1
|
Li L, Qin W, Ye T, Wang C, Qin Z, Ma Y, Mu Z, Jiao K, Tay FR, Niu W, Niu L. Bioactive Zn-V-Si-Ca Glass Nanoparticle Hydrogel Microneedles with Antimicrobial and Antioxidant Properties for Bone Regeneration in Diabetic Periodontitis. ACS NANO 2025; 19:7981-7995. [PMID: 39960072 DOI: 10.1021/acsnano.4c15227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Periodontitis is a chronic inflammatory condition affecting the periodontal tissue. This condition worsens in diabetic patients due to oxidative stress and inflammation. Herein, we investigated a treatment using bioactive Zn-V-Si-Ca glass nanoparticle hydrogel microneedles. The microneedles contain bioactive glass nanoparticles codoped with zinc and vanadium ions. They also include gallic acid and oxidized methacrylated hyaluronic acid. These microneedles address bacterial dysbiosis and oxidative stress in diabetic periodontitis. They provide antibacterial and antioxidant effects. The microneedles deliver therapeutic agents directly into the gingival tissue. This enhances drug retention and absorption by penetrating the mucosal barrier. In vitro studies demonstrated biocompatibility, excellent antioxidant properties, and acceptable mechanical properties. Meanwhile, the microneedle patches demonstrated antibacterial properties effective against a Gram-negative periodontal pathogen as well as a Gram-positive oral bacterium. In vivo experiments were performed using a diabetic rat model with periodontitis. Results showed significant improvement in alveolar bone regeneration. The hydrogel modulated the inflammatory microenvironment effectively. Ribonucleic acid sequencing revealed downregulation of JAK-STAT and NF-κB inflammation signaling pathways. This work presents a distinctive approach to suppressing the inflammatory response and modulate immune responses for the purpose of treating diabetic periodontitis early.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wen Qin
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Tao Ye
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chenyu Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zixuan Qin
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuxuan Ma
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Wen Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lina Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
2
|
Zhou P, Zhang C, Rao Z, Ma X, Hu Y, Chen Y, Wang H, Chen J, He Y, Tao G, Cai R. Bioinspired Adhesive Hydrogel Platform with Photothermal Antimicrobial, Antioxidant, and Angiogenic Properties for Whole-Process Management of Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5841-5865. [PMID: 39808721 DOI: 10.1021/acsami.4c17310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Diabetic wound healing remains a major challenge in modern medicine. The persistent inflammation and immune dysfunction hinder angiogenesis by producing excessive ROS and increasing the susceptibility to bacterial infection. In this study, we developed an integrated strategy for whole-process management of diabetic wounds based on a bioinspired adhesive hydrogel platform with hemostasis, photothermal antimicrobial, antioxidant, anti-inflammatory, and angiogenic properties. A composite hydrogel (termed AQTGF) using poly(acrylic acid) (PAA) and quaternized chitosan (QCS) as the backbone materials and loaded with a TA-Gd/Fe-bimetallic-phenolic coordination polymer was prepared. The AQTGF hydrogel displayed favorable mechanical properties, self-healing capabilities, adhesion characteristics, and photothermal response performance. In vitro experiments demonstrated that the AQTGF hydrogel exhibits excellent photothermal antimicrobial capacity and antioxidant, angiogenic, and M2 macrophage phenotype polarizing properties. In addition, the rat tail amputation and liver hemostasis experiments demonstrated that the AQTGF hydrogel had excellent hemostasis performance. Moreover, in vivo studies have indicated that AQTGF hydrogel can facilitate diabetic wound healing by accelerating epidermal growth, promoting collagen deposition, modulating macrophage M2 polarization, inhibiting inflammation, and promoting angiogenesis. In conclusion, this study provides an adaptable hydrogel that holds promise for the treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Peirong Zhou
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Chuankai Zhang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Zihan Rao
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xuemin Ma
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yajuan Hu
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yongcen Chen
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Huiyue Wang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Junliang Chen
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yun He
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Gang Tao
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Rui Cai
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Yang Y, Zhang B, Xu Y, Zhu W, Zhu Z, Zhang X, Wu W, Chen J, Yu Z. An immunotherapeutic hydrogel booster inhibits tumor recurrence and promotes wound healing for postoperative management of melanoma. Bioact Mater 2024; 42:178-193. [PMID: 39285910 PMCID: PMC11402546 DOI: 10.1016/j.bioactmat.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Low tumor immunogenicity, immunosuppressive tumor microenvironment, and bacterial infections have emerged as significant challenges in postsurgical immunotherapy and skin regeneration for preventing melanoma recurrence. Herein, an immunotherapeutic hydrogel booster (GelMA-CJCNPs) was developed to prevent postoperative tumor recurrence and promote wound healing by incorporating ternary carrier-free nanoparticles (CJCNPs) containing chlorine e6 (Ce6), a BRD4 inhibitor (JQ1), and a glutaminase inhibitor (C968) into methacrylic anhydride-modified gelatin (GelMA) dressings. GelMA-CJCNPs reduced glutathione production by inhibiting glutamine metabolism, thereby preventing the destruction of reactive oxygen species generated by photodynamic therapy, which could amplify oxidative stress to induce severe cell death and enhance immunogenic cell death. In addition, GelMA-CJCNPs reduced M2-type tumor-associated macrophage polarization by blocking glutamine metabolism to reverse the immunosuppressive tumor microenvironment, recruiting more tumor-infiltrating T lymphocytes. GelMA-CJCNPs also downregulated IFN-γ-induced expression of programmed cell death ligand 1 to mitigate acquired immune resistance. Benefiting from the amplified systemic antitumor immunity, GelMA-CJCNPs markedly inhibited the growth of both primary and distant tumors. Moreover, GelMA-CJCNPs demonstrated satisfactory photodynamic antibacterial effects against Staphylococcus aureus infections, thereby promoting postsurgical wound healing. Hence, this immunotherapeutic hydrogel booster, as a facile and effective postoperative adjuvant, possesses a promising potential for inhibiting tumor recurrence and accelerating skin regeneration.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Bo Zhang
- Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Yangtao Xu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Wenxiang Zhu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zinian Zhu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Xibo Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Wenze Wu
- Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Jierong Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| |
Collapse
|
4
|
Leng T, Zhang L, Ma J, Qu X, Lei B. Intrinsically bioactive multifunctional Poly(citrate-curcumin) for rapid lung injury and MRSA infection therapy. Bioact Mater 2024; 41:158-173. [PMID: 39131630 PMCID: PMC11314446 DOI: 10.1016/j.bioactmat.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Dysregulated inflammation after trauma or infection could result in the further disease and delayed tissue reconstruction. The conventional anti-inflammatory drug treatment suffers to the poor bioavailability and side effects. Herein, we developed an amphiphilic multifunctional poly (citrate-polyglycol-curcumin) (PCGC) nano oligomer with the robust anti-inflammatory activity for treating acute lung injury (ALI) and Methicillin-resistant staphylococcus aureus (MRSA) infected wound. PCGC demonstrated the sustained curcumin release, inherent photoluminescence, good cellular compatibility, hemocompatibility, robust antioxidant activity and enhanced cellular uptake. PCGC could efficiently scavenge nitrogen-based free radicals, oxygen-based free radicals, and intracellular oxygen species, enhance the endothelial cell migration and reduce the expression of pro-inflammatory factors through the NF-κB signal pathway. Combined the anti-inflammation and antioxidant properties, PCGC can shortened the inflammatory process. In animal model of ALI, PCGC was able to reduce the pulmonary edema, bronchial cell infiltration, and lung inflammation, while exhibiting rapid metabolic behavior in vivo. The MRSA-infection wound model showed that PCGC significantly reduced the expression of pro-inflammatory factors, promoted the angiogenesis and accelerated the wound healing. The transcriptome sequencing and molecular mechanism studies further demonstrated that PCGC could inhibit multiple inflammatory related pathways including TNFAIP3, IL-15RA, NF-κB. This work demonstrates that PCGC is efficient in resolving inflammation and promotes the prospect of application in inflammatory diseases as the drug-loaded therapeutic system.
Collapse
Affiliation(s)
- Tongtong Leng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Junping Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaoyan Qu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
5
|
Chen M, Wang Y, Yuan P, Wang L, Li X, Lei B. Multifunctional bioactive glass nanoparticles: surface-interface decoration and biomedical applications. Regen Biomater 2024; 11:rbae110. [PMID: 39323748 PMCID: PMC11422188 DOI: 10.1093/rb/rbae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Developing bioactive materials with multifunctional properties is crucial for enhancing their biomedical applications in regenerative medicine. Bioactive glass nanoparticle (BGN) is a new generation of biomaterials that demonstrate high biocompatibility and tissue-inducing capacity. However, the hard nanoparticle surface and single surface property limited their wide biomedical applications. In recent years, the surface functional strategy has been employed to decorate the BGN and improve its biomedical applications in bone tissue repair, bioimaging, tumor therapy and wound repair. This review summarizes the progress of surface-interface design strategy, customized multifunctional properties and biomedical applications in detail. We also discussed the current challenges and further development of multifunctional BGN to meet the requirements of various biomedical applications.
Collapse
Affiliation(s)
- Mi Chen
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Yidan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Lan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Xiaocheng Li
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi’an 710000, China
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710000, China
| |
Collapse
|
6
|
Li Y, Pan X, Hai P, Zheng Y, Shan Y, Zhang J. All-in-one nanotheranostic platform based on tumor microenvironment: new strategies in multimodal imaging and therapeutic protocol. Drug Discov Today 2024; 29:104029. [PMID: 38762088 DOI: 10.1016/j.drudis.2024.104029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Conventional tumor diagnosis and treatment approaches have significant limitations in clinical application, whereas personalized theranostistic nanoplatforms can ensure advanced diagnosis, precise treatment, and even a good prognosis in cancer. Tumor microenvironment (TME)-targeted therapeutic strategies offer absolute advantages in all aspects compared to tumor cell-targeted therapeutic strategies. It is essential to create a TME-responsive all-in-one nanotheranostic platform to facilitate individualized tumor treatment. Based on the TME-responsive multifunctional nanotheranostic platform, we focus on the combined use of multimodal imaging and therapeutic protocols and summary and outlooks on the latest advanced nanomaterials and structures for creating the integrated nanotheranostic system based on material science, which provide insights and reflections on the development of innovative TME-targeting tools for cancer theranostics.
Collapse
Affiliation(s)
- Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Hai
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining 810016, China
| | - Yongbiao Zheng
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining 810016, China
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
7
|
Wang M, Wang Y, Fu Q. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo. Mater Today Bio 2024; 26:101027. [PMID: 38525310 PMCID: PMC10959709 DOI: 10.1016/j.mtbio.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Multimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy. These advancements pave the way for precise tumor medicine. This review summarizes various types of magneto-optical nanosystems developed recently and describes their applications as probes for multimodal imaging and agents for image-guided therapeutic interventions. Finally, future research and development prospects of magneto-optical nanosystems are discussed along with an outlook on their further applications in the biomedical field.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
8
|
Cui Y, Hong S, Jiang W, Li X, Zhou X, He X, Liu J, Lin K, Mao L. Engineering mesoporous bioactive glasses for emerging stimuli-responsive drug delivery and theranostic applications. Bioact Mater 2024; 34:436-462. [PMID: 38282967 PMCID: PMC10821497 DOI: 10.1016/j.bioactmat.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Mesoporous bioactive glasses (MBGs), which belong to the category of modern porous nanomaterials, have garnered significant attention due to their impressive biological activities, appealing physicochemical properties, and desirable morphological features. They hold immense potential for utilization in diverse fields, including adsorption, separation, catalysis, bioengineering, and medicine. Despite possessing interior porous structures, excellent morphological characteristics, and superior biocompatibility, primitive MBGs face challenges related to weak encapsulation efficiency, drug loading, and mechanical strength when applied in biomedical fields. It is important to note that the advantageous attributes of MBGs can be effectively preserved by incorporating supramolecular assemblies, miscellaneous metal species, and their conjugates into the material surfaces or intrinsic mesoporous networks. The innovative advancements in these modified colloidal inorganic nanocarriers inspire researchers to explore novel applications, such as stimuli-responsive drug delivery, with exceptional in-vivo performances. In view of the above, we outline the fabrication process of calcium-silicon-phosphorus based MBGs, followed by discussions on their significant progress in various engineered strategies involving surface functionalization, nanostructures, and network modification. Furthermore, we emphasize the recent advancements in the textural and physicochemical properties of MBGs, along with their theranostic potentials in multiple cancerous and non-cancerous diseases. Lastly, we recapitulate compelling viewpoints, with specific considerations given from bench to bedside.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xingyu Zhou
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoya He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jiaqiang Liu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
9
|
Huang T, Jia J, Zhu C, Tian J, Zhang S, Yang X, Lei B, Li Y. A novel mussel-inspired desensitizer based on radial mesoporous bioactive nanoglass for the treatment of dentin exposure: An in vitro study. J Mech Behav Biomed Mater 2024; 152:106420. [PMID: 38310812 DOI: 10.1016/j.jmbbm.2024.106420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVES The dentin exposure always leads to dentin hypersensitivity and the acid-resistant/abrasion-resistant stability of current therapeutic approaches remain unsatisfatory. Inspired by the excellent self-polymerization/adherence activity of mussels and the superior mineralization ability of bioactive glass, a novel radial mesoporous bioactive nanoglass coated with polydopamine (RMBG@PDA) was developed for prevention and management of dentin hypersensitivity. METHODS Radial mesoporous bioactive nanoglass (RMBG) was synthesized by the sol-gel process combined with the cetylpyridine bromide template self-assembly technique. RMBG@PDA was synthesized by a self-polymerization process involving dopamine and RMBG in an alkaline environment. Then, the nanoscale morphology, chemical structure, crystalline phase and Zeta potential of RMBG and RMBG@PDA were characterized. Subsequently, the ion release ability, bioactivity, and cytotoxicity of RMBG and RMBG@PDA in vitro were investigated. Moreover, an in vitro experimental model of dentin hypersensitivity was constructed to evaluate the effectiveness of RMBG@PDA on dentinal tubule occlusion, including resistances against acid and abrasion. Finally, the Young's modulus and nanohardness of acid-etched dentin were also detected after RMBG@PDA treatment. RESULTS RMBG@PDA showed a typical nanoscale morphology and noncrystalline structure. The use of RMBG@PDA on the dentin surface could effectively occlude dentinal tubules, reduce dentin permeability and achieve excellent acid- and abrasion-resistant stability. Furthermore, RMBG@PDA with excellent cytocompatibility held the capability to recover the Young's modulus and nanohardness of acid-etched dentin. CONCLUSION The application of RMBG@PDA with superior dentin tubule occlusion ability and acid/abrasion-resistant stability can provide a therapeutic strategy for the prevention and the management of dentin hypersensitivity.
Collapse
Affiliation(s)
- Tianjia Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jieyong Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Changze Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jing Tian
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shiyi Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Xiaoxi Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Yuncong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
10
|
Liu Y, He J, Li M, Ren K, Zhao Z. Inflammation-Driven Nanohitchhiker Enhances Postoperative Immunotherapy by Alleviating Prostaglandin E2-Mediated Immunosuppression. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6879-6893. [PMID: 38300288 DOI: 10.1021/acsami.3c17357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Inflammation contributes to the immunosuppressive microenvironment and leads to the recurrence of surgically resected tumors. The COX-2/PGE2 axis is considered a key player in shaping the immunosuppression microenvironment. However, targeted modulation of the postoperative tumor microenvironment is challenging. To specifically curb the inflammation and alleviate immunosuppression, here, we developed a PGE2 inhibitor celecoxib (CXB)-loaded bionic nanoparticle (CP@CM) coated with activated murine vascular endothelial cell (C166 cells) membrane to target postoperative melanoma and inhibit its recurrence. CP@CM adhered to inflammatory white blood cells (WBCs) through the adhesion molecules, including ICAM-1, VCAM-1, E-selectin, and P-selection, expressed on the surface of C166 cells. Leveraging the natural tropism of the WBC to the inflammatory postoperative tumor site, CP@CM efficiently targeted postoperative tumors. In melanoma postoperative recurrence models, CXB significantly reduced PGE2 secretion and the recruitment of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Treg) by inhibiting the activity of COX-2. This was followed by an increase in the infiltration of CD8+ T cells and CD4+ T cells in tumor tissues. Additionally, the immune responses were further enhanced by combining a PD-L1 monoclonal antibody. Ultimately, this immunotherapeutic strategy reversed the tumor immunosuppressive microenvironment and inhibited tumor recurrence, demonstrating a promising potential for postoperative immunotherapy for melanoma.
Collapse
Affiliation(s)
- Yingke Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Jiao He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kebai Ren
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| |
Collapse
|
11
|
Wang Y, luo M, Li T, Xie C, Li S, Lei B. Multi-layer-structured bioactive glass nanopowder for multistage-stimulated hemostasis and wound repair. Bioact Mater 2023; 25:319-332. [PMID: 36844363 PMCID: PMC9946820 DOI: 10.1016/j.bioactmat.2023.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/13/2023] Open
Abstract
Current treatments for full-thickness skin injuries are still unsatisfactory due to the lack of hierarchically stimulated dressings that can integrate the rapid hemostasis, inflammation regulation, and skin tissue remodeling into the one system instead of single-stage boosting. In this work, a multilayer-structured bioactive glass nanopowder (BGN@PTE) is developed by coating the poly-tannic acid and ε-polylysine onto the BGN via facile layer-by-layer assembly as an integrative and multilevel dressing for the sequential management of wounds. In comparison to BGN and poly-tannic acid coated BGN, BGN@PTE exhibited the better hemostatic performance because of its multiple dependent approaches to induce the platelet adhesion/activation, red blood cells (RBCs) aggregation and fibrin network formation. Simultaneously, the bioactive ions from BGN facilitate the regulation of the inflammatory response while the poly-tannic acid and antibacterial ε-polylysine prevent the wound infection, promoting the wound healing during the inflammatory stage. In addition, BGN@PTE can serve as a reactive oxygen species scavenger, alleviate the oxidation stress in wound injury, induce the cell migration and angiogenesis, and promote the proliferation stage of wound repair. Therefore, BGN@PTE demonstrated the significantly higher wound repair capacity than the commercial bioglass dressing Dermlin™. This multifunctional BGN@PTE is a potentially valuable dressing for full-thickness wound management and may be expected to extend to the other wounds therapy.
Collapse
Affiliation(s)
- Yidan Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Meng luo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Chenxi Xie
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710054, China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
12
|
Winston DD, Li T, Lei B. Bioactive nanoglass regulating the myogenic differentiation and skeletal muscle regeneration. Regen Biomater 2023; 10:rbad059. [PMID: 37492228 PMCID: PMC10365926 DOI: 10.1093/rb/rbad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 07/27/2023] Open
Abstract
Bioactive glass nanoparticles (BGNs) are widely used in the field of biomedicine, including drug delivery, gene therapy, tumor therapy, bioimaging, molecular markers and tissue engineering. Researchers are interested in using BGNs in bone, heart and skin regeneration. However, there is inadequate information on skeletal muscle tissue engineering, limited information on the biological effects of BGNs on myoblasts, and the role of bioactive glass composite materials on myogenic differentiation is unknown. Herein, we report the effects of BGNs with different compositions (60Si-BGN, 80Si-BGN, 100Si-BGN) on the myogenic differentiation in C2C12 cells and in vivo skeletal tissue regeneration. The results showed that 80Si-BGN could efficiently promote the myogenic differentiation of C1C12 cells, including the myotube formation and myogenic gene expression. The in vivo experiment in a rat skeletal muscle defect model also confirmed that 80Si-BGN could significantly improve the complete regeneration of skeletal muscle tissue during 4 weeks implantation. This work firstly demonstrated evidence that BGN could be the bioactive material in enhancing skeletal muscle regeneration.
Collapse
Affiliation(s)
- Dagogo Dorothy Winston
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Ting Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
- Xi'an Jiaotong University, Xi'an 710000, China
- State-Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
13
|
Zhang L, Niu W, Lin Y, Ma J, Leng T, Cheng W, Wang Y, Wang M, Ning J, Yang S, Lei B. Multifunctional antibacterial bioactive nanoglass hydrogel for normal and MRSA infected wound repair. J Nanobiotechnology 2023; 21:162. [PMID: 37211601 PMCID: PMC10200057 DOI: 10.1186/s12951-023-01929-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023] Open
Abstract
Large-scale skin damage brings potential risk to patients, such as imbalance of skin homeostasis, inflammation, fluid loss and bacterial infection. Moreover, multidrug resistant bacteria (MDRB) infection is still a great challenge for skin damage repair. Herein, we developed an injectable self-healing bioactive nanoglass hydrogel (FABA) with robust antibacterial and anti-inflammatory ability for normal and Methicillin-resistant Staphylococcus aureus (MRSA) infected skin wound repair. FABA hydrogel was fabricated facilely by the self-crosslinking of F127-CHO (FA) and alendronate sodium (AL)-decorated Si-Ca-Cu nanoglass (BA). FABA hydrogel could significantly inhibit the growth of Staphylococcus aureus, Escherichia coli and MRSA in vitro, while showing good cytocompatibility and hemocompatibility. In addition, FABA hydrogel could inhibit the expression of proinflammatory factor TNF-α and enhance the expression of anti-inflammatory factor IL-4/ IL-10. Based on its versatility, FABA hydrogel could complete wound closure efficiently (75% at day 3 for normal wound, 70% at day 3 for MRSA wound), which was almost 3 times higher than control wound, which was related with the decrease of inflammatory factor in early wound. This work suggested that FABA hydrogel could be a promising dressing for acute and MRSA-infected wound repair.
Collapse
Affiliation(s)
- Long Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuyao Lin
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junping Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Tongtong Leng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yidan Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710068, China
| | - Jingya Ning
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
14
|
Çinar Avar E, Türkmen KE, Erdal E, Loğoğlu E, Katircioğlu H. Biological Activities and Biocompatibility Properties of Eu(OH) 3 and Tb(OH) 3 Nanorods: Evaluation for Wound Healing Applications. Biol Trace Elem Res 2023; 201:2058-2070. [PMID: 35501662 DOI: 10.1007/s12011-022-03264-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 11/02/2022]
Abstract
Rare earth elements have shown promising results in both bio-imaging and therapy applications due to their superior magnetic, catalytic, and optical properties. In recent years, since lanthanide-based nanomaterials have effective results in wound healing, it has become necessary to investigate the different properties of these nanoparticles. The aim of this study is to investigate the antimicrobial, antibiofilm, and biocompability of Eu(OH)3 and Tb(OH)3 nanorods, which have a high potential by triggering angiogenesis and providing ROS activity, especially in wound healing. For this purpose, nanorods were obtained by the microwave-assisted synthesis method. Structural characterizations of Eu(OH)3 and Tb(OH)3 nanorods were performed by FT-IR, XRD, and TG-DTA methods, and morphological characterizations were performed by SEM-EDX. Microorganisms that are likely to be present in the wound environment were selected for the antimicrobial activities of the nanorods. The highest efficiency of nanorods with the disc diffusion method was shown against Pseudomonas aeruginosa ATCC 27,853 and Candida albicans ATCC 10,231 microorganisms. One of the problems frequently encountered in an infected wound environment is the formation of bacterial biofilm. Eu(OH)3 nanorods inhibited 77.5 ± 0.43% and Tb(OH)3 nanorods 76.16 ± 0.60% of Pseudomonas aeruginosa ATCC 27,853 biofilms. These results show promise for the development of biomaterials with superior properties by adding these nanorods to wound dressings that will be developed especially for wounds with microbial infection. Eu(OH)3 nanorods are more toxic than Tb(OH)3 nanorods on NCTC L929 cells. At concentrations of 500 µg/ml and above, both nanorods are toxic to cells.
Collapse
Affiliation(s)
- Eda Çinar Avar
- Department of Chemistry, Gazi University, 06500, Ankara, Turkey.
| | - Kübra Erkan Türkmen
- Department of Biology, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
| | - Ebru Erdal
- Advanced Technologies Application and Research Center, Ankara Yıldırım Beyazıt University, 06500, Ankara, Turkey
| | - Elif Loğoğlu
- Department of Chemistry, Gazi University, 06500, Ankara, Turkey
| | | |
Collapse
|
15
|
Fibrous dressing containing bioactive glass with combined chemotherapy and wound healing promotion for post-surgical treatment of melanoma. BIOMATERIALS ADVANCES 2023; 149:213387. [PMID: 36990026 DOI: 10.1016/j.bioadv.2023.213387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Surgery is the mainstream treatment for melanoma. However, inappropriate post-surgical treatment could result in the tumor recurrence and sever tissue damage, which ultimately leads to the failure of therapy and significantly compromises the therapeutic outcome of surgery. Herein, taking advantages of the co-axial electrospinning technology, we construct a dual-function nanofibrous wound dressing for the post-surgical treatment of melanoma. Si-Ca-P-based mesoporous bioactive glass (MBG) was prepared by the template-sol-gel process, with the compositions being set as 60 SiO2: 36 CaO: 4 P2O5 in mol%. Through rational design, 5-fluorouracil (5-FU)-loaded MBG nanoparticles (MBG-U) are successfully incorporated into the fiber core with biodegradable poly(lactic-co-glycolic acid) (PLGA) as the cladding layer to form the core-shell nanofibers (MBG-U CSF), which achieves sustained releases of chemotherapeutic drug (i.e.,5-FU) and wound healing promotion function. Thereafter, the post-surgical melanoma model was established to evaluate the in-situ anti-cancer and wound healing effect of MBG-U CSF. Thereafter, the post-surgical melanoma model was established to evaluate the anti-cancer and wound healing effect. The results demonstrated that the core-shell nanofibrous dressing almost complete suppressed tumor growth, and simultaneously promoted skin regeneration, which provides a promising strategy for the post-surgical treatment for melanoma.
Collapse
|
16
|
Li T, Ma J, Wang W, Lei B. Bioactive MXene Promoting Angiogenesis and Skeletal Muscle Regeneration through Regulating M2 Polarization and Oxidation Stress. Adv Healthc Mater 2023; 12:e2201862. [PMID: 36427290 DOI: 10.1002/adhm.202201862] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/04/2022] [Indexed: 11/26/2022]
Abstract
Complete repair of skeletal muscles caused by severe mechanical damage and muscle-related diseases remains a challenge. 2D Ti3 C2 Tx (MXene) possesses special photoelectromagnetic properties and has attracted considerable attention in materials science and engineering. However, the bioactive properties and potential mechanism of MXene in tissue engineering, especially in skeletal muscle regeneration, are unclear. Herein, the antioxidation and anti-inflammation activities of MXene and its effects on myogenic differentiation and regeneration of skeletal muscle in vivo are investigated. In vitro studies have shown that MXene has excellent antioxidation and anti-inflammatory properties, and promotes myogenic differentiation and angiogenesis. MXene can remove excess reactive oxygen species in macrophage cells to alleviate oxidative stress and induce the transformation of M1 macrophages into M2 macrophages to reduce excessive inflammation, which can significantly promote the proliferation and differentiation of myoblasts, as well as the proliferation, migration, and tube formation of endothelial cells. Animal experiments with rat tibial anterior muscle defects show that MXene can promote angiogenesis, muscle fiber formation, and skeletal muscle regeneration by regulating the cell microenvironment through anti-inflammatory and antioxidant pathways. The findings suggest that MXene can be used as a multifunctional bioactive material to enhance tissue regeneration through robust antioxidation, anti-inflammation, and angiogenesis activities.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Junping Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wensi Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- State Key Laboratory for Mechanical Behavior of Materials, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
17
|
Wang M, Deng Z, Guo Y, Xu P. Engineering functional natural polymer-based nanocomposite hydrogels for wound healing. NANOSCALE ADVANCES 2022; 5:27-45. [PMID: 36605790 PMCID: PMC9765432 DOI: 10.1039/d2na00700b] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Skin injury occurs due to acute trauma, chronic trauma, infection, and surgical intervention, which can result in severe dysfunction and even death in humans. Therefore, clinical intervention is critical for the treatment of skin wounds. One idealized method is to use wound dressings to protect skin wounds and promote wound healing. Among these wound dressings, nanocomposite natural polymer hydrogels (NNPHs) are multifunctional wound dressings for wound healing. The combination of nanomaterials and natural polymer hydrogels avoids the shortcomings of a single component. Moreover, nanomaterials could provide improved antibacterial, anti-inflammatory, antioxidant, stimuli-responsive, electrically conductive and mechanical properties of hydrogels to accelerate wound healing. This review focuses on recent advancements in NNPHs for skin wound healing and repair. Initially, the functions and requirements of NNPHs as wound dressings were introduced. Second, the design, preparation and capacities of representative NNPHs are classified based on their nanomaterial. Third, skin wound repair applications of NNPHs have been summarized based on the types of wounds. Finally, the potential issues of NNPHs are discussed, and future research is proposed to prepare idealized multifunctional NNPHs for skin tissue regeneration.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University Xi'an 710000 China
| | - Zexing Deng
- College of Materials Science and Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Yi Guo
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University Xi'an 710021 China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University Xi'an 710000 China
| |
Collapse
|
18
|
Wang X, Tang M. Bioceramic materials with ion-mediated multifunctionality for wound healing. SMART MEDICINE 2022; 1:e20220032. [PMID: 39188732 PMCID: PMC11235610 DOI: 10.1002/smmd.20220032] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 08/28/2024]
Abstract
Regeneration of both anatomic and functional integrity of the skin tissues after injury represents a huge challenge considering the sophisticated healing process and variability of specific wounds. In the past decades, numerous efforts have been made to construct bioceramic-based wound dressing materials with ion-mediated multifunctionality for facilitating the healing process. In this review, the state-of-the-art progress on bioceramic materials with ion-mediated bioactivity for wound healing is summarized. Followed by a brief discussion on the bioceramic materials with ion-mediated biological activities, the emerging bioceramic-based materials are highlighted for wound healing applications owing to their ion-mediated bioactivities, including anti-infection function, angiogenic activity, improved skin appendage regeneration, antitumor effect, and so on. Finally, concluding remarks and future perspectives of bioceramic-based wound dressing materials for clinical practice are briefly discussed.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Min Tang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
19
|
Li Y, Chen Q, Pan X, Lu W, Zhang J. New insight into the application of fluorescence platforms in tumor diagnosis: From chemical basis to clinical application. Med Res Rev 2022; 43:570-613. [PMID: 36420715 DOI: 10.1002/med.21932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
Early and rapid diagnosis of tumors is essential for clinical treatment or management. In contrast to conventional means, bioimaging has the potential to accurately locate and diagnose tumors at an early stage. Fluorescent probe has been developed as an ideal tool to visualize tumor sites and to detect biological molecules which provides a requirement for noninvasive, real-time, precise, and specific visualization of structures and complex biochemical processes in vivo. Rencently, the development of synthetic organic chemistry and new materials have facilitated the development of near-infrared small molecular sensing platforms and nanoimaging platforms. This provides a competitive tool for various fields of bioimaging such as biological structure and function imaging, disease diagnosis, in situ at the in vivo level, and real-time dynamic imaging. This review systematically focused on the recent progress of small molecular near-infrared fluorescent probes and nano-fluorescent probes as new biomedical imaging tools in the past 3-5 years, and it covers the application of tumor biomarker sensing, tumor microenvironment imaging, and tumor vascular imaging, intraoperative guidance and as an integrated platform for diagnosis, aiming to provide guidance for researchers to design and develop future biomedical diagnostic tools.
Collapse
Affiliation(s)
- Yanchen Li
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| | - Qinhua Chen
- Department of Pharmacy Shenzhen Baoan Authentic TCM Therapy Hospital Shenzhen China
| | - Xiaoyan Pan
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| | - Wen Lu
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| | - Jie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center Xi'an Jiaotong University Xi'an China
| |
Collapse
|
20
|
He Y, Chen R, Zhao C, Lu Q, Chen Z, Zhu H, Bu Q, Wang L, He H. Design of Near-Infrared-Triggered Cellulose Nanocrystal-Based In Situ Intelligent Wound Dressings for Drug-Resistant Bacteria-Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51630-51644. [PMID: 36375077 DOI: 10.1021/acsami.2c13203] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Postoperative infected wound complications caused by residual tumor cells, bacterial biofilms, and drug-resistant bacteria have become the main challenge in postsurgical skin regeneration. Herein, a bionic cellulose nanocrystal (CNC)-based in situ intelligent wound dressing with near-infrared (NIR)-, temperature-, and pH-responsive functions was designed by using NIR-responsive CNC as the network skeleton, dynamic imine bonds between dialdehyde cellulose nanocrystals and doxorubicin, chitosan oligosaccharide as the pH-responsive switch, and temperature-sensitive poly(N-isopropyl acrylamide) as the temperature-responsive in situ formation switch. The as-prepared wound dressing with the intertwining three-dimensional (3D) network structure possessed high drug loadability of indocyanine green (30 mg/g) and doxorubicin (420 mg/g) simultaneously. The temperature-, NIR-, and pH-responsive switches endowed the wound dressing with controllable on-demand drug release behavior. In particular, the temperature switch endowed the dressing with a shape-adaptable ability on irregularly infected wounds. Interestingly, the wound dressing showed excellent antitumor activity for A375 tumor cells, antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and bacterial biofilm removal ability. Therefore, the developed wound dressing can provide an ideal synergistic treatment strategy combined with chemotherapy and photodynamic and photothermal therapy for postoperative drug-resistant bacteria-infected wound healing.
Collapse
Affiliation(s)
- Yonghui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Rimei Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Chao Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Qin Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Zhiping Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Qing Bu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P. R. China
| | - Lei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, P. R. China
| |
Collapse
|
21
|
Montazerian M, Gonçalves GVS, Barreto MEV, Lima EPN, Cerqueira GRC, Sousa JA, Malek Khachatourian A, Souza MKS, Silva SML, Fook MVL, Baino F. Radiopaque Crystalline, Non-Crystalline and Nanostructured Bioceramics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7477. [PMID: 36363085 PMCID: PMC9656675 DOI: 10.3390/ma15217477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Radiopacity is sometimes an essential characteristic of biomaterials that can help clinicians perform follow-ups during pre- and post-interventional radiological imaging. Due to their chemical composition and structure, most bioceramics are inherently radiopaque but can still be doped/mixed with radiopacifiers to increase their visualization during or after medical procedures. The radiopacifiers are frequently heavy elements of the periodic table, such as Bi, Zr, Sr, Ba, Ta, Zn, Y, etc., or their relevant compounds that can confer enhanced radiopacity. Radiopaque bioceramics are also intriguing additives for biopolymers and hybrids, which are extensively researched and developed nowadays for various biomedical setups. The present work aims to provide an overview of radiopaque bioceramics, specifically crystalline, non-crystalline (glassy), and nanostructured bioceramics designed for applications in orthopedics, dentistry, and cancer therapy. Furthermore, the modification of the chemical, physical, and biological properties of parent ceramics/biopolymers due to the addition of radiopacifiers is critically discussed. We also point out future research lacunas in this exciting field that bioceramists can explore further.
Collapse
Affiliation(s)
- Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Geovanna V. S. Gonçalves
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maria E. V. Barreto
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Eunice P. N. Lima
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Glauber R. C. Cerqueira
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Julyana A. Sousa
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Adrine Malek Khachatourian
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11155-1639, Iran
| | - Mairly K. S. Souza
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Suédina M. L. Silva
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Marcus V. L. Fook
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
22
|
Wang M, Guo Y, Deng Z, Xu P. Engineering elastic bioactive composite hydrogels for promoting osteogenic differentiation of embryonic mesenchymal stem cells. Front Bioeng Biotechnol 2022; 10:1022153. [PMID: 36312561 PMCID: PMC9596812 DOI: 10.3389/fbioe.2022.1022153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
The development of bioactive materials with good mechanical properties and promotion of stem cell osteogenic differentiation has important application prospects in bone tissue engineering. In this paper, we designed a novel organic‒inorganic composite hydrogel (FPIGP@BGN-Sr) utilizing diacrylated F127 (DA-PF127), β-glycerophosphate-modified polyitaconate (PIGP) and strontium-doped bioactive glass nanoparticles (BGN-Sr) through free radical polymerization and coordination interactions and then evaluated its promoting effect on the osteogenic differentiation of mouse embryonic mesenchymal stem cells in detail. The results showed that the FPIGP@BGN-Sr hydrogel exhibited a controlled storage modulus by changing the amount of BGN-Sr. Notably, the FPIGP@BGN-Sr hydrogel possessed excellent elastic ability with a compressive strain of up to 98.6% and negligible change in mechanical properties after 10 cycles of compression. In addition, the FPIGP@BGN-Sr hydrogel had good cytocompatibility, maintained the activity and proliferation of mouse embryonic mesenchymal stem cells (C3H10T1/2), and effectively enhanced the activity of alkaline phosphatase, osteogenic gene expression and biomineralization ability of the cells. In conclusion, the excellent mechanical properties and osteogenic biological activity of the FPIGP@BGN-Sr hydrogel make it a promising organic‒inorganic composite bioactive material for stem cell-based bone regeneration.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yi Guo
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Zexing Deng
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Peng Xu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peng Xu,
| |
Collapse
|
23
|
Ma J, Wu C. Bioactive inorganic particles-based biomaterials for skin tissue engineering. EXPLORATION (BEIJING, CHINA) 2022; 2:20210083. [PMID: 37325498 PMCID: PMC10190985 DOI: 10.1002/exp.20210083] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The challenge for treatment of severe cutaneous wound poses an urgent clinical need for the development of biomaterials to promote skin regeneration. In the past few decades, introduction of inorganic components into material system has become a promising strategy for improving performances of biomaterials in the process of tissue repair. In this review, we provide a current overview of the development of bioactive inorganic particles-based biomaterials used for skin tissue engineering. We highlight the three stages in the evolution of the bioactive inorganic biomaterials applied to wound management, including single inorganic materials, inorganic/organic composite materials, and inorganic particles-based cell-encapsulated living systems. At every stage, the primary types of bioactive inorganic biomaterials are described, followed by citation of the related representative studies completed in recent years. Then we offer a brief exposition of typical approaches to construct the composite material systems with incorporation of inorganic components for wound healing. Finally, the conclusions and future directions are suggested for the development of novel bioactive inorganic particles-based biomaterials in the field of skin regeneration.
Collapse
Affiliation(s)
- Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
24
|
Luo M, Wang Y, Xie C, Lei B. Multiple Coordination-Derived Bioactive Hydrogel with Proangiogenic Hemostatic Capacity for Wound Repair. Adv Healthc Mater 2022; 11:e2200722. [PMID: 35840538 DOI: 10.1002/adhm.202200722] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/01/2022] [Indexed: 01/27/2023]
Abstract
Bioactive hydrogels with multifunctional properties have shown promising potential in promoting wound repair and skin tissue regeneration. The regulation on different stages of skin wound healing (hemostasis and inflammation) is important for wound repair. Herein, a multiple coordination-derived bioactive hydrogel (SGPA) with anti-inflammatory proangiogenic hemostatic capacity for wound repair is reported. The SGPA is prepared through a facile multiple metal coordination action based on the sodium alginate, metal ions (Gd3+ ), and bisphosphate functionalized polycitrate. The SGPA exhibits a large porous structure, good injectability, and self-healing performance, as well as controlled biodegradation. Furthermore, the SGPA has good cytocompatibility and hemocompatibility, and can further promote the migration of endothelial cells. The SGPA hydrogel presents good hemostasis capacity in a liver hemorrhage model in vivo. The full-thickness cutaneous wound model demonstrates that the SGPA hydrogel can effectively accelerate the wound repair through down-regulating the inflammatory factors and stimulating the angiogenesis around the wound beds. This work suggests that the multiple metal-organic coordination may be a good strategy to construct the multifunctional bioactive hydrogel for wound repair.
Collapse
Affiliation(s)
- Meng Luo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Yidan Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Chenxi Xie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| |
Collapse
|
25
|
Fan C, Xu Q, Hao R, Wang C, Que Y, Chen Y, Yang C, Chang J. Multi-functional wound dressings based on silicate bioactive materials. Biomaterials 2022; 287:121652. [PMID: 35785753 DOI: 10.1016/j.biomaterials.2022.121652] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
Most traditional wound dressings passively offer a protective barrier for the wounds, which lacks the initiative in stimulating tissue regeneration. In addition, cutaneous wound healing is usually accompanied by various complicated conditions, including bacterial infection, skin cancer, and damaged skin appendages, bringing further challenges for wound management in clinic. Therefore, an ideal wound dressing should not only actively stimulate wound healing but also hold multi-functions for solving problems associated with different specific wound conditions. Recent studies have demonstrated that silicate bioceramics and bioglasses are one type of promising materials for the development of wound dressings, as they can actively accelerate wound healing by regulating endothelial cells, dermal fibroblasts, macrophages, and epidermal cells. In particular, silicate-based biomaterials can be further functionalized by specific structural design or doping with functional components, which endow materials with enhanced bioactivities or expanded physicochemical properties such as photothermal, photodynamic, chemodynamic, or imaging properties. The functionalized materials can be used to address wound healing with different demands including but not limited to antibacterial, anticancer, skin appendages regeneration, and wound monitoring. In this review, we summarized the current research on the development of silicate-based multi-functional wound dressings and prospected the development of advanced wound dressings in the future.
Collapse
Affiliation(s)
- Chen Fan
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Qing Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Ruiqi Hao
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Chun Wang
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Yumei Que
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Yanxin Chen
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Chen Yang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| | - Jiang Chang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, PR China.
| |
Collapse
|
26
|
Li Y, Ge J, Luo M, Niu W, Ling X, Xu K, Lin C, Lei B, Zhang X. Elastomeric self-healing antibacterial bioactive nanocomposites scaffolds for treating skull defect. APPLIED MATERIALS TODAY 2022; 26:101254. [DOI: 10.1016/j.apmt.2021.101254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
27
|
Chen M, Winston DD, Wang M, Niu W, Cheng W, Guo Y, Wang Y, Luo M, Xie C, Leng T, Qu X, Lei B. Hierarchically multifunctional bioactive nanoglass for integrated tumor/infection therapy and impaired wound repair. MATERIALS TODAY 2022; 53:27-40. [DOI: 10.1016/j.mattod.2022.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
28
|
Luo M, Dorothy Winston D, Niu W, Wang Y, Zhao H, Qu X, Lei B. Bioactive therapeutics-repair-enabled citrate-iron hydrogel scaffolds for efficient post-surgical skin cancer treatment. CHEMICAL ENGINEERING JOURNAL 2022; 431:133596. [DOI: 10.1016/j.cej.2021.133596] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
29
|
Luo M, Shaitan K, Qu X, Bonartsev AP, Lei B. Bioactive rare earth-based inorganic-organic hybrid biomaterials for wound healing and repair. APPLIED MATERIALS TODAY 2022; 26:101304. [DOI: 10.1016/j.apmt.2021.101304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
30
|
Wang Y, Niu W, Qu X, Lei B. Bioactive Anti-Inflammatory Thermocatalytic Nanometal-Polyphenol Polypeptide Scaffolds for MRSA-Infection/Tumor Postsurgical Tissue Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4946-4958. [PMID: 35073045 DOI: 10.1021/acsami.1c21082] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Postsurgical tumor recurrence, infection, and tissue defect are still the challenges in clinical medicine. The development of multifunctional biomaterial scaffolds with a microenvironment-responsive tumor-infection therapy-tissue repair is highly desirable. Herein, we report a bioactive, injectable, adhesive, self-healing, antibacterial, and anti-inflammatory metal-polyphenol polypeptide nanocomposite scaffold (PEAPF) with temporal-spatial-controlled inflammation-triggered therapeutic properties for efficient infection and postsurgical tumor therapy and skin repair. PEAPF scaffolds showed sustained and inherent inflammation-triggered Fenton catalysis and mild thermochemical effect for specifically inhibiting tumor recurrence in vitro and in vivo. The PEAPF scaffolds significantly facilitated skin tissue regeneration in MRSA-infected chronic wounds and postsurgical tissue defects after tumor resection. This study presents the multifunctional scaffold-based safe and efficient therapeutic strategy to prevent local tumor recurrence and enhance postsurgical tissue regeneration.
Collapse
Affiliation(s)
- Yidan Wang
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710054, China
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
31
|
Lei B, Boccaccini AR, Chen X. Editorial: Multifunctional Bioactive Nanomaterials for Tissue Regeneration, Volume 2. Front Chem 2022; 10:848369. [PMID: 35155374 PMCID: PMC8829703 DOI: 10.3389/fchem.2022.848369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bo Lei
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
32
|
Sharifi E, Bigham A, Yousefiasl S, Trovato M, Ghomi M, Esmaeili Y, Samadi P, Zarrabi A, Ashrafizadeh M, Sharifi S, Sartorius R, Dabbagh Moghaddam F, Maleki A, Song H, Agarwal T, Maiti TK, Nikfarjam N, Burvill C, Mattoli V, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L, Makvandi P. Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli-Responsive, Toxicity, Immunogenicity, and Clinical Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102678. [PMID: 34796680 PMCID: PMC8805580 DOI: 10.1002/advs.202102678] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Indexed: 05/10/2023]
Abstract
Cancer is one of the top life-threatening dangers to the human survival, accounting for over 10 million deaths per year. Bioactive glasses have developed dramatically since their discovery 50 years ago, with applications that include therapeutics as well as diagnostics. A new system within the bioactive glass family, mesoporous bioactive glasses (MBGs), has evolved into a multifunctional platform, thanks to MBGs easy-to-functionalize nature and tailorable textural properties-surface area, pore size, and pore volume. Although MBGs have yet to meet their potential in tumor treatment and imaging in practice, recently research has shed light on the distinguished MBGs capabilities as promising theranostic systems for cancer imaging and therapy. This review presents research progress in the field of MBG applications in cancer diagnosis and therapy, including synthesis of MBGs, mechanistic overview of MBGs application in tumor diagnosis and drug monitoring, applications of MBGs in cancer therapy ( particularly, targeted delivery and stimuli-responsive nanoplatforms), and immunological profile of MBG-based nanodevices in reference to the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Department of Tissue Engineering and BiomaterialsSchool of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadan6517838736Iran
- Institute of PolymersComposites and BiomaterialsNational Research Council (IPCB‐CNR)Naples80125Italy
| | - Ashkan Bigham
- Institute of PolymersComposites and BiomaterialsNational Research Council (IPCB‐CNR)Naples80125Italy
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadan6517838736Iran
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)Naples80131Italy
| | - Matineh Ghomi
- Chemistry DepartmentFaculty of ScienceShahid Chamran University of AhvazAhvaz61537‐53843Iran
- School of ChemistryDamghan UniversityDamghan36716‐41167Iran
| | - Yasaman Esmaeili
- Biosensor Research CenterSchool of Advanced Technologies in MedicineIsfahan University of Medical SciencesIsfahan8174673461Iran
| | - Pouria Samadi
- Research Center for Molecular MedicineHamadan University of Medical SciencesHamadan6517838736Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
- Department of Biomedical EngineeringFaculty of Engineering and Natural SciencesIstinye UniversitySariyerIstanbul34396Turkey
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci UniversityOrta Mahalle, Üniversite Caddesi No. 27, OrhanlıTuzlaIstanbul34956Turkey
| | - Shokrollah Sharifi
- Department of Mechanical EngineeringUniversity of MelbourneMelbourne3010Australia
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)Naples80131Italy
| | | | - Aziz Maleki
- Department of Pharmaceutical NanotechnologySchool of PharmacyZanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Hao Song
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbane4072Australia
| | - Tarun Agarwal
- Department of BiotechnologyIndian Institute of TechnologyKharagpur721302India
| | - Tapas Kumar Maiti
- Department of BiotechnologyIndian Institute of TechnologyKharagpur721302India
| | - Nasser Nikfarjam
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS)Zanjan45137‐66731Iran
| | - Colin Burvill
- Department of Mechanical EngineeringUniversity of MelbourneMelbourne3010Australia
| | - Virgilio Mattoli
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | - Maria Grazia Raucci
- Institute of PolymersComposites and BiomaterialsNational Research Council (IPCB‐CNR)Naples80125Italy
| | - Kai Zheng
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | - Aldo R. Boccaccini
- Institute of BiomaterialsUniversity of Erlangen‐NurembergErlangen91058Germany
| | - Luigi Ambrosio
- Institute of PolymersComposites and BiomaterialsNational Research Council (IPCB‐CNR)Naples80125Italy
| | - Pooyan Makvandi
- Chemistry DepartmentFaculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| |
Collapse
|
33
|
Pantulap U, Arango-Ospina M, Boccaccini AR. Bioactive glasses incorporating less-common ions to improve biological and physical properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 33:3. [PMID: 34940923 PMCID: PMC8702415 DOI: 10.1007/s10856-021-06626-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/07/2021] [Indexed: 05/29/2023]
Abstract
Bioactive glasses (BGs) have been a focus of research for over five decades for several biomedical applications. Although their use in bone substitution and bone tissue regeneration has gained important attention, recent developments have also seen the expansion of BG applications to the field of soft tissue engineering. Hard and soft tissue repair therapies can benefit from the biological activity of metallic ions released from BGs. These metallic ions are incorporated in the BG network not only for their biological therapeutic effects but also in many cases for influencing the structure and processability of the glass and to impart extra functional properties. The "classical" elements in silicate BG compositions are silicon (Si), phosphorous (P), calcium (Ca), sodium (Na), and potassium (K). In addition, other well-recognized biologically active ions have been incorporated in BGs to provide osteogenic, angiogenic, anti-inflammatory, and antibacterial effects such as zinc (Zn), magnesium (Mg), silver (Ag), strontium (Sr), gallium (Ga), fluorine (F), iron (Fe), cobalt (Co), boron (B), lithium (Li), titanium (Ti), and copper (Cu). More recently, rare earth and other elements considered less common or, some of them, even "exotic" for biomedical applications, have found room as doping elements in BGs to enhance their biological and physical properties. For example, barium (Ba), bismuth (Bi), chlorine (Cl), chromium (Cr), dysprosium (Dy), europium (Eu), gadolinium (Gd), ytterbium (Yb), thulium (Tm), germanium (Ge), gold (Au), holmium (Ho), iodine (I), lanthanum (La), manganese (Mn), molybdenum (Mo), nickel (Ni), niobium (Nb), nitrogen (N), palladium (Pd), rubidium (Rb), samarium (Sm), selenium (Se), tantalum (Ta), tellurium (Te), terbium (Tb), erbium (Er), tin (Sn), tungsten (W), vanadium (V), yttrium (Y) as well as zirconium (Zr) have been included in BGs. These ions have been found to be particularly interesting for enhancing the biological performance of doped BGs in novel compositions for tissue repair (both hard and soft tissue) and for providing, in some cases, extra functionalities to the BG, for example fluorescence, luminescence, radiation shielding, anti-inflammatory, and antibacterial properties. This review summarizes the influence of incorporating such less-common elements in BGs with focus on tissue engineering applications, usually exploiting the bioactivity of the BG in combination with other functional properties imparted by the presence of the added elements.
Collapse
Affiliation(s)
- Usanee Pantulap
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Marcela Arango-Ospina
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany.
| |
Collapse
|
34
|
Ge J, Li Y, Wang M, Gao C, Yang S, Lei B. Engineering conductive antioxidative antibacterial nanocomposite hydrogel scaffolds with oriented channels promotes structure-functional skeletal muscle regeneration. CHEMICAL ENGINEERING JOURNAL 2021; 425:130333. [DOI: 10.1016/j.cej.2021.130333] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
35
|
Li L, Lu Y, Qian Z, Yang Z, Zong S, Wang Z, Cui Y. A Ti 2N MXene-based nanosystem with ultrahigh drug loading for dual-strategy synergistic oncotherapy. NANOSCALE 2021; 13:18546-18557. [PMID: 34730162 DOI: 10.1039/d1nr04008a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The exploration of MXenes, especially nitride MXenes, in the field of theranostic nanomedicine is still in its infancy. Here, towards synergistic chemo-photothermal oncotherapy, we demonstrate the first kind of 2D titanium nitride (Ti2N) MXene-based nanosystem (Ti2N@oSi) for dual-strategy synergistic oncotherapy. The unique structure of Ti2N nanosheets endows the drug carriers with an ultrahigh loading capacity of 796.3% and an excellent NIR photothermal conversion efficiency of 41.6% for chemo-photothermal therapy. After being coated with a biodegradable organosilica shell, the Ti2N@oSi nanocarriers show excellent characteristics of tumor targeting, pH/glutathione/photothermal-responsive drug release and dual-drug combination chemotherapy. Both in vitro and in vivo therapeutic evaluations demonstrate the pronounced tumor growth inhibition effect and superior biocompatibility of Ti2N@oSi nanocarriers. The excellent drug loading ability, photothermal conversion ability and surface modifiability of Ti2N open up new opportunities for tumor microenvironment-targeted synergistic oncotherapy. This work is supposed to broaden the application of MXenes in nanomedicine and, particularly, provide the first sight to the biomedical application of nitride MXenes.
Collapse
Affiliation(s)
- Lang Li
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| | - Yang Lu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| | - Ziting Qian
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| | - Zhaoyan Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
36
|
Niu W, Chen M, Guo Y, Wang M, Luo M, Cheng W, Wang Y, Lei B. A Multifunctional Bioactive Glass-Ceramic Nanodrug for Post-Surgical Infection/Cancer Therapy-Tissue Regeneration. ACS NANO 2021; 15:14323-14337. [PMID: 34491737 DOI: 10.1021/acsnano.1c03214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The production of reactive oxygen species, persistent inflammation, bacterial infection, and recurrence after a tumor resection has become the main challenge in cancer therapy and post-surgical skin regeneration. Herein, we report a multifunctional branched bioactive Si-Ca-P-Mo glass-ceramic nanoparticle (BBGN) with inlaid molybdate nanocrystals for an effective post-surgical melanoma therapy or infection therapy and defected skin reconstruction. Mixed-valence molybdenum (Mo4+ and Mo6+) doped BBGN (BBGN-Mo) was first synthesized via a hydrothermally assisted classical synthesis of BGN, which enables the structure with a lot of free electrons and oxygen vacancies. The BBGN-Mo exhibits excellent photothermal, antibacterial, enzyme-like radical scavenging, and anti-inflammatory as well as promoted vascularized efficiencies. BBGN-Mo could kill drug-resistant methicillin-resistant Staphylococcus aureus (MRSA) bacteria in vitro (99.5%) and in vivo (97.0%) at a low photothermal temperature (42 °C) and efficiently enhance the MRSA-infected wound repair. Additionally, BBGN-Mo could effectively inhibit tumor recurrence (96.4%), continuously improve the wound anti-inflammation and vascularization microenvironment, and significantly promote the post-surgical skin regeneration. This work suggests that conventional bioceramics could be turned to the highly efficient nanodrug for treating the challenge of post-surgical cancer therapy or infection therapy and tissue regeneration, through the mixed-valence strategy.
Collapse
Affiliation(s)
- Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710043, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710043, China
| | - Yi Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710043, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710043, China
| | - Meng Luo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710043, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710043, China
| | - Yidan Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710043, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710043, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| |
Collapse
|
37
|
Yang Y, Wang M, Luo M, Chen M, Wei K, Lei B. Injectable self-healing bioactive antioxidative one-component poly(salicylic acid) hydrogel with strong ultraviolet-shielding for preventing skin light injury. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112107. [PMID: 34082930 DOI: 10.1016/j.msec.2021.112107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
The design and development of one-component temperature-sensitive bioactive hydrogel with multifunctional properties for protecting skin against light injury remain a challenge. Herein, we report a bioactive multifunctional poly(salicylic acid)-F127-poly(salicylic acid) copolymer hydrogel (FPSa) with one-component for potential skin protection applications. The FPSa hydrogel possesses the thermosensitivity (23 °C), injectability, self-healing ability, ultraviolet shielding (shielding the wavelength between 280 and 370 nm), and antioxidation activity (above 70%), and also showed the good cytocompatibility (cell survival rate >90% and hemolysis rate less than 5%) and biodegradability (90% weight loss at 3 days). The in vivo animal model showed that FPSa hydrogel could effectively protect the skin tissue and prevent the ultraviolet induced injury. This study can provide a strategy to design multifunctional bioactive hydrogel with simple composition for disease therapy and regenerative medicine.
Collapse
Affiliation(s)
- Yulian Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Meng Luo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Kun Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Bo Lei
- State key laboratory for manufacturing, systems engineering, Xi'an Jiaotong University, Xi'an 710000, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China; National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China; Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|