1
|
Githaka JM, Gutiérrez T, Han ZZ, Primeau JO, Muranyi H, Young HS, Sykes BD, Julien O, Goping IS. The non-cytotoxic small molecule NPB does not inhibit BAD phosphorylation and forms colloidal aggregates. COMMUNICATIONS MEDICINE 2025; 5:166. [PMID: 40348839 PMCID: PMC12065803 DOI: 10.1038/s43856-025-00880-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Affiliation(s)
| | - Tomás Gutiérrez
- Departments of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Zhuang Zhuang Han
- Departments of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Joseph O Primeau
- Departments of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Heather Muranyi
- Departments of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Howard S Young
- Departments of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Brian D Sykes
- Departments of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Olivier Julien
- Departments of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Ing Swie Goping
- Departments of Biochemistry, University of Alberta, Edmonton, AB, Canada.
- Departments of Oncology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Ozen MB, Gazioglu I, Ozgun Acar O, Guner H, Semiz G, Sen A. Possible Drug-Drug Interactions Between Mesalamine and Tricyclic Antidepressants Through CYP2D6 Metabolism - In silico and In vitro Analyses. Drug Res (Stuttg) 2025. [PMID: 40169140 DOI: 10.1055/a-2551-2418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Mesalamine (mesalazine, 5-aminosalicylic acid, 5-ASA) is an essential anti-inflammatory agent both used for therapy and as a remission control in patients with inflammatory bowel diseases (IBD) such as ulcerative colitis (UC). Tricyclic antidepressants (TCAs) are used to alleviate remaining symptoms in patients already receiving IBD therapy or with quiescent inflammation. The cytochrome P4502D6 enzyme is involved in the metabolism of TCAs. Hence, it is crucial to investigate the role of CYP2D6 in 5-ASA metabolism. Initially, in silico analysis involving the docking of 5-ASA to CYP2D6 and molecular dynamics simulations was conducted. Next, the rate of O-demethylation of a nonfluorescent probe 3-[2-(N,N-diethyl-N-methylammonium)-ethyl]-7-methoxy-4-methylcoumarin (AMMC) into a fluorescent metabolite AMHC (3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-hydroxy-4-methylcoumarin) was optimized with baculosomes co-expressing human CYP2D6 and human P450 oxidoreductase (hCPR) to monitor CYP2D6 activity in a microtiter plate assay. The apparent Km and Vmax were found to be 1.30 μM and 32.68 pmol/min/mg of protein for the O-demethylation of AMMC to AMHC, and the reaction was linear for 40 min. Then, nonselective inhibition of CYP2D6 activity with various concentrations of 5-ASA was detected. Finally, the conversion of AMMC to metabolites was analyzed by HPLC-ESI-MS/MS spectrometry, and none were identified. Thus, this study suggests that concurrent use of mesalamine with TCA may lead to adverse effects, and CYP2D6 genotyping should be routinely performed on these patients to eliminate possible threats.
Collapse
Affiliation(s)
- Melek B Ozen
- Department of Biology, Faculty of Sciences, Pamukkale University, Denizli, Turkey
| | - Isil Gazioglu
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, Food and Environmental Toxicology Laboratory, University of Florida, Gainesville, FL, USA
| | - Ozden Ozgun Acar
- Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Huseyin Guner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul, Kayseri, Turkey
| | - Gurkan Semiz
- Department of Biology, Faculty of Sciences, Pamukkale University, Denizli, Turkey
| | - Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Pamukkale University, Denizli, Turkey
| |
Collapse
|
3
|
Muhammed Munthasir AT, Rani P, Dhanalakshmi P, Geremia S, Hickey N, Thilagar P. Quadrupling the PLQY of Tetraphenylethylene by Covalently Linking it with Isosteric Tetraarylaminoborane: A Potential Candidate for Multicolor Live Cell Imaging. Inorg Chem 2025; 64:5878-5892. [PMID: 40080771 DOI: 10.1021/acs.inorgchem.4c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Applications of organic luminophores depend on their photoluminescence quantum yield (PLQY). Several strategies have been developed to improve the PLQY of organic solids, and one such method is aggregation-induced emission (AIE). Herein, we disclose a comprehensive study of two molecularly engineered covalently linked isosteric AIEgens, BNTPE-1 and BNTPE-2. The independent isosteres tetraarylaminoborane (BN) and tetraphenylethylene (TPE) showed poor PLQY; however, the covalently linked BNTPE-1 and BNTPE-2 systems showed 4 times higher PLQY than the independent isosteres (∼78 and ∼92% for solids and aggregates, respectively). Detailed optical, structural, and computational studies revealed that BN and TPE moieties adopt more coplanarity and have stronger donor (-NPh2)-acceptor (BMes2) interactions in the covalently linked systems than do simple BN and TPE units. Despite having sterically demanding BMes2 units, these compounds are nonemissive in the solution state due to the presence of flexible TPE units. However, they are strongly emissive in condensed states, such as aggregates in solution and the solid state. The excited state structure analysis revealed that the TPE unit undergoes severe conformational distortion after photoexcitation, which activates nonradiative decay channels and consequently quenches the luminescence in the molecularly dispersed state. The bioimaging potential of BNTPE-1 and BNTPE-2 was also explored. These compounds showed high biocompatibility and stained the HeLa cells brighter than BN and TPE molecules.
Collapse
Affiliation(s)
| | - Poonam Rani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pandi Dhanalakshmi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Xie W, Wang H, Xu H, Su W, Yuan T, Chang J, Bai Y, Fan Y, Zhang Y, Li Y, Li X, Fan L. Sterically chained amino acid-rich water-soluble carbon quantum dots as a robust tumor-targeted drug delivery platform. Nat Commun 2025; 16:2716. [PMID: 40108158 PMCID: PMC11923112 DOI: 10.1038/s41467-025-57531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Effective antitumor nanomedicines maximize therapeutic efficacy by prolonging drug circulation time and transporting drugs to target sites. Although numerous nanocarriers have been developed for accurate tumor targeting, their limited water solubility makes their stable storage challenging, and poses biosafety risks in clinical translation. Herein, we choose reduced glutathione (GSH) to quick synthesize gram-scale water-soluble large amino acids mimicking carbon quantum dots (LAAM GSH-CQDs) enriched in steric chain amino acid groups with solubility of up to 2.0 g mL-1. The water-solubility arises from a hexagonal arrangement formed between amino acid groups and water molecules through hydrogen bonding, producing chair-form hexamer hydration layers covering LAAM GSH-CQDs. This endows a noticeable stability against long-term storage and adding electrolytes. Specifically, they exhibit negligible protein absorption, immunogenicity, and hemolysis, with stealth effect, showing an extraordinarily tolerated dose (5000 mg kg-1) in female mice. The rich amino acid groups simultaneously endow them considerable tumor-specific targeting. The loading of first-line chemotherapeutic drug doxorubicin onto LAAM GSH-CQDs through π-π stacking without sacrificing their merits achieves superior tumor inhibition and minimal side effects compared to commercial doxorubicin liposomal. The tumor-targeted drug delivery platform offered by LAAM GSH-CQDs holds significant promise for advancing clinical applications in cancer treatment.
Collapse
Affiliation(s)
- Wenjing Xie
- Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Haoyu Wang
- Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Huimin Xu
- Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wen Su
- Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ting Yuan
- Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jianqiao Chang
- Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yiqi Bai
- Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yixiao Fan
- Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
5
|
Dang M, Slaughter KV, Cui H, Jiang C, Zhou L, Matthew DJ, Sivak JM, Shoichet MS. Colloid-Forming Prodrug-Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419306. [PMID: 39763100 PMCID: PMC11854861 DOI: 10.1002/adma.202419306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 02/26/2025]
Abstract
Colloidal drug aggregates (CDAs) are challenging in drug discovery due to their unpredictable formation and interference with screening assays. These limitations are turned into a strategic advantage by leveraging CDAs as a drug delivery platform. This study explores the deliberate formation and stabilization of CDAs for local ocular drug delivery, using a modified smallmolecule glaucoma drug. A series of timolol prodrugs are synthesized and self-assembled into CDAs. Of four prodrugs, timolol palmitate CDAs have a critical aggregate concentration of 2.72 µM and sustained in vitro release over 28 d. Timolol palmitate CDAs are dispersed throughout in situ gelling hyaluronan-oxime hydrogel and injected into the subconjunctival space of rat eyes. The intraocular pressure is significantly reduced for at least 49 d with a single subconjunctival injection of timolol-palmitate CDAs compared to 6 h for conventional timolol maleate. The systemic blood concentrations of timolol are significantly lower, even after 6 h, for timolol palmitate CDA-loaded hydrogel versus free timolol maleate, thereby potentially reducing the risk of systemic side effects. This innovative approach redefines the role of CDAs and provides a framework for long-acting ocular therapeutics, shifting their perception from a drug screening challenge to a powerful tool for sustained local drug delivery.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Kai V. Slaughter
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| | - Hong Cui
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Christopher Jiang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - Lisa Zhou
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - David J. Matthew
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
| | - Jeremy M. Sivak
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
- Department of Laboratory Medicine and PathobiologyUniversity of Toronto1 King's College CircleTorontoONM5S 1A8Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
6
|
Ram G, Guha R, Parkash S, Pal S, Bachhar N. Nonbonded Molecular Interaction Controls Aggregation Kinetics of Hydrophobic Molecules in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1830-1843. [PMID: 39818856 DOI: 10.1021/acs.langmuir.4c04317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Molecular aggregation frequently occurs during material synthesis, cellular processes, and drug delivery systems, often resulting in decreased performance and efficiency. One major reason for such aggregation in an aqueous solution is hydrophobicity. While the basic understanding of the aggregation process of hydrophobic molecules from a thermodynamic standpoint is known, the present literature lacks a connection between the aggregation kinetics and the molecular basis of hydrophobicity. This study explores how various fluorescent probes (rhodamine dyes) aggregate in an aqueous solution due to their hydrophobicity. The method employs a combination of modeling and characterization to comprehend the aggregation process by examining the nonbonded intermolecular interactions. The aggregation kinetics was analyzed by measuring the average diffusivity of the molecules using fluorescent correlation spectroscopy and NMR diffusion measurements. Through all-atom molecular dynamics (MD) simulations, it has been observed that the level of hydrophobicity is strongly correlated to the total number of hydrogen bonds between water molecules and dyes. In addition, the aggregation frequency of colliding species, which depends on the concentration, is inversely related to hydrogen bonding and the diffusivity of the molecules. This study of small molecules was applied to predict protein aggregation rates, demonstrating strong alignment with the existing literature. The study has also helped to identify and understand the concentration at which a hydrophobic molecule does not aggregate in an aqueous solution. The method developed here could help investigate the aggregation process and its root causes at the molecular level in aqueous systems to develop strategies to control it.
Collapse
Affiliation(s)
- Goga Ram
- Department of Chemical Engineering, Indian Institute of Technology, Jodhpur 342037, India
| | - Rajarshi Guha
- Intel Corporation, 2501 NE Century Boulevard, Hillsboro, Oregon 97124, United States
| | - Surya Parkash
- Department of Chemistry, Indian Institute of Technology, Jodhpur 342037, India
| | - Samanwita Pal
- Department of Chemistry, Indian Institute of Technology, Jodhpur 342037, India
| | - Nirmalya Bachhar
- Department of Chemical Engineering, Indian Institute of Technology, Jodhpur 342037, India
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Santillo MF, Glenn IS, Paris L, Sprando RL. In Vitro Biological Target Screening and Colloidal Aggregation of Minor Cannabinoids. JOURNAL OF NATURAL PRODUCTS 2024; 87:2881-2886. [PMID: 39563095 DOI: 10.1021/acs.jnatprod.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
There is limited information on interactions between cannabinoids and many pharmacologically and toxicologically relevant targets in humans (e.g., receptors, ion channels, enzymes, and transporters). To address this data gap, seven cannabinoids were screened against a panel of 44 safety-related biological targets in competitive ligand binding or enzymatic activity assays. Diverse binding profiles were observed among the cannabinoids; however, colloidal aggregates were detected by dynamic light scattering and a detergent-sensitive enzyme inhibition assay. These aggregates may nonspecifically inhibit targets, yielding false positives. Although screening identified aggregates, additional testing is required to confirm cannabinoid aggregation in individual in vitro assays.
Collapse
Affiliation(s)
- Michael F Santillo
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration (FDA), Laurel, Maryland 20708, United States
| | - Isabella S Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Lu Paris
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration (FDA), Laurel, Maryland 20708, United States
| |
Collapse
|
8
|
Slaughter KV, Donders EN, Jones MS, Sabbah SG, Elliott MJ, Shoichet BK, Cescon DW, Shoichet MS. Ionizable Drugs Enable Intracellular Delivery of Co-Formulated siRNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403701. [PMID: 39148215 DOI: 10.1002/adma.202403701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Indexed: 08/17/2024]
Abstract
Targeting complementary pathways in diseases such as cancer can be achieved with co-delivery of small interfering ribonucleic acid (siRNA) and small molecule drugs; however, current formulation strategies are typically limited to one, but not both. Here, ionizable small molecule drugs and siRNA are co-formulated in drug-rich nanoparticles. Ionizable analogs of the selective estrogen receptor degrader fulvestrant self-assemble into colloidal drug aggregates and cause endosomal disruption, allowing co-delivery of siRNA against a non-druggable target. siRNA is encapsulated in lipid-stabilized, drug-rich colloidal nanoparticles where the ionizable lipid used in conventional lipid nanoparticles is replaced with an ionizable fulvestrant analog. The selection of an appropriate phospholipid and formulation buffer enables endocytosis and potent reporter gene knockdown in cancer cells. Importantly, siRNA targeting cyclin E1 is effectively delivered to drug-resistant breast cancer cells, demonstrating the utility of this approach. This strategy opens the possibility of using ionizable drugs to co-deliver RNA and ultimately improve therapeutic outcomes.
Collapse
Affiliation(s)
- Kai V Slaughter
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eric N Donders
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Michael S Jones
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Sami G Sabbah
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Mitchell J Elliott
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 Fourth Street, Mail Box 2550, San Francisco, CA, 94143, USA
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
9
|
Liu F, Wu CG, Tu CL, Glenn I, Meyerowitz J, Kaplan AL, Lyu J, Cheng Z, Tarkhanova OO, Moroz YS, Irwin JJ, Chang W, Shoichet BK, Skiniotis G. Large library docking identifies positive allosteric modulators of the calcium-sensing receptor. Science 2024; 385:eado1868. [PMID: 39298584 PMCID: PMC11629082 DOI: 10.1126/science.ado1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/17/2024] [Indexed: 09/22/2024]
Abstract
Positive allosteric modulator (PAM) drugs enhance the activation of the calcium-sensing receptor (CaSR) and suppress parathyroid hormone (PTH) secretion. Unfortunately, these hyperparathyroidism-treating drugs can induce hypocalcemia and arrhythmias. Seeking improved modulators, we docked libraries of 2.7 million and 1.2 billion molecules against the CaSR structure. The billion-molecule docking found PAMs with a 2.7-fold higher hit rate than the million-molecule library, with hits up to 37-fold more potent. Structure-based optimization led to nanomolar leads. In ex vivo organ assays, one of these PAMs was 100-fold more potent than the standard of care, cinacalcet, and reduced serum PTH levels in mice without the hypocalcemia typical of CaSR drugs. As determined from cryo-electron microscopy structures, the PAMs identified here promote CaSR conformations that more closely resemble the activated state than those induced by the established drugs.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cheng-Guo Wu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chia-Ling Tu
- San Francisco VA Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Isabella Glenn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Justin Meyerowitz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anat Levit Kaplan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhiqiang Cheng
- San Francisco VA Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Yurii S. Moroz
- Chemspace LLC, 02094 Kyiv, Ukraine
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
- Enamine Ltd., 02094 Kyiv, Ukraine
| | - John J. Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wenhan Chang
- San Francisco VA Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
LaPlante SR, Coric P, Bouaziz S, França TCC. NMR spectroscopy can help accelerate antiviral drug discovery programs. Microbes Infect 2024; 26:105297. [PMID: 38199267 DOI: 10.1016/j.micinf.2024.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Small molecule drugs have an important role to play in combating viral infections, and biophysics support has been central for contributing to the discovery and design of direct acting antivirals. Perhaps one of the most successful biophysical tools for this purpose is NMR spectroscopy when utilized strategically and pragmatically within team workflows and timelines. This report describes some clear examples of how NMR applications contributed to the design of antivirals when combined with medicinal chemistry, biochemistry, X-ray crystallography and computational chemistry. Overall, these multidisciplinary approaches allowed teams to reveal and expose compound physical properties from which design ideas were spawned and tested to achieve the desired successes. Examples are discussed for the discovery of antivirals that target HCV, HIV and SARS-CoV-2.
Collapse
Affiliation(s)
- Steven R LaPlante
- Pasteur Network, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada; NMX Research and Solutions, Inc., 500 Boulevard Cartier Ouest, Laval, Québec, H7V 5B7, Canada; Université Paris Cité, CNRS, CiTCoM, F-75006, Paris, France.
| | - Pascale Coric
- Université Paris Cité, CNRS, CiTCoM, F-75006, Paris, France
| | - Serge Bouaziz
- Université Paris Cité, CNRS, CiTCoM, F-75006, Paris, France
| | - Tanos C C França
- Pasteur Network, INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
11
|
Glenn IS, Hall LN, Khalid MM, Ott M, Shoichet BK. Colloidal Aggregation Confounds Cell-Based Covid-19 Antiviral Screens. J Med Chem 2024; 67:10263-10274. [PMID: 38864383 PMCID: PMC11236530 DOI: 10.1021/acs.jmedchem.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Colloidal aggregation is one of the largest contributors to false positives in early drug discovery. Here, we consider aggregation's role in cell-based infectivity assays in Covid-19 drug repurposing. We investigated the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate the impact of aggregation on antiviral efficacy in cells, we presaturated the colloidal drug suspensions with BSA or spun them down by centrifugation and measured the effects on spike pseudovirus infectivity. Antiviral potencies diminished by at least 10-fold following both BSA and centrifugation treatments, supporting a colloid-based mechanism. Aggregates induced puncta of the labeled spike protein in fluorescence microscopy, consistent with sequestration of the protein on the colloidal particles. These observations suggest that colloidal aggregation is common among cell-based antiviral drug repurposing and offers rapid counter-screens to detect and eliminate these artifacts.
Collapse
Affiliation(s)
- Isabella S Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| | - Lauren N Hall
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, California 94158, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California 94158, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| |
Collapse
|
12
|
Lyu J, Kapolka N, Gumpper R, Alon A, Wang L, Jain MK, Barros-Álvarez X, Sakamoto K, Kim Y, DiBerto J, Kim K, Glenn IS, Tummino TA, Huang S, Irwin JJ, Tarkhanova OO, Moroz Y, Skiniotis G, Kruse AC, Shoichet BK, Roth BL. AlphaFold2 structures guide prospective ligand discovery. Science 2024; 384:eadn6354. [PMID: 38753765 PMCID: PMC11253030 DOI: 10.1126/science.adn6354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
AlphaFold2 (AF2) models have had wide impact but mixed success in retrospective ligand recognition. We prospectively docked large libraries against unrefined AF2 models of the σ2 and serotonin 2A (5-HT2A) receptors, testing hundreds of new molecules and comparing results with those obtained from docking against the experimental structures. Hit rates were high and similar for the experimental and AF2 structures, as were affinities. Success in docking against the AF2 models was achieved despite differences between orthosteric residue conformations in the AF2 models and the experimental structures. Determination of the cryo-electron microscopy structure for one of the more potent 5-HT2A ligands from the AF2 docking revealed residue accommodations that resembled the AF2 prediction. AF2 models may sample conformations that differ from experimental structures but remain low energy and relevant for ligand discovery, extending the domain of structure-based drug design.
Collapse
Affiliation(s)
- Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
- The Evnin Family Laboratory of Computational Molecular Discovery, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas Kapolka
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ryan Gumpper
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Manish K. Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ximena Barros-Álvarez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Kensuke Sakamoto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yoojoong Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jeffrey DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Kuglae Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Isabella S. Glenn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Tia A. Tummino
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Sijie Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - John J. Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | | | - Yurii Moroz
- Chemspace LLC, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
- Enamine Ltd., Kyiv 02094, Ukraine
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Nesabi A, Kalayan J, Al-Rawashdeh S, Ghattas MA, Bryce RA. Molecular dynamics simulations as a guide for modulating small molecule aggregation. J Comput Aided Mol Des 2024; 38:11. [PMID: 38470532 PMCID: PMC10933209 DOI: 10.1007/s10822-024-00557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Small colloidally aggregating molecules (SCAMs) can be problematic for biological assays in drug discovery campaigns. However, the self-associating properties of SCAMs have potential applications in drug delivery and analytical biochemistry. Consequently, the ability to predict the aggregation propensity of a small organic molecule is of considerable interest. Chemoinformatics-based filters such as ChemAGG and Aggregator Advisor offer rapid assessment but are limited by the assay quality and structural diversity of their training set data. Complementary to these tools, we explore here the ability of molecular dynamics (MD) simulations as a physics-based method capable of predicting the aggregation propensity of diverse chemical structures. For a set of 32 molecules, using simulations of 100 ns in explicit solvent, we find a success rate of 97% (one molecule misclassified) as opposed to 75% by Aggregator Advisor and 72% by ChemAGG. These short timescale MD simulations are representative of longer microsecond trajectories and yield an informative spectrum of aggregation propensities across the set of solutes, capturing the dynamic behaviour of weakly aggregating compounds. Implicit solvent simulations using the generalized Born model were less successful in predicting aggregation propensity. MD simulations were also performed to explore structure-aggregation relationships for selected molecules, identifying chemical modifications that reversed the predicted behaviour of a given aggregator/non-aggregator compound. While lower throughput than rapid cheminformatics-based SCAM filters, MD-based prediction of aggregation has potential to be deployed on the scale of focused subsets of moderate size, and, depending on the target application, provide guidance on removing or optimizing a compound's aggregation propensity.
Collapse
Affiliation(s)
- Azam Nesabi
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jas Kalayan
- Daresbury Laboratory, Science and Technologies Facilities Council (STFC), Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK
| | - Sara Al-Rawashdeh
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
14
|
Dang M, Shoichet MS. Long-Acting Ocular Injectables: Are We Looking In The Right Direction? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306463. [PMID: 38018313 PMCID: PMC10885661 DOI: 10.1002/advs.202306463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Indexed: 11/30/2023]
Abstract
The complex anatomy and physiological barriers of the eye make delivering ocular therapeutics challenging. Generally, effective drug delivery to the eye is hindered by rapid clearance and limited drug bioavailability. Biomaterial-based approaches have emerged to enhance drug delivery to ocular tissues and overcome existing limitations. In this review, some of the most promising long-acting injectables (LAIs) in ocular drug delivery are explored, focusing on novel design strategies to improve therapeutic outcomes. LAIs are designed to enable sustained therapeutic effects, thereby extending local drug residence time and facilitating controlled and targeted drug delivery. Moreover, LAIs can be engineered to enhance drug targeting and penetration across ocular physiological barriers.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
15
|
Ozerov A, Merezhkina D, Zubkov FI, Litvinov R, Ibragimova U, Valuisky N, Borisov A, Spasov A. Synthesis and antiglycation activity of 3-phenacyl substituted thiazolium salts, new analogs of Alagebrium. Chem Biol Drug Des 2024; 103:e14391. [PMID: 37929334 DOI: 10.1111/cbdd.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
After preliminary ab initio calculations, 3-phenacyl substituted thiazolium salts, analogs of Alagebrium, were synthesized and investigated in vitro as glycation reaction inhibitors. The most part of investigations focused on the potential of the title compounds to attenuate the formation of fluorescent AGEs as well on their ability to disrupt the cross-linking formation among glycated proteins. Additionally, the capability of thiazolium salts to deglycate in the reaction of early glycation products with nitroblue tetrazolium was determined. Cytotoxicological properties of the title compounds were evaluated using LDH and MTT assays. The leader compound (3-[2-(biphenyl-4-yl)-2-oxoethyl]-1,3-thiazol-3-ium bromide) in a 50 mg/kg dose (p.o. 14 days) was further tested within an in vivo carbonyl stress model (rats, methylglyoxal 86.25 mg/kg/d, i.p., 14 days). As a result, the leader-molecule revealed a high effectiveness against all three examined mechanisms of glycation reaction inhibition in in vitro tests and was able to suppress capacity of methylglyoxal to form AGEs in vivo.
Collapse
Affiliation(s)
- Alexander Ozerov
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Volgograd, Russia
| | - Darya Merezhkina
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, Volgograd, Russia
| | - Fedor I Zubkov
- Organic Chemistry Department, RUDN University, Moscow, Russia
| | - Roman Litvinov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Umida Ibragimova
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Nikita Valuisky
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Alexander Borisov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Alexander Spasov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| |
Collapse
|
16
|
Lasota M, Jankowski D, Wiśniewska A, Sarna M, Kaczor-Kamińska M, Misterka A, Szczepaniak M, Dulińska-Litewka J, Górecki A. The Potential of Congo Red Supplied Aggregates of Multitargeted Tyrosine Kinase Inhibitor (Sorafenib, BAY-43-9006) in Enhancing Therapeutic Impact on Bladder Cancer. Int J Mol Sci 2023; 25:269. [PMID: 38203437 PMCID: PMC10779242 DOI: 10.3390/ijms25010269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Bladder cancer is a common malignancy associated with high recurrence rates and potential progression to invasive forms. Sorafenib, a multi-targeted tyrosine kinase inhibitor, has shown promise in anti-cancer therapy, but its cytotoxicity to normal cells and aggregation in solution limits its clinical application. To address these challenges, we investigated the formation of supramolecular aggregates of sorafenib with Congo red (CR), a bis-azo dye known for its supramolecular interaction. We analyzed different mole ratios of CR-sorafenib aggregates and evaluated their effects on bladder cancer cells of varying levels of malignancy. In addition, we also evaluated the effect of the test compounds on normal uroepithelial cells. Our results demonstrated that sorafenib inhibits the proliferation of bladder cancer cells and induces apoptosis in a dose-dependent manner. However, high concentrations of sorafenib also showed cytotoxicity to normal uroepithelial cells. In contrast, the CR-BAY aggregates exhibited reduced cytotoxicity to normal cells while maintaining anti-cancer activity. The aggregates inhibited cancer cell migration and invasion, suggesting their potential for metastasis prevention. Dynamic light scattering and UV-VIS measurements confirmed the formation of stable co-aggregates with distinctive spectral properties. These CR-sorafenib aggregates may provide a promising approach to targeted therapy with reduced cytotoxicity and improved stability for drug delivery in bladder cancer treatment. This work shows that the drug-excipient aggregates proposed and described so far, as Congo red-sorafenib, can be a real step forward in anti-cancer therapies.
Collapse
Affiliation(s)
- Małgorzata Lasota
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (M.K.-K.); (A.M.); (J.D.-L.)
- SSG of Targeted Therapy and Supramolecular Systems, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (D.J.); (M.S.)
| | - Daniel Jankowski
- SSG of Targeted Therapy and Supramolecular Systems, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (D.J.); (M.S.)
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Krakow, Poland;
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (M.K.-K.); (A.M.); (J.D.-L.)
| | - Anna Misterka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (M.K.-K.); (A.M.); (J.D.-L.)
- SSG of Targeted Therapy and Supramolecular Systems, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (D.J.); (M.S.)
| | - Mateusz Szczepaniak
- SSG of Targeted Therapy and Supramolecular Systems, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (D.J.); (M.S.)
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (M.K.-K.); (A.M.); (J.D.-L.)
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| |
Collapse
|
17
|
Wu T, Hornsby M, Zhu L, Yu JC, Shokat KM, Gestwicki JE. Protocol for performing and optimizing differential scanning fluorimetry experiments. STAR Protoc 2023; 4:102688. [PMID: 37943662 PMCID: PMC10663957 DOI: 10.1016/j.xpro.2023.102688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
Differential scanning fluorimetry (DSF) is a widely used technique for determining the apparent melting temperature (Tma) of a purified protein. Here, we present a protocol for performing and optimizing DSF experiments. We describe steps for designing and performing the experiment, analyzing data, and optimization. We provide benchmarks for typical Tmas and ΔTmas, standard assay conditions, and upper and lower limits of commonly altered experimental variables. We also detail common pitfalls of DSF and ways to avoid, identify, and overcome them.
Collapse
Affiliation(s)
- Taiasean Wu
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Hornsby
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 941583, USA
| | - Lawrence Zhu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joshua C Yu
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 941583, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Nazarova A, Padnya P, Kharlamova A, Petrov K, Yusupov G, Zelenikhin P, Bukharov M, Hua B, Huang F, Stoikov I. Peptidomimetics based on ammonium decasubstituted pillar[5]arenes: Influence of the alpha-amino acid residue nature on cholinesterase inhibition. Bioorg Chem 2023; 141:106927. [PMID: 37866207 DOI: 10.1016/j.bioorg.2023.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Cholinesterase inhibitors are a group of medicines that are widely used for the treatment of cognitive impairments accompanying Alzheimer's disease as well as for the treatment of pathological muscle weaknesses syndromes such as myasthenia gravis. The search for novel non-toxic and effective cholinesterase inhibitors for creating neuroprotective and neurotransmitter agents is an urgent interdisciplinary problem. For the first time, the application of water-soluble pillar[5]arenes containing amino acid residues as effective cholinesterase inhibitors was shown. The influence of the nature of aliphatic and aromatic alpha-amino acid residues (glycine, l-alanine, l-phenylalanine and l-tryptophan) on self-assembly, aggregate's stability, cytotoxicity on A549 and LEK cells and cholinesterase inhibition was studied. It was found that the studied compounds with aliphatic amino acid residues showed a low inhibitory ability against cholinesterases. It was established that the pillar[5]arene containing fragments of l-phenylalanine is the most promising inhibitor of butyrylcholinesterase (IC50 = 0.32 ± 0.01 μM), the pillar[5]arene with l-tryptophan residues is the most promising inhibitor of acetylcholinesterase (IC50 = 0.32 ± 0.01 μM). This study has shown a possible application of peptidomimetics based on pillar[5]arenes to inhibit cholinesterase, as well as control the binding affinity to a particular enzyme in a structure-dependent manner.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia.
| | - Pavel Padnya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
| | - Alexandra Kharlamova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., Kazan 420088, Russia
| | - George Yusupov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
| | - Mikhail Bukharov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry Zhejiang University, 310058 Hangzhou, PR China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215 Hangzhou, PR China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry Zhejiang University, 310058 Hangzhou, PR China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215 Hangzhou, PR China; Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, PR China
| | - Ivan Stoikov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia.
| |
Collapse
|
19
|
Chavda VP, Dyawanapelly S, Dawre S, Ferreira-Faria I, Bezbaruah R, Rani Gogoi N, Kolimi P, Dave DJ, Paiva-Santos AC, Vora LK. Lyotropic liquid crystalline phases: Drug delivery and biomedical applications. Int J Pharm 2023; 647:123546. [PMID: 37884213 DOI: 10.1016/j.ijpharm.2023.123546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Liquid crystal (LC)-based nanoformulations may efficiently deliver drugs and therapeutics to targeted biological sites. Lyotropic liquid crystalline phases (LLCPs) have received much interest in recent years due to their unique structural characteristics of both isotropic liquids and crystalline solids. These LLCPs can be utilized as promising drug delivery systems to deliver drugs, proteins, peptides and vaccines because of their improved drug loading, stabilization, and controlled drug release. The effects of molecule shape, microsegregation, and chirality are very important in the formation of liquid crystalline phases (LCPs). Homogenization of self-assembled amphiphilic lipids, water and stabilizers produces LLCPs with different types of mesophases, bicontinuous cubic (cubosomes) and inverse hexagonal (hexosomes). Moreover, many studies have also shown higher bioadhesivity and biocompatibility of LCs due to their structural resemblance to biological membranes, thus making them more efficient for targeted drug delivery. In this review, an outline of the engineering aspects of LLCPs and polymer-based LLCPs is summarized. Moreover, it covers parenteral, oral, transdermal delivery and medical imaging of LC in targeting various tissues and is discussed with a scope to design more efficient next-generation novel nanosystems. In addition, a detailed overview of advanced liquid crystal-based drug delivery for vaccines and biomedical applications is reviewed.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India; Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India.
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Shilpa Dawre
- Department of Pharmaceutics, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, India
| | - Inês Ferreira-Faria
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA
| | - Divyang J Dave
- Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| |
Collapse
|
20
|
Glenn IS, Hall LN, Khalid MM, Ott M, Shoichet BK. Colloidal aggregation confounds cell-based Covid-19 antiviral screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564435. [PMID: 37961552 PMCID: PMC10634915 DOI: 10.1101/2023.10.27.564435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Colloidal aggregation is one of the largest contributors to false-positives in early drug discovery and chemical biology. Much work has focused on its impact on pure-protein screens; here we consider aggregations role in cell-based infectivity assays in Covid-19 drug repurposing. We began by investigating the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal-particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate antiviral efficacy of the drugs in cells we used spike pseudotyped lentivirus and pre-saturation of the colloids with BSA. The antiviral potency of the aggregators was diminished by at least 10-fold and often entirely eliminated in the presence of BSA, suggesting antiviral activity can be attributed to the non-specific nature of the colloids. In confocal microscopy, the aggregates induced fluorescent puncta of labeled spike protein, consistent with sequestration of the protein on the colloidal particles. Addition of either non-ionic detergent or of BSA disrupted these puncta. These observations suggest that colloidal aggregation is common among cell-based anti-viral drug repurposing, and perhaps cell-based assays more broadly, and offers rapid counter-screens to detect and eliminate these artifacts, allowing the community invest resources in compounds with true potential as a Covid-19 therapeutic.
Collapse
Affiliation(s)
- Isabella S Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Lauren N Hall
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, California, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
- Chan Zuckerberg Biohub, San Francisco, California, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
21
|
Shireen Z, Curk T, Brandl C, B Babu S. Rigidity-Induced Controlled Aggregation of Binary Colloids. ACS OMEGA 2023; 8:37225-37232. [PMID: 37841185 PMCID: PMC10568703 DOI: 10.1021/acsomega.3c04909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Here, we report the proof-of-concept for controlled aggregation in a binary colloidal system. The binary systems are studied by varying bond flexibility of only one species, while the other species' bonds remain fully flexible. By establishing the underlying relation between gelation and bond rigidity, we demonstrate how the interplay among bond flexibility, critical concentration, and packing volume fraction influenced the aggregation kinetics. Our result shows that rigidity in bonds increases the critical concentration for gels to be formed in the binary mixture. Furthermore, the average number of bonded neighbor analyses reveal the influence of bond rigidity both above and below critical concentrations and show that variation in bond flexibility in only one species alters the kinetics of aggregation of both species. This finding improves our understanding of colloidal aggregation in soft and biological systems.
Collapse
Affiliation(s)
- Zakiya Shireen
- Department
of Mechanical Engineering, Faculty of Engineering and Information
Technology, University of Melbourne, 3010 Parkville, Victoria Australia
| | - Tine Curk
- Department
of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christian Brandl
- Department
of Mechanical Engineering, Faculty of Engineering and Information
Technology, University of Melbourne, 3010 Parkville, Victoria Australia
| | - Sujin B Babu
- Out
of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, 110016 New Delhi, India
| |
Collapse
|
22
|
Puthalath F, Biswas A, Prasad VV, Rajesh R. Lattice models for ballistic aggregation: Cluster-shape-dependent exponents. Phys Rev E 2023; 108:044127. [PMID: 37978638 DOI: 10.1103/physreve.108.044127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
We study ballistic aggregation on a two-dimensional square lattice, where particles move ballistically in between momentum and mass conserving coalescing collisions. Three models are studied based on the shapes of the aggregates: In the first the aggregates remain point particles, in the second they retain the fractal shape at the time of collision, and in the third they assume a spherical shape. The exponents describing the power-law temporal decay of number of particles and energy as well as dependence of velocity correlations on mass are determined using large-scale Monte Carlo simulations. It is shown that the exponents are universal only for the point-particle model. In the other two cases, the exponents are dependent on the initial number density and correlations vanish at high number densities. The fractal dimension for the second model is close to 1.49.
Collapse
Affiliation(s)
- Fahad Puthalath
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany
| | - Apurba Biswas
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V V Prasad
- Department of Physics, Cochin University of Science and Technology, Cochin 682022, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
23
|
Szal T, Chauhan SS, Lewe P, Rachad FZ, Madre M, Paunina L, Witt S, Parthasarathi R, Windshügel B. Efflux Pump-Binding 4(3-Aminocyclobutyl)Pyrimidin-2-Amines Are Colloidal Aggregators. Biomolecules 2023; 13:1000. [PMID: 37371580 PMCID: PMC10296211 DOI: 10.3390/biom13061000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Efflux pumps are a relevant factor in antimicrobial resistance. In E. coli, the tripartite efflux pump AcrAB-TolC removes a chemically diverse set of antibiotics from the bacterium. Therefore, small molecules interfering with efflux pump function are considered adjuvants for improving antimicrobial therapies. Several compounds targeting the periplasmic adapter protein AcrA and the efflux pump AcrB have been identified to act synergistically with different antibiotics. Among those, several 4(3-aminocyclobutyl)pyrimidin-2-amines have been shown to bind to both proteins. In this study, we intended to identify analogs of these substances with improved binding affinity to AcrA using virtual screening followed by experimental validation. While we succeeded in identifying several compounds showing a synergistic effect with erythromycin on E. coli, biophysical studies suggested that 4(3-aminocyclobutyl)pyrimidin-2-amines form colloidal aggregates that do not bind specifically to AcrA. Therefore, these substances are not suited for further development. Our study emphasizes the importance of implementing additional control experiments to identify aggregators among bioactive compounds.
Collapse
Affiliation(s)
- Tania Szal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525 Hamburg, Germany; (T.S.); (F.-Z.R.)
- School of Science, Constructor University, 28759 Bremen, Germany
| | - Shweta Singh Chauhan
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.C.); (R.P.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Philipp Lewe
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), 22607 Hamburg, Germany; (P.L.); (S.W.)
| | - Fatima-Zahra Rachad
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525 Hamburg, Germany; (T.S.); (F.-Z.R.)
| | - Marina Madre
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (M.M.); (L.P.)
| | - Laura Paunina
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (M.M.); (L.P.)
| | - Susanne Witt
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), 22607 Hamburg, Germany; (P.L.); (S.W.)
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.C.); (R.P.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Björn Windshügel
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525 Hamburg, Germany; (T.S.); (F.-Z.R.)
- School of Science, Constructor University, 28759 Bremen, Germany
| |
Collapse
|
24
|
Mehyar N. Coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase inhibitors: A systematic review of in vitro studies. J Virus Erad 2023:100327. [PMID: 37363132 PMCID: PMC10214743 DOI: 10.1016/j.jve.2023.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction The recent outbreak of SARS-CoV-2 significantly increased the need to find inhibitors that target the essential enzymes for virus replication in the host cells. This systematic review was conducted to identify potential inhibitors of SARS-CoV, MERS-CoV, and SARS-CoV-2 helicases that have been tested by in vitro methods. The inhibition mechanisms of these compounds were discussed in this review, in addition to their cytotoxic and viral infection protection properties. Methods The databases PUBMED/MEDLINE, EMBASE, SCOPUS, and Web of Science were searched using different combinations of the keywords "helicase", "nsp13", "inhibitors", "coronaviridae", "coronaviruses", "virus replication", "replication", and "antagonists and inhibitors". Results By the end of this search, a total of 6854 articles had been identified. Thirty-one articles were included in this review. These studies reported the inhibitory effects of 309 compounds on SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase activities measured by in vitro methods. Helicase inhibitors were categorized according to the type of coronavirus and the type of tested enzymatic activity, nature, approval, inhibition level, cytotoxicity, and viral infection protection effects. These inhibitors are classified according to the site of their interaction with the coronavirus helicases into four types: zinc-binding site inhibitors, nucleic acid binding site inhibitors, nucleotide-binding site inhibitors, and inhibitors with no clear interaction site. Conclusion Evidence from in vitro studies suggests that helicase inhibitors have a high potential as antiviral agents. Several helicase inhibitors tested in vitro showed good antiviral activities while maintaining moderate cytotoxicity. These inhibitors should be clinically investigated to determine their efficiency in treating different coronavirus infections, particularly COVID-19.
Collapse
Affiliation(s)
- Nimer Mehyar
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Donders EN, Slaughter KV, Dank C, Ganesh AN, Shoichet BK, Lautens M, Shoichet MS. Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300311. [PMID: 36905240 PMCID: PMC10161099 DOI: 10.1002/advs.202300311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 05/06/2023]
Abstract
Colloidal drug aggregates enable the design of drug-rich nanoparticles; however, the efficacy of stabilized colloidal drug aggregates is limited by entrapment in the endo-lysosomal pathway. Although ionizable drugs are used to elicit lysosomal escape, this approach is hindered by toxicity associated with phospholipidosis. It is hypothesized that tuning the pKa of the drug would enable endosomal disruption while avoiding phospholipidosis and minimizing toxicity. To test this idea, 12 analogs of the nonionizable colloidal drug fulvestrant are synthesized with ionizable groups to enable pH-dependent endosomal disruption while maintaining bioactivity. Lipid-stabilized fulvestrant analog colloids are endocytosed by cancer cells, and the pKa of these ionizable colloids influenced the mechanism of endosomal and lysosomal disruption. Four fulvestrant analogs-those with pKa values between 5.1 and 5.7-disrupted endo-lysosomes without measurable phospholipidosis. Thus, by manipulating the pKa of colloid-forming drugs, a tunable and generalizable strategy for endosomal disruption is established.
Collapse
Affiliation(s)
- Eric N. Donders
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Donnelly CentreUniversity of Toronto160 College StreetTorontoONM5S3E1Canada
| | - Kai V. Slaughter
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Donnelly CentreUniversity of Toronto160 College StreetTorontoONM5S3E1Canada
| | - Christian Dank
- Department of ChemistryUniversity of Toronto80 St. George StreetTorontoONM5S 3H6Canada
| | - Ahil N. Ganesh
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Donnelly CentreUniversity of Toronto160 College StreetTorontoONM5S3E1Canada
| | - Brian K. Shoichet
- Department of Pharmaceutical ChemistryUniversity of California San Francisco1700 Fourth Street, Mail Box 2550San FranciscoCA94143USA
| | - Mark Lautens
- Department of ChemistryUniversity of Toronto80 St. George StreetTorontoONM5S 3H6Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Donnelly CentreUniversity of Toronto160 College StreetTorontoONM5S3E1Canada
| |
Collapse
|
26
|
Balas M, Nistorescu S, Badea MA, Dinischiotu A, Boni M, Dinache A, Smarandache A, Udrea AM, Prepelita P, Staicu A. Photodynamic Activity of TMPyP4/TiO 2 Complex under Blue Light in Human Melanoma Cells: Potential for Cancer-Selective Therapy. Pharmaceutics 2023; 15:pharmaceutics15041194. [PMID: 37111678 PMCID: PMC10144582 DOI: 10.3390/pharmaceutics15041194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The combination of TiO2 nanoparticles (NPs) and photosensitizers (PS) may offer significant advantages in photodynamic therapy (PDT) of melanoma, such as improved cell penetration, enhanced ROS production, and cancer selectivity. In this study, we aimed to investigate the photodynamic effect of 5,10,15,20-(Tetra-N-methyl-4-pyridyl)porphyrin tetratosylate (TMPyP4) complexes with TiO2 NPs on human cutaneous melanoma cells by irradiation with 1 mW/cm2 blue light. The porphyrin conjugation with the NPs was analyzed by absorption and FTIR spectroscopy. The morphological characterization of the complexes was performed by Scanning Electron Microscopy and Dynamic Light Scattering. The singlet oxygen generation was analyzed by phosphorescence at 1270 nm. Our predictions indicated that the non-irradiated investigated porphyrin has a low degree of toxicity. The photodynamic activity of the TMPyP4/TiO2 complex was assessed on the human melanoma Mel-Juso cell line and non-tumor skin CCD-1070Sk cell line treated with various concentrations of the PS and subjected to dark conditions and visible light-irradiation. The tested complexes of TiO2 NPs with TMPyP4 presented cytotoxicity only after activation by blue light (405 nm) mediated by the intracellular production of ROS in a dose-dependent manner. The photodynamic effect observed in this evaluation was higher in melanoma cells than the effect observed in the non-tumor cell line, demonstrating a promising potential for cancer-selectivity in PDT of melanoma.
Collapse
Affiliation(s)
- Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Simona Nistorescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Laser Department, National Institute of Laser, Plasma, and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663 Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Mihai Boni
- Laser Department, National Institute of Laser, Plasma, and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania
| | - Andra Dinache
- Laser Department, National Institute of Laser, Plasma, and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania
| | - Adriana Smarandache
- Laser Department, National Institute of Laser, Plasma, and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania
| | - Ana-Maria Udrea
- Laser Department, National Institute of Laser, Plasma, and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663 Bucharest, Romania
| | - Petronela Prepelita
- Laser Department, National Institute of Laser, Plasma, and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania
| | - Angela Staicu
- Laser Department, National Institute of Laser, Plasma, and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania
| |
Collapse
|
27
|
Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, Hewitt P, Mow T, Oinonen T, Roth A, Steger-Hartmann T, Valentin JP, Van Goethem F, Weaver RJ, Newham P. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov 2023; 22:317-335. [PMID: 36781957 PMCID: PMC9924869 DOI: 10.1038/s41573-022-00633-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.
Collapse
Affiliation(s)
- Francois Pognan
- Discovery and Investigative Safety, Novartis Pharma AG, Basel, Switzerland.
| | - Mario Beilmann
- Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Harrie C M Boonen
- Drug Safety, Dept of Exploratory Toxicology, Lundbeck A/S, Valby, Denmark
| | | | - Gordon Dear
- In Vitro In Vivo Translation, GlaxoSmithKline David Jack Centre for Research, Ware, UK
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Tomas Mow
- Safety Pharmacology and Early Toxicology, Novo Nordisk A/S, Maaloev, Denmark
| | - Teija Oinonen
- Preclinical Safety, Orion Corporation, Espoo, Finland
| | - Adrian Roth
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | - Freddy Van Goethem
- Predictive, Investigative & Translational Toxicology, Nonclinical Safety, Janssen Research & Development, Beerse, Belgium
| | - Richard J Weaver
- Innovation Life Cycle Management, Institut de Recherches Internationales Servier, Suresnes, France
| | - Peter Newham
- Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Cambridge, UK.
| |
Collapse
|
28
|
Krüger N, Kronenberger T, Xie H, Rocha C, Pöhlmann S, Su H, Xu Y, Laufer SA, Pillaiyar T. Discovery of Polyphenolic Natural Products as SARS-CoV-2 M pro Inhibitors for COVID-19. Pharmaceuticals (Basel) 2023; 16:190. [PMID: 37259339 PMCID: PMC9959258 DOI: 10.3390/ph16020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 09/27/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the development of direct-acting antiviral drugs due to the coronavirus disease 2019 (COVID-19) pandemic. The main protease of SARS-CoV-2 is a crucial enzyme that breaks down polyproteins synthesized from the viral RNA, making it a validated target for the development of SARS-CoV-2 therapeutics. New chemical phenotypes are frequently discovered in natural goods. In the current study, we used a fluorogenic assay to test a variety of natural products for their ability to inhibit SARS-CoV-2 Mpro. Several compounds were discovered to inhibit Mpro at low micromolar concentrations. It was possible to crystallize robinetin together with SARS-CoV-2 Mpro, and the X-ray structure revealed covalent interaction with the protease's catalytic Cys145 site. Selected potent molecules also exhibited antiviral properties without cytotoxicity. Some of these powerful inhibitors might be utilized as lead compounds for future COVID-19 research.
Collapse
Affiliation(s)
- Nadine Krüger
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research Göttingen, Kellnerweg 4, 37077 Göttingen, Germany
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided & Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Hang Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheila Rocha
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research Göttingen, Kellnerweg 4, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research Göttingen, Kellnerweg 4, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yechun Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Stefan A. Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided & Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Pidugu LS, Servius HW, Sevdalis SE, Cook ME, Varney KM, Pozharski E, Drohat AC. Characterizing inhibitors of human AP endonuclease 1. PLoS One 2023; 18:e0280526. [PMID: 36652434 PMCID: PMC9847973 DOI: 10.1371/journal.pone.0280526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
AP endonuclease 1 (APE1) processes DNA lesions including apurinic/apyrimidinic sites and 3´-blocking groups, mediating base excision repair and single strand break repair. Much effort has focused on developing specific inhibitors of APE1, which could have important applications in basic research and potentially lead to clinical anticancer agents. We used structural, biophysical, and biochemical methods to characterize several reported inhibitors, including 7-nitroindole-2-carboxylic acid (CRT0044876), given its small size, reported potency, and widespread use for studying APE1. Intriguingly, NMR chemical shift perturbation (CSP) experiments show that CRT0044876 and three similar indole-2-carboxylic acids bind a pocket distal from the APE1 active site. A crystal structure confirms these findings and defines the pose for 5-nitroindole-2-carboxylic acid. However, dynamic light scattering experiments show the indole compounds form colloidal aggregates that could bind (sequester) APE1, causing nonspecific inhibition. Endonuclease assays show the compounds lack significant APE1 inhibition under conditions (detergent) that disrupt aggregation. Thus, binding of the indole-2-carboxylic acids at the remote pocket does not inhibit APE1 repair activity. Myricetin also forms aggregates and lacks APE1 inhibition under aggregate-disrupting conditions. Two other reported compounds (MLS000552981, MLS000419194) inhibit APE1 in vitro with low micromolar IC50 and do not appear to aggregate in this concentration range. However, NMR CSP experiments indicate the compounds do not bind specifically to apo- or Mg2+-bound APE1, pointing to a non-specific mode of inhibition, possibly DNA binding. Our results highlight methods for rigorous interrogation of putative APE1 inhibitors and should facilitate future efforts to discover compounds that specifically inhibit this important repair enzyme.
Collapse
Affiliation(s)
- Lakshmi S. Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Hardler W. Servius
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Spiridon E. Sevdalis
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mary E. Cook
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kristen M. Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
- * E-mail: (EP); (ACD)
| | - Alexander C. Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (EP); (ACD)
| |
Collapse
|
30
|
Proj M, Hrast M, Knez D, Bozovičar K, Grabrijan K, Meden A, Gobec S, Frlan R. Fragment-Sized Thiazoles in Fragment-Based Drug Discovery Campaigns: Friend or Foe? ACS Med Chem Lett 2022; 13:1905-1910. [DOI: 10.1021/acsmedchemlett.2c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Krištof Bozovičar
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Katarina Grabrijan
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Anže Meden
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| | - Rok Frlan
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, Ljubljana 1000, Slovenia
| |
Collapse
|
31
|
Sheridan R, Spelman K. Polyphenolic promiscuity, inflammation-coupled selectivity: Whether PAINs filters mask an antiviral asset. Front Pharmacol 2022; 13:909945. [PMID: 36339544 PMCID: PMC9634583 DOI: 10.3389/fphar.2022.909945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2023] Open
Abstract
The Covid-19 pandemic has elicited much laboratory and clinical research attention on vaccines, mAbs, and certain small-molecule antivirals against SARS-CoV-2 infection. By contrast, there has been comparatively little attention on plant-derived compounds, especially those that are understood to be safely ingested at common doses and are frequently consumed in the diet in herbs, spices, fruits and vegetables. Examining plant secondary metabolites, we review recent elucidations into the pharmacological activity of flavonoids and other polyphenolic compounds and also survey their putative frequent-hitter behavior. Polyphenols, like many drugs, are glucuronidated post-ingestion. In an inflammatory milieu such as infection, a reversion back to the active aglycone by the release of β-glucuronidase from neutrophils and macrophages allows cellular entry of the aglycone. In the context of viral infection, virions and intracellular virus particles may be exposed to promiscuous binding by the polyphenol aglycones resulting in viral inhibition. As the mechanism's scope would apply to the diverse range of virus species that elicit inflammation in infected hosts, we highlight pre-clinical studies of polyphenol aglycones, such as luteolin, isoginkgetin, quercetin, quercetagetin, baicalein, curcumin, fisetin and hesperetin that reduce virion replication spanning multiple distinct virus genera. It is hoped that greater awareness of the potential spatial selectivity of polyphenolic activation to sites of pathogenic infection will spur renewed research and clinical attention for natural products antiviral assaying and trialing over a wide array of infectious viral diseases.
Collapse
Affiliation(s)
| | - Kevin Spelman
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
- Health Education and Research, Driggs, ID, United States
| |
Collapse
|
32
|
Harris Y, Sason H, Niezni D, Shamay Y. Automated discovery of nanomaterials via drug aggregation induced emission. Biomaterials 2022; 289:121800. [PMID: 36166893 DOI: 10.1016/j.biomaterials.2022.121800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 12/19/2022]
Abstract
Nanoformulations of small molecule drugs are essential to effectively deliver them and treat a wide range of diseases. They are normally complex to develop, lack predictability, and exhibit low drug loading. Recently, nanoparticles made via co-assembly of hydrophobic drugs and organic dyes, exhibited drug-loading of up to 90% with high predictability from the drug structure. However, these particles have relatively short stability and can formulate only a small fraction of the drug space. Here, we developed an automated workflow to synthesize and select novel dye stabilizers, based on their ability to inhibit drug aggregation-induced emission (AIE). We first screened and identified 10 drugs with previously unknown strong AIE activity and exploited this trait to automatically synthesize and select a new ultra-stabilizer named R595. Interestingly, it shares several synthetic similarities and advantages with polydopamine. We found that R595 is superior to myriad types of excipients and solubilizers such as cyclodextrins, poloxamers, albumin, and previously published organic dyes, in both long-term stability and drug compatibility. We investigated the biodistribution, pharmacokinetics, safety and efficacy of the AIEgenic MEK inhibitor trametinib-R595 nanoparticles in vitro and in vivo and demonstrated that they are non-toxic and effective in KRAS driven colon and lung cancer models.
Collapse
Affiliation(s)
- Yuval Harris
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hagit Sason
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Danna Niezni
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
33
|
Marteau R, Ravez S, Mazhari Dorooee D, Bouchaoui H, Porte K, Devedjian JC, Melnyk P, Devos D, Frédérick R, El Bakali J. Repositioning of FDA-Approved antifungal agents to interrogate Acyl-CoA synthetase long chain family member 4 (ACSL4) in ferroptosis. Biochem Pharmacol 2022; 204:115239. [PMID: 36075462 DOI: 10.1016/j.bcp.2022.115239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/06/2023]
Abstract
Ferroptosis, first coined in 2012, is an iron-dependent regulated cell death (RCD) characterized by the accumulation of lipid peroxides to toxic levels. This mechanism is currently being evaluated as a target for a variety of diseases offering new opportunities for drug design and development. Recent reports uncovered acyl-CoA synthetase long-chain 4 (ACSL4) as a critical contributor to ferroptosis execution. Therefore, ACSL4 inhibitors are emerging as attractive anti-ferroptotic agents. Herein, we developed a robust screening cascade with orthogonal biophysical and biochemical techniques to identify original human ACSL4 inhibitors. By screening an FDA-approved drug library, we were able to identify and validate new inhibitors with micromolar-range activities against ACSL4. With an IC50 of 280 nM against hACSL4, antifungal agent sertaconazole is to our knowledge, the most potent ACSL4 inhibitor identified so far. In addition, sertaconazole significantly reduced lipid peroxidation and ferroptosis in human differentiated dopaminergic neurons (Lund human mesencephalic LUHMES cells), demonstrating that it is a valuable chemical tool for further investigating the role of ACSL4 in ferroptosis. This study highlights the phenethyl-imidazole scaffold as a novel and promising starting point for the development of anti-ferroptotic agents targeting ACSL4.
Collapse
Affiliation(s)
- Romain Marteau
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 73 Avenue Mounier, B1.73.10, 1200 Bruxelles, Belgium
| | - Séverine Ravez
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Darius Mazhari Dorooee
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 73 Avenue Mounier, B1.73.10, 1200 Bruxelles, Belgium
| | - Hind Bouchaoui
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Karine Porte
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 73 Avenue Mounier, B1.73.10, 1200 Bruxelles, Belgium
| | - Jean-Christophe Devedjian
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Université du Littoral Côte d'Opale-1, place de l'Yser, BP 72033, 59375 Dunkerque Cedex, France
| | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - David Devos
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Raphaël Frédérick
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 73 Avenue Mounier, B1.73.10, 1200 Bruxelles, Belgium.
| | - Jamal El Bakali
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| |
Collapse
|
34
|
Üner G, Bedir E, Serçinoğlu O, Kırmızıbayrak PB. Non-apoptotic cell death induction via sapogenin based supramolecular particles. Sci Rep 2022; 12:13834. [PMID: 35974087 PMCID: PMC9381536 DOI: 10.1038/s41598-022-17977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The discovery of novel chemotherapeutics that act through different mechanisms is critical for dealing with tumor heterogeneity and therapeutic resistance. We previously reported a saponin analog (AG-08) that induces non-canonical necrotic cell death and is auspicious for cancer therapy. Here, we describe that the key element in triggering this unique cell death mechanism of AG-08 is its ability to form supramolecular particles. These self-assembled particles are internalized via a different endocytosis pathway than those previously described. Microarray analysis suggested that AG-08 supramolecular structures affect several cell signaling pathways, including unfolded protein response, immune response, and oxidative stress. Finally, through investigation of its 18 analogs, we further determined the structural features required for the formation of particulate structures and the stimulation of the unprecedented cell death mechanism of AG-08. The unique results of AG-08 indicated that supramolecular assemblies of small molecules are promising for the field of anticancer drug development, although they have widely been accepted as nuisance in drug discovery studies.
Collapse
Affiliation(s)
- Göklem Üner
- Department of Bioengineering, Faculty of Engineering, İzmir Institute of Technology, 35430, Urla, İzmir, Turkey
| | - Erdal Bedir
- Department of Bioengineering, Faculty of Engineering, İzmir Institute of Technology, 35430, Urla, İzmir, Turkey.
| | - Onur Serçinoğlu
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | | |
Collapse
|
35
|
Juskewitz E, Mishchenko E, Dubey VK, Jenssen M, Jakubec M, Rainsford P, Isaksson J, Andersen JH, Ericson JU. Lulworthinone: In Vitro Mode of Action Investigation of an Antibacterial Dimeric Naphthopyrone Isolated from a Marine Fungus. Mar Drugs 2022; 20:md20050277. [PMID: 35621928 PMCID: PMC9147123 DOI: 10.3390/md20050277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 01/27/2023] Open
Abstract
Treatment options for infections caused by antimicrobial-resistant bacteria are rendered ineffective, and drug alternatives are needed—either from new chemical classes or drugs with new modes of action. Historically, natural products have been important contributors to drug discovery. In a recent study, the dimeric naphthopyrone lulworthinone produced by an obligate marine fungus in the family Lulworthiaceae was discovered. The observed potent antibacterial activity against Gram-positive bacteria, including several clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates, prompted this follow-up mode of action investigation. This paper aimed to characterize the antibacterial mode of action (MOA) of lulworthinone by combining in vitro assays, NMR experiments and microscopy. The results point to a MOA targeting the bacterial membrane, leading to improper cell division. Treatment with lulworthinone induced an upregulation of genes responding to cell envelope stress in Bacillus subtilis. Analysis of the membrane integrity and membrane potential indicated that lulworthinone targets the bacterial membrane without destroying it. This was supported by NMR experiments using artificial lipid bilayers. Fluorescence microscopy revealed that lulworthinone affects cell morphology and impedes the localization of the cell division protein FtsZ. Surface plasmon resonance and dynamic light scattering assays showed that this activity is linked with the compound‘s ability to form colloidal aggregates. Antibacterial agents acting at cell membranes are of special interest, as the development of bacterial resistance to such compounds is deemed more difficult to occur.
Collapse
Affiliation(s)
- Eric Juskewitz
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (E.M.); (V.K.D.)
- Correspondence: (E.J.); (J.U.E.)
| | - Ekaterina Mishchenko
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (E.M.); (V.K.D.)
| | - Vishesh K. Dubey
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (E.M.); (V.K.D.)
| | - Marte Jenssen
- Marbio, The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (J.H.A.)
| | - Martin Jakubec
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (P.R.); (J.I.)
| | - Philip Rainsford
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (P.R.); (J.I.)
| | - Johan Isaksson
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (P.R.); (J.I.)
| | - Jeanette H. Andersen
- Marbio, The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (J.H.A.)
| | - Johanna U. Ericson
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (E.M.); (V.K.D.)
- Correspondence: (E.J.); (J.U.E.)
| |
Collapse
|
36
|
Molina C, Ait-Ouarab L, Minoux H. Isometric Stratified Ensembles: A Partial and Incremental Adaptive Applicability Domain and Consensus-Based Classification Strategy for Highly Imbalanced Data Sets with Application to Colloidal Aggregation. J Chem Inf Model 2022; 62:1849-1862. [PMID: 35357194 DOI: 10.1021/acs.jcim.2c00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Partial and incremental stratification analysis of a quantitative structure-interference relationship (QSIR) is a novel strategy intended to categorize classification provided by machine learning techniques. It is based on a 2D mapping of classification statistics onto two categorical axes: the degree of consensus and level of applicability domain. An internal cross-validation set allows to determine the statistical performance of the ensemble at every 2D map stratum and hence to define isometric local performance regions with the aim of better hit ranking and selection. During training, isometric stratified ensembles (ISE) applies a recursive decorrelated variable selection and considers the cardinal ratio of classes to balance training sets and thus avoid bias due to possible class imbalance. To exemplify the interest of this strategy, three different highly imbalanced PubChem pairs of AmpC β-lactamase and cruzain inhibition assay campaigns of colloidal aggregators and complementary aggregators data set available at the AGGREGATOR ADVISOR predictor web page were employed. Statistics obtained using this new strategy show outperforming results compared to former published tools, with and without a classical applicability domain. ISE performance on classifying colloidal aggregators shows from a global AUC of 0.82, when the whole test data set is considered, up to a maximum AUC of 0.88, when its highest confidence isometric stratum is retained.
Collapse
Affiliation(s)
- Christophe Molina
- PIKAÏROS S.A., B03 - 2 Allée de la Clairière, 31650 Saint Orens de Gameville, France
| | - Lilia Ait-Ouarab
- AMOA Ingénierie, INFOGENE S.A., 19, rue d'Orleans, 92200 Neuilly-sur-Seine, France
| | - Hervé Minoux
- Data and Data Science, SANOFI R&D, 91380 Chilly-Mazarin, France
| |
Collapse
|
37
|
Proj M, Knez D, Sosič I, Gobec S. Redox active or thiol reactive? Optimization of rapid screens to identify less evident nuisance compounds. Drug Discov Today 2022; 27:1733-1742. [PMID: 35301150 DOI: 10.1016/j.drudis.2022.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
Compounds that exhibit assay interference or undesirable mechanisms of bioactivity are routinely encountered in assays at various stages of drug discovery. We observed that assays for the investigation of thiol-reactive and redox-active compounds have not been collected in a comprehensive review. Here, we review these assays and subject them to experimental optimization to improve their reliability. We demonstrate the usefulness of our assay cascade by assaying a library of bioactive compounds, chemical probes, and a set of approved drugs. These high-throughput assays should complement the array of wet-lab and in silico assays during the initial stages of hit discovery campaigns to pursue only hit compounds with tractable mechanisms of action. Teaser: We provide an overview of assays to detect redox active and thiol reactive compounds and the robust protocols for identification of nuisance compounds during early stages of drug discovery programs.
Collapse
Affiliation(s)
- Matic Proj
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Askerceva 7, SI-1000 Ljubljana, Slovenia.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Askerceva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
38
|
The YΦ motif defines the structure-activity relationships of human 20S proteasome activators. Nat Commun 2022; 13:1226. [PMID: 35264557 PMCID: PMC8907193 DOI: 10.1038/s41467-022-28864-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
The 20S proteasome (20S) facilitates turnover of most eukaryotic proteins. Substrate entry into the 20S first requires opening of gating loops through binding of HbYX motifs that are present at the C-termini of certain proteasome activators (PAs). The HbYX motif has been predominantly characterized in the archaeal 20S, whereas little is known about the sequence preferences of the human 20S (h20S). Here, we synthesize and screen ~120 HbYX-like peptides, revealing unexpected differences from the archaeal system and defining the h20S recognition sequence as the Y-F/Y (YФ) motif. To gain further insight, we create a functional chimera of the optimized sequence, NLSYYT, fused to the model activator, PA26E102A. A cryo-EM structure of PA26E102A-h20S is used to identify key interactions, including non-canonical contacts and gate-opening mechanisms. Finally, we demonstrate that the YФ sequence preferences are tuned by valency, allowing multivalent PAs to sample greater sequence space. These results expand the model for termini-mediated gating and provide a template for the design of h20S activators. The proteasome complexes, composed of 20S core particles and one or two regulatory particles (proteasome activators), degrade most eukaryotic proteins. Here, the authors identify a sequence motif and resolve its interactions mediating the activation of the human 20S proteasome.
Collapse
|
39
|
Choo MZY, Chai CLL. Promoting GAINs (Give Attention to Limitations in Assays) over PAINs Alerts: no PAINS, more GAINs. ChemMedChem 2022; 17:e202100710. [PMID: 35146933 DOI: 10.1002/cmdc.202100710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/14/2022] [Indexed: 11/09/2022]
Abstract
Many concepts and guidelines in medicinal chemistry have been introduced to aid in successful drug discovery and development. An example is the concept of Pan-Assay Interference Compounds (PAINS) and the elimination of such nuisance compounds from high-throughput screening (HTS) libraries. PAINs, along with other guidelines in medicinal chemistry, are like double-edged swords. If used appropriately, they may be beneficial for drug discovery and development. However, rigid and blind use of such concepts can hinder productivity. In this perspective, we introduce GAINS (give attention to limitations in assays) and highlight its relevance for successful drug discovery.
Collapse
Affiliation(s)
- Malcolm Z Y Choo
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, Singapore, 117543, Singapore
| | - Christina L L Chai
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, Singapore, 117543, Singapore
| |
Collapse
|
40
|
Impact of Surfactants on the Performance of Clopidogrel-Copovidone Amorphous Solid Dispersions: Increased Drug Loading and Stabilization of Nanodroplets. Pharm Res 2022; 39:167-188. [PMID: 35013849 DOI: 10.1007/s11095-021-03159-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Surfactants are increasingly being added to amorphous solid dispersion (ASDs) formulations to enhance processability and release performance. The goal of the current work was to investigate the impact of cationic, anionic and non-ionic surfactants on the rate and extent of clopidogrel (CPD) release from copovidone-based ASDs. METHODS CPD release was evaluated for ASDs with different drug loadings using a surface normalized intrinsic dissolution apparatus. Studies were also carried out using dynamic light scattering, zeta potential measurements, and nuclear magnetic resonance spectroscopy to probe the impact of surfactants on drug-rich nanodroplet physical stability and clopidogrel-surfactant interactions. RESULTS CPD ASDs showed good release for drug loadings as high as 40%, before the release fell off a cliff at higher drug loadings. Only sodium dodecyl sulfate, added at a 5% level, was able to improve the release at 50% drug loading, with other surfactants proving to be ineffective. However, some of the surfactants evaluated did show some benefits in improving nanodroplet stability against size enlargement. Ionic and non-ionic surfactants were observed to interact differently with CPD-rich nanodroplets, and variations in the kinetics and morphology of water-induced phase separation were noted in the presence and absence of surfactants in ASD films. CONCLUSIONS In summary, addition of surfactants to ASD formulations may lead to some improvements in formulation performance, but predictive capabilities and mechanisms of surfactant effect still require further studies.
Collapse
|
41
|
Fioretto L, Ziaco M, Gallo C, Nuzzo G, d'Ippolito G, Lupetti P, Paccagnini E, Gentile M, DellaGreca M, Appavou MS, Paduano L, De Palma R, Fontana A, Manzo E. Direct evidence of the impact of aqueous self-assembly on biological behavior of amphiphilic molecules: The case study of molecular immunomodulators Sulfavants. J Colloid Interface Sci 2021; 611:129-136. [PMID: 34933191 DOI: 10.1016/j.jcis.2021.12.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022]
Abstract
Sulfavant A and Sulfavant R, sulfoquinovoside-glycerol lipids under study as vaccine adjuvants, structurally differ only for the configuration of glyceridic carbon, R/S and R respectively. The in vitro activity of these substances follows a bell-shaped dose-response curve, but Sulfavant A gave the best response around 20 µM, while Sulfavant R at 10 nM. Characterization of aqueous self-assembly of these molecules by a multi-technique approach clarified the divergent and controversial biological outcome. Supramolecular structures were present at concentrations much lower than critical aggregation concentration for both products. The kind and size of these aggregates varied as a function of the concentration differently for Sulfavant A and Sulfavant R. At nanomolar range, Sulfavant A formed cohesive vesicles, while Sulfavant R arranged in spherical micellar particles whose reduced stability was probably responsible for an increase of monomer concentration in accordance with immunomodulatory profile. Instead, at micromolar concentrations transition from micellar to vesicular state of Sulfavant R occurred and thermodynamic stability of the aggregates, assessed by surface tensiometry, correlated with the bioactivity of Sulfavant A at 20 µM and the complete loss of efficacy of Sulfavant R. The study of Sulfavants provides clear evidence of how self-aggregation, often neglected, and the equilibria between monomers and aqueous supramolecular forms of lipophilic molecules deeply determine the overall bio-response.
Collapse
Affiliation(s)
- Laura Fioretto
- Consorzio Italbiotec, Via Fantoli, 16/15, 20138 Milano, Italy.
| | - Marcello Ziaco
- BioSearch Srl., Villa Comunale c/o Stazione Zoologica "A. Dohrn" 80121 Napoli, Italy.
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Giuliana d'Ippolito
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, San Miniato, 53100 Siena, Italy.
| | - Eugenio Paccagnini
- Department of Life Sciences, University of Siena, San Miniato, 53100 Siena, Italy.
| | - Mariangela Gentile
- Department of Life Sciences, University of Siena, San Miniato, 53100 Siena, Italy.
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80136 Napoli, Italy.
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum, Forschungszentrum, Jülich, 52428 Jülich, Germany.
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80136 Napoli, Italy.
| | - Raffaele De Palma
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; Medicina Interna, Immunologia Clinica e Medicina Traslazionale, Università di Genova and IRCCS-Ospedale S. Martino, 16131 Genova, Italy.
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; University of Naples Federico II, Dept. of Biology, Via Cinthia - Bld. 7, 80126 -Napoli, Italy.
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
42
|
O'Donnell HR, Tummino TA, Bardine C, Craik CS, Shoichet BK. Colloidal Aggregators in Biochemical SARS-CoV-2 Repurposing Screens. J Med Chem 2021; 64:17530-17539. [PMID: 34812616 PMCID: PMC8665103 DOI: 10.1021/acs.jmedchem.1c01547] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To fight COVID-19, much effort has been directed toward in vitro drug repurposing. Here, we investigate the impact of colloidal aggregation, a common screening artifact, in these repurposing campaigns. We tested 56 drugs reported as active in biochemical assays for aggregation by dynamic light scattering and by detergent-based enzyme counter screening; 19 formed colloids at concentrations similar to their literature IC50's, and another 14 were problematic. From a common repurposing library, we further selected another 15 drugs that had physical properties resembling known aggregators, finding that six aggregated at micromolar concentrations. This study suggests not only that many of the drugs repurposed for SARS-CoV-2 in biochemical assays are artifacts but that, more generally, at screening-relevant concentrations, even drugs can act artifactually via colloidal aggregation. Rapid detection of these artifacts will allow the community to focus on those molecules that genuinely have potential for treating COVID-19.
Collapse
Affiliation(s)
- Henry R O'Donnell
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94158-2550, United States
| | - Tia A Tummino
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94158-2550, United States
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, California 94158-2550, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158-2550, United States
| | - Conner Bardine
- Graduate Program in Chemistry & Chemical Biology, UCSF, San Francisco, California 94158-2550, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94158-2550, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158-2550, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94158-2550, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158-2550, United States
| |
Collapse
|
43
|
LaPlante SR, Roux V, Shahout F, LaPlante G, Woo S, Denk MM, Larda ST, Ayotte Y. Probing the free-state solution behavior of drugs and their tendencies to self-aggregate into nano-entities. Nat Protoc 2021; 16:5250-5273. [PMID: 34707256 DOI: 10.1038/s41596-021-00612-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023]
Abstract
The free-state solution behaviors of drugs profoundly affect their properties. Therefore, it is critical to properly evaluate a drug's unique multiphase equilibrium when in an aqueous enviroment, which can comprise lone molecules, self-associating aggregate states and solid phases. To date, the full range of nano-entities that drugs can adopt has been a largely unexplored phenomenon. This protocol describes how to monitor the solution behavior of drugs, revealing the nano-entities formed as a result of self-associations. The procedure begins with a simple NMR 1H assay, and depending on the observations, subsequent NMR dilution, NMR T2-CPMG (spin-spin relaxation Carr-Purcell-Meiboom-Gill) and NMR detergent assays are used to distinguish between the existence of fast-tumbling lone drug molecules, small drug aggregates and slow-tumbling colloids. Three orthogonal techniques (dynamic light scattering, transmission electron microscopy and confocal laser scanning microscopy) are also described that can be used to further characterize any large colloids. The protocol can take a non-specialist between minutes to a few hours; thus, libraries of compounds can be evaluated within days.
Collapse
Affiliation(s)
- Steven R LaPlante
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada.
- NMX Research and Solutions, Inc., Laval, Quebec, Canada.
| | - Valérie Roux
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Fatma Shahout
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | | | - Simon Woo
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Maria M Denk
- NMX Research and Solutions, Inc., Laval, Quebec, Canada
| | - Sacha T Larda
- NMX Research and Solutions, Inc., Laval, Quebec, Canada
| | - Yann Ayotte
- Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| |
Collapse
|
44
|
Sun J, Zhong H, Wang K, Li N, Chen L. Gains from no real PAINS: Where 'Fair Trial Strategy' stands in the development of multi-target ligands. Acta Pharm Sin B 2021; 11:3417-3432. [PMID: 34900527 PMCID: PMC8642439 DOI: 10.1016/j.apsb.2021.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
Compounds that selectively modulate multiple targets can provide clinical benefits and are an alternative to traditional highly selective agents for unique targets. High-throughput screening (HTS) for multitarget-directed ligands (MTDLs) using approved drugs, and fragment-based drug design has become a regular strategy to achieve an ideal multitarget combination. However, the unexpected presence of pan-assay interference compounds (PAINS) suspects in the development of MTDLs frequently results in nonspecific interactions or other undesirable effects leading to artefacts or false-positive data of biological assays. Publicly available filters can help to identify PAINS suspects; however, these filters cannot comprehensively conclude whether these suspects are "bad" or innocent. Additionally, these in silico approaches may inappropriately label a ligand as PAINS. More than 80% of the initial hits can be identified as PAINS by the filters if appropriate biochemical tests are not used resulting in false positive data that are unacceptable for medicinal chemists in manuscript peer review and future studies. Therefore, extensive offline experiments should be used after online filtering to discriminate "bad" PAINS and avoid incorrect evaluation of good scaffolds. We suggest that the use of "Fair Trial Strategy" to identify interesting molecules in PAINS suspects to provide certain structure‒function insight in MTDL development.
Collapse
Key Words
- AD, Alzheimer disease
- ALARM NMR, a La assay to detect reactive molecules by nuclear magnetic resonance
- Biochemical experiment
- CADD, computer-aided drug design technology
- CoA, coenzyme A
- EGFR, epidermal growth factor receptor
- Fair trial strategy
- GSH, glutathione
- HER2, human epidermal growth factor receptor 2
- HTS, high-throughput screening
- In silico filtering
- LC−MS, liquid chromatography−mass spectrometry
- MTDLs, multitarget-directed ligands
- Multitarget-directed ligands
- PAINS suspects
- PAINS, pan-assay interference compounds
- QSAR, quantitative structure–activity relationship
- ROS, radicals and oxygen reactive species
Collapse
Affiliation(s)
- Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Zhong
- Department of Pharmacology of Traditional Chinese Medicine, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kun Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
45
|
Oâ Donnell HR, Tummino TA, Bardine C, Craik CS, Shoichet BK. Colloidal aggregators in biochemical SARS-CoV-2 repurposing screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.31.458413. [PMID: 34494023 PMCID: PMC8423219 DOI: 10.1101/2021.08.31.458413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To fight the SARS-CoV-2 pandemic, much effort has been directed toward drug repurposing, testing investigational and approved drugs against several viral or human proteins in vitro . Here we investigate the impact of colloidal aggregation, a common artifact in early drug discovery, in these repurposing screens. We selected 56 drugs reported to be active in biochemical assays and tested them for aggregation by both dynamic light scattering and by enzyme counter screening with and without detergent; seventeen of these drugs formed colloids at concentrations similar to their literature reported IC 50 s. To investigate the occurrence of colloidal aggregators more generally in repurposing libraries, we further selected 15 drugs that had physical properties resembling known aggregators from a common repurposing library, and found that 6 of these aggregated at micromolar concentrations. An attraction of repurposing is that drugs active on one target are considered de-risked on another. This study suggests not only that many of the drugs repurposed for SARS-CoV-2 in biochemical assays are artifacts, but that, more generally, when screened at relevant concentrations, drugs can act artifactually via colloidal aggregation. Understanding the role of aggregation, and detecting its effects rapidly, will allow the community to focus on those drugs and leads that genuinely have potential for treating COVID-19. ABSTRACT FIGURE
Collapse
|
46
|
Jiménez-Avalos G, Vargas-Ruiz AP, Delgado-Pease NE, Olivos-Ramirez GE, Sheen P, Fernández-Díaz M, Quiliano M, Zimic M. Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 M PRO. Sci Rep 2021; 11:15452. [PMID: 34326429 PMCID: PMC8322093 DOI: 10.1038/s41598-021-94951-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 main protease is a common target for inhibition assays due to its high conservation among coronaviruses. Since flavonoids show antiviral activity, several in silico works have proposed them as potential SARS-CoV-2 main protease inhibitors. Nonetheless, there is reason to doubt certain results given the lack of consideration for flavonoid promiscuity or main protease plasticity, usage of short library sizes, absence of control molecules and/or the limitation of the methodology to a single target site. Here, we report a virtual screening study where dorsilurin E, euchrenone a11, sanggenol O and CHEMBL2171598 are proposed to inhibit main protease through different pathways. Remarkably, novel structural mechanisms were observed after sanggenol O and CHEMBL2171598 bound to experimentally proven allosteric sites. The former drastically affected the active site, while the latter triggered a hinge movement which has been previously reported for an inactive SARS-CoV main protease mutant. The use of a curated database of 4.8 k flavonoids, combining two well-known docking software (AutoDock Vina and AutoDock4.2), molecular dynamics and MMPBSA, guaranteed an adequate analysis and robust interpretation. These criteria can be considered for future screening campaigns against SARS-CoV-2 main protease.
Collapse
Affiliation(s)
- Gabriel Jiménez-Avalos
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia (UPCH), 15102, Lima, Peru.
| | - A Paula Vargas-Ruiz
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia (UPCH), 15102, Lima, Peru
| | - Nicolás E Delgado-Pease
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia (UPCH), 15102, Lima, Peru
| | - Gustavo E Olivos-Ramirez
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia (UPCH), 15102, Lima, Peru
| | - Patricia Sheen
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia (UPCH), 15102, Lima, Peru
| | | | - Miguel Quiliano
- Faculty of Health Sciences, Centre for Research and Innovation, Universidad Peruana de Ciencias Aplicadas (UPC), 15023, Lima, Peru
| | - Mirko Zimic
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia (UPCH), 15102, Lima, Peru.
- Farmacológicos Veterinarios - FARVET S.A.C. Chincha, Lima, Peru.
| |
Collapse
|
47
|
Hirlak O, Dieluweit S, Merkel R, Wagner KG. Polymer-mediated drug supersaturation - A spotlight on the interplay between phase-separated amorphous drug colloids and dissolved molecules. J Colloid Interface Sci 2021; 603:370-379. [PMID: 34197986 DOI: 10.1016/j.jcis.2021.06.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/19/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
HYPOTHESIS Colloidal aggregation phenomena have been found responsible for the supersaturation of poorly water-soluble drugs, potentially leading to bioavailability enhancements. Unlike coarse precipitates, phase separation in the form of colloids, is expected to enhance drug supersaturation performance. Therefore, a high proportion of these colloids should correlate with the extent and the kinetics of supersaturation. The prime objective of the current study is to provide a mechanistic understanding on supersaturation for the model drug albendazole (ALB) in combination with twelve polymers. EXPERIMENTS Species separated after a pH-shift were characterized by dynamic light scattering (DLS), freeze-fracture electron microscopy (FF-EM) and transmission X-ray diffraction (XRD). Laser diffraction (LD) in a liquid cell was introduced for a relative quantification of the colloidally separated species, described as colloid fraction. The pH-dependent supersaturation was assessed online using a miniaturized dissolution assay. FINDINGS Here, a measure of the extent of amorphous colloidal phase separation was established, and its impact on supersaturation was evaluated. As a result, a correlation was found between the extent of supersaturation and the colloid fraction. This confirmed the dependence of polymer-mediated enabling and preservation of supersaturation on the ability of polymers to stabilize colloid fractions. Furthermore, a fixed ratio was suggested between the dissolved drug and colloidally separated drug as the kinetic profiles of both species showed similar trajectories. In conclusion, colloid fractions were identified to be responsible for dissolved and potentially bioavailable drug molecules.
Collapse
Affiliation(s)
- Ozan Hirlak
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Sabine Dieluweit
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
48
|
Abstract
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened in vitro or in vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
- Institute of Analytical ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityLinnéstr. 304103LeipzigGermany
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Benedikt Schwarze
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
49
|
Allen SJ, Dower CM, Liu AX, Lumb KJ. Detection of Small-Molecule Aggregation with High-Throughput Microplate Biophysical Methods. ACTA ACUST UNITED AC 2021; 12:e78. [PMID: 32150343 DOI: 10.1002/cpch.78] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Small-molecule drug discovery can be hindered by the formation of aggregates that act as non-selective inhibitors of drug targets. Such aggregates appear as false positives in high-throughput screening campaigns and can bedevil structure-activity relationships during compound optimization. Protocols are described for resonant waveguide grating (RWG) and dynamic light scattering (DLS) as microplate-based high-throughput approaches to identify compound aggregation. Resonant waveguide grating and dynamic light scattering give equivalent results for the compound test set, as assessed with Bland-Altman analysis. © 2019 The Authors. Basic Protocol 1: Resonant waveguide grating (RWG) in 384-well or 1536-well plate format to detect compound aggregation Basic Protocol 2: Dynamic light scattering (DLS) in 384-well plate format to detect compound aggregation.
Collapse
Affiliation(s)
- Samantha J Allen
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, Pennsylvania
| | - Corey M Dower
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, Pennsylvania
| | - Annie X Liu
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, Pennsylvania
| | - Kevin J Lumb
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, Pennsylvania
| |
Collapse
|
50
|
Wang J, Li H, Xu B. Biological functions of supramolecular assemblies of small molecules in cellular environment. RSC Chem Biol 2021; 2:289-305. [PMID: 34423303 PMCID: PMC8341129 DOI: 10.1039/d0cb00219d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
Like biomacromolecules, certain small molecules (e.g., aggregators) are able to self-assemble in aqueous phase to form nanoscale aggregates. Though it is well-established that the aggregates may interact with enzymes in vitro, the study of the biological activities of the assemblies of small molecules in cellular environment is only at its beginning. This review summarizes the recent progresses in exploring the biological functions of supramolecular assemblies of small molecules (SASMs). We first discuss the use of SASMs to inhibit pathogenic cells, such as cancer cells and bacteria. The use of SASMs to target different parts of cancer cells, such as pericellular space, cytosol, and subcellular organelles, and to combine with other bioactive entities (e.g., proteins and clinically used drugs), is particularly promising for addressing the challenge of acquired multidrug resistance in cancer therapy. Then, we describe the use of SASMs to sustain physiological functions of normal cells, that is, promoting cells proliferation and differentiation for tissue regeneration. After that, we show the use of SASMs as a basic tool to research cell behaviors, for instance, identifying the specific cells, improving enzyme probes, revealing membrane dynamics, enhancing molecular imaging, and mimicking context-dependent signaling. Finally, we give the outlook of the research of SASMs. We expect that this review, by highlighting the biological functions of SASMs, provides a starting point to explore the chemical biology of SASMs.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical UniversityTianjin 300070P. R. China
| | - Hui Li
- School of Biomedical Engineering and Technology, Tianjin Medical UniversityTianjin 300070P. R. China
| | - Bing Xu
- Department of Chemistry, Brandeis UniversityWalthamMassachusetts 02454USA
| |
Collapse
|