation schemes. Contrary to our preliminary assumptions, we find the pre-evaporation of PbI2 to be detrimental in the inverted configuration, indicating that the beneficial effect of the seed layers originates from interface properties related to improved charge carrier transport and extraction across this interface rather than being related to an improved absorber growth. This is further evidenced by a performance improvement of inverted solar cell devices with pre-evaporated MAI and post-deposited PbI2 layers. Finally, we provide two hypothetical electronic models that might cause the observed effects.
Collapse
|
22
|
Liu YC, Lin JT, Lee YL, Hung CM, Chou TC, Chao WC, Huang ZX, Chiang TH, Chiu CW, Chuang WT, Chou PT. Recognizing the Importance of Fast Nonisothermal Crystallization for High-Performance Two-Dimensional Dion-Jacobson Perovskite Solar Cells with High Fill Factors: A Comprehensive Mechanistic Study. J Am Chem Soc 2022; 144:14897-14906. [PMID: 35924834 DOI: 10.1021/jacs.2c06342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional (2D) Dion-Jacobson (DJ) perovskite solar cells (PSCs), despite their advantage in versatility of n-layer variation, are subject to poor photovoltaic efficiency, particularly in the fill factor (FF), compared to their three-dimensional counterparts. To enhance the performance of DJ PSCs, the process of growing crystals and hence the corresponding morphology of DJ perovskites are of prime importance. Herein, we report the fast nonisothermal (NIT) crystallization protocol that is previously unrecognized for 2D perovskites to significantly improve the morphology, orientation, and charge transport of the DJ perovskite films. Comprehensive mechanistic studies reveal that the NIT effect leads to the secondary crystallization stage, forming network-like channels that play a vital role in the FF's leap-forward improvement and hence the DJ PSC's performance. As a whole, the NIT crystallized PSCs demonstrate a high power conversion efficiency and an FF of up to 19.87 and 86.16%, respectively. This research thus provides new perspectives to achieve highly efficient DJ PSCs.
Collapse
Affiliation(s)
- Yi-Chun Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jin-Tai Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yao-Lin Lee
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chieh-Ming Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tai-Che Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chih Chao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Zhi-Xuan Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Hsuan Chiang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Wen Chiu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Centre, Hsinchu 30076, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
23
|
Graded multilayer triple cation perovskites for high speed and detectivity self-powered photodetector via scalable spray coating process. Sci Rep 2022; 12:11058. [PMID: 35773302 PMCID: PMC9247054 DOI: 10.1038/s41598-022-14774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Rapid advancements in perovskite materials have led to potential applications in various optoelectronic devices, such as solar cells, light-emitting diodes, and photodetectors. Due to good photoelectric properties, perovskite enables low-cost and comparable performance in terms of responsivity, detectivity, and speed to those of the silicon counterpart. In this work, we utilized triple cation perovskite, well known for its high performance, stability, and wide absorption range, which is crucial for broadband photodetector applications. To achieve improved detectivity and faster response time, graded multilayer perovskite absorbers were our focus. Sequential spray deposition, which allows stacked perovskite architecture without disturbing lower perovskite layers, was used to generate single, double, and triple-layer perovskite photodetectors with proper energy band alignment. In this work, we achieved a record on self-powered perovskite photodetector fabricated from a scalable spray process in terms of EQE and responsivity of 65.30% and 0.30 A W-1. The multilayer devices showed faster response speed than those of single-layer perovskite photodetectors with the champion device reaching 70 µs and 88 µs for rising and falling times. The graded band structure and the internal electric field generated from perovskite heterojunction also increase specific detectivity about one magnitude higher in comparison to the single-layer with the champion device achieving 6.82 × 1012 cmHz1/2 W−1.
Collapse
|
24
|
Clabel H. JL, Chacaliaza-Ricaldi J, Marega Jr E. Potential Application of Perovskite Structure for Water Treatment: Effects of Band Gap, Band Edges, and Lifetime of Charge Carrier for Photocatalysis. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.827925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Perovskite structures have attracted scientific interest as a promising alternative for water treatment due to their unique structural, high oxidation activity, electronic stability, and optical properties. In addition, the photocatalytic activity of perovskite structures is higher than that of many transition metal compounds. A critical property that determines the high-performance photocatalytic and optical properties is the band gap, lifetime of carrier charge, and band edges relative to the redox potential. Thus, the synthesis/processing and study of the effect on the band gap, lifetime of carrier charge, and band edges relative to the redox potential in the development of high-performance photocatalysts for water treatment are critical. This review presents the basic physical principles of optical band gaps, their band gap tunability, potentials, and limitations in the applications for the water treatment. Furthermore, it reports recent advances in the synthesis process and comparatively examines the band gap effect in the photocatalytic response. In addition to the synthesis, the physical mechanisms associated with the change in the band gap have been discussed. Finally, the conclusions of this review, along with the current challenges of perovskites for photocatalysis, are presented.
Collapse
|
25
|
Kumar M, Ansari MNM, Boukhris I, Al‐Buriahi MS, Alrowaili ZA, Alfryyan N, Thomas P, Vaish R. Sonophotocatalytic Dye Degradation Using rGO-BiVO 4 Composites. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100132. [PMID: 35712021 PMCID: PMC9189135 DOI: 10.1002/gch2.202100132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Indexed: 05/06/2023]
Abstract
Reduced graphene oxide (rGO)/bismuth vanadate BiVO4 composites are fabricated with varied rGO amounts (0, 1, 2, and 3 wt%) through the synergetic effects of ultrasonication, photoinduced reduction, and hydrothermal methods, and the materials are tested as tools for sonophotocatalytic methylene blue (MB) dye degradation. The effect of rGO content on the sonophotocatalytic dye degradation capabilities of the composites are explored. Characterization of the proposed materials is done through transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared spectroscopy as well as scanning electron microscopy. The coexistence of BiVO4 and rGO is confirmed using Raman spectroscopy and XRD. TEM confirms the existence of interfaces between rGO and BiVO4 and XPS affirms the existence of varied elemental oxidation states. In order to investigate the charge carriers transportation, time-dependent photocurrent responses of BiVO4 and 2 wt%- rGO/BiVO4 are done under visible light irradiation. The sonophotocatalytic MB dye degradation in an aqueous medium displays promising enhancement with rGO doping in rGO/BiVO4 composite. The 2 wt%- rGO/BiVO4 sample exhibits ≈52% MB dye degradation efficiency as compared to pure BiVO4 (≈25%) in 180 min of the sonophotocatalysis experiment. Phytotoxicity analysis through germination index is done using vigna radiata seeds.
Collapse
Affiliation(s)
- Manish Kumar
- School of EngineeringIndian Institute of Technology MandiMandiHimachal Pradesh175005India
| | - M. N. M. Ansari
- Institute of Power EngineeringUniversiti Tenaga NasionalKajangSelangor43000Malaysia
| | - Imed Boukhris
- Department of PhysicsFaculty of ScienceKing Khalid UniversityP. O. Box 9004AbhaSaudi Arabia
- Laboratoire des matériaux composites céramiques et polymères (LaMaCoP)Département de PhysiqueFaculté des Sciences de SfaxUniversité de Sfax BP 805Sfax3000Tunisia
| | - M. S. Al‐Buriahi
- Department of PhysicsSakarya UniversityEsentepe CampusSakarya54187Turkey
| | - Z. A. Alrowaili
- Physics departmentCollege of ScienceJouf UniversityP. O. Box 2014SakakaSaudi Arabia
| | - Nada Alfryyan
- Department of PhysicsCollege of SciencePrincess Nourah bint Abdulrahman UniversityP. O. Box 84428Riyadh11671Saudi Arabia
| | - P. Thomas
- Central Power Research InstituteDielectric Materials Division BengaluruKarnataka560080India
| | - Rahul Vaish
- School of EngineeringIndian Institute of Technology MandiMandiHimachal Pradesh175005India
| |
Collapse
|
26
|
Zhu C, Marczak M, Feld L, Boehme SC, Bernasconi C, Moskalenko A, Cherniukh I, Dirin D, Bodnarchuk MI, Kovalenko MV, Rainò G. Room-Temperature, Highly Pure Single-Photon Sources from All-Inorganic Lead Halide Perovskite Quantum Dots. NANO LETTERS 2022; 22:3751-3760. [PMID: 35467890 PMCID: PMC9101069 DOI: 10.1021/acs.nanolett.2c00756] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Indexed: 05/08/2023]
Abstract
Attaining pure single-photon emission is key for many quantum technologies, from optical quantum computing to quantum key distribution and quantum imaging. The past 20 years have seen the development of several solid-state quantum emitters, but most of them require highly sophisticated techniques (e.g., ultrahigh vacuum growth methods and cryostats for low-temperature operation). The system complexity may be significantly reduced by employing quantum emitters capable of working at room temperature. Here, we present a systematic study across ∼170 photostable single CsPbX3 (X: Br and I) colloidal quantum dots (QDs) of different sizes and compositions, unveiling that increasing quantum confinement is an effective strategy for maximizing single-photon purity due to the suppressed biexciton quantum yield. Leveraging the latter, we achieve 98% single-photon purity (g(2)(0) as low as 2%) from a cavity-free, nonresonantly excited single 6.6 nm CsPbI3 QDs, showcasing the great potential of CsPbX3 QDs as room-temperature highly pure single-photon sources for quantum technologies.
Collapse
Affiliation(s)
- Chenglian Zhu
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Malwina Marczak
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Leon Feld
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Simon C. Boehme
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Caterina Bernasconi
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Anastasiia Moskalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Ihor Cherniukh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Dmitry Dirin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maryna I. Bodnarchuk
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
27
|
Faridi AW, Imran M, Tariq GH, Ullah S, Noor SF, Ansar S, Sher F. Synthesis and Characterization of High-Efficiency Halide Perovskite Nanomaterials for Light-Absorbing Applications. Ind Eng Chem Res 2022; 62:4494-4502. [PMID: 36975768 PMCID: PMC10037322 DOI: 10.1021/acs.iecr.2c00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inorganic perovskite materials are possible candidates for conversion of solar energy to electrical energy due to their high absorption coefficient. Perovskite solar cells (PSCs) introduced a new type of device structure that has attention due to better efficiencies and interest in PSCs that has been increasing in recent years. Halide perovskite materials such as CsPbIBr2 show remarkable optical and structural performance with their better physical properties. Perovskite solar cells are a possible candidate to replace conventional silicon solar panels. In the present study, CsPbIBr2 perovskite materials' thin films were prepared for light-absorbing application. Five thin films were deposited on the glass substrates by subsequent spin-coating of CsI and PbBr2 solutions, subsequently annealed at different temperature values (as-deposited, 100, 150, 200 and 250 °C) to get CsPbIBr2 thin films with a better crystal structure. Structural characterizations were made by using X-ray diffraction. CsPbIBr2 thin films were found to be polycrystalline in nature. With increasing annealing temperature, the crystallinity was improved, and the crystalline size was increased. Optical properties were studied by using transmission data, and by increasing annealing temperature, a small variation in optical band gap energy was observed in the range of 1.70-1.83 eV. The conductivity of CsPbIBr2 thin films was determined by a hot probe technique and was found to have little fluctuating response toward p-type conductivity, which may be due to intrinsic defects or presence of CsI phase, but a stable intrinsic nature was observed. The obtained physical properties of CsPbIBr2 thin films suggest them as a suitable candidate as a light-harvesting layer. These thin films could be an especially good partner with Si or other lower band gap energy materials in tandem solar cells (TSC). CsPbIBr2 material will harvest light having energy of ∼1.7 eV or higher, while a lower energy part of the solar spectrum will be absorbed in the partner part of the TSC.
Collapse
Affiliation(s)
- Ahmed Waseem Faridi
- Department of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Imran
- Department of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ghulam Hasnain Tariq
- Department of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sana Ullah
- Department of Mechanical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Syed Farhan Noor
- Center of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University,
P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
28
|
Jalalah M, Rudra S, Aljafari B, Irfan M, Almasabi SS, Alsuwian T, Patil AA, Nayak AK, Harraz FA. Novel porous heteroatom-doped biomass activated carbon nanoflakes for efficient solid-state symmetric supercapacitor devices. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Ohmi T, Miura T, Shigematsu K, Koegel AA, Newell BS, Neilson JR, Ikoma T, Azuma M, Yamamoto T. Temperature-induced structural transition in an organic–inorganic hybrid layered perovskite (MA) 2PbI 2−xBr x(SCN) 2. CrystEngComm 2022. [DOI: 10.1039/d2ce00733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A temperature-induced structural phase transition is reported in layered hybrid perovskite (MA)2PbI2−xBrx(SCN)2 (0 ≤ x ≤ 1.2). The observed transition temperature decreases with Br substitution, suggesting a weakening of bonding interaction between the molecular ions.
Collapse
Affiliation(s)
- Takuya Ohmi
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Tomoaki Miura
- Department of Chemistry, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181, Japan
| | - Kei Shigematsu
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina 243-0435, Japan
| | - Alexandra A. Koegel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| | - Brian S. Newell
- Molecular and Materials Analysis Center, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| | - James R. Neilson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| | - Tadaaki Ikoma
- Department of Chemistry, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181, Japan
| | - Masaki Azuma
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina 243-0435, Japan
| | - Takafumi Yamamoto
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| |
Collapse
|
30
|
Adjogri SJ, Meyer EL. Chalcogenide Perovskites and Perovskite-Based Chalcohalide as Photoabsorbers: A Study of Their Properties, and Potential Photovoltaic Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7857. [PMID: 34947450 PMCID: PMC8707488 DOI: 10.3390/ma14247857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/03/2022]
Abstract
In 2015, a class of unconventional semiconductors, Chalcogenide perovskites, remained projected as possible solar cell materials. The MAPbI3 hybrid lead iodide perovskite has been considered the best so far, and due to its toxicity, the search for potential alternatives was important. As a result, chalcogenide perovskites and perovskite-based chalcohalide have recently been considered options and potential thin-film light absorbers for photovoltaic applications. For the synthesis of novel hybrid perovskites, dimensionality tailoring and compositional substitution methods have been used widely. The study focuses on the optoelectronic properties of chalcogenide perovskites and perovskite-based chalcohalide as possibilities for future photovoltaic applications.
Collapse
Affiliation(s)
- Shadrack J. Adjogri
- Fort Hare Institute of Technology, University of Fort Hare, Alice 5700, South Africa;
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa
| | - Edson L. Meyer
- Fort Hare Institute of Technology, University of Fort Hare, Alice 5700, South Africa;
| |
Collapse
|
31
|
Ogle J, Powell D, Flannery L, Whittaker-Brooks L. Interplay between Morphology and Electronic Structure in Emergent Organic and π-d Conjugated Organometal Thin Film Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jonathan Ogle
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Daniel Powell
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Laura Flannery
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | | |
Collapse
|
32
|
Liu S, Wang J, Hu Z, Duan Z, Zhang H, Zhang W, Guo R, Xie F. Role of organic cation orientation in formamidine based perovskite materials. Sci Rep 2021; 11:20433. [PMID: 34650139 PMCID: PMC8517011 DOI: 10.1038/s41598-021-99621-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The rotation of organic cations is considered to be an important reason for the dynamic changes in stability and photoelectric properties of organic perovskites. However, the specific effect of organic cations rotation on formamidine based perovskite is still unknown. In our work, first-principles calculations based on density functional theory are used to examine the effect of the rotation of formamidine cations in FAPbI3 and FA0.875Cs0.125PbI3. We have comprehensively calculated the structure, electronic and optical properties of them. We found a coupling effect between formamidine cations rotation and cesium atom. This coupling effect changes the inclination angle of octahedron to regulate electron distribution, band gaps, and optical absorption. Hence, changing the cation orientation and substitution atom is a feasible way to dynamically adjust the energy band, dielectric constant and absorption edge of perovskite. Preparing perovskite with tunable properties is just around the corner through this way.
Collapse
Affiliation(s)
- Siyu Liu
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jing Wang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zhe Hu
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zhongtao Duan
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Hao Zhang
- Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Ruiqian Guo
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China.
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
| | - Fengxian Xie
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China.
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
33
|
Ricciardulli AG, Yang S, Smet JH, Saliba M. Emerging perovskite monolayers. NATURE MATERIALS 2021; 20:1325-1336. [PMID: 34112976 DOI: 10.1038/s41563-021-01029-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/28/2021] [Indexed: 05/26/2023]
Abstract
The library of two-dimensional (2D) materials has been enriched over recent years with novel crystal architectures endowed with diverse exciting functionalities. Bulk perovskites, including metal-halide and oxide systems, provide access to a myriad of properties through molecular engineering. Their tunable electronic structure offers remarkable features from long carrier-diffusion lengths and high absorption coefficients in metal-halide perovskites to high-temperature superconductivity, magnetoresistance and ferroelectricity in oxide perovskites. Emboldened by the 2D materials research, perovskites down to the monolayer limit have recently emerged. Like other 2D species, perovskites with reduced dimensionality are expected to exhibit new physics and to herald next-generation multifunctional devices. In this Review, we critically assess the preliminary studies on the synthetic routes and inherent properties of monolayer perovskite materials. We also discuss how to exploit them for widespread applications and provide an outlook on the challenges and opportunities that lie ahead for this enticing class of 2D materials.
Collapse
Affiliation(s)
- Antonio Gaetano Ricciardulli
- Technical University of Darmstadt, Darmstadt, Germany
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, France
| | - Sheng Yang
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
| | - Jurgen H Smet
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
| | - Michael Saliba
- Technical University of Darmstadt, Darmstadt, Germany.
- Institute for Photovoltaics, University of Stuttgart, Stuttgart, Germany.
- Helmholtz Young Investigator Group FRONTRUNNER, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
34
|
Liu H, Sun J, Hu H, Li Y, Hu B, Xu B, Choy WCH. Antioxidation and Energy-Level Alignment for Improving Efficiency and Stability of Hole Transport Layer-Free and Methylammonium-Free Tin-Lead Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45059-45067. [PMID: 34505788 DOI: 10.1021/acsami.1c12180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tin-lead (Sn-Pb) perovskites have shown great potential in applications of single-junction perovskite solar cells (PSCs) and tandem devices due to outstanding photoelectrical properties and low band gaps. Currently, Sn-Pb PSCs typically have a p-i-n structure, but choices of hole transport layer (HTL) materials are very limited and there are different concerns in each of them. Eliminating the HTL is a direct and promising strategy to address the concerns, but is rarely studied. In this work, we demonstrate HTL-free and MA-free based Sn-Pb PSCs and a synergistic integration strategy of simultaneously introducing a reducing agent and in situ surface passivation. With the integration strategy, Sn-Pb perovskite films with enhanced antioxidation, reduced trap density, prolonged carrier lifetime, and improved energy-level alignment are achieved. Consequently, final HTL-free PSCs exhibit a champion power conversion efficiency (PCE) of 17.4%, which is a new record for HTL-free and MA-free Sn-Pb PSCs. Meanwhile, the integration strategy-based HTL-free device maintains excellent stability with efficiency unchanged for the first 200 h, and finally retaining 81% of the efficiency after 480 h aging in the air. This study shows the potential of achieving desirable HTL-free and MA-free Sn-Pb PSCs and offers more opportunities for tandem solar cells and other photovoltaic devices.
Collapse
Affiliation(s)
- Hui Liu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, SAR, China
| | - Jiayun Sun
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, SAR, China
| | - Han Hu
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Li
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bihua Hu
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baomin Xu
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, SAR, China
| |
Collapse
|
35
|
Rodrigues JEFS, Escanhoela CA, Fragoso B, Sombrio G, Ferrer MM, Álvarez-Galván C, Fernández-Díaz MT, Souza JA, Ferreira FF, Pecharromán C, Alonso JA. Experimental and Theoretical Investigations on the Structural, Electronic, and Vibrational Properties of Cs2AgSbCl6 Double Perovskite. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Carlos A. Escanhoela
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, Sao Paulo Brazil
| | - Brenda Fragoso
- CCAF, PPGCEM/CDTec, Federal University of Pelotas, 96010-610 Pelotas, Rio Grande do Sul Brazil
| | - Guilherme Sombrio
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, Sao Paulo Brazil
| | - Mateus M. Ferrer
- CCAF, PPGCEM/CDTec, Federal University of Pelotas, 96010-610 Pelotas, Rio Grande do Sul Brazil
| | | | | | - Jose A. Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, Sao Paulo Brazil
| | - Fabio F. Ferreira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, Sao Paulo Brazil
| | - Carlos Pecharromán
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
| | - José Antonio Alonso
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
36
|
Electronic structure transition of cubic CsSnCl 3 under pressure: effect of rPBE and PBEsol functionals and GW method. Heliyon 2021; 7:e07796. [PMID: 34466695 PMCID: PMC8384891 DOI: 10.1016/j.heliyon.2021.e07796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
The antiperovskites based on metal halides have emerged as potential materials for advanced photovoltaic and electronic device applications. But the wide bandgap of non-toxic CsSnCl3 reduces its photovoltaic efficiency. Here, we report the change of electronic structure of CsSnCl3 at different pressure by using GGA-rPBE and GGA-PBEsol functionals and the GW method. We have shown that the prediction of electronic structure transition (semiconducting to metallic state) strongly depends on the exchange-correlation and the GW method gives the most reasonable values of the bandgap under pressure. The pressure increases the electronic density of states close to the Fermi level by pushing the valence electrons upward and thus, reduces the bandgap linearly. Afterward, we have also investigated the influence of pressure on absorption coefficient, and mechanical properties meticulously. Although the pressure shifts the absorption peak to lower photon energies, the absorption coefficient is slightly improved.
Collapse
|
37
|
Wali Q, Aamir M, Ullah A, Iftikhar FJ, Khan ME, Akhtar J, Yang S. Fundamentals of Hysteresis in Perovskite Solar Cells: From Structure-Property Relationship to Neoteric Breakthroughs. CHEM REC 2021; 22:e202100150. [PMID: 34418290 DOI: 10.1002/tcr.202100150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 08/04/2021] [Indexed: 11/08/2022]
Abstract
Perovskite solar cells (PSC) have shown a rapid increase in efficiency than other photovoltaic technology. Despite its success in terms of efficiency, this technology is inundated with numerous challenges hindering the progress towards commercial viability. The crucial one is the anomalous hysteresis observed in the photocurrent density-voltage (J-V) response in PSC. The hysteresis phenomenon in the solar cell presents a challenge for determining the accurate power conversion efficiency of the device. A detailed investigation of the fundamental origin of hysteresis behavior in the device and its associated mechanisms is highly crucial. Though numerous theories have been proposed to explain the causes of hysteresis, its origin includes slow transient capacitive current, trapping, and de-trapping process, ion migrations, and ferroelectric polarization. The remaining issues and future research required toward the understanding of hysteresis in PSC device is also discussed.
Collapse
Affiliation(s)
- Qamar Wali
- School of Applied Sciences and Humanities, National University of Technology, I-12, Islamabad, 42000, Pakistan
| | - Muhammad Aamir
- Materials Laboratory, Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, 10250 (AJK), Pakistan
| | - Abid Ullah
- Material laboratory, Department of Physics, Comsats Institute of information technology, Islamabad, Pakistan
| | - Faiza Jan Iftikhar
- School of Applied Sciences and Humanities, National University of Technology, I-12, Islamabad, 42000, Pakistan
| | - Muhammad Ejaz Khan
- Department of Computer Engineering, National University of Technology, I-12, Islamabad, 42000, Pakistan
| | - Javeed Akhtar
- Materials Laboratory, Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, 10250 (AJK), Pakistan
| | - Shengyuan Yang
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, Shanghai "Belt & Road" Joint Laboratory of Advanced Fibers and Low-dimension Materials College of Materials Science and Engineering, Donghua University, Shanghai., 201620, P.R. China
| |
Collapse
|
38
|
Yuan J, Liu H, Wang S, Li X. How to apply metal halide perovskites to photocatalysis: challenges and development. NANOSCALE 2021; 13:10281-10304. [PMID: 34096559 DOI: 10.1039/d0nr07716j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Semiconductor photocatalysts are widely used in environmental remediation and energy conversion processes that affect social development. These processes involve, for example, hydrogen production from water splitting, carbon dioxide reduction, pollutant degradation, and the conversion of raw organic chemical materials into high-value-added chemicals. Metal halide perovskites (MHPs) have become a new class of promising cheap and easy to manufacture candidate materials for use in photocatalytic semiconductors due to their advantages of high extinction coefficients, optimal band gaps, high photoluminescence quantum yields, and long electron-hole diffusion lengths. However, their unstable ion-bonded crystal structures (very low theoretical decomposition energy barriers) limit their widespread application. In this review, we introduce the physical properties of MHP materials suitable for photocatalysis, and MHP-based photocatalytic particle suspension systems, photoelectrode thin film systems, and photovoltaic-photo(electro)chemical systems. Then, numerous studies realizing efficient and stable photocatalytic water splitting, carbon dioxide reduction, organic conversion, and other reactions involving MHP materials were highlighted. In addition, we conducted rigorous analysis of the potential problems that could hinder progress in this new scientific research field, such as Pb element toxicity and material instability. Finally, we outline the potential opportunities and directions for photocatalysis research based on MHPs.
Collapse
Affiliation(s)
- Jia Yuan
- Tianjin University, School of Chemical Engineering and Technology, Tianjin 300072, China.
| | | | | | | |
Collapse
|
39
|
Kao TS, Hong YH, Hong KB, Lu TC. Perovskite random lasers: a tunable coherent light source for emerging applications. NANOTECHNOLOGY 2021; 32:282001. [PMID: 33621968 DOI: 10.1088/1361-6528/abe907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/22/2021] [Indexed: 05/24/2023]
Abstract
Metal halide perovskites have attracted increasing attention due to their superior optical and electrical characteristics, flexible tunability, and easy fabrication processes. Apart from their unprecedented successes in photovoltaic devices, lasing action is the latest exploitation of the optoelectronic performance of perovskites. Among the substantial body of research on the configuration design and light emission quality of perovskite lasers, the random laser is a very interesting stimulated emission phenomenon with unique optical characteristics. In this review article, we first comprehensively overview the development of perovskite-based optoelectronic devices and then focus our discussion on random lasing performance. After an introduction to the historical development of versatile random lasers and perovskite random lasers, we summarize several synthesis methods and discuss their material configurations and stability in synthesized perovskite materials. Following this, a theoretical approach is provided to explain the random lasing mechanism in metal halide perovskites. Finally, we propose future applications of perovskite random lasers, presenting conclusions as well as future challenges, such as quality stability and toxicity reduction, of perovskite materials with regard to practical applications in this promising field.
Collapse
Affiliation(s)
- Tsung Sheng Kao
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan
| | - Yu-Heng Hong
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan
| | - Kuo-Bin Hong
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan
| | - Tien-Chang Lu
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan
| |
Collapse
|
40
|
Effects of Crystal Morphology on the Hot-Carrier Dynamics in Mixed-Cation Hybrid Lead Halide Perovskites. ENERGIES 2021. [DOI: 10.3390/en14030708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultrafast pump-probe spectroscopies have proved to be an important tool for the investigation of charge carriers dynamics in perovskite materials providing crucial information on the dynamics of the excited carriers, and fundamental in the development of new devices with tailored photovoltaic properties. Fast transient absorbance spectroscopy on mixed-cation hybrid lead halide perovskite samples was used to investigate how the dimensions and the morphology of the perovskite crystals embedded in the capping (large crystals) and mesoporous (small crystals) layers affect the hot-carrier dynamics in the first hundreds of femtoseconds as a function of the excitation energy. The comparative study between samples with perovskite deposited on substrates with and without the mesoporous layer has shown how the small crystals preserve the temperature of the carriers for a longer period after the excitation than the large crystals. This study showed how the high sensitivity of the time-resolved spectroscopies in discriminating the transient response due to the different morphology of the crystals embedded in the layers of the same sample can be applied in the general characterization of materials to be used in solar cell devices and large area modules, providing further and valuable information for the optimization and enhancement of stability and efficiency in the power conversion of new perovskite-based devices.
Collapse
|
41
|
Pan Y, Wang X, Xu Y, Li Y, Elemike EE, Shuja A, Li Q, Zhang X, Chen J, Zhao Z, Lei W. Enhanced Performance of Perovskite Single-Crystal Photodiodes by Epitaxial Hole Blocking Layer. Front Chem 2020; 8:791. [PMID: 33134261 PMCID: PMC7511657 DOI: 10.3389/fchem.2020.00791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Introducing hole/electron transporting and blocking layers is considered to enhance the performance of electronic devices based on organic-inorganic hybrid halide perovskite single crystals (PSCs). In many photodiodes, the hole/electron transporting or blocking materials are spin-coated or thermal-evaporated on PSC to fabricate heterojunctions. However, the heterojunction interfaces due to lattice mismatch between hole/electron, transporting or blocking materials and perovskites easily form traps and cracks, which cause noise and leakage current. Besides, these low-mobility transporting layers increase the difficulty of transporting carriers generated by photons to the electrode; hence, they also increase the response time for photo detection. In the present study, MAPbCl3-MAPbBr2.5Cl0.5 heterojunction interfaces were realized by liquid-phase epitaxy, in which MAPbBr2.5Cl0.5 PSC acts as an active layer and MAPbCl3 PSC acts as a hole blocking layer (HBL). Our PIN photodiodes with epitaxial MAPbCl3 PSC as HBL show better performance in dark current, light responsivity, stability, and response time than the photodiodes with spin-coated organic PCBM as HBL. These results suggest that the heterojunction interface formed between two bulk PSCs with different halide compositions by epitaxy growth is very useful for effectively blocking the injected charges under high external electric field, which could improve the collection of photo-generated carriers and hereby enhance the detection performance of the photodiode. Furthermore, the PIN photodiodes made of PSC with epitaxial HBL show the sensitivities of 7.08 mC Gyair -1 cm-2, 4.04 mC Gyair -1 cm-2, and 2.38 mC Gyair -1 cm-2 for 40-keV, 60-keV, and 80-keV X-ray, respectively.
Collapse
Affiliation(s)
- Yuzhu Pan
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing, China
| | - Xin Wang
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing, China
| | - Yubing Xu
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing, China
| | - Yuwei Li
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing, China
| | | | - Ahmed Shuja
- Centre for Advanced Electronics and Photovoltaic Engineering, International Islamic University, Islamabad, Pakistan
| | - Qing Li
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing, China
| | - Xiaobing Zhang
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing, China
| | - Jing Chen
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing, China
| | - Zhiwei Zhao
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing, China
| | - Wei Lei
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing, China
| |
Collapse
|
42
|
More SA, Halor RG, Shaikh R, Bisen GG, Tarkas HS, Tak SR, Bade BR, Jadkar SR, Sali JV, Ghosh SS. Investigating the effect of solvent vapours on crystallinity, phase, and optical, morphological and structural properties of organolead halide perovskite films. RSC Adv 2020; 10:39995-40004. [PMID: 35520837 PMCID: PMC9057470 DOI: 10.1039/d0ra07926j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022] Open
Abstract
A comprehensive study regarding the effect of different solvent vapours on organolead halide perovskite properties is lacking. In the present work, the impact of exposing CH3NH3PbI3 films to the vapours of commonly available solvents has been studied. The interaction with perovskite has been correlated to solvent properties like dielectric constant, molecular dipole moment, Gutmann donor number and boiling point. Changes in the crystallinity, phase, optical absorption, morphologies at both nanometer and micrometer scale, functional groups and structures were studied using X-ray diffraction, UV-visible absorption, FE-SEM, FTIR and Raman spectroscopies. Among the aprotic solvents DMSO and DMF vapours deteriorate the crystallinity, phase, and optical, morphological and structural properties of the perovskite films in a very short time, but due to the difference in solvent property values acetone affects the perovskite properties differently. Polar protic 2-propanol and water vapours moderately affect the perovskite properties. However 2-propanol can solvate the organic cation CH3NH3 + more efficiently as compared to water and a considerable difference was found in the film properties especially the morphology at the nanoscale. Nonpolar chlorobenzene vapour minutely affects the perovskite morphology but toluene was found to enhance perovskite crystallinity. Solvent properties can be effectively used to interpret the coordination ability of a solvent. The present study can be immensely useful in understanding the effects of different solvent vapours and also their use for post-deposition processing (like solvent vapour annealing) to improve their properties.
Collapse
Affiliation(s)
- Sagar A More
- Optoelectronics/Organic Photovoltaics Laboratory, Department of Physics, Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon-425001 Maharashtra India
| | - Rajendra G Halor
- Optoelectronics/Organic Photovoltaics Laboratory, Department of Physics, Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon-425001 Maharashtra India
| | - Raees Shaikh
- Optoelectronics/Organic Photovoltaics Laboratory, Department of Physics, Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon-425001 Maharashtra India
| | - Gauri G Bisen
- Optoelectronics/Organic Photovoltaics Laboratory, Department of Physics, Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon-425001 Maharashtra India
| | - Hemant S Tarkas
- Optoelectronics/Organic Photovoltaics Laboratory, Department of Physics, Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon-425001 Maharashtra India
| | - Swapnil R Tak
- Optoelectronics/Organic Photovoltaics Laboratory, Department of Physics, Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon-425001 Maharashtra India
| | - Bharat R Bade
- Department of Physics, Savitribai Phule Pune University Pune-411007 Maharashtra India
| | - Sandesh R Jadkar
- Department of Physics, Savitribai Phule Pune University Pune-411007 Maharashtra India
| | - Jaydeep V Sali
- Optoelectronics/Organic Photovoltaics Laboratory, Department of Physics, Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon-425001 Maharashtra India
| | - Sanjay S Ghosh
- Optoelectronics/Organic Photovoltaics Laboratory, Department of Physics, Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon-425001 Maharashtra India
| |
Collapse
|
43
|
Kahwagi RF, Thornton ST, Smith B, Koleilat GI. Dimensionality engineering of metal halide perovskites. FRONTIERS OF OPTOELECTRONICS 2020; 13:196-224. [PMID: 36641576 PMCID: PMC9743879 DOI: 10.1007/s12200-020-1039-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/22/2020] [Indexed: 05/11/2023]
Abstract
Metal halide perovskites are a class of materials that are ideal for photodetectors and solar cells due to their excellent optoelectronic properties. Their low-cost and low temperature synthesis have made them attractive for extensive research aimed at revolutionizing the semiconductor industry. The rich chemistry of metal halide perovskites allows compositional engineering resulting in facile tuning of the desired optoelectronic properties. Moreover, using different experimental synthesis and deposition techniques such as solution processing, chemical vapor deposition and hot-injection methods, the dimensionality of the perovskites can be altered from 3D to 0D, each structure opening a new realm of applications due to their unique properties. Dimensionality engineering includes both morphological engineering-reducing the thickness of 3D perovskite into atomically thin films-and molecular engineering-incorporating long-chain organic cations into the perovskite mixture and changing the composition at the molecular level. The optoelectronic properties of the perovskite structure including its band gap, binding energy and carrier mobility depend on both its composition and dimensionality. The plethora of different photodetectors and solar cells that have been made with different compositions and dimensions of perovskite will be reviewed here. We will conclude our review by discussing the kinetics and dynamics of different dimensionalities, their inherent stability and toxicity issues, and how reaching similar performance to 3D in lower dimensionalities and their large-scale deployment can be achieved.
Collapse
Affiliation(s)
- Rashad F Kahwagi
- Department of Chemical Engineering, Dalhousie University, Halifax, Nova Scotia, B3J 1Z1, Canada
| | - Sean T Thornton
- Department of Chemical Engineering, Dalhousie University, Halifax, Nova Scotia, B3J 1Z1, Canada
| | - Ben Smith
- Department of Chemical Engineering, Dalhousie University, Halifax, Nova Scotia, B3J 1Z1, Canada
| | - Ghada I Koleilat
- Department of Chemical Engineering, Dalhousie University, Halifax, Nova Scotia, B3J 1Z1, Canada.
| |
Collapse
|
44
|
Kim M, Kim BG, Kim JY, Jang W, Wang DH. Enhanced colloidal stability of perovskite quantum dots via split-ligand re-precipitation for efficient bi-functional interlayer in photovoltaic application. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Nazim M, Kim JH. Controlled Size Growth of Thermally Stable Organometallic Halide Perovskite Microrods: Synergistic Effect of Dual-Doping, Lattice Strain Engineering, Antisolvent Crystallization, and Band Gap Tuning Properties. ACS OMEGA 2020; 5:16106-16119. [PMID: 32656433 PMCID: PMC7346233 DOI: 10.1021/acsomega.0c01667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Organometallic halide perovskites, as the light-harvesting material, have been extensively used for cost-effective energy production in high-performance perovskite solar cells, despite their poor stability in the ambient atmosphere. In this work, methylammonium lead iodide, CH3NH3PbI3, perovskite was successfully doped with KMnO4 using antisolvent crystallization to develop micrometer-length perovskite microrods. Thus, the obtained KMnO4-doped perovskite microrods have exhibited sharp, narrow, and red-shifted photoluminescence band, as well as high lattice strain with improved thermal stability compared to undoped CH3NH3PbI3. During the synthesis of the KMnO4-doped perovskite microrods, a low boiling point solvent, anhydrous chloroform, was employed as an antisolvent to facilitate the emergence of controlled-size perovskite microrods. The as-synthesized KMnO4-doped perovskite microrods retained the pristine perovskite crystalline phases and lowered energy band gap (∼1.57 eV) because of improved light absorption and narrow fluorescence emission bands (fwhm < 10 nm) with improved lattice strain (∼4.42 × 10-5), Goldsmith tolerance factor (∼0.89), and high dislocation density (∼5.82 × 10-4), as estimated by Williamson-Hall plots. Thus, the obtained results might enhance the optical properties with reduced energy band gap and high thermal stability of doped-perovskite nanomaterials in ambient air for diverse optoelectronic applications. This study paves the way for new insights into chemical doping and interaction possibilities in methylamine-based perovskite materials with various metal dopants for further applications.
Collapse
|
46
|
Abstract
Recent years have witnessed an incredibly high interest in perovskite-based materials. Among this class, metal halide perovskites (MHPs) have attracted a lot of attention due to their easy preparation and excellent opto-electronic properties, showing a remarkably fast development in a few decades, particularly in solar light-driven applications. The high extinction coefficients, the optimal band gaps, the high photoluminescence quantum yields and the long electron–hole diffusion lengths make MHPs promising candidates in several technologies. Currently, the researchers have been focusing their attention on MHPs-based solar cells, light-emitting diodes, photodetectors, lasers, X-ray detectors and luminescent solar concentrators. In our review, we firstly present a brief introduction on the recent discoveries and on the remarkable properties of metal halide perovskites, followed by a summary of some of their more traditional and representative applications. In particular, the core of this work was to examine the recent progresses of MHPs-based materials in photocatalytic applications. We summarize some recent developments of hybrid organic–inorganic and all-inorganic MHPs, recently used as photocatalysts for hydrogen evolution, carbon dioxide reduction, organic contaminant degradation and organic synthesis. Finally, the main limitations and the future potential of this new generation of materials have been discussed.
Collapse
|
47
|
Lamichhane A, Ravindra NM. Energy Gap-Refractive Index Relations in Perovskites. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1917. [PMID: 32325802 PMCID: PMC7215549 DOI: 10.3390/ma13081917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022]
Abstract
In this study, the energy gap-refractive index relations of perovskites are examined in detail. In general, the properties of perovskites are dependent on the structural reorganization and covalent nature of their octahedral cages. Based on this notion, a simple relation governing the energy gap and the refractive index is proposed for perovskites. The results obtained with this relation are in good accord with the literature values and are consistent with some well-established relations.
Collapse
Affiliation(s)
- Aneer Lamichhane
- Interdisciplinary Program in Materials Science & Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
- Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Nuggehalli M. Ravindra
- Interdisciplinary Program in Materials Science & Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
- Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
48
|
Bi F, Yam C, Zhao C, Liu L, Zhao M, Zheng X, Jiu T. Enhanced photocurrent in heterostructures formed between CH 3NH 3PbI 3 perovskite films and graphdiyne. Phys Chem Chem Phys 2020; 22:6239-6246. [PMID: 32129431 DOI: 10.1039/d0cp00170h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extending photoabsorption to the near-infrared region (NIR) of the spectrum remains a major challenge for the enhancement of the photoelectric performance of perovskites. In this work, we propose a model of van der Waals heterostructures formed by CH3NH3PbI3 perovskite films and graphdiyne (GDY) to improve the photocurrent in the NIR. To obtain better insights into the properties of GDY/perovskite heterostructures, we first determine its electronic properties using the first principles calculations. The charge transfer between GDY and perovskites leads to a built-in electrical field that facilitates the separation and the transport of the photogenerated carriers. Then, the non-equilibrium Green's function (NEGF) is used to calculate the photocurrents of perovskite slabs with and without GDY. The photocurrents of GDY/perovskite heterostructures are nearly an order of magnitude larger than that of pristine perovskites in NIR due to the synergistic effect between GDY and perovskites. Furthermore, a polarization-sensitive photocurrent is obtained for a GDY/PbI2 heterostructure.
Collapse
Affiliation(s)
- Fuzhen Bi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - ChiYung Yam
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Chengjie Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Le Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Min Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Tonggang Jiu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China and Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| |
Collapse
|
49
|
Stylianakis MM. Optoelectronic Nanodevices. NANOMATERIALS 2020; 10:nano10030520. [PMID: 32183135 PMCID: PMC7153245 DOI: 10.3390/nano10030520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Minas M Stylianakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), Estavromenos, 71410 Heraklion, Greece
| |
Collapse
|
50
|
Bao Q. Editorial for a special issue on two-dimensional nanomaterials. NANO MATERIALS SCIENCE 2019. [DOI: 10.1016/j.nanoms.2019.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|