1
|
Xue W, Wei X, Xiang Z, Zhang X, Tu W, He Y, Chen S, Gao D. Simplified biomimetic peptide-based vehicle for enhanced tumor penetration and rapid enzyme-induced drug release. J Colloid Interface Sci 2025; 684:75-86. [PMID: 39787809 DOI: 10.1016/j.jcis.2024.12.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Various nanodrug vehicles were well-designed with complicated functions for tumor therapy. However, the unsatisfactory tumor delivery efficiency and uncertain off-target release became the stumbling block of the nanodrugs on the way to the clinic. Inspired by efficient tumor targeting ability of albumin, we reported a simplified biomimetic peptide-based vehicle synthesized by copolymerizing L-glutamyl-L-lysine unit (EK dimer, an intrinsic surface peptide pair from albumin) with L-phenylalanine (F) to encapsulate doxorubicin (Dox). The zwitterionic peptide shell based on EK pair made the system exhibit prolonged blood circulation by mimicking the surface function of albumin, and enhanced tumor penetration by liquefying gelated water molecules in tumor extracellular matrix (ECM). Meanwhile, the overexpressed enzymes (cathepsin B, CB) in tumor can trigger the degradation of the peptide scaffold so as to rapidly release Dox. This simplified albumin-mimicking approach can provide a promising nanodrug delivering platform for clinical application.
Collapse
Affiliation(s)
- Weili Xue
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Xinyue Wei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ziyin Xiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Wenkang Tu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
2
|
Deng Q, Hua A, Li S, Zhang Z, Chen X, Wang Q, Wang X, Chu Z, Yang X, Li Z. Hyperbaric Oxygen Regulates Tumor pH to Boost Copper‐Doped Hydroxyethyl Starch Conjugate Nanoparticles Against Cancer Stem Cells. EXPLORATION 2025. [DOI: 10.1002/exp.20240080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/14/2024] [Indexed: 05/04/2025]
Abstract
ABSTRACTAn extracellular acidic environment and an intracellular mildly alkaline environment induced by carbonic anhydrase 9 (CA9) play a critical role in self‐renewal, invasion, migration, and drug resistance of cancer stem cells (CSCs) within hypoxic solid tumors. Here, we report an antitumor strategy leveraging hyperbaric oxygen therapy (HBO) to regulate tumor pH and boost hydroxyethyl starch‐doxorubicin‐copper nanoparticles (HHD‐Cu NPs) against CSCs. HBO overcomes tumor hypoxia, downregulates pH‐regulatory proteins such as CA9, and leads to intracellular accumulation of acidic metabolites. As a result, HBO promotes intracellular acidification of both tumor cells and CSCs, triggering efficient doxorubicin release and the potent copper‐mediated chemical dynamic effect of subsequently administered dual‐acid‐responsive HHD‐Cu NPs. The combination of HBO with HHD‐Cu NPs not only eliminates tumor cells but also inhibits CSCs, altogether leading to potent tumor inhibition. This study explores a new function of clinical‐widely used HBO and establishes a novel combination therapy for treating CSCs abundant hypoxic solid tumors.
Collapse
Affiliation(s)
- Qingyuan Deng
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Ao Hua
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Shiyou Li
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Zhijie Zhang
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Xiang Chen
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Qiang Wang
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong P. R. China
- School of Biomedical Sciences The University of Hong Kong Hong Kong P. R. China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
- National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education Huazhong University of Science and Technology Wuhan P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical Huazhong University of Science and Technology Wuhan P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Huazhong University of Science and Technology Wuhan P. R. China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
- National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education Huazhong University of Science and Technology Wuhan P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical Huazhong University of Science and Technology Wuhan P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Huazhong University of Science and Technology Wuhan P. R. China
| |
Collapse
|
3
|
Gao S, Liu M, Zhang Y, He Z, Li Y, Ji J, Ye L, Yang X, Zhai G. A precision intelligent nanomissile for inhibiting tumor metastasis, boosting energy deprivation and immunotherapy. Biomaterials 2025; 315:122953. [PMID: 39531747 DOI: 10.1016/j.biomaterials.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The epithelial-mesenchymal transition (EMT), tumor stroma and local metabolic alterations cooperate to establish a unique tumor microenvironment (TME) that fosters tumor progression and metastasis. To tackle this challenge, a precision intelligent nanomissile named HA@AT-Pd has been designed for dual-pronged cancer-associated fibroblast (CAF) transformation and tumor cell elimination. It is observed that HA@AT-Pd inhibits the production of cancer stem cells (CSCs) by blocking the TGF-β/Smad signaling pathway-mediated EMT and reversing activated CAFs to quiescence. Notably, HA@AT-Pd induces energy depletion in breast cancer cells through simultaneously suppressing cellular oxidative phosphorylation and glycolysis. The inhibition of glycolysis results in reduced lactic acid production, thereby converting an immunosuppressive TME into an immune-activating environment. Furthermore, the photothermal effect generated by HA@AT-Pd evokes immunogenic cell death, which can further enhance the anti-tumor immune response. Overall, this multifunctional combination strategy unveils potential therapeutic avenues to inhibit tumor progression and metastasis.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Research, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Meng Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhijing He
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Zhang W, Jiang Y, Liu L, Shen H, Huang X, Zheng W, Chu Z, Wang W, Guo Y, Qian H. Implantable Microneedles Loaded with Nanoparticles Surface Engineered Escherichia coli for Efficient Eradication of Triple-Negative Breast Cancer Stem Cells. NANO LETTERS 2025; 25:2041-2051. [PMID: 39836986 DOI: 10.1021/acs.nanolett.4c06052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Eliminating cancer stem cells (CSCs) is essential for the effective treatment of triple-negative breast cancer (TNBC). This study synthesized Au@cerium-zinc composite core@shell nanoparticles (Au@Zn/CeO) that were subsequently conjugated with Escherichia coli (E. coli) to create the engineered bacterium AZCE, which was then combined with microneedle carriers and freeze-dried to obtain AZCE-MN. Upon implantation into TNBC tumors, the inherent properties of E. coli facilitate AZCE to penetrate the extracellular matrix and break through the basement membrane, enabling effective delivery of AZC to CSCs-enriched regions deep within the tumor. The released Zn2+ induces mitochondrial dysfunction and amplifies reactive oxygen species (ROS) production. The redox cycling between Ce3+/Ce4+ effectively depleted glutathione, which further increased ROS generation. Under near-infrared laser irradiation, Au nanorods initiated photothermal therapy, effectively ablating CSCs while amplifying catalytic reactions and ionic effects. This microneedle-mediated engineered bacteria delivery improved nanodrug penetration in tumor tissues, providing new insights for TNBC clinical treatment.
Collapse
Affiliation(s)
- Weinan Zhang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Yechun Jiang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Litao Liu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Hui Shen
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Xianyu Huang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Zhaoyou Chu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Yanchuan Guo
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, P. R. China
| |
Collapse
|
5
|
Xiao C, Wang X, Li S, Zhang Z, Li J, Deng Q, Chen X, Yang X, Li Z. A cuproptosis-based nanomedicine suppresses triple negative breast cancers by regulating tumor microenvironment and eliminating cancer stem cells. Biomaterials 2025; 313:122763. [PMID: 39180917 DOI: 10.1016/j.biomaterials.2024.122763] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/04/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
Cuproptosis is a new kind of cell death that depends on delivering copper ions into mitochondria to trigger the aggradation of tricarboxylic acid (TCA) cycle proteins and has been observed in various cancer cells. However, whether cuproptosis occurs in cancer stem cells (CSCs) is unexplored thus far, and CSCs often reside in a hypoxic tumor microenvironment (TME) of triple negative breast cancers (TNBC), which suppresses the expression of the cuproptosis protein FDX1, thereby diminishing anticancer efficacy of cuproptosis. Herein, a ROS-responsive active targeting cuproptosis-based nanomedicine CuET@PHF is developed by stabilizing copper ionophores CuET nanocrystals with polydopamine and hydroxyethyl starch to eradicate CSCs. By taking advantage of the photothermal effects of CuET@PHF, tumor hypoxia is overcome via tumor mechanics normalization, thereby leading to enhanced cuproptosis and immunogenic cell death in 4T1 CSCs. As a result, the integration of CuET@PHF and mild photothermal therapy not only significantly suppresses tumor growth but also effectively inhibits tumor recurrence and distant metastasis by eliminating CSCs and augmenting antitumor immune responses. This study presents the first evidence of cuproptosis in CSCs, reveals that disrupting hypoxia augments cuproptosis cancer therapy, and establishes a paradigm for potent cancer therapy by simultaneously eliminating CSCs and boosting antitumor immunity.
Collapse
Affiliation(s)
- Chen Xiao
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Shiyou Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhijie Zhang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jiayuan Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingyuan Deng
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiang Chen
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
6
|
Zhang Y, Dong X, Zhang Y, Chen Z, Zhou G, Chen N, Shen W, Yang K, Pei P. Biomaterials to regulate tumor extracellular matrix in immunotherapy. J Control Release 2024; 376:149-166. [PMID: 39389365 DOI: 10.1016/j.jconrel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The tumor extracellular matrix (ECM) provides physical support and influences tumor development, metastasis, and the tumor microenvironment, creating barriers to immune drug delivery and cell infiltration. Therefore, modulating or degrading the ECM is of significant importance to enhance the efficacy of tumor immunotherapy. This manuscript initially summarizes the main strategies and mechanisms of biomaterials in modulating various components of the ECM, including collagen, fibronectin, hyaluronic acid, and in remodeling the ECM. Subsequently, it discusses the benefits of biomaterials for immunotherapy following ECM modulation, such as promoting the infiltration of drugs and immune cells, regulating immune cell function, and alleviating the immunosuppressive microenvironment. The manuscript also briefly introduces the application of biomaterials that utilize and mimic the ECM for tumor immunotherapy. Finally, it addresses the current challenges and future directions in this field, providing a comprehensive overview of the potential and innovation in leveraging biomaterials to enhance cancer treatment outcomes. Our work will offer a comprehensive overview of ECM modulation strategies and their application in biomaterials to enhance tumor immunotherapy.
Collapse
Affiliation(s)
- Yujie Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuexue Dong
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zetong Chen
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Ni Chen
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China.
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Jiangsu, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Department of Nuclear Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China.
| |
Collapse
|
7
|
Pan Y, Li J, Wu J, Yang C, Wu S, Yang K, Yang X, Chen Q, Fu G, Liu C. Hyperbaric oxygen therapy enhances osteointegration of reimplanted cranial flap by regulating osteogenesis-angiogenesis coupling. J Orthop Res 2024; 42:2197-2209. [PMID: 38751166 DOI: 10.1002/jor.25875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/04/2024] [Accepted: 04/28/2024] [Indexed: 10/19/2024]
Abstract
Craniectomy is a lifesaving procedure to alleviate dangerously high intracranial pressure by removing a bone flap from the calvarium. However, the osteointegration of reimplanted bone flap with the existing bone tissue is still a clinical challenge. Hyperbaric oxygen (HBO) therapy has shown efficacy in promoting bone repair and could be a promising treatment for accelerating postoperative recovery. However, the specific cell types that are responsive to HBO treatment are not well understood. In this study, we created a murine model of craniectomy, with reimplantation of the cranial flap after 1 week. The effects of HBO treatment on bone formation and blood vessel formation around reimplanted bone were examined by micro-computed tomography, histological staining, and immunofluorescence staining. Single-cell RNA sequencing (scRNAseq) was utilized to identify key cell subtypes and signaling pathways after HBO treatment. We found that HBO treatment increased bone volume around reimplanted cranial flaps. HBO also increased the volume of Osterix-expressing cells and type H vessels. scRNAseq data showed more mature osteoblasts and endothelial cells, with higher expressions of adhesion and migration-related genes after HBO treatment. Cell-cell interaction analysis revealed a higher expression level of genes between mature osteoblasts and endothelial cells from the angiopoietin 2-integrin α5β1 pathway. Taken together, HBO therapy promotes the healing process of craniectomy by regulating the crosstalk between vascular endothelial cells and osteogenic cells. These findings provide evidence in a preclinical model that HBO therapy enhances osteointegration by regulating angiogenesis-osteogenesis coupling, providing a scientific basis for utilizing HBO therapy for accelerating postoperative recovery after craniectomy.
Collapse
Affiliation(s)
- Yonghao Pan
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Jiawei Li
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Jianqun Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chengyu Yang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Siying Wu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Kunhua Yang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xue Yang
- Shenzhen Children's Hospital, Shenzhen, Futian District, China
| | - Qian Chen
- Shenzhen Children's Hospital, Shenzhen, Futian District, China
| | - Guibing Fu
- Shenzhen Children's Hospital, Shenzhen, Futian District, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
8
|
Deng Q, Yang X, Li Z. Hyperbaric oxygen: a multifaceted approach in cancer therapy. Med Gas Res 2024; 14:130-132. [PMID: 40232688 PMCID: PMC466986 DOI: 10.4103/mgr.medgasres-d-23-00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 03/28/2025] Open
Affiliation(s)
- Qingyuan Deng
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
9
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
10
|
Pan Y, Yu L, Liu L, Zhang J, Liang S, Parshad B, Lai J, Ma LM, Wang Z, Rao L. Genetically engineered nanomodulators elicit potent immunity against cancer stem cells by checkpoint blockade and hypoxia relief. Bioact Mater 2024; 38:31-44. [PMID: 38699238 PMCID: PMC11061653 DOI: 10.1016/j.bioactmat.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Rapid development of checkpoint inhibitors has provided significant breakthroughs for cancer stem cell (CSC) therapy, while the therapeutic efficacy is restricted by hypoxia-mediated tumor immune evasion, especially hypoxia-induced CD47 overexpression in CSCs. Herein, we developed a genetically engineered CSC membrane-coated hollow manganese dioxide (hMnO2@gCMs) to elicit robust antitumor immunity by blocking CD47 and alleviating hypoxia to ultimately achieve the eradication of CSCs. The hMnO2 core effectively alleviated tumor hypoxia by inducing decomposition of tumor endogenous H2O2, thus suppressing the CSCs and reducing the expression of CD47. Cooperating with hypoxia relief-induced downregulation of CD47, the overexpressed SIRPα on gCM shell efficiently blocked the CD47-SIRPα "don't eat me" pathway, synergistically eliciting robust antitumor-mediated immune responses. In a B16F10-CSC bearing melanoma mouse model, the hMnO2@gCMs showed an enhanced therapeutic effect in eradicating CSCs and inhibiting tumor growth. Our work presents a simple, safe, and robust platform for CSC eradication and cancer immunotherapy.
Collapse
Affiliation(s)
- Yuanwei Pan
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ling Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jing Zhang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Badri Parshad
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Jialin Lai
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Li-Min Ma
- Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
11
|
Zhang X, Zhang X, Yong T, Gan L, Yang X. Boosting antitumor efficacy of nanoparticles by modulating tumor mechanical microenvironment. EBioMedicine 2024; 105:105200. [PMID: 38876044 PMCID: PMC11225208 DOI: 10.1016/j.ebiom.2024.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Nanoparticles have shown great potential for tumor targeting delivery via enhanced permeability and retention effect. However, the tumor mechanical microenvironment, characterized by dense extracellular matrix (ECM), high tumor stiffness and solid stress, leads to only 0.7% of administered dose accumulating in solid tumors and even fewer (∼0.0014%) reaching tumor cells, limiting the therapeutic efficacy of nanoparticles. Furthermore, the tumor mechanical microenvironment can regulate tumor cell stemness, promote tumor invasion, metastasis and reduce treatment efficacy. In this review, methods detecting the mechanical are introduced. Strategies for modulating the mechanical microenvironment including elimination of dense ECM by physical, chemical and biological methods, disruption of ECM formation, depletion or inhibition of cancer-associated fibroblasts, are then summarized. Finally, prospects and challenges for further clinical applications of mechano-modulating strategies to enhance the therapeutic efficacy of nanomedicines are discussed. This review may provide guidance for the rational design and application of nanoparticles in clinical settings.
Collapse
Affiliation(s)
- Xiaoqiong Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojuan Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
12
|
Li Z, Zhu Y, Zhang Z, Wang H, Wang C, Xu C, Li S, Zhang S, Yang X, Li Z. Softness-Aided Mild Hyperthermia Boosts Stiff Nanomedicine by Regulating Tumor Mechanics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306730. [PMID: 38704687 PMCID: PMC11234402 DOI: 10.1002/advs.202306730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Indexed: 05/07/2024]
Abstract
Aberrant tumor mechanical microenvironment (TMME), featured with overactivated cancer-associated fibroblasts (CAFs) and excessive extracellular matrix (ECM), severely restricts penetration and accumulation of cancer nanomedicines, while mild-hyperthermia photothermal therapy (mild-PTT) has been developed to modulate TMME. However, photothermal agents also encounter the barriers established by TMME, manifesting in limited penetration and heterogeneous distribution across tumor tissues and ending with attenuated efficiency in TMME regulation. Herein, it is leveraged indocyanine green (ICG)-loaded soft nanogels with outstanding deformability, for efficient tumor penetration and uniform distribution, in combination with mild-PTT to achieve potent TMME regulation by inhibiting CAFs and degrading ECM. As a result, doxorubicin (DOX)-loaded stiff nanogels gain greater benefits in tumor penetration and antitumor efficacy than soft counterparts from softness-mediated mild-PTT. This study reveals the crucial role of nanomedicine mechanical properties in tumor distribution and provides a novel strategy for overcoming the barriers of solid tumors with soft deformable nanogels.
Collapse
Affiliation(s)
- Zheng Li
- Department of Nanomedicine and BiopharmaceuticalsCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Yabo Zhu
- Department of Nanomedicine and BiopharmaceuticalsCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Zhijie Zhang
- Department of Nanomedicine and BiopharmaceuticalsCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Huimin Wang
- Department of Nanomedicine and BiopharmaceuticalsCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Chong Wang
- Department of Nanomedicine and BiopharmaceuticalsCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Chen Xu
- Department of Nanomedicine and BiopharmaceuticalsCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Shiyou Li
- Department of Nanomedicine and BiopharmaceuticalsCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Shuya Zhang
- Department of Nanomedicine and BiopharmaceuticalsCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xiangliang Yang
- Department of Nanomedicine and BiopharmaceuticalsCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
- National Engineering Research Center for NanomedicineHuazhong University of Science and TechnologyWuhan430074P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of EducationHuazhong University of Science and TechnologyWuhan430074P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicalHuazhong University of Science and TechnologyWuhan430074P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective MaterialsHuazhong University of Science and TechnologyWuhan430074P. R. China
- Hubei Bioinformatics and Molecular Imaging Key LaboratoryHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Zifu Li
- Department of Nanomedicine and BiopharmaceuticalsCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
- National Engineering Research Center for NanomedicineHuazhong University of Science and TechnologyWuhan430074P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of EducationHuazhong University of Science and TechnologyWuhan430074P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicalHuazhong University of Science and TechnologyWuhan430074P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective MaterialsHuazhong University of Science and TechnologyWuhan430074P. R. China
- Hubei Bioinformatics and Molecular Imaging Key LaboratoryHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
13
|
Yang Y, Peng Y, Du Y, Lin M, Li J, Gao D, Yang Z, Wang W, Zhou Y, Li X, Yan T, Qi X. Hierarchical self-recognition and response in CSC and non-CSC micro-niches for cancer therapy. Biomaterials 2024; 308:122581. [PMID: 38640783 DOI: 10.1016/j.biomaterials.2024.122581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Cancer stem cells (CSCs) characterized by self-renewal, invasiveness, tumorigenicity and resistance to treatment are regarded as the thorniest issues in refractory tumors. We develop a targeted and hierarchical controlled release nano-therapeutic platform (SEED-NPs) that self-identifies and responds to CSC and non-CSC micro-niches of tumors. In non-CSC micro-niche, reactive oxygen species (ROS) trigger the burst release of the chemotherapeutic drug and photosensitizer to kill tumor cells and reduce tumor volume by combining chemotherapy and photodynamic therapy (PDT). In CSC micro-niche, the preferentially released differentiation drug induces CSC differentiation and transforms CSCs into chemotherapy-sensitive cells. SEED-NPs exhibit an extraordinary capacity for downregulating the stemness of CD44+/CD24- SP (side population) cell population both in vitro and in vivo, and reveal a 4-fold increase of tumor-targeted accumulation. Also, PDT-generated ROS promote the formation of tunneling nanotubes and facilitate the divergent network transport of drugs in deep tumors. Moreover, ROS in turn promotes CSC differentiation and drug release. This positive-feedback-loop strategy enhances the elimination of refractory CSCs. As a result, SEED-NPs achieve excellent therapeutic effects in both 4T1 SP tumor-bearing mice and regular 4T1 tumor-bearing mice without obvious toxicities and eradicate half of mice tumors. SEED-NPs integrate differentiation, chemotherapy and PDT, which proved feasible and valuable, indicating that active targeting and hierarchical release are necessary to enhance antitumor efficacy. These findings provide promising prospects for overcoming barriers in the treatment of CSCs.
Collapse
Affiliation(s)
- Yiliang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yiwei Peng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yitian Du
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Meng Lin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiajia Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Datong Gao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenzhen Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Drug Clinical Trial Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Wei Wang
- Department of Orthopedics, Peking University First Hospital, Peking University, Beijing, 100034, China
| | - Yanxia Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xinru Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Taiqiang Yan
- Department of Orthopedics, Peking University First Hospital, Peking University, Beijing, 100034, China.
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
14
|
Yuen CM, Tsai HP, Tseng TT, Tseng YL, Lieu AS, Kwan AL, Chang AYW. Hyperbaric Oxygen Therapy as a Novel Approach to Modulating Macrophage Polarization for the Treatment of Glioblastoma. Biomedicines 2024; 12:1383. [PMID: 39061957 PMCID: PMC11274314 DOI: 10.3390/biomedicines12071383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with a poor prognosis despite current treatments. This is partially attributed to the immunosuppressive environment facilitated by tumor-associated macrophages, which predominantly underlie the tumor-promoting M2 phenotype. This study investigated the potential of hyperbaric oxygen (HBO) therapy, traditionally used to treat conditions such as decompression sickness, in modulating the macrophage phenotype toward the tumoricidal M1 state and disrupting the supportive tumor microenvironment. HBO has direct antiproliferative effects on tumor cells and reduces hypoxia, which may impair angiogenesis and tumor growth. This offers a novel approach to GBM treatment by targeting the role of the immune system within the tumor microenvironment. The effects of HBO on macrophage polarization and GBM cell viability and apoptosis were evaluated in this study. We detected that HBO promoted M1 macrophage cytokine expression while decreasing GBM cell viability and increasing apoptosis using GBM cell lines and THP-1-derived macrophage-conditioned media. These findings suggest that HBO therapy can shift macrophage polarization toward a tumoricidal M1 state. This can improve GBM cell survival and offers a potential therapeutic strategy. In conclusion, HBO can shift macrophages from a tumor-promoting M2 phenotype to a tumoricidal M1 phenotype in GBM. This can facilitate apoptosis and, in turn, improve treatment outcomes.
Collapse
Affiliation(s)
- Chun-Man Yuen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan;
- Division of Neurosurgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-P.T.); (T.-T.T.); (A.-S.L.)
| | - Tzu-Ting Tseng
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-P.T.); (T.-T.T.); (A.-S.L.)
| | - Yu-Lung Tseng
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 333, Taiwan;
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-P.T.); (T.-T.T.); (A.-S.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-P.T.); (T.-T.T.); (A.-S.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22904, USA
| | - Alice Y. W. Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Cheng-Hsing Campus, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
15
|
Xu KF, Wu SY, Wang Z, Guo Y, Zhu YX, Li C, Shan BH, Zhang X, Liu X, Wu FG. Hyperbaric oxygen enhances tumor penetration and accumulation of engineered bacteria for synergistic photothermal immunotherapy. Nat Commun 2024; 15:5147. [PMID: 38886343 PMCID: PMC11183253 DOI: 10.1038/s41467-024-49156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
Bacteria-mediated cancer therapeutic strategies have attracted increasing interest due to their intrinsic tumor tropism. However, bacteria-based drugs face several challenges including the large size of bacteria and dense extracellular matrix, limiting their intratumoral delivery efficiency. In this study, we find that hyperbaric oxygen (HBO), a noninvasive therapeutic method, can effectively deplete the dense extracellular matrix and thus enhance the bacterial accumulation within tumors. Inspired by this finding, we modify Escherichia coli Nissle 1917 (EcN) with cypate molecules to yield EcN-cypate for photothermal therapy, which can subsequently induce immunogenic cell death (ICD). Importantly, HBO treatment significantly increases the intratumoral accumulation of EcN-cypate and facilitates the intratumoral infiltration of immune cells to realize desirable tumor eradication through photothermal therapy and ICD-induced immunotherapy. Our work provides a facile and noninvasive strategy to enhance the intratumoral delivery efficiency of natural/engineered bacteria, and may promote the clinical translation of bacteria-mediated synergistic cancer therapy.
Collapse
Affiliation(s)
- Ke-Fei Xu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Shun-Yu Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Zihao Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Ya-Xuan Zhu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xinping Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.
| |
Collapse
|
16
|
Xiao C, Li J, Hua A, Wang X, Li S, Li Z, Xu C, Zhang Z, Yang X, Li Z. Hyperbaric Oxygen Boosts Antitumor Efficacy of Copper-Diethyldithiocarbamate Nanoparticles against Pancreatic Ductal Adenocarcinoma by Regulating Cancer Stem Cell Metabolism. RESEARCH (WASHINGTON, D.C.) 2024; 7:0335. [PMID: 38766644 PMCID: PMC11100349 DOI: 10.34133/research.0335] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/16/2024] [Indexed: 05/22/2024]
Abstract
Cuproptosis-based cancer nanomedicine has received widespread attention recently. However, cuproptosis nanomedicine against pancreatic ductal adenocarcinoma (PDAC) is severely limited by cancer stem cells (CSCs), which reside in the hypoxic stroma and adopt glycolysis metabolism accordingly to resist cuproptosis-induced mitochondria damage. Here, we leverage hyperbaric oxygen (HBO) to regulate CSC metabolism by overcoming tumor hypoxia and to augment CSC elimination efficacy of polydopamine and hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@PH NPs). Mechanistically, while HBO and CuET@PH NPs inhibit glycolysis and oxidative phosphorylation, respectively, the combination of HBO and CuET@PH NPs potently suppresses energy metabolism of CSCs, thereby achieving robust tumor inhibition of PDAC and elongating mice survival importantly. This study reveals novel insights into the effects of cuproptosis nanomedicine on PDAC CSC metabolism and suggests that the combination of HBO with cuproptosis nanomedicine holds significant clinical translation potential for PDAC patients.
Collapse
Affiliation(s)
- Chen Xiao
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiayuan Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ao Hua
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shiyou Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zheng Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chen Xu
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhijie Zhang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- National Engineering Research Center for Nanomedicine,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- National Engineering Research Center for Nanomedicine,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
17
|
Li Z, Yang X, Li Z. Tumor Mechanics Meets Nanomedicine Mechanical Properties. CHEMISTRY OF MATERIALS 2024; 36:1041-1053. [DOI: 10.1021/acs.chemmater.3c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Affiliation(s)
- Zheng Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| |
Collapse
|
18
|
Yao Y, Zhao Z, He J, Ali B, Wang M, Liao F, Zhuang J, Zheng Y, Guo W, Zhang DY. Iridium nanozyme-mediated photoacoustic imaging-guided NIR-II photothermal therapy and tumor microenvironment regulation for targeted eradication of cancer stem cells. Acta Biomater 2023; 172:369-381. [PMID: 37852456 DOI: 10.1016/j.actbio.2023.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Cancer stem cells (CSCs) are found in many solid tumors, which play decisive roles in the occurrence, recurrence and metastasis of tumors. However, drugs are difficult to kill CSCs due to their limited number and location in oxygen-deprived tissue far from the blood vessels. Meanwhile, the survival and stemness maintenance of CSCs strongly depend on the tumor microenvironment (TME). Herein, we developed a CD44 antibody modified iridium nanosheet with enzyme-like activity (defined as Ir Nts-Ab) that effectively eradicates CSCs for cancer therapy. We observe that Ir Nts-Ab can enrich tumor tissues to remove excessive reactive oxygen species and produce oxygen, thus alleviating hypoxia and the inflammatory TME to reduce the proportion of CSCs and inhibit metastasis. In addition, Ir Nts-Ab targets CSCs and normal cancer cells with near infrared II-region photothermal therapy (NIR-II PTT), and is easily taken up by CSCs due to recognition of the CD44 proteins. Moreover, photoacoustic imaging helps monitor drug accumulation and hypoxic TME improvement in tumor tissue. Importantly, Ir Nts-Ab has good biological safety, making it suitable for biomedical applications. This iridium nanozyme based on TME regulation as well as NIR-II PTT will be a promising strategy for the treatment of cancer. STATEMENT OF SIGNIFICANCE: Cancer stem cells (CSCs) are key factors that make tumors difficult to eradicate, and strongly depend on the hypoxic tumor microenvironment (TME), which plays a crucial role in the occurrence and metastasis of tumors. Herein, an antibody modified iridium nanosheet (definition as Ir Nts-Ab) was developed for targeted eradication of CSCs by photoacoustic imaging guided photothermal therapy (PTT) and TME regulation. Ir Nts-Ab with catalase-like activity could inhibit HIF-1α by producing oxygen, thus effectively reducing the proportion of CSCs and inhibiting tumor metastasis. Additionally, Ir Nts-Ab achieved the eradication of CSCs by PTT, and eliminated reactive oxygen species to decrease the inflammatory response, resulting in reduced tumor metastasis, which was promising for the cure of solid tumors in the clinics.
Collapse
Affiliation(s)
- Yuying Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhuangzhuang Zhao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinzhen He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Barkat Ali
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; PARC Pakistan Agricultural Research Council, Islamabad 44000, Pakistan
| | - Mingcheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Fangling Liao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiani Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yue Zheng
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Weisheng Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Dong-Yang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
19
|
Wang P, Wang XY, Man CF, Gong DD, Fan Y. Advances in hyperbaric oxygen to promote immunotherapy through modulation of the tumor microenvironment. Front Oncol 2023; 13:1200619. [PMID: 37790761 PMCID: PMC10543083 DOI: 10.3389/fonc.2023.1200619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Hyperbaric oxygen therapy is a relatively safe treatment method that has been used for a long time in the clinic. It has been proven that it can enhance the sensitivity of radiotherapy and photodynamic therapy for cancer. However, there are few studies on hyperbaric oxygen and immunotherapy. In this article, we summarize that hyperbaric oxygen therapy regulates the tumor microenvironment through various pathways such as improving tumor hypoxia, targeting hypoxia-inducing factors, and generating reactive oxygen species. The change in the tumor microenvironment ultimately affects the curative effect of immunotherapy. Therefore, hyperbaric oxygen can influence immunotherapy by regulating the tumor microenvironment, providing a direction for the future development of immunotherapy.
Collapse
Affiliation(s)
- Pei Wang
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao-Yan Wang
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Chang-Feng Man
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dan-Dan Gong
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Fan
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
20
|
Lv S, Liu Y, Xie C, Xue C, Du S, Yao J. Emerging role of interactions between tumor angiogenesis and cancer stem cells. J Control Release 2023; 360:468-481. [PMID: 37391031 DOI: 10.1016/j.jconrel.2023.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Tumor angiogenesis and cancer stem cells (CSCs) are two major hallmarks of solid tumors. They have long received attention for their critical roles in tumor progression, metastasis and recurrence. Meanwhile, plenty of evidence indicates the close association between CSCs and tumor vasculature. CSCs are proven to promote tumor angiogenesis, and the highly vascularized tumor microenvironment further maintains CSCs growth in return, thereby forming a hard-breaking vicious circle to promote tumor development. Hence, though monotherapy targeting tumor vasculature or CSCs has been extensively studied over the past decades, the poor prognosis has been limiting the clinical application. This review summarizes the crosstalk between tumor vasculature and CSCs with emphasis on small-molecule compounds and the associated biological signaling pathways. We also highlight the importance of linking tumor vessels to CSCs to disrupt the CSCs-angiogenesis vicious circle. More precise treatment regimens targeting tumor vasculature and CSCs are expected to benefit future tumor treatment development.
Collapse
Affiliation(s)
- Shuai Lv
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yufei Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Changheng Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Chenyang Xue
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
21
|
Xiong Y, Yong Z, Xu C, Deng Q, Wang Q, Li S, Wang C, Zhang Z, Yang X, Li Z. Hyperbaric Oxygen Activates Enzyme-Driven Cascade Reactions for Cooperative Cancer Therapy and Cancer Stem Cells Elimination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301278. [PMID: 37114827 PMCID: PMC10375084 DOI: 10.1002/advs.202301278] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Tumor starvation induced by intratumor glucose depletion emerges as a promising strategy for anticancer therapy. However, its antitumor potencies are severely compromised by intrinsic tumor hypoxia, low delivery efficiencies, and undesired off-target toxicity. Herein, a multifunctional cascade bioreactor (HCG), based on the self-assembly of pH-responsive hydroxyethyl starch prodrugs, copper ions, and glucose oxidase (GOD), is engineered, empowered by hyperbaric oxygen (HBO) for efficient cooperative therapy against aggressive breast cancers. Once internalized by tumor cells, HCG undergoes disassembly and releases cargoes in response to acidic tumor microenvironment. Subsequently, HBO activates GOD-catalyzed oxidation of glucose to H2 O2 and gluconic acid by ameliorating tumor hypoxia, fueling copper-catalyzed •OH generation and pH-responsive drug release. Meanwhile, HBO degrades dense tumor extracellular matrix, promoting tumor accumulation and penetration of HCG. Moreover, along with the consumption of glucose and the redox reaction of copper ions, the antioxidant capacity of tumor cells is markedly reduced, collectively boosting oxidative stress. As a result, the combination of HCG and HBO can not only remarkably suppress the growth of orthotopic breast tumors but also restrain pulmonary metastases by inhibiting cancer stem cells. Considering the clinical accessibility of HBO, this combined strategy holds significant translational potentials for GOD-based therapies.
Collapse
Affiliation(s)
- Yuxuan Xiong
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Zhengtao Yong
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Chen Xu
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Qingyuan Deng
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Qiang Wang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Shiyou Li
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Chong Wang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Zhijie Zhang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicalHuazhong University of Science and TechnologyWuhan430074P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective MaterialsHuazhong University of Science and TechnologyWuhan430074P. R. China
- Hubei Bioinformatics and Molecular Imaging Key LaboratoryCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
- GBA Research Innovation Institute for NanotechnologyGuangdong510530P. R. China
| | - Zifu Li
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicalHuazhong University of Science and TechnologyWuhan430074P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective MaterialsHuazhong University of Science and TechnologyWuhan430074P. R. China
- Hubei Bioinformatics and Molecular Imaging Key LaboratoryCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
22
|
Zhao Q, Chen J, Zhang Z, Xiao C, Zeng H, Xu C, Yang X, Li Z. Modulating tumor mechanics with nanomedicine for cancer therapy. Biomater Sci 2023; 11:4471-4489. [PMID: 37221958 DOI: 10.1039/d3bm00363a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Over the past several decades, the importance of the tumor mechanical microenvironment (TMME) in cancer progression or cancer therapy has been recognized by researchers worldwide. The abnormal mechanical properties of tumor tissues include high mechanical stiffness, high solid stress, and high interstitial fluid pressure (IFP), which form physical barriers resulting in suboptimal treatment efficacy and resistance to different types of therapy by preventing drugs infiltrating the tumor parenchyma. Therefore, preventing or reversing the establishment of the abnormal TMME is critical for cancer therapy. Nanomedicines can enhance drug delivery by exploiting the enhanced permeability and retention (EPR) effect, so nanomedicines that target and modulate the TMME can further boost antitumor efficacy. Herein, we mainly discuss the nanomedicines that can regulate mechanical stiffness, solid stress, and IFP, with a focus on how nanomedicines change abnormal mechanical properties and facilitate drug delivery. We first introduce the formation, characterizing methods and biological effects of tumor mechanical properties. Conventional TMME modulation strategies will be briefly summarized. Then, we highlight representative nanomedicines capable of modulating the TMME for augmented cancer therapy. Finally, current challenges and future opportunities for regulating the TMME with nanomedicines will be provided.
Collapse
Affiliation(s)
- Qingfu Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Haowen Zeng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
23
|
Wang C, Wang H, Yang H, Xu C, Wang Q, Li Z, Zhang Z, Guan J, Yu X, Yang X, Yang X, Li Z. Targeting cancer-associated fibroblasts with hydroxyethyl starch nanomedicine boosts cancer therapy. NANO RESEARCH 2023; 16:7323-7336. [DOI: 10.1007/s12274-023-5394-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 03/28/2025]
|
24
|
Xiao C, Li J, Wang X, Li S, Xu C, Zhang Z, Hua A, Ding ZY, Zhang BX, Yang X, Li Z. Hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals for cancer therapy. J Control Release 2023; 356:288-305. [PMID: 36870542 DOI: 10.1016/j.jconrel.2023.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Cancer stem cells (CSCs) have been recognized as the culprit for tumor progression, treatment resistance, metastasis, and recurrence while redox homeostasis represents the Achilles' Heel of CSCs. However, few drugs or formulations that are capable of elevating oxidative stress have achieved clinical success for eliminating CSCs. Here, we report hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@HES NPs), which conspicuously suppress CSCs not only in vitro but also in numerous tumor models in vivo. Furthermore, CuET@HES NPs effectively inhibit CSCs in fresh tumor tissues surgically excised from hepatocellular carcinoma patients. Mechanistically, we uncover that hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals via copper‑oxygen coordination interactions, thereby promoting copper-diethyldithiocarbamate colloidal stability, cellular uptake, intracellular reactive oxygen species production, and CSCs apoptosis. As all components are widely used in clinics, CuET@HES NPs represent promising treatments for CSCs-rich solid malignancies and hold great clinical translational potentials. This study has critical implications for design of CSCs targeting nanomedicines.
Collapse
Affiliation(s)
- Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiayuan Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xing Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ao Hua
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ze-Yang Ding
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
25
|
Dadashi H, Eskandani M, Roshangar L, Sharifi-Azad M, Shahpouri M, Cho WC, Jahanban-Esfahlan R. Remotely-controlled hydrogel platforms for recurrent cancer therapy. J Drug Deliv Sci Technol 2023; 82:104354. [DOI: 10.1016/j.jddst.2023.104354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
26
|
Wang Q, Li S, Xu C, Hua A, Wang C, Xiong Y, Deng Q, Chen X, Yang T, Wan J, Ding ZY, Zhang BX, Yang X, Li Z. A novel lonidamine derivative targeting mitochondria to eliminate cancer stem cells by blocking glutamine metabolism. Pharmacol Res 2023; 190:106740. [PMID: 36958408 DOI: 10.1016/j.phrs.2023.106740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Cancer stem cells (CSCs) have been blamed as the main culprit of tumor initiation, progression, metastasis, chemoresistance, and recurrence. However, few anti-CSCs agents have achieved clinical success so far. Here we report a novel derivative of lonidamine (LND), namely HYL001, which selectively and potently inhibits CSCs by targeting mitochondria, with 380-fold and 340-fold lower IC50 values against breast cancer stem cells (BCSCs) and hepatocellular carcinoma stem cells (HCSCs), respectively, compared to LND. Mechanistically, we reveal that HYL001 downregulates glutaminase (GLS) expression to block glutamine metabolism, blunt tricarboxylic acid cycle, and amplify mitochondrial oxidative stress, leading to apoptotic cell death. Therefore, HYL001 displays significant antitumor activity in vivo, both as a single agent and combined with paclitaxel. Furthermore, HYL001 represses CSCs of fresh tumor tissues derived from liver cancer patients. This study provides critical implications for CSCs biology and development of potent anti-CSCs drugs.
Collapse
Affiliation(s)
- Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ao Hua
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qingyuan Deng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Tian Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ze-Yang Ding
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
27
|
Li X, Chen L, Huang M, Zeng S, Zheng J, Peng S, Wang Y, Cheng H, Li S. Innovative strategies for photodynamic therapy against hypoxic tumor. Asian J Pharm Sci 2023; 18:100775. [PMID: 36896447 PMCID: PMC9989661 DOI: 10.1016/j.ajps.2023.100775] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Photodynamic therapy (PDT) is applied as a robust therapeutic option for tumor, which exhibits some advantages of unique selectivity and irreversible damage to tumor cells. Among which, photosensitizer (PS), appropriate laser irradiation and oxygen (O2) are three essential components for PDT, but the hypoxic tumor microenvironment (TME) restricts the O2 supply in tumor tissues. Even worse, tumor metastasis and drug resistance frequently happen under hypoxic condition, which further deteriorate the antitumor effect of PDT. To enhance the PDT efficiency, critical attention has been received by relieving tumor hypoxia, and innovative strategies on this topic continue to emerge. Traditionally, the O2 supplement strategy is considered as a direct and effective strategy to relieve TME, whereas it is confronted with great challenges for continuous O2 supply. Recently, O2-independent PDT provides a brand new strategy to enhance the antitumor efficiency, which can avoid the influence of TME. In addition, PDT can synergize with other antitumor strategies, such as chemotherapy, immunotherapy, photothermal therapy (PTT) and starvation therapy, to remedy the inadequate PDT effect under hypoxia conditions. In this paper, we summarized the latest progresses in the development of innovative strategies to improve PDT efficacy against hypoxic tumor, which were classified into O2-dependent PDT, O2-independent PDT and synergistic therapy. Furthermore, the advantages and deficiencies of various strategies were also discussed to envisage the prospects and challenges in future study.
Collapse
Affiliation(s)
- Xiaotong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Chen
- Department of Anesthesiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Miaoting Huang
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Shaoting Zeng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Jiayi Zheng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuyi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Yuqing Wang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
28
|
Wang C, Wang Q, Wang H, Li Z, Chen J, Zhang Z, Zeng H, Yu X, Yang X, Yang X, Li Z. Hydroxyethyl starch-folic acid conjugates stabilized theranostic nanoparticles for cancer therapy. J Control Release 2023; 353:391-410. [PMID: 36473606 DOI: 10.1016/j.jconrel.2022.11.059] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Small molecular prodrug-based nanomedicines with high drug-loading efficiency and tumor selectivity have attracted great attention for cancer therapy against solid tumors, including triple negative breast cancers (TNBC). However, abnormal tumor mechanical microenvironment (TMME) severely restricts antitumor efficacy of prodrug nanomedicines by limiting drug delivery and fostering cancer stem cells (CSCs). Herein, we employed carbamate disulfide bridged doxorubicin dimeric prodrug as pharmaceutical ingredient, marketed IR780 iodide as photothermal agent, and biocompatible hydroxyethyl starch-folic acid conjugates as amphiphilic surfactant to prepare a theranostic nanomedicine (FDINs), which could actively target at TNBC 4T1 tumor tissues and achieve reduction-responsive drug release with high glutathione concentration in cancer cells and CSCs. Importantly, in addition to directly causing damage to cancer cells and sensitizing chemotherapy, FDINs-mediated photothermal effect regulates aberrant TMME via reducing cancer associated fibroblasts and depleting extracellular matrix proteins, thereby normalizing intratumor vessel structure and function to facilitate drug and oxygen delivery. Furthermore, FDINs potently eliminate CSCs by disrupting unique CSCs niche and consuming intracellular GSH in CSCs. As a result, FDINs significantly suppress tumor growth in both subcutaneous and orthotopic 4T1 tumors. This study provides novel insights on rational design of prodrug nanomedicines for superior therapeutic effect against stroma- and CSCs-rich solid malignancies.
Collapse
Affiliation(s)
- Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Huimin Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zheng Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haowen Zeng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ximiao Yu
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaoquan Yang
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
29
|
Prospects for hypoxia-based drug delivery platforms for the elimination of advanced metastatic tumors: From 3D modeling to clinical concepts. J Control Release 2023; 353:1002-1022. [PMID: 36516901 DOI: 10.1016/j.jconrel.2022.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Hypoxia is a unique characteristic of the solid tumor microenvironment. Hypoxia contributes to multi-drug resistance, metastasis and cancer relapse through numerous molecular pathways, but at the same time provides an opportunity for the development of novel drugs or modalities specifically targeting hypoxic tumor regions. Given the high significance of tumor hypoxia in therapeutic results, we here discuss a variety of hypoxia-adopted strategies, and their potential and utility in the treatment of deep-seated hypoxic tumor cells. We discuss the merits and demerits of these approaches, as well as their combination with other approaches such as photodynamic therapy. We also survey the currently available 3D hypoxia modeling systems, in particular organoid-based microfluidics. Finally, we discuss the potential and the current status of preclinical tumor hypoxia approaches in clinical trials for advanced cancer. We believe that multi-modal imaging and therapeutic hypoxia adopted drug delivery platforms could provide better efficacy and safety profiles, and more importantly personalized therapy. Determining the hypoxia status of tumors could offer a second chance for the clinical translation of hypoxia-based agents, such as hypoxia activated prodrugs (HAPs) from bench to bedside.
Collapse
|
30
|
Zhang Z, Wang Z, Xiong Y, Wang C, Deng Q, Yang T, Xu Q, Yong Z, Yang X, Li Z. A two-pronged strategy to alleviate tumor hypoxia and potentiate photodynamic therapy by mild hyperthermia. Biomater Sci 2022; 11:108-118. [PMID: 36468355 DOI: 10.1039/d2bm01691e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
The application of photodynamic therapy (PDT) is limited by tumor hypoxia. To overcome hypoxia, catalase-like nanozymes are often used to catalyze endogenous H2O2 enriched in tumor tissues to O2. Nonetheless, the catalase activity may not be optimal at body temperature and the O2 supply may not meet the rapid O2 consumption of PDT. Herein, we provide a two-pronged strategy to alleviate tumor hypoxia based on hollow mesoporous Prussian blue nanoparticles (HMPB NPs). HMPB NPs can efficiently load the photosensitizer chlorin e6 (Ce6) and exhibit photothermal capability and temperature-dependent catalase activity. Under 808 nm laser irradiation, the photothermal effect of HMPB NPs elevated the catalase activity of HMPB NPs for O2 production. Furthermore, mild hyperthermia reduced cancer associated fibroblasts (CAFs) and induced extracellular matrix (ECM) degradation. The reduction of CAFs and the ECM decreased the solid stress of tumor tissues and normalized the tumor vasculature, which was beneficial for the external supplementation of O2 to tumors. Thereafter, under 606 nm laser irradiation, Ce6-mediated PDT generated excessive reactive oxygen species (ROS) that induced tumor cell apoptosis and achieved a high tumor inhibition rate of 92.2% in 4T1 breast tumors. Our work indicated that the alleviation of tumor hypoxia from both internal and external pathways significantly enhanced Ce6-mediated PDT against breast cancers.
Collapse
Affiliation(s)
- Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zibing Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Qingyuan Deng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Tian Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Qingqing Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zhengtao Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
31
|
Mahmudi H, Adili-Aghdam MA, Shahpouri M, Jaymand M, Amoozgar Z, Jahanban-Esfahlan R. Tumor microenvironment penetrating chitosan nanoparticles for elimination of cancer relapse and minimal residual disease. Front Oncol 2022; 12:1054029. [PMID: 36531004 PMCID: PMC9751059 DOI: 10.3389/fonc.2022.1054029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 10/17/2023] Open
Abstract
Chitosan and its derivatives are among biomaterials with numerous medical applications, especially in cancer. Chitosan is amenable to forming innumerable shapes such as micelles, niosomes, hydrogels, nanoparticles, and scaffolds, among others. Chitosan derivatives can also bring unprecedented potential to cross numerous biological barriers. Combined with other biomaterials, hybrid and multitasking chitosan-based systems can be realized for many applications. These include controlled drug release, targeted drug delivery, post-surgery implants (immunovaccines), theranostics, biosensing of tumor-derived circulating materials, multimodal systems, and combination therapy platforms with the potential to eliminate bulk tumors as well as lingering tumor cells to treat minimal residual disease (MRD) and recurrent cancer. We first introduce different formats, derivatives, and properties of chitosan. Next, given the barriers to therapeutic efficacy in solid tumors, we review advanced formulations of chitosan modules as efficient drug delivery systems to overcome tumor heterogeneity, multi-drug resistance, MRD, and metastasis. Finally, we discuss chitosan NPs for clinical translation and treatment of recurrent cancer and their future perspective.
Collapse
Affiliation(s)
- Hossein Mahmudi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Adili-Aghdam
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shahpouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Chen J, Zhang Z, Li Y, Zeng H, Li Z, Wang C, Xu C, Deng Q, Wang Q, Yang X, Li Z. Precise fibrin decomposition and tumor mechanics modulation with hydroxyethyl starch-based smart nanomedicine for enhanced antitumor efficacy. J Mater Chem B 2022; 10:8193-8210. [PMID: 36172808 DOI: 10.1039/d2tb01812h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemotherapy is a conventional cancer treatment in clinical settings. Although numerous nano drug delivery systems have been developed, the chemotherapeutic effect is greatly limited by abnormal tumor mechanics in solid tumors. Tumor stiffening and accumulated solid stress compress blood vessels and inhibit drug delivery to tumor cells, becoming critical challenges for chemotherapy. By loading doxorubicin (DOX), tissue plasminogen activator (tPA), and fibrin targeting peptide CREKA (Cys-Arg-Glu-Lys-Ala) within pH responsive amphiphilic block polymers, pyridyldithio-hydroxyethyl starch-Schiff base-polylactic acid (PA-HES-pH-PLA), we report a smart nanomedicine, DOX@CREKA/tPA-HES-pH-PLA (DOX@CREKA/tPA-HP), which exhibits a potent antitumor efficacy. In triple-negative breast cancer (TNBC) 4T1 tumors, DOX@CREKA/tPA-HP precisely targeted and effectively decomposed fibrin matrix. By measuring Young's Modulus of tumor slices and quantifying tumor openings, we demonstrated that DOX@CREKA/tPA-HP remarkably reduced tumor stiffness and solid stress. Consequently, the alleviated tumor mechanics decompressed tumor blood vessels, promoted drug delivery, and led to amplified antitumor effect. Our work reveals that decomposing fibrin is a significant means for modulating tumor mechanics, and DOX@CREKA/tPA-HP is a promising smart nanomedicine for treating TNBC.
Collapse
Affiliation(s)
- Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Yining Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Haowen Zeng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zheng Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Qingyuan Deng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan, 430040, P. R. China
| |
Collapse
|
33
|
Li P, Wang D, Hu J, Yang X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev 2022; 189:114447. [PMID: 35863515 DOI: 10.1016/j.addr.2022.114447] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines overcome the pharmacokinetic limitations of traditional drug formulations and have promising prospect in cancer treatment. However, nanomedicine delivery in vivo is still facing challenges from the complex physiological environment. For the purpose of effective tumor therapy, they should be designed to guarantee the five features principle, including long blood circulation, efficient tumor accumulation, deep matrix penetration, enhanced cell internalization and accurate drug release. To ensure the excellent performance of the designed nanomedicine, it would be better to monitor the drug delivery process as well as the therapeutic effects by real-time imaging. In this review, we summarize strategies in developing nanomedicines for efficiently meeting the five features of drug delivery, and the role of several imaging modalities (fluorescent imaging (FL), magnetic resonance imaging (MRI), computed tomography (CT), photoacoustic imaging (PAI), positron emission tomography (PET), and electron microscopy) in tracing drug delivery and therapeutic effect in vivo based on five features principle.
Collapse
Affiliation(s)
- Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongdong Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
34
|
Han LN, Wang KQ, Ren ZN, Yang X, Duan X, Krishnan S, Jaisankar A, Park JH, Dashnyam K, Zhang W, Pedraz JL, Ramakrishna S, Kim HW, Li CF, Song LH, Ramalingam M. One-pot synthesis and enzyme-responsiveness of amphiphilic doxorubicin prodrug nanomicelles for cancer therapeutics. RSC Adv 2022; 12:27963-27969. [PMID: 36320274 PMCID: PMC9523663 DOI: 10.1039/d2ra04436f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/25/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, we report a one-pot synthesis and enzyme-responsiveness of polyethylene glycol (PEG) and glutamic acid (Glu)-based amphiphilic doxorubicin (DOX) prodrug nanomicelles for cancer therapeutics. The nanomicelles were accomplished by esterification and amidation reactions. The nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) data confirmed the structure of nanomicelles. The DOX-loaded nanomicelles showed a DLS-measured average size of 107 nm and excellent stability in phosphate-buffered saline (PBS) for 7 days. The drug loading and cumulative release rates were measured by ultraviolet-visible (UV-vis) spectrophotometry at 481 nm. The cumulative release rate could reach 100% in an enzyme-rich environment. Further, the therapeutic efficiency of nanomicelles to cancer cells was determined by cell viability and cellular uptake and distribution using HeLa cells. The cell viability study showed that the DOX-loaded nanomicelles could effectively inhibit the HeLa cell proliferation. The cellular uptake study confirmed that the nanomicelles could be effectively ingested by HeLa cells and distributed into cell nuclei. Based on the collective experimental data, this study demonstrated that the synthesized nanomicellar prodrug of DOX is a potential candidate for cancer therapeutics.
Collapse
Affiliation(s)
- Ling-Na Han
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
- Department of Physiology, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Kai-Qiang Wang
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Zi-Ning Ren
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Xue Yang
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Xiao Duan
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Sasirekha Krishnan
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology Vellore 632014 India
| | - Abinaya Jaisankar
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology Vellore 632014 India
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering, Dankook University Cheonan 31116 Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University Cheonan 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University Cheonan 31116 Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering, Dankook University Cheonan 31116 Republic of Korea
| | - Wujie Zhang
- BioMolecular Engineering Program, Physics and Chemistry Department, Milwaukee School of Engineering Milwaukee WI 53202 USA
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) 01006 Vitoria-Gasteiz Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III 28029 Madrid Spain
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University Singapore Singapore 119260 Singapore
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University Cheonan 31116 Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University Cheonan 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University Cheonan 31116 Republic of Korea
| | - Chang-Feng Li
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Li-Hua Song
- Department of Pharmacy, Changzhi Medical College Changzhi 046000 Shanxi People's Republic of China
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University Cheonan 31116 Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University Cheonan 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University Cheonan 31116 Republic of Korea
- School of Basic Medical Sciences, Chengdu University Chengdu 610106 People's Republic of China
| |
Collapse
|
35
|
Du J, Liu X, Hou Z, Liu X, Yao J, Cheng X, Wang X, Tang R. Acid-sensitive polymeric prodrug micelles for achieving enhanced chemo-photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Bie N, Yong T, Wei Z, Gan L, Yang X. Extracellular vesicles for improved tumor accumulation and penetration. Adv Drug Deliv Rev 2022; 188:114450. [PMID: 35841955 DOI: 10.1016/j.addr.2022.114450] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs), including microparticles and exosomes, have emerged as potential tools for tumor targeting delivery during the past years. Recently, mass of strategies are applied to assist EVs to accumulate and penetrate into deep tumor sites. In this review, EVs from different cells with unique innate characters and engineered approaches (e.g. chemical engineering, genetical engineering and biomimetic engineering) as drug delivery systems to enhance tumor accumulation and penetration are summarized. Meanwhile, efficient biological function modulation (e.g. extracellular matrix degradation, mechanical property regulation and transcytosis) is introduced to facilitate tumor accumulation and penetration of EVs. Finally, the prospects and challenges on further clinical applications of EVs are discussed.
Collapse
Affiliation(s)
- Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
37
|
Kutoka PT, Seidu TA, Baye V, Khamis AM, Omonova CTQ, Wang B. Current nano-strategies to target tumor microenvironment (TME) to improve anti-tumor efficiency. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Wang X, Ye N, Xu C, Xiao C, Zhang Z, Deng Q, Li S, Li J, Li Z, Yang X. Hyperbaric oxygen regulates tumor mechanics and augments Abraxane and gemcitabine antitumor effects against pancreatic ductal adenocarcinoma by inhibiting cancer-associated fibroblasts. NANO TODAY 2022; 44:101458. [DOI: 10.1016/j.nantod.2022.101458] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
|
39
|
Zhang Z, Deng Q, Xiao C, Li Z, Yang X. Rational Design of Nanotherapeutics Based on the Five Features Principle for Potent Elimination of Cancer Stem Cells. Acc Chem Res 2022; 55:526-536. [PMID: 35077133 DOI: 10.1021/acs.accounts.1c00635] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs), also known as tumor initiating cells or tumor repopulating cells, which comprise only a small fraction of tumor, have received tremendous attention during the past two decades, as they are considered as the ringleader for initiation and progression of tumors, therapy resistance, metastasis, and recurrence in the clinic. Hence, eradicating CSCs is critical for successful cancer treatment. To that end, various CSC-targeting therapeutic agents have been pursued. However, these CSC-specific drugs are ineffective toward bulk cancer cells. Furthermore, these anti-CSC drugs not only eradicate CSCs but also affect conventional stem cells in normal organs or tissues. By virtue of the enhanced permeability and retention (EPR) effect, nanomaterial drug delivery systems (NDDSs) passively accumulate in tumor tissues, thereby alleviating severe side effects toward normal viscera. NDDSs can be further functionalized with CSC-specific binding molecules to promote targeted drug delivery toward CSCs. Moreover, NDDSs have unique advantages in encapsulating CSC-specific drugs and cytotoxic agents, realizing synchronized killing of CSCs and bulk cancer cells both temporally and spatially. For these reasons, leveraging nanotherapeutic strategies to target CSCs has gained tremendous attention recently.Some ten years ago, we summarized five basic features of efficient nanotherapeutics (the five features principle), which consist of long circulation, tumor accumulation, deep penetration, cellular internalization, and drug release. Based on this design rationale, we constructed several NDDSs, including nanogels with adaptive hydrophobicity, CSC-derived microparticles with tailored softness, and tumor exosome sheathed porous silicon biomimetic nanoparticles, for targeted drug delivery to tumor. To our astonishment, these NDDSs that possess the five basic features achieve decent drug delivery efficiency toward not only bulk tumor cells but more importantly CSCs. Consequently, such nanotherapeutics as-designed based on the five features principle are potent in eradicating CSCs, even with only cytotoxic drugs, for instance, doxorubicin. Furthermore, commercialized nanomedicines, such as Doxil and Abraxane, can be endowed with these five basic features by hyperbaric oxygen therapy and therefore achieve outstanding drug delivery efficiency, potent CSC elimination, and efficient cancer therapy. These studies suggest that intractable CSCs can be tackled with a material-based approach, highlight the critical role of the five features principle in designing effective nanotherapeutics, and pinpoint the significance of drug delivery efficiency in eliminating CSCs and bulk cancer cells.
Collapse
Affiliation(s)
- Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Qingyuan Deng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan 430040, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, P. R. China
| |
Collapse
|