1
|
Gómez‐Mulas A, Cano‐Muñoz M, Salido Ruiz E, Pey AL. Thermodynamic versus kinetic basis for the high conformational stability of nanobodies for therapeutic applications. FEBS Lett 2025; 599:766-776. [PMID: 39593207 PMCID: PMC11891404 DOI: 10.1002/1873-3468.15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
Nanobodies (NB) are powerful tools for biotechnological and therapeutic applications. They strongly bind to their targets and are very stable. Early studies showed that NB unfolding is reversible and can be analyzed by equilibrium thermodynamics, whereas more recent studies focused on their kinetic stability in very harsh conditions that are far from storage or physiological temperatures (4-37 °C). Here, we show that the thermodynamic view of NB stability holds in a wide range of temperatures (18-100 °C). The thermodynamic stability of three different NBs did not correlate with binding affinity for their target. Alpha-Fold 2 analyses of these NBs showed structural differences in the binding site and hydrogen bond networks. We expect that our approach will be helpful to improve our capacity to enhance structure-function-stability relationships of NB.
Collapse
Affiliation(s)
| | | | - Eduardo Salido Ruiz
- Center for Rare Diseases (CIBERER)Hospital Universitario de Canarias, Universidad de la LagunaTenerifeSpain
| | - Angel Luis Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de BiotecnologíaUniversidad de GranadaSpain
| |
Collapse
|
2
|
Chen Y, Duong van Hoa F. Peptidisc-Assisted Hydrophobic Clustering Toward the Production of Multimeric and Multispecific Nanobody Proteins. Biochemistry 2025; 64:655-665. [PMID: 39810388 DOI: 10.1021/acs.biochem.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Multimerization is a powerful engineering strategy for enhancing protein structural stability, diversity and functional performance. Typical methods for clustering proteins include tandem linking, fusion to self-assembly domains and cross-linking. Here we present a novel approach that leverages the Peptidisc membrane mimetic to stabilize hydrophobic-driven protein clusters. We apply the method to nanobodies (Nbs), effective substitutes to traditional antibodies due to their production efficiency, cost-effectiveness and lower immunogenicity, and we demonstrate the formation of multimeric assemblies termed "polybodies" (Pbs). Starting with Nbs directed against the green fluorescent protein (GFP), we produce Pbs that display an increased affinity for GFP due to the avidity effect. The benefit of this increased avidity in affinity-based assays is demonstrated with Pbs directed against the human serum albumin. Using the same autoassembly principle, we produce bispecific and auto-fluorescent Pbs, validating our method as a versatile engineering strategy to generate multispecific and multifunctional protein entities. Peptidisc-assisted hydrophobic clustering thus expand the protein engineering toolbox to broaden the scope of protein multimerization in life sciences.
Collapse
Affiliation(s)
- Yilun Chen
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
3
|
Liu J, Luo S, Xu X, Zhang E, Liang H, Zhang JZH, Duan L. Evaluating the Synergistic Effects of Multi-Epitope Nanobodies on BA.2.86 Variant Immune Escape. J Phys Chem Lett 2025; 16:396-405. [PMID: 39780712 DOI: 10.1021/acs.jpclett.4c03028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply. Our research revealed that the Fu2-1-Fu2-2 system exhibited significant synergy, whereas the Sb#15-Sb#68 system demonstrated antagonism, in which entropy was the dominant contributor to antagonism. Conformational analysis further demonstrated that the presence of a monomeric nanobody influenced the flexibility of residues near other epitopes, thereby affecting the overall synergy of the systems. Moreover, we identified that changes in the hydrogen bond network and the charge of residues played a critical role in the binding between nanobodies and spike. We hope this study will provide novel insights into the development of multivalent nanobody combinations.
Collapse
Affiliation(s)
- Jinxin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Enhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Houde Liang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - John Z H Zhang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of AI and DL, NYU Shanghai, Shanghai 200124, China
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
4
|
Gómez-Mulas A, Naganathan AN, Pey AL. The lack of trade-off between conformational stability and binding affinity in a nanobody with therapeutic potential for a misfolding disease. Int J Biol Macromol 2025; 284:138046. [PMID: 39603302 DOI: 10.1016/j.ijbiomac.2024.138046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
To improve protein pharmaceuticals, we need to balance protein stability and binding affinity with in vivo efficiency. We have recently developed a nanobody (NB-AGT-2) against the alanine:glyoxylate aminotransferase with high stability (Tm ∼ 86 °C) that may be useful to treat a misfolding disease called primary hyperoxaluria type 1. In this work, we characterize the relationships between protein stability and binding affinity in NB-AGT-2 by generating single and double cavity-creating mutants in its hydrophobic core. These mutations decrease thermal stability by 10-20 °C, reflecting changes in thermodynamic stability of up to 8 kcal·mol-1, hardly affecting their binding affinity for its target. Statistical mechanical analysis support long-range propagation of stability effects due to mutations. Our results thus show that NB stability can be largely challenged without an effect on its binding.
Collapse
Affiliation(s)
- Atanasio Gómez-Mulas
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Spain.
| |
Collapse
|
5
|
Liu H, Su Q, Duan S, Huang X, Yang X, Liu A, Liu S, Xu C, Lu X. Development of a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of SARS-CoV-2 Spike Protein in a Fluorescence Enzyme Immunoassay. Anal Chem 2024; 96:20519-20525. [PMID: 39699064 DOI: 10.1021/acs.analchem.4c04799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The continuous spread and evolution of severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) necessitate the development of convenient and rapid detection methods. In this study, we developed a fluorescence enzyme immunoassay (FEIA) based on a nanobody (Nb)-alkaline phosphatase (ALP) fusion protein for detection of SARS-CoV-2 spike protein. The genetically modified anti-SARS-CoV-2 S-RBD Nb, Nb61, gene was fused with the ALP gene sequences via a flexible linker. Recombinant cloning was used to yield a recombinant prokaryotic expression plasmid, Nb61-ALP-His. The Nb61-ALP-His construct was transformed into E. coli BL21(DE3) and expressed in bacteria. Both Nb61 properties and ALP enzymatic activity were validated by colorimetric and fluorometric analysis. FEIA was optimized and established on the basis of the Nb61-ALP fusion protein. The detection limit of the FEIA was 3.18 ng/mL, with a linear range of 1.9-62.5 ng/mL. Comparison with a commercial kit indicated the reliability of the Nb61-ALP fusion-protein-based FEIA for monitoring the SARS-CoV-2 spike protein. This study highlights the potential of Nb-based enzyme immunoassays as a valuable tool for the rapid and accurate detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Heng Liu
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qianling Su
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Otolaryngology Head and Neck Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Siliang Duan
- Medical College, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, China
| | - Xianing Huang
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaomei Yang
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Aiqun Liu
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Xiaoling Lu
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
6
|
Jiang X, Qin Q, Zhu H, Qian J, Huang Q. Structure-guided design of a trivalent nanobody cluster targeting SARS-CoV-2 spike protein. Int J Biol Macromol 2024; 256:128191. [PMID: 38000614 DOI: 10.1016/j.ijbiomac.2023.128191] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Nanobodies are natural anti-SARS-CoV-2 drug candidates. Engineering multivalent nanobodies is an effective way to improve the functional binding affinity of natural nanobodies by simultaneously targeting multiple sites on viral proteins. However, multivalent nanobodies have usually been engineered by trial and error, and rational designs are still lacking. Here, we describe a structure-guided design of a self-assembled trivalent nanobody cluster targeting the SARS-CoV-2 spike protein. Using the nanobody Nb6 as a monovalent binder, we first selected a human-derived trimerization scaffold evaluated by molecular dynamics simulations, then selected an optimal linker according to the minimum distance between Nb6 and the trimerization scaffold, and finally successfully engineered a trivalent nanobody cluster called Tribody. Compared with the low-affinity monovalent counterpart (Nb6), Tribody showed much higher target binding affinity (KD < 1 pM) and thus had a 900-fold increase in antiviral neutralization against SARS-CoV-2 pseudovirus. We determined the cryo-EM structure of the Tribody-spike complex and confirmed that all three Nb6 binders of Tribody collectively bind to the three receptor-binding domains (RBDs) of the spike and lock them in a 3-RBD-down conformation, fully consistent with our structure-guided design. This study demonstrates that synthetic nanobody clusters with human-derived self-assembled scaffolds are potential protein drugs against SARS-CoV-2 coronaviruses.
Collapse
Affiliation(s)
- Xinyi Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qin Qin
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Haixia Zhu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiaqiang Qian
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China; Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 201203, China.
| |
Collapse
|
7
|
Li D, Sun C, Zhuang P, Mei X. Revolutionizing SARS-CoV-2 omicron variant detection: Towards faster and more reliable methods. Talanta 2024; 266:124937. [PMID: 37481886 DOI: 10.1016/j.talanta.2023.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The emergence of the highly contagious Omicron variant of SARS-CoV-2 has inflicted significant damage during the ongoing COVID-19 pandemic. This new variant's significant sequence changes and mutations in both proteins and RNA have rendered many existing rapid detection methods ineffective in identifying it accurately. As the world races to control the spread of the virus, researchers are urgently exploring new diagnostic strategies to specifically detect Omicron variants with high accuracy and sensitivity. In response to this challenge, we have compiled a comprehensive overview of the latest reported rapid detection techniques. These techniques include strategies for the simultaneous detection of multiple SARS-CoV-2 variants and methods for selectively distinguishing Omicron variants. By categorizing these diagnostic techniques based on their targets, which encompass protein antigens and nucleic acids, we aim to offer a comprehensive understanding of the utilization of various recognition elements in identifying these targets. We also highlight the advantages and limitations of each approach. Our work is crucial in providing a more nuanced understanding of the challenges and opportunities in detecting Omicron variants and emerging variants.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cai Sun
- AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang, China
| | - Pengfei Zhuang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xifan Mei
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
8
|
Lázaro-Gorines R, Pérez P, Heras-Murillo I, Adán-Barrientos I, Albericio G, Astorgano D, Flores S, Luczkowiak J, Labiod N, Harwood SL, Segura-Tudela A, Rubio-Pérez L, Nugraha Y, Shang X, Li Y, Alfonso C, Adipietro KA, Abeyawardhane DL, Navarro R, Compte M, Yu W, MacKerell AD, Sanz L, Weber DJ, Blanco FJ, Esteban M, Pozharski E, Godoy-Ruiz R, Muñoz IG, Delgado R, Sancho D, García-Arriaza J, Álvarez-Vallina L. Dendritic Cell-Mediated Cross-Priming by a Bispecific Neutralizing Antibody Boosts Cytotoxic T Cell Responses and Protects Mice against SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304818. [PMID: 37863812 PMCID: PMC10700188 DOI: 10.1002/advs.202304818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Administration of neutralizing antibodies (nAbs) has proved to be effective by providing immediate protection against SARS-CoV-2. However, dual strategies combining virus neutralization and immune response stimulation to enhance specific cytotoxic T cell responses, such as dendritic cell (DC) cross-priming, represent a promising field but have not yet been explored. Here, a broadly nAb, TNT , are first generated by grafting an anti-RBD biparatopic tandem nanobody onto a trimerbody scaffold. Cryo-EM data show that the TNT structure allows simultaneous binding to all six RBD epitopes, demonstrating a high-avidity neutralizing interaction. Then, by C-terminal fusion of an anti-DNGR-1 scFv to TNT , the bispecific trimerbody TNT DNGR-1 is generated to target neutralized virions to type 1 conventional DCs (cDC1s) and promote T cell cross-priming. Therapeutic administration of TNT DNGR-1, but not TNT , protects K18-hACE2 mice from a lethal SARS-CoV-2 infection, boosting virus-specific humoral responses and CD8+ T cell responses. These results further strengthen the central role of interactions with immune cells in the virus-neutralizing antibody activity and demonstrate the therapeutic potential of the Fc-free strategy that can be used advantageously to provide both immediate and long-term protection against SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, 28029, Spain
| | - Ignacio Heras-Murillo
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Irene Adán-Barrientos
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Sara Flores
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Joanna Luczkowiak
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Nuria Labiod
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Seandean L Harwood
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, 80000, Denmark
| | - Alejandro Segura-Tudela
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Yudhi Nugraha
- Protein Crystallography Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Xiaoran Shang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Kaylin A Adipietro
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dinendra L Abeyawardhane
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, 28002, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, 28002, Spain
| | - Wenbo Yu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - Alexander D MacKerell
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
- Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, 28220, Spain
| | - David J Weber
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Francisco J Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Edwin Pozharski
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Raquel Godoy-Ruiz
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Inés G Muñoz
- Protein Crystallography Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Rafael Delgado
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Microbiology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - David Sancho
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, 28029, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
9
|
Yang J, Lin S, Chen Z, Yang F, Guo L, Wang L, Duan Y, Zhang X, Dai Y, Yin K, Yu C, Yuan X, Sun H, He B, Cao Y, Ye H, Dong H, Liu X, Chen B, Li J, Zhao Q, Lu G. Development of a bispecific nanobody conjugate broadly neutralizes diverse SARS-CoV-2 variants and structural basis for its broad neutralization. PLoS Pathog 2023; 19:e1011804. [PMID: 38033141 PMCID: PMC10688893 DOI: 10.1371/journal.ppat.1011804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and profound immune-escape capacity makes it an urgent need to develop broad-spectrum therapeutics. Nanobodies have recently attracted extensive attentions due to their excellent biochemical and binding properties. Here, we report two high-affinity nanobodies (Nb-015 and Nb-021) that target non-overlapping epitopes in SARS-CoV-2 S-RBD. Both nanobodies could efficiently neutralize diverse viruses of SARS-CoV-2. The neutralizing mechanisms for the two nanobodies are further delineated by high-resolution nanobody/S-RBD complex structures. In addition, an Fc-based tetravalent nanobody format is constructed by combining Nb-015 and Nb-021. The resultant nanobody conjugate, designated as Nb-X2-Fc, exhibits significantly enhanced breadth and potency against all-tested SARS-CoV-2 variants, including Omicron sub-lineages. These data demonstrate that Nb-X2-Fc could serve as an effective drug candidate for the treatment of SARS-CoV-2 infection, deserving further in-vivo evaluations in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fanli Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Wang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Duan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xindan Zhang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yushan Dai
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keqing Yin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongzhang Yu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yuan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Honglu Sun
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Ye
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianbo Liu
- CHENGDU NB BIOLAB CO., LTD, Chengdu, Sichuan, China
| | - Bo Chen
- CHENGDU NB BIOLAB CO., LTD, Chengdu, Sichuan, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Pondé RADA. Physicochemical effects of emerging exchanges on the spike protein's RBM of the SARS-CoV-2 Omicron subvariants BA.1-BA.5 and its influence on the biological properties and attributes developed by these subvariants. Virology 2023; 587:109850. [PMID: 37562286 DOI: 10.1016/j.virol.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Emerging in South Africa, SARS-CoV-2 Omicron variant was marked by the expression of an exaggerated number of mutations throughout its genome and by the emergence of subvariants, whose attributes developed by them have been associated with amino acid exchanges that occur mainly in the RBM region of the spike protein. The RBM comprises a region within the RBD and is directly involved in the SARS-CoV-2 spike protein interaction with the host cell ACE2 receptor, during the infection mechanism and viral transmission. Defined as the region from aa 437 to aa 508, there are several residues in certain positions that interact directly with the human ACE-2 receptor during these processes. The occurrence of amino acid exchanges in these positions causes physicochemical alterations in the SARS-CoV-2 spike protein, which confer additional advantages and attributes to the agent. In addition, these exchanges serve as a basis for the characterization of new variants and subvariants of SARS-CoV-2. In this review, the amino acid exchanges that have occurred in the RBM of the subvariants BA.1 to BA.5 of SARS-CoV-2 that emerged from the Omicron are described. The physicochemical effects caused by them on spike protein are also described, as well as their influence on the biological properties and attributes developed by the subvariants BA.1, BA.2, BA.3, BA.4 and BA.5.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde -SES/Superintendência de Vigilância em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil; Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
11
|
Obeng EM, Steer DL, Fulcher AJ, Wagstaff KM. Sortase A transpeptidation produces seamless, unbranched biotinylated nanobodies for multivalent and multifunctional applications. NANOSCALE ADVANCES 2023; 5:2251-2260. [PMID: 37056610 PMCID: PMC10089078 DOI: 10.1039/d3na00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Exploitation of the biotin-streptavidin interaction for advanced protein engineering is used in many bio-nanotechnology applications. As such, researchers have used diverse techniques involving chemical and enzyme reactions to conjugate biotin to biomolecules of interest for subsequent docking onto streptavidin-associated molecules. Unfortunately, the biotin-streptavidin interaction is susceptible to steric hindrance and conformational malformation, leading to random orientations that ultimately impair the function of the displayed biomolecule. To minimize steric conflicts, we employ sortase A transpeptidation to produce quantitative, seamless, and unbranched nanobody-biotin conjugates for efficient display on streptavidin-associated nanoparticles. We further characterize the protein-nanoparticle complex and demonstrate its usefulness in optical microscopy and multivalent severe acute respiratory syndrome coronavirus (SARS-CoV-2) antigen interaction. The approach reported here provides a template for making novel multivalent and multifunctional protein complexes for avidity-inspired technologies.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - David L Steer
- Monash Proteomics and Metabolomics Facility, Monash University Clayton VIC 3800 Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University Clayton VIC 3800 Australia
| | - Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
12
|
Tang H, Gao Y, Han J. Application Progress of the Single Domain Antibody in Medicine. Int J Mol Sci 2023; 24:ijms24044176. [PMID: 36835588 PMCID: PMC9967291 DOI: 10.3390/ijms24044176] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The camelid-derived single chain antibody (sdAb), also termed VHH or nanobody, is a unique, functional heavy (H)-chain antibody (HCAb). In contrast to conventional antibodies, sdAb is a unique antibody fragment consisting of a heavy-chain variable domain. It lacks light chains and a first constant domain (CH1). With a small molecular weight of only 12~15 kDa, sdAb has a similar antigen-binding affinity to conventional Abs but a higher solubility, which exerts unique advantages for the recognition and binding of functional, versatile, target-specific antigen fragments. In recent decades, with their unique structural and functional features, nanobodies have been considered promising agents and alternatives to traditional monoclonal antibodies. As a new generation of nano-biological tools, natural and synthetic nanobodies have been used in many fields of biomedicine, including biomolecular materials, biological research, medical diagnosis and immune therapies. This article briefly overviews the biomolecular structure, biochemical properties, immune acquisition and phage library construction of nanobodies and comprehensively reviews their applications in medical research. It is expected that this review will provide a reference for the further exploration and unveiling of nanobody properties and function, as well as a bright future for the development of drugs and therapeutic methods based on nanobodies.
Collapse
Affiliation(s)
- Huaping Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence:
| | - Jiangyuan Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
Chi H, Wang L, Liu C, Cheng X, Zheng H, Lv L, Tan Y, Zhang N, Zhao S, Wu M, Luo D, Qiu H, Feng R, Fu W, Zhang J, Xiong X, Zhang Y, Zu S, Chen Q, Ye Q, Yan X, Hu Y, Zhang Z, Yan R, Yin J, Lei P, Wang W, Lang G, Shao J, Deng Y, Wang X, Qin C. An Engineered IgG-VHH Bispecific Antibody against SARS-CoV-2 and Its Variants. SMALL METHODS 2022; 6:e2200932. [PMID: 36300882 PMCID: PMC9874498 DOI: 10.1002/smtd.202200932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies are shown to be effective therapeutics for providing coronavirus disease 2019 (COVID-19) protection. However, recurrent variants arise and facilitate significant escape from current antibody therapeutics. Bispecific antibodies (bsAbs) represent a unique platform to increase antibody breadth and to reduce neutralization escape. Herein, a novel immunoglobulin G-variable domains of heavy-chain-only antibody (IgG-VHH) format bsAb derived from a potent human antibody R15-F7 and a humanized nanobody P14-F8-35 are rationally engineered. The resulting bsAb SYZJ001 efficiently neutralizes wild-type SARS-CoV-2 as well as the alpha, beta, gamma, and delta variants, with superior efficacy to its parental antibodies. Cryo-electron microscopy structural analysis reveals that R15-F7 and P14-F8-35 bind to nonoverlapping epitopes within the RBD and sterically hindered ACE2 receptor binding. Most importantly, SYZJ001 shows potent prophylactic and therapeutic efficacy against SARS-CoV-2 in three established mouse models. Collectively, the current results demonstrate that the novel bsAb format is feasible and effective, suggesting great potential as an inspiring antiviral strategy.
Collapse
Affiliation(s)
- Hang Chi
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Lei Wang
- CAS Key Laboratory of Infection and ImmunityNational Laboratory of MacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chanjuan Liu
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Xiaohe Cheng
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Hailiang Zheng
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Lilang Lv
- ZJ Bio‐Tech InstituteShanghai ZJ Bio‐Tech Co., Ltd.Shanghai201114China
| | - Yongcong Tan
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Nana Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Suoqun Zhao
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Mei Wu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Dan Luo
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Hongying Qiu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Rui Feng
- CAS Key Laboratory of Infection and ImmunityNational Laboratory of MacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Wangjun Fu
- CAS Key Laboratory of Infection and ImmunityNational Laboratory of MacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jie Zhang
- ZJ Bio‐Tech InstituteShanghai ZJ Bio‐Tech Co., Ltd.Shanghai201114China
| | - Xiaochuan Xiong
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Yifei Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Shulong Zu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Qi Chen
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Qing Ye
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Xintian Yan
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Yuhao Hu
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Zhen Zhang
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Run Yan
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Jiangfeng Yin
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Pan Lei
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Wanjing Wang
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Guojun Lang
- Department of Innovation Research and DevelopmentSanyou Biopharmaceuticals (Shanghai) Co., LtdShanghai201114China
| | - Junbin Shao
- ZJ Bio‐Tech InstituteShanghai ZJ Bio‐Tech Co., Ltd.Shanghai201114China
| | - Yongqiang Deng
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and ImmunityNational Laboratory of MacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAMMSBeijing100071China
| |
Collapse
|
14
|
Yang Y, Zhao T, Chen Q, Li Y, Xiao Z, Xiang Y, Wang B, Qiu Y, Tu S, Jiang Y, Nan Y, Huang Q, Ai K. Nanomedicine Strategies for Heating "Cold" Ovarian Cancer (OC): Next Evolution in Immunotherapy of OC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202797. [PMID: 35869032 PMCID: PMC9534959 DOI: 10.1002/advs.202202797] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Indexed: 05/08/2023]
Abstract
Immunotherapy has revolutionized cancer treatment, dramatically improving survival rates of melanoma and lung cancer patients. Nevertheless, immunotherapy is almost ineffective against ovarian cancer (OC) due to its cold tumor immune microenvironment (TIM). Many traditional medications aimed at remodeling TIM are often associated with severe systemic toxicity, require frequent dosing, and show only modest clinical efficacy. In recent years, emerging nanomedicines have demonstrated extraordinary immunotherapeutic effects for OC by reversing the TIM because the physical and biochemical features of nanomedicines can all be harnessed to obtain optimal and expected tissue distribution and cellular uptake. However, nanomedicines are far from being widely explored in the field of OC immunotherapy due to the lack of appreciation for the professional barriers of nanomedicine and pathology, limiting the horizons of biomedical researchers and materials scientists. Herein, a typical cold tumor-OC is adopted as a paradigm to introduce the classification of TIM, the TIM characteristics of OC, and the advantages of nanomedicines for immunotherapy. Subsequently, current nanomedicines are comprehensively summarized through five general strategies to substantially enhance the efficacy of immunotherapy by heating the cold OC. Finally, the challenges and perspectives of this expanding field for improved development of clinical applications are also discussed.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yumei Li
- Department of Assisted ReproductionXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Boyu Wang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yige Qiu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Shiqi Tu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yayun Nan
- Geriatric Medical CenterPeople's Hospital of Ningxia Hui Autonomous RegionYinchuanNingxia750002P. R. China
| | - Qiong Huang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| |
Collapse
|
15
|
Lou H, Cao X. Antibody variable region engineering for improving cancer immunotherapy. Cancer Commun (Lond) 2022; 42:804-827. [PMID: 35822503 PMCID: PMC9456695 DOI: 10.1002/cac2.12330] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 04/09/2023] Open
Abstract
The efficacy and specificity of conventional monoclonal antibody (mAb) drugs in the clinic require further improvement. Currently, the development and application of novel antibody formats for improving cancer immunotherapy have attracted much attention. Variable region-retaining antibody fragments, such as antigen-binding fragment (Fab), single-chain variable fragment (scFv), bispecific antibody, and bi/trispecific cell engagers, are engineered with humanization, multivalent antibody construction, affinity optimization and antibody masking for targeting tumor cells and killer cells to improve antibody-based therapy potency, efficacy and specificity. In this review, we summarize the application of antibody variable region engineering and discuss the future direction of antibody engineering for improving cancer therapies.
Collapse
Affiliation(s)
- Hantao Lou
- Ludwig Institute of Cancer ResearchUniversity of OxfordOxfordOX3 7DRUK
- Chinese Academy for Medical Sciences Oxford InstituteNuffield Department of MedicineUniversity of OxfordOxfordOX3 7FZUK
| | - Xuetao Cao
- Chinese Academy for Medical Sciences Oxford InstituteNuffield Department of MedicineUniversity of OxfordOxfordOX3 7FZUK
- Department of ImmunologyCentre for Immunotherapy, Institute of Basic Medical SciencesChinese Academy of Medical SciencesBeijing100005P. R. China
| |
Collapse
|
16
|
Mahmud N, Anik MI, Hossain MK, Khan MI, Uddin S, Ashrafuzzaman M, Rahaman MM. Advances in Nanomaterial-Based Platforms to Combat COVID-19: Diagnostics, Preventions, Therapeutics, and Vaccine Developments. ACS APPLIED BIO MATERIALS 2022; 5:2431-2460. [PMID: 35583460 PMCID: PMC9128020 DOI: 10.1021/acsabm.2c00123] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2, a ribonucleic acid (RNA) virus that emerged less than two years ago but has caused nearly 6.1 million deaths to date. Recently developed variants of the SARS-CoV-2 virus have been shown to be more potent and expanded at a faster rate. Until now, there is no specific and effective treatment for SARS-CoV-2 in terms of reliable and sustainable recovery. Precaution, prevention, and vaccinations are the only ways to keep the pandemic situation under control. Medical and scientific professionals are now focusing on the repurposing of previous technology and trying to develop more fruitful methodologies to detect the presence of viruses, treat the patients, precautionary items, and vaccine developments. Nanomedicine or nanobased platforms can play a crucial role in these fronts. Researchers are working on many effective approaches by nanosized particles to combat SARS-CoV-2. The role of a nanobased platform to combat SARS-CoV-2 is extremely diverse (i.e., mark to personal protective suit, rapid diagnostic tool to targeted treatment, and vaccine developments). Although there are many theoretical possibilities of a nanobased platform to combat SARS-CoV-2, until now there is an inadequate number of research targeting SARS-CoV-2 to explore such scenarios. This unique mini-review aims to compile and elaborate on the recent advances of nanobased approaches from prevention, diagnostics, treatment to vaccine developments against SARS-CoV-2, and associated challenges.
Collapse
Affiliation(s)
- Niaz Mahmud
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Muzahidul I. Anik
- Department of Chemical Engineering,
University of Rhode Island, Kingston, Rhode Island 02881,
United States
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering
Science, Kyushu University, Fukuoka 816-8580,
Japan
- Atomic Energy Research Establishment,
Bangladesh Atomic Energy Commission, Dhaka 1349,
Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of
Engineering, Kyushu University, Fukuoka 819-0395,
Japan
- Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge
Massachusetts 02139, United States
| | - Md. Ashrafuzzaman
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Md Mushfiqur Rahaman
- Department of Emergency Medicine, NYU
Langone Health, New York, New York 10016, United
States
| |
Collapse
|
17
|
Van Fossen EM, Bednar RM, Jana S, Franklin R, Beckman J, Karplus PA, Mehl RA. Nanobody assemblies with fully flexible topology enabled by genetically encoded tetrazine amino acids. SCIENCE ADVANCES 2022; 8:eabm6909. [PMID: 35522749 PMCID: PMC9075797 DOI: 10.1126/sciadv.abm6909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Assembling nanobodies (Nbs) into polyvalent multimers is a powerful strategy for improving the effectiveness of Nb-based therapeutics and biotechnological tools. However, generally effective approaches to Nb assembly are currently restricted to the amino or carboxyl termini, greatly limiting the diversity of Nb multimer topologies that can be produced. Here, we show that reactive tetrazine groups-site-specifically inserted by genetic code expansion at Nb surface sites-are compatible with Nb folding and function, enabling Nb assembly at any desired point. Using two anti-SARS-CoV-2 Nbs with viral neutralization ability, we created Nb homo- and heterodimers with improved properties compared with conventionally linked Nb homodimers, which, in the case of our tetrazine-conjugated trimer, translated into enhanced viral neutralization. Thus, this tetrazine-based approach is a generally applicable strategy that greatly increases the accessible range of Nb assembly topologies, and thereby adds the optimization of topology as an effective avenue to generate Nb assemblies with improved efficacy.
Collapse
Affiliation(s)
- Elise M. Van Fossen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Riley M. Bednar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Rachel Franklin
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Joseph Beckman
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- e-MSion, Inc., 2121 NE Jack London Drive, Corvallis, OR 97330, USA
| | - P. Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
18
|
Dzuvor CKO, Tettey EL, Danquah MK. Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1785. [PMID: 35238490 PMCID: PMC9111085 DOI: 10.1002/wnan.1785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
The emergence of SARS-COV-2, the causative agent of new coronavirus disease (COVID-19) has become a pandemic threat. Early and precise detection of the virus is vital for effective diagnosis and treatment. Various testing kits and assays, including nucleic acid detection methods, antigen tests, serological tests, and enzyme-linked immunosorbent assay (ELISA), have been implemented or are being explored to detect the virus and/or characterize cellular and antibody responses to the infection. However, these approaches have inherent drawbacks such as nonspecificity, high cost, are characterized by long turnaround times for test results, and can be labor-intensive. Also, the circulating SARS-COV-2 variant of concerns, reduced antibody sensitivity and/or neutralization, and possible antibody-dependent enhancement (ADE) have warranted the search for alternative potent therapeutics. Aptamers, which are single-stranded oligonucleotides, generated artificially by SELEX (Evolution of Ligands by Exponential Enrichment) may offer the capacity to generate high-affinity neutralizers and/or bioprobes for monitoring relevant SARS-COV-2 and COVID-19 biomarkers. This article reviews and discusses the prospects of implementing aptamers for rapid point-of-care detection and treatment of SARS-COV-2. We highlight other SARS-COV-2 targets (N protein, spike protein stem-helix), SELEX augmented with competition assays and in silico technologies for rapid discovery and isolation of theranostic aptamers against COVID-19 and future pandemics. It further provides an overview on site-specific bioconjugation approaches, customizable molecular scaffolding strategies, and nanotechnology platforms to engineer these aptamers into ultrapotent blockers, multivalent therapeutics, and vaccines to boost both humoral and cellular immunity against the virus. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Christian K. O. Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoriaAustralia
| | | | - Michael K. Danquah
- Department of Chemical EngineeringUniversity of TennesseeChattanoogaTennesseeUSA
| |
Collapse
|
19
|
Verkhivker G. Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering. Int J Mol Sci 2022; 23:ijms23062928. [PMID: 35328351 PMCID: PMC8951411 DOI: 10.3390/ijms23062928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural and computational studies have also been instrumental in quantifying the structure, dynamics, and energetics of the SARS-CoV-2 spike protein binding with nanobodies. In this review, a comprehensive analysis of the current structural, biophysical, and computational biology investigations of SARS-CoV-2 S proteins and their complexes with distinct classes of nanobodies targeting different binding sites is presented. The analysis of computational studies is supplemented by an in-depth examination of mutational scanning simulations and identification of binding energy hotspots for distinct nanobody classes. The review is focused on the analysis of mechanisms underlying synergistic binding of multivalent nanobodies that can be superior to single nanobodies and conventional nanobody cocktails in combating escape mutations by effectively leveraging binding avidity and allosteric cooperativity. We discuss how structural insights and protein engineering approaches together with computational biology tools can aid in the rational design of synergistic combinations that exhibit superior binding and neutralization characteristics owing to avidity-mediated mechanisms.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; ; Tel.: +1-714-516-4586
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
20
|
Allosteric Determinants of the SARS-CoV-2 Spike Protein Binding with Nanobodies: Examining Mechanisms of Mutational Escape and Sensitivity of the Omicron Variant. Int J Mol Sci 2022; 23:ijms23042172. [PMID: 35216287 PMCID: PMC8877688 DOI: 10.3390/ijms23042172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric determinants of the SARS-CoV-2 spike protein binding with nanobodies, we also examined nanobody-induced modulation of escaping mutations and the effect of the Omicron variant on nanobody binding. The mutational scanning analysis supported the notion that E484A mutation can have a significant detrimental effect on nanobody binding and result in Omicron-induced escape from nanobody neutralization. Our findings showed that SARS-CoV-2 spike protein might exploit the plasticity of specific allosteric hotspots to generate escape mutants that alter response to binding without compromising activity. The network analysis supported these findings showing that VHH E/VHH V nanobody binding can induce long-range couplings between the cryptic binding epitope and ACE2-binding site through a broader ensemble of communication paths that is less dependent on specific mediating centers and therefore may be less sensitive to mutational perturbations of functional residues. The results suggest that binding affinity and long-range communications of the SARS-CoV-2 complexes with nanobodies can be determined by structurally stable regulatory centers and conformationally adaptable hotspots that are allosterically coupled and collectively control resilience to mutational escape.
Collapse
|