1
|
Wu P, Jin L, Jiang W, Zhou Y, Lin L, Lin H, Chen H. Smart bandages for wound monitoring and treatment. Biosens Bioelectron 2025; 283:117522. [PMID: 40334449 DOI: 10.1016/j.bios.2025.117522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/18/2025] [Accepted: 04/27/2025] [Indexed: 05/09/2025]
Abstract
Wound management plays a crucial role in nursing care as it facilitates effective wound healing and prevents infections. To overcome limitations associated with traditional treatment methods, various smart bandages have been developed. The monitoring of wound parameters and the implementation of targeted treatments are crucial aspects of smart bandage development. Smart bandages, as cutting-edge flexible wearable medical devices, integrate various sensing technologies, providing new insights for dynamic monitoring and personalized treatment of chronic wounds. This paper systematically summarizes the applications and developments of smart bandages in monitoring wound environmental parameters, focusing on two major detection methods: colorimetric sensing and electrochemical sensing. Colorimetric sensors typically rely on color changes induced by physiological parameters, which can not only be identified by the naked eye but also combined with image recognition algorithms for physiological parameter detection. Electrochemical sensors, on the other hand, modify electrodes with specific enzymes and detect physiological parameters through the electrical signals generated by redox reactions. In addition to sensing, this paper further explores the integrated application of three smart therapeutic strategies in smart bandages, including promoting cell proliferation and angiogenesis through electrical stimulation, achieving controlled drug release via responsive materials, and utilizing photothermal materials for efficient antibacterial treatment of wounds. Finally, the paper delves into the challenges these bandages face in system integration and clinical translation, and discusses their potential in personalized wound care.
Collapse
Affiliation(s)
- Ping Wu
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Long Jin
- Department of Pathology, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Wanying Jiang
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Yingzhang Zhou
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Lisheng Lin
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Hongxin Lin
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Hu Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Tran NA, Moonshi SS, Lam AK, Lu CT, Vu CQ, Arai S, Ta HT. Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges. Cancer Metastasis Rev 2025; 44:51. [PMID: 40347350 PMCID: PMC12065774 DOI: 10.1007/s10555-025-10267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Gaining significant attention in recent years, starvation therapy based on the blocking nutrients supply to cancer cells via blood occlusion and metabolic interventions is a promisingly novel approach in cancer treatment. However, there are many crucial obstacles to overcome to achieve effective treatment, for example, poor-targeting delivery, cellular hypoxia, adverse effects, and ineffective monotherapy. The starvation-based multitherapy based on multifunctional nanomaterials can narrow these gaps and pave a promising way for future clinical translation. This review focuses on the progression in nanomaterials-mediated muti-therapeutic modalities based on starvation therapy in recent years and therapeutic limitations that prevent their clinical applications. Moreover, unlike previous reviews that focused on a single aspect of the field, this comprehensive review presents a broader perspective on starvation therapy by summarising advancements across its various therapeutic strategies.
Collapse
Affiliation(s)
- Nam Anh Tran
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cu Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cong Quang Vu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
3
|
Bahlol HS, Zhang K, Deng J, Zhang W, Ma Z, Zhang J, Han H. Biomimetic Copper-Based Nanoplatform for Enhanced Tumor Targeting and Effective Melanoma Therapy. ACS APPLIED BIO MATERIALS 2025; 8:3290-3299. [PMID: 40186581 DOI: 10.1021/acsabm.5c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Designing advanced biomimetic nanoplatforms that combine photothermal therapy (PTT) and immune activation represents a modern approach to addressing the challenges of cancer therapy. This study presents a nanobiomimetic hollow copper-sulfide (HCuS) platform for precise homotypic tumor targeting and melanoma treatment. The HCuS@OVA@CM (COC) nanoplatform-encapsulated ovalbumin (OVA) antigen protein within HCuS nanoparticles and was coated with melanoma cell membranes (B16F10). Importantly, this design facilitates specific tumor accumulation and achieves 16.0% photothermal conversion efficiency under 1064 nm NIR-II irradiation, which is a key factor for therapeutic success. In vitro studies have demonstrated that this nanoplatform induces immunogenic cell death (ICD), enhances antigen presentation, and stimulates dendritic cell (DCs) maturation. In vivo experiments confirmed that COC-mediated NIR-II photothermal treatment significantly suppressed tumor growth without notable body weight loss. This biomimetic nanoplatform approach offers a targeted, enhanced, and effective immune response for tumor photothermal immunotherapy, making it a promising candidate for advanced melanoma treatment and anticancer therapy.
Collapse
Affiliation(s)
- Hagar Shendy Bahlol
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Kai Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiamin Deng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiyun Zhang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaoyu Ma
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jin Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Xu R, Wang S, Guo Q, Zhong R, Chen X, Xia X. Anti-Tumor Strategies of Photothermal Therapy Combined with Other Therapies Using Nanoplatforms. Pharmaceutics 2025; 17:306. [PMID: 40142970 PMCID: PMC11944535 DOI: 10.3390/pharmaceutics17030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 03/28/2025] Open
Abstract
Conventional cancer treatments often have complications and serious side effects, with limited improvements in 5-year survival and quality of life. Photothermal therapy (PTT) employs materials that convert light to heat when exposed to near-infrared light to raise the temperature of the tumor site to directly ablate tumor cells, induce immunogenic cell death, and improve the tumor microenvironment. This therapy has several benefits, including minimal invasiveness, high efficacy, reduced side effects, and robust targeting capabilities. Beyond just photothermal conversion materials, nanoplatforms significantly contribute to PTT by supplying effective photothermal conversion materials and bolstering tumor targeting to amplify anti-tumor effects. However, the anti-tumor effects of PTT alone are ultimately limited and often need to be combined with other therapies. This narrative review describes the recent progress of PTT combined with chemotherapy, radiotherapy, photodynamic therapy, immunotherapy, gene therapy, gas therapy, chemodynamic therapy, photoacoustic imaging, starvation therapy, and multimodal therapy. Studies have shown that combining PTT with other treatments can improve efficacy, reduce side effects, and overcome drug resistance. Despite the encouraging results, challenges such as optimizing treatment protocols, addressing tumor heterogeneity, and overcoming biological barriers remain. This paper highlights the potential for personalized, multimodal approaches to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Rubing Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| | - Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| | - Ruqian Zhong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| | - Xi Chen
- Hunan Provincial Center for Drug Evaluation and Adverse Reaction Monitoring, Changsha 410013, China;
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| |
Collapse
|
5
|
Fang L, Chen Z, Dai J, Pan Y, Tu Y, Meng Q, Diao Y, Yang S, Guo W, Li L, Liu J, Wen H, Hua K, Hang L, Fang J, Meng X, Ma P, Jiang G. Recent Advances in Strategies to Enhance Photodynamic and Photothermal Therapy Performance of Single-Component Organic Phototherapeutic Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409157. [PMID: 39792832 PMCID: PMC11831458 DOI: 10.1002/advs.202409157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/04/2024] [Indexed: 01/12/2025]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area. This review delves deeply into strategies to improve the performance of PDT or PTT by optimizing the structural design of SCOPAs. These strategies encompass augmenting reactive oxygen species (ROS) generation, mitigating oxygen dependence, elevating light absorption capacity, broadening the absorption region, and enhancing the photothermal conversion efficiency (PCE). Additionally, this review also underscores the ideal strategies for developing SCOPAs with balanced PDT and PTT. Furthermore, the potential synergies are highlighted between PDT and PTT with other treatment modalities such as ferroptosis, gas therapy, chemotherapy, and immunotherapy. By providing a comprehensive analysis of these strategies, this review aspires to serve as a valuable resource for clinicians and researchers, facilitating the wider application and advancement of SCOPAs-mediated PDT and PTT.
Collapse
Affiliation(s)
- Laiping Fang
- Guangdong Second Provincial General HospitalSchool of MedicineJinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Zengzhen Chen
- State Key Laboratory of Cryogenic Science and TechnologyTechnical Institute of Physics and ChemistryChinese Academy of SciencesZhongguancun East Road 29Beijing100190P. R. China
| | - Jianan Dai
- College of Information TechnologyJilin Normal UniversityHaifeng Street 1301Siping136000P. R. China
| | - Yujin Pan
- Department of Hepatobiliary and Pancreatic SurgeryHenan Provincial People's HospitalWeiwu Road 7Zhengzhou450003P. R. China
| | - Yike Tu
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Qi Meng
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesRenmin Street 5625Changchun130012P. R. China
| | - Yanzhao Diao
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Shuaibo Yang
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Wei Guo
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Liming Li
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Jinwu Liu
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Hua Wen
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Kelei Hua
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Lifeng Hang
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Jin Fang
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Xianwei Meng
- State Key Laboratory of Cryogenic Science and TechnologyTechnical Institute of Physics and ChemistryChinese Academy of SciencesZhongguancun East Road 29Beijing100190P. R. China
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesRenmin Street 5625Changchun130012P. R. China
| | - Guihua Jiang
- The Department of Medical ImagingThe Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityXingangzhong Road 466Guangzhou518037P. R. China
| |
Collapse
|
6
|
Meng W, Yang H, Zhang W, Li Y, Zheng Y, Zhu T. Surface Sulfurization of Cubic Cu 2O to Form Cu 2S Nanostructure-Decorated Catalysts for Light-Enhanced Electrocatalytic H 2 Evolution and Photocatalytic CO 2 Reduction. Chemistry 2025; 31:e202403355. [PMID: 39540789 DOI: 10.1002/chem.202403355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
Developing highly efficient bifunctional catalysts for electrocatalysis and photocatalysis suffers from sluggish charge transfer and poor photo-to-electric conversion rate. Herein, micro-sized Cu2O cubes were initially prepared for subsequent transformation into Cu2O@Cu2S core-shell structures by a slight surface sulfurization. The formation of nanostructured Cu2S thin layer at Cu2O surface can endow an immediate charge separation and migration under light irradiation, leading to high surface photovoltages (SPV, 18-30 mV). As a result, the as-prepared Cu2O@Cu2S catalysts exhibited reduced overpotentials (η, only 86 mV is required for the optimized sample to achieve a current density of 10 mA cm-2) for H2 evolution with good cycling stability in electrocatalytic water splitting. Meanwhile, a high methane (CH4) production rate of 30.3 μmol h-1 g-1 can be delivered from the optimized Cu2O@Cu2S sample when used for photocatalytic CO2 reduction. This work has provided a strategy to prepare bifunctional catalysts with improved photoelectric properties for photo/electrocatalytic applications.
Collapse
Affiliation(s)
- Weiting Meng
- School of Physics and Electronic Information, Yunnan Normal University, 768 Juxian Street, Kunming, 650500, China
| | - Hongran Yang
- School of Physics and Electronic Information, Yunnan Normal University, 768 Juxian Street, Kunming, 650500, China
| | - Weibin Zhang
- Yunnan Key Laboratory of Optoelectronic Information Technology, School of Physics and Electronic Information, Yunnan Normal University, Kunming, 650500, China
| | - Yuying Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China E-mail: y
| | - Yuying Zheng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China E-mail: y
| | - Ting Zhu
- School of Physics and Electronic Information, Yunnan Normal University, 768 Juxian Street, Kunming, 650500, China
- Yunnan Key Laboratory of Optoelectronic Information Technology, School of Physics and Electronic Information, Yunnan Normal University, Kunming, 650500, China
| |
Collapse
|
7
|
Wu X, Wang L, Lu Y, Li MH, Liu S, Yang Y, Song Y, Chen S, Kang J, Dong A, Yang YW. A Microenvironment-Responsive Graphdiyne-Iron Nanozyme Hydrogel with Antibacterial and Anti-Inflammatory Effect for Periodontitis Treatment. Adv Healthc Mater 2024:e2403683. [PMID: 39703120 DOI: 10.1002/adhm.202403683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/30/2024] [Indexed: 12/21/2024]
Abstract
Periodontitis is a chronic inflammatory disease caused by dental plaque, which leads to tooth loosening and shifting or even tooth loss. Current treatments, including mechanical debridement and antibiotics, often fail to eradicate recalcitrant biofilms and mitigate excessive inflammation. Moreover, these interventions can disrupt the oral microbiome, potentially compromising long-term treatment outcomes. To address these limitations, an injectable nanoenzyme hydrogel composed of a dopamine (DA)-modified hyaluronic acid (HA) scaffold and a graphdiyne-iron (GDY-Fe) complex, named GDY-Fe@HA-DA, exhibits excellent tissue adhesion, self-healing, antibacterial properties, and biocompatibility. Under near-infrared laser irradiation, GDY-Fe@HA-DA effectively eradicates a variety of pathogens, including Escherichia coli, Staphylococcus aureus, and Porphyromonas gingivalis, through a synergistic combination of chemodynamical and photothermal therapies. The hydrogel's efficacy is further validated in both bacterial-infected skin wounds and rat periodontitis models. It effectively alleviates the inflammatory environment and promotes wound healing and periodontal tissue recovery. This findings highlight the potential of GDY-Fe@HA-DA as a promising therapeutic material for periodontitis and other tissue injuries.
Collapse
Affiliation(s)
- Xiaojie Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Street, Hohhot, 010021, P. R. China
| | - Lu Wang
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, 130021, P. R. China
| | - Yaning Lu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Street, Hohhot, 010021, P. R. China
| | - Meng-Hao Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shuwei Liu
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, 130021, P. R. China
| | - Yimeng Yang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Street, Hohhot, 010021, P. R. China
| | - Yulian Song
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Street, Hohhot, 010021, P. R. China
| | - Sunzhuo Chen
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Street, Hohhot, 010021, P. R. China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Street, Hohhot, 010021, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Street, Hohhot, 010021, P. R. China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
8
|
Lin F, Qin Y, Sun J, Liu Y, Yang S, Zheng S, Yin L, Li D, Cui L, Li G, Qiu Z, Liu Z. Delivery of Cu(II) and Mn(II) by polydopamine-modified nanoparticles for combined photothermal and chemotherapy. J Mater Chem B 2024; 12:12062-12072. [PMID: 39445457 DOI: 10.1039/d4tb01819b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Chemodynamic therapy (CDT) has been recognized as an emerging therapeutic strategy. It has attracted considerable attention in recent years as it can generate the most harmful reactive oxygen species (ROS)-hydroxyl radicals (•OH) through the Fenton reaction or a Fenton-like reaction under the catalysis of versatile metal cations, such as, Fe(II), Fe(III), Cu(I), Mn(II), and Mn(III). However, a large number of reducing species (e.g., GSH) in tumors inhibit the therapeutic effects of CDT. This study proposes a nanocarrier strategy that can release versatile metal cations in the initial stage to consume the reducing substances, which can be convenient for subsequent CDT treatment. A novel nano-delivery system based on H-MnO2@PDA/Cu-CD@Ad-TK-Ad@Ploy-CD (abbreviated as MNZ) was proposed to resolve the above problems. Herein, hollow mesoporous manganese dioxide nanoparticles (H-MnO2) were coated with PDA and modified with copper ions on the surface of PDA. The PDA was then functionalized with β-cyclodextrin (β-CD) substitutions that were further assembled with N-((1S,3R,5S)-adamantan-1-yl)-3-((2-((3-(((3s,5s,7s)-adamantan-1-yl)amino)-3-oxopropyl)thio)propan-2-yl)thio)propenamide (Ad-TK-Ad). Poly-CD was assembled with CD to improve the stability of the reactor. The MNZ nanotheranostic platform can release Cu(II) and Mn(II), which could react with intracellular GSH to consume the reducing substances in tumors. Subsequently, H2O2 can be converted into •OH, and the effect is improved with increasing temperatures. Cytotoxicity of MNZ (200 μg mL-1) was studied by cell counting kit-8 (CCK-8) assay using HeLa cells as the models. Results indicated that cell viability was clearly reduced to 22% by the nanoparticles alone, to 18% by the nanoparticles with H2O2, and to 9% by the nanoparticles with H2O2 and NIR, under weak acidic condition (pH 6.8). This work provides a beneficial exploration for the application of nano-delivery strategies for combined photothermal and chemodynamic therapy agents.
Collapse
Affiliation(s)
- Fuli Lin
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
| | - Yuchang Qin
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
| | - Jingjing Sun
- School of Medicine, Shihezi University, P. R. China.
| | - Yijun Liu
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
| | - Shuang Zheng
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
| | - Lisha Yin
- School of Medicine, Shihezi University, P. R. China.
| | - Dongmei Li
- School of Medicine, Shihezi University, P. R. China.
| | - Lin Cui
- School of Medicine, Shihezi University, P. R. China.
| | - Gang Li
- The First Affiliated Hospital of Shihezi University, P. R. China
| | - Zhongpeng Qiu
- The First Affiliated Hospital of Shihezi University, P. R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
| |
Collapse
|
9
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Huang W, Jin B, Gong H, Ali N, Jiang D, Shan T, Zhang L, Tian J, Zhang W. A tumor Microenvironment-triggered protein-binding Near-infrared-II Theranostic nanoplatform for Mild-Temperature photothermal therapy. J Colloid Interface Sci 2024; 680:375-388. [PMID: 39577235 DOI: 10.1016/j.jcis.2024.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Photothermal therapy (PTT) has gained significant attention as a non-invasive treatment in clinical oncology. However, the translation of PTT into clinical practice remains constrained by three fundamental limitations: acquired thermal tolerance in tumor cells, restricted light penetration depth in biological matrices, and insufficient therapeutic outcomes from single-modality treatment. To address these issues, a strategy for forming in situ complexes between near-infrared-II (NIR-II) photothermal agents and proteins is developed, aimed at damaging protein conformation and enhancing PTT effectiveness. We developed a nanoplatform called PCy-SF, consisting of the NIR-II photothermal polymer (PCy) and sorafenib (SF). PCy-SF responds to the tumor microenvironment (TME), specifically releasing Cy-CHO and sorafenib from the assemblies. The released Cy-CHO covalently binds to proteins, forming Cy-Protein complexes that activate NIR-II fluorescence, facilitating NIR-II imaging-guided photothermal therapy. Concurrently, the released SF intensifies microvascular damage, synergizing with PTT for enhanced therapeutic efficacy. Notably, PCy-SF induces a strong anticancer immune response, effectively suppressing tumor recurrence and metastasis. This study introduces a promising protein deactivation strategy for achieving mild-temperature PTT, offering broader applicability of PTT and insights for sensitizing tumors to photothermal therapy. Together, this innovative approach combining NIR-II photothermal agents with protein complexation and a responsive nanoplatform enhances PTT precision and efficacy, demonstrating significant potential in the field of cancer nanomedicine.
Collapse
Affiliation(s)
- Wenlong Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Jin
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Haobing Gong
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Nawab Ali
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Duoduo Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Tongtong Shan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Pu Y, Zhou B, Bing J, Wang L, Chen M, Shen Y, Gao S, Zhou M, Wu W, Shi J. Ultrasound-triggered and glycosylation inhibition-enhanced tumor piezocatalytic immunotherapy. Nat Commun 2024; 15:9023. [PMID: 39424801 PMCID: PMC11489718 DOI: 10.1038/s41467-024-53392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Nanocatalytic immunotherapy holds excellent potential for future cancer therapy due to its rapid activation of the immune system to attack tumor cells. However, a high level of N-glycosylation can protect tumor cells, compromising the anticancer immunity of nanocatalytic immunotherapy. Here, we show a 2-deoxyglucose (2-DG) and bismuth ferrite co-loaded gel (DBG) scaffold for enhanced cancer piezocatalytic immunotherapy. After the implantation in the tumor, DBG generates both reactive oxygen species (ROS) and piezoelectric signals when excited with ultrasound irradiation, significantly promoting the activation of anticancer immunity. Meanwhile, 2-DG released from ROS-sensitive DBG disrupts the N-glycans synthesis, further overcoming the immunosuppressive microenvironment of tumors. The synergy effects of ultrasound-triggered and glycosylation inhibition enhanced tumor piezocatalytic immunotherapy are demonstrated on four mouse cancer models. A "hot" tumor-immunity niche is produced to inhibit tumor progress and lung metastasis and elicit strong immune memory effects. This work provides a promising piezocatalytic immunotherapy for malignant solid tumors featuring both low immunogenicity and high levels of N-glycosylation.
Collapse
Affiliation(s)
- Yinying Pu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, P. R. China
| | - Bangguo Zhou
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, P. R. China
| | - Jinhong Bing
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Liang Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Mingqi Chen
- Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, P. R. China
| | - Yucui Shen
- Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, P. R. China
| | - Shuang Gao
- Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, P. R. China
| | - Min Zhou
- Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, P. R. China.
| | - Wencheng Wu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, P. R. China.
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| |
Collapse
|
12
|
Bai Q, Wang M, Wang K, Liu J, Qu F, Lin H. CuPc-Fe@BSA nanocomposite: Intracellular acid-sensitive aggregation for enhanced sonodynamic and chemo-therapy. J Colloid Interface Sci 2024; 671:577-588. [PMID: 38820842 DOI: 10.1016/j.jcis.2024.05.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
Due to their rigid π-conjugated macrocyclic structure, organic sonosensitizers face significant aggregation in physiological conditions, hindering the production of reactive oxygen species (ROS). An acid-sensitive nanoassembly was developed to address this issue and enhance sonodynamic therapy (SDT) and emission. Initially, copper phthalocyanine (CuPc) was activated using a H2SO4-assisted hydrothermal method to introduce multiple functional groups (-COOH, -OH, and -SO3H), disrupting strong π-π stacking and promoting ROS generation and emission. Subsequently, negatively charged CuPc-SO4 was incorporated into bovine serum albumin (BSA) to form CuPc-Fe@BSA nanoparticles (10 nm) with Fe3+ ions serving as linkers. In acidic conditions, protonation of CuPc-SO4 and BSA weakened the interactions, leading to Fe3+ release and nanostructure dissociation. Protonated CuPc-SO4 tended to self-aggregate into nanorods. This acidity-sensitive aggregation is vital for achieving specific accumulation within the tumor microenvironment (TME), thereby enhancing retention and SDT efficacy. Prior to this, the nanocomposites demonstrated cycling stability under neutral conditions. Additionally, the released Fe ions exhibited mimicry of glutathione peroxidase and peroxidase activity for chemotherapy (CDT). The synergistic effect of SDT and CDT increased intracellular oxidative stress, causing mitochondrial injury and ferroptosis. Furthermore, the combined therapy induced immunogenic cell death (ICD), effectively activating anticancer immune responses and suppressing metastasis and recurrence.
Collapse
Affiliation(s)
- Qingchen Bai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Miao Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China; Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin 150028, China.
| | - Jingwei Liu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
13
|
Xiang L, Li W, Liu Y, Sathishkumar G, He X, Wu H, Ran R, Zhang K, Rao X, Kang ET, Xu L. Copper tannate nanosheets-embedded multifunctional coating for antifouling and photothermal bactericidal applications. Colloids Surf B Biointerfaces 2024; 245:114208. [PMID: 39255749 DOI: 10.1016/j.colsurfb.2024.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Implant-associated infections (IAIs), triggered by pathogenic bacteria, are a leading cause of implant failure. The design of functionalized coatings on biomedical materials is crucial to address IAIs. Herein, a multifunctional coating with good antifouling effect and antibacterial photothermal therapy (aPTT) performance was developed. The copper tannate nanosheets (CuTA NSs) were formed via coordination bonding of Cu2+ ions and tannic acid (TA). The CuTA NSs were then integrated into the TA and poly(ethylene glycol) (PEG) network to form the TCP coating for deposition on the titanium (Ti) substrates via surface adhesion of TA and gravitational effect. The resulting Ti-TCP substrate exhibited good antifouling property, reactive oxygen species (ROS) scavenging capability and cytocompatibility. The TCP coating exhibited antifouling efficacy in conjunction with aPTT, curtailing the surface adhesion and biofilm formation of pathogens, such as Staphylococcus aureus and Escherichia coli. Notably, the Ti-TCP substrate also exhibited the ability to prevent bacterial infection in vivo in a subcutaneous implantation model. The present work demonstrated a promising approach in designing high-performance antifouling and photothermal bactericidal coatings to combat IAIs.
Collapse
Affiliation(s)
- Li Xiang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Weizhe Li
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Yanqing Liu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Gnanasekar Sathishkumar
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xiaodong He
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Huajun Wu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Runlong Ran
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Kai Zhang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xi Rao
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - En-Tang Kang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 117576, Singapore.
| | - Liqun Xu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
14
|
Chu Y, Wang Q, Lyu S, Yuan B, Huang J, Li J, Wang Y. Thermal-Responsive Gel-Based Overheat Limiter Enabled Intelligent Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312140. [PMID: 38456378 DOI: 10.1002/smll.202312140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Uncontrolled and excessive photothermal heating in photothermal therapy (PTT) inevitably causes thermal damage to surrounding normal tissues, severely limiting the universality and safety of PTT. To address this issue, an intelligent cooling thermal-responsive (ICTR) gel containing poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAM-AM))microgel is applied onto the skin to realize intelligent PTT, which can avoid excessive heating and accidental injury. The high near-infrared (NIR) light transmittance (> 95%) of the ICTR gel ensures effective light delivery at low temperatures, while the refractive index of the P(NIPAM-AM) microgel increases remarkably when the temperature exceeds a predetermined threshold, resulting in progressively enhanced light scattering and weakened photothermal conversion. In animal studies, the negative feedback regulation of ICTR gel on light transmittance and photothermal heating allows the photothermal temperature in the lesion site to be stabilized within the effective therapeutic range (45 °C) while ensuring that the skin surface temperature does not exceed 35 °C. Compared with the severe skin thermal damage found in the histological staining of mice skin receiving conventional PTT, the mice skin receiving the ICTR gel-enabled intelligent PTT remains in good condition. This study establishes an intelligent and universal paradigm for PTT thermal regulation, which is of great significance for achieving safe and effective PTT.
Collapse
Affiliation(s)
- Yanji Chu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Qianci Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shanzhi Lyu
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Bin Yuan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Jiahao Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410083, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
15
|
Jiang Q, Qiao B, Zheng J, Song W, Zhang N, Xu J, Liu J, Zhong Y, Zhang Q, Liu W, You L, Wu N, Liu Y, Li P, Ran H, Wang Z, Guo D. Potentiating dual-directional immunometabolic regulation with nanomedicine to enhance anti-tumor immunotherapy following incomplete photothermal ablation. J Nanobiotechnology 2024; 22:364. [PMID: 38915007 PMCID: PMC11194966 DOI: 10.1186/s12951-024-02643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Photothermal therapy (PTT) is a promising cancer treatment method due to its ability to induce tumor-specific T cell responses and enhance therapeutic outcomes. However, incomplete PTT can leave residual tumors that often lead to new metastases and decreased patient survival in clinical scenarios. This is primarily due to the release of ATP, a damage-associated molecular pattern that quickly transforms into the immunosuppressive metabolite adenosine by CD39, prevalent in the tumor microenvironment, thus promoting tumor immune evasion. This study presents a photothermal nanomedicine fabricated by electrostatic adsorption among the Fe-doped polydiaminopyridine (Fe-PDAP), indocyanine green (ICG), and CD39 inhibitor sodium polyoxotungstate (POM-1). The constructed Fe-PDAP@ICG@POM-1 (FIP) can induce tumor PTT and immunogenic cell death when exposed to a near-infrared laser. Significantly, it can inhibit the ATP-adenosine pathway by dual-directional immunometabolic regulation, resulting in increased ATP levels and decreased adenosine synthesis, which ultimately reverses the immunosuppressive microenvironment and increases the susceptibility of immune checkpoint blockade (aPD-1) therapy. With the aid of aPD-1, the dual-directional immunometabolic regulation strategy mediated by FIP can effectively suppress/eradicate primary and distant tumors and evoke long-term solid immunological memory. This study presents an immunometabolic control strategy to offer a salvage option for treating residual tumors following incomplete PTT.
Collapse
Affiliation(s)
- Qinqin Jiang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bin Qiao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jun Zheng
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weixiang Song
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Nan Zhang
- Department of Medical Ultrasonics, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Jie Xu
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jia Liu
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yixin Zhong
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Qin Zhang
- Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, P. R. China
| | - Weiwei Liu
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Lanlan You
- Department of Ultrasound, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, P. R. China
| | - Nianhong Wu
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yun Liu
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Pan Li
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Haitao Ran
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zhigang Wang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China.
| | - Dajing Guo
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China.
| |
Collapse
|
16
|
Wang M, Wang Y, Fu Q. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo. Mater Today Bio 2024; 26:101027. [PMID: 38525310 PMCID: PMC10959709 DOI: 10.1016/j.mtbio.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Multimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy. These advancements pave the way for precise tumor medicine. This review summarizes various types of magneto-optical nanosystems developed recently and describes their applications as probes for multimodal imaging and agents for image-guided therapeutic interventions. Finally, future research and development prospects of magneto-optical nanosystems are discussed along with an outlook on their further applications in the biomedical field.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
17
|
Zhou Y, Zhang R, Lu Y, Fu X, Lv K, Gong J, Wang D, Feng J, Zhang H, Guo Y. Acid‐Unlocked Switch Controlled the Enzyme and CO In Situ Release to Induce Mitochondrial Damage via Synergy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202312416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/15/2024]
Abstract
AbstractCO gas therapy has attracted enormous attention in tumor therapy due to the abilities of mitochondrial damage and inhibition of cellular respiration. However, the inefficient and random release of CO greatly limit its application. Taking this into account, the study constructs an acid‐unlocked nanostructure based on MPDA‐MnCO‐GOx@DSNPs, designated as MMGD. The nanostructure enables tumor microenvironment (TME) specific enzyme and CO prodrug (manganese carbonyl, MnCO) cascade reaction, thus facilitating CO release in situ. Mesoporous polydopamine (MPDA) can provide the space for MnCO and glucose oxidase (GOx) loading. Especially, lanthanide (Ln3+)‐doped down‐shifting luminescent nanoparticles (DSNPs) can not only serve as the near‐infrared II (NIR‐II) fluorescence imaging probe, but also act as the acid‐unlocked gating switch. The slightly acidic TME can render the dissociation of DSNPs, thus exposing GOx and releasing MnCO. The catalytic reaction of GOx can produce H2O2 and create a more acidic environment, which facilitates the CO generation in situ, leading to mitochondrial damage by reducing cytochrome c oxidase activity and adenosine triphosphate (ATP) levels. Meanwhile, MPDA has the NIR light absorption capability for photothermal therapy (PTT). This study provides an ingenious strategy for efficient and controllable CO gas, starvation, and PTT of tumor guided by NIR‐II fluorescence imaging.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Ruohao Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Yu Lu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Xinyu Fu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Kehong Lv
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jitong Gong
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Daguang Wang
- Department of Gastrocolorectal Surgery General Surgery Center The First Hospital of Jilin University Changchun 130021 China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuchen Guo
- Department of Gastrocolorectal Surgery General Surgery Center The First Hospital of Jilin University Changchun 130021 China
| |
Collapse
|
18
|
Li J, Xing Y, Chen X. Intercalating of AIEgens into MoS 2 nanosheets to induce crystal phase transform for enhanced photothermal and photodynamic synergetic anti-tumor therapy. Talanta 2024; 271:125677. [PMID: 38245956 DOI: 10.1016/j.talanta.2024.125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
A MoS2-based nanotherapeutic platform was developed for synergetic photothermal and photodynamic anti-tumor therapy. AIEgens TFPy-SH molecules were intercalated into MoS2 nanosheets (MoS2 NSs) with S-deficiencies to give the nanocomposite MoS2-TFPy. The AIEgens intercalation expanded the interlayer spacing of MoS2 NSs and induced the transform of MoS2 crystal phase from 2H to 1T, offering MoS2-TFPy nanocomposite high molar absorption coefficient (5.65 L g-1 cm-1), excellent photothermal conversion efficiency under near-infrared (NIR) laser irradiation (38.3%), and favorable intracellular reactive oxygen species (ROS) generation capacity. The positively charged MoS2-TFPy were mainly distributed in mitochondria after cell up-taking, and achieved 1+1>2 anti-tumor effect attributed to its favorable photothermal and photodynamic properties. The high structure and physiological stability, favorable biocompatibility, excellent photothermal and photodynamic therapy effect make the MoS2-TFPy nanoplatform an promising candidate in biomedical clinical applications.
Collapse
Affiliation(s)
- Jiaxin Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Yanzhi Xing
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
19
|
Yang M, Ji C, Yin M. Aggregation-enhanced photothermal therapy of organic dyes. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1960. [PMID: 38695260 DOI: 10.1002/wnan.1960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/10/2024] [Accepted: 04/06/2024] [Indexed: 05/12/2024]
Abstract
Photothermal therapy (PTT) represents a groundbreaking approach to targeted disease treatment by harnessing the conversion of light into heat. The efficacy of PTT heavily relies on the capabilities of photothermal agents (PTAs). Among PTAs, those based on organic dyes exhibit notable characteristics such as adjustable light absorption wavelengths, high extinction coefficients, and high compatibility in biological systems. However, a challenge associated with organic dye-based PTAs lies in their efficiency in converting light into heat while maintaining stability. Manipulating dye aggregation is a key aspect in modulating non-radiative decay pathways, aiming to augment heat generation. This review delves into various strategies aimed at improving photothermal performance through constructing aggregation. These strategies including protecting dyes from photodegradation, inhibiting non-photothermal pathways, maintaining space within molecular aggregates, and introducing intermolecular photophysical processes. Overall, this review highlights the precision-driven assembly of organic dyes as a promising frontier in enhancing PTT-related applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Mengyun Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
20
|
Chen P, Zhang C, He L, Li M, Rong J, Sun P, Chen Y, Li D. A thermoresponsive nanocomposite integrates NIR-II-absorbing small molecule with lonidamine for pyroptosis-promoted synergistic immunotherapy. J Nanobiotechnology 2024; 22:163. [PMID: 38600506 PMCID: PMC11007887 DOI: 10.1186/s12951-024-02424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Photothermal immunotherapy is regarded as the ideal cancer therapeutic modality to against malignant solid tumors; however, its therapeutic benefits are often modest and require improvement. In this study, a thermoresponsive nanoparticle (BTN@LND) composed of a photothermal agent (PTA) and pyroptosis inducer (lonidamine) were developed to enhance immunotherapy applications. Specifically, our "two-step" donor engineering strategy produced the strong NIR-II-absorbing organic small-molecule PTA (BTN) that exhibited high NIR-II photothermal performance (ε1064 = 1.51 × 104 M-1 cm-1, η = 75.8%), and this facilitates the diagnosis and treatment of deep tumor tissue. Moreover, the fabricated thermally responsive lipid nanoplatform based on BTN efficiently delivered lonidamine to the tumor site and achieved spatiotemporal release triggered by the NIR-II photothermal effect. In vitro and in vivo experiments demonstrated that the NIR-II photothermal therapy (PTT)-mediated on-demand release of cargo effectively faciliated tumor cell pyroptosis, thereby intensifying the immunogenic cell death (ICD) process to promote antitumor immunotherapy. As a result, this intelligent component bearing photothermal and chemotherapy can maximally suppress the growth of tumors, thus providing a promising approach for pyroptosis/NIR-II PTT synergistic therapy against tumors.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liuliang He
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingfei Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jie Rong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Yingying Chen
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Daifeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
21
|
Liu H, Zhang X, Li X, Wu P. NIR-II-Absorbing TMB Derivative for 1064 nm-Excited Photothermal Immunoassay. Anal Chem 2024; 96:5633-5639. [PMID: 38529943 DOI: 10.1021/acs.analchem.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Materials exhibiting strong absorption in the NIR-II region are appealing for photothermal conversion-based imaging, diagnosis, and therapy, due to better thermal effect and decreased absorption of water in such a region. 3,3',5,5'-Tetramethylbenzidine (TMB), the typical substrate in ELISA, has been explored in photothermal immunoassay, since its oxidation product (oxTMB) is photothermally active in the NIR region. However, its absorption at 1064 nm (the most often used laser wavelength in photothermal studies) is not appreciable, thus limiting the assay sensitivity. Here, we proposed a derivative of TMB (3,3'-dimethoxy-5,5'-dimethylbenzidine, 2-OCH3) bearing higher NIR-II absorption for 1064 nm-excited photothermal immunoassay. Since electron-donating groups can help decrease the energy gap of molecules (here -CH3 → -OCH3), the oxidation product of 2-OCH3 exhibited substantially red-shifted absorption as compared with oxTMB, leading to a more than twofold higher absorption coefficient at 1064 nm. As a result, 2-OCH3 showed enhanced sensitivity over TMB in a photothermal immunoassay (PTIA), yielding a limit of detection (LOD) of 0.1 ng/mL for prostate-specific antigen (PSA). The feasibility of 2-OCH3-based PTIA for diagnosis was further validated by analyzing PSA in 61 serum samples. Considering its superior photothermal performance, 2-OCH3 can be explored for a broad range of photothermal applications.
Collapse
Affiliation(s)
- Henglin Liu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xianming Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Wu
- College of Chemistry, Sichuan University, Chengdu 610064, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
22
|
Li W, Xin H, Gao W, Yuan P, Ni F, Ma J, Sun J, Xiao J, Tian G, Liu L, Zhang G. NIR-IIb fluorescence antiangiogenesis copper nano-reaper for enhanced synergistic cancer therapy. J Nanobiotechnology 2024; 22:73. [PMID: 38374027 PMCID: PMC10877799 DOI: 10.1186/s12951-024-02343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
The formation of blood vessel system under a relatively higher Cu2+ ion level is an indispensable precondition for tumor proliferation and migration, which was assisted in forming the tumor immune microenvironment. Herein, a copper ions nano-reaper (LMDFP) is rationally designed not only for chelating copper ions in tumors, but also for combination with photothermal therapy (PTT) to improve antitumor efficiency. Under 808 nm laser irradiation, the fabricated nano-reaper converts light energy into thermal energy to kill tumor cells and promotes the release of D-penicillamine (DPA) in LMDFP. Photothermal properties of LMDFP can cause tumor ablation in situ, which further induces immunogenic cell death (ICD) to promote systematic antitumor immunity. The released DPA exerts an anti-angiogenesis effect on the tumor through chelating copper ions, and inhibits the expression of programmed death ligand 1 (PD-L1), which synergizes with PTT to enhance antitumor immunity and inhibit tumor metastasis. Meanwhile, the nanoplatform can emit near-infrared-IIb (NIR-IIb) fluorescence under 980 nm excitation, which can be used to track the nano-reaper and determine the optimal time point for PTT. Thus, the fabricated nano-reaper shows powerful potential in inhibiting tumor growth and metastasis, and holds great promise for the application of copper nanochelator in precise tumor treatment.
Collapse
Affiliation(s)
- Wenling Li
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Huan Xin
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Wenjuan Gao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Pengjun Yuan
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Feixue Ni
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Jingyi Ma
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Jingrui Sun
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Jianmin Xiao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Geng Tian
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China.
| | - Lu Liu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China.
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China.
| |
Collapse
|
23
|
Shen S, Qiu J, Huo D, Xia Y. Nanomaterial-Enabled Photothermal Heating and Its Use for Cancer Therapy via Localized Hyperthermia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305426. [PMID: 37803412 PMCID: PMC10922052 DOI: 10.1002/smll.202305426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Indexed: 10/08/2023]
Abstract
Photothermal therapy (PTT), which employs nanoscale transducers delivered into a tumor to locally generate heat upon irradiation with near-infrared light, shows great potential in killing cancer cells through hyperthermia. The efficacy of such a treatment is determined by a number of factors, including the amount, distribution, and dissipation of the generated heat, as well as the type of cancer cell involved. The amount of heat generated is largely controlled by the number of transducers accumulated inside the tumor, the absorption coefficient and photothermal conversion efficiency of the transducer, and the irradiance of the light. The efficacy of treatment depends on the distribution of the transducers in the tumor and the penetration depth of the light. The vascularity and tissue thermal conduction both affect the dissipation of heat and thereby the distribution of temperature. The successful implementation of PTT in the clinic setting critically depends on techniques for real-time monitoring and management of temperature.
Collapse
Affiliation(s)
- Song Shen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
24
|
Xiong J, Tang H, Sun L, Zhu J, Tao S, Luo J, Li J, Li J, Wu H, Yang J. A macrophage cell membrane-coated cascade-targeting photothermal nanosystem for combating intracellular bacterial infections. Acta Biomater 2024; 175:293-306. [PMID: 38159895 DOI: 10.1016/j.actbio.2023.12.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Current antibacterial interventions encounter formidable challenges when confronting intracellular bacteria, attributable to their clustering within phagocytes, particularly macrophages, evading host immunity and resisting antibiotics. Herein, we have developed an intelligent cell membrane-based nanosystem, denoted as MM@DAu NPs, which seamlessly integrates cascade-targeting capabilities with controllable antibacterial functions for the precise elimination of intracellular bacteria. MM@DAu NPs feature a core comprising D-alanine-functionalized gold nanoparticles (DAu NPs) enveloped by a macrophage cell membrane (MM) coating. Upon administration, MM@DAu NPs harness the intrinsic homologous targeting ability of their macrophage membrane to infiltrate bacteria-infected macrophages. Upon internalization within these host cells, exposed DAu NPs from MM@DAu NPs selectively bind to intracellular bacteria through the bacteria-targeting agent, D-alanine present on DAu NPs. This intricate process establishes a cascade mechanism that efficiently targets intracellular bacteria. Upon exposure to near-infrared irradiation, the accumulated DAu NPs surrounding intracellular bacteria induce local hyperthermia, enabling precise clearance of intracellular bacteria. Further validation in animal models infected with the typical intracellular bacteria, Staphylococcus aureus, substantiates the exceptional cascade-targeting efficacy and photothermal antibacterial potential of MM@DAu NPs in vivo. Therefore, this integrated cell membrane-based cascade-targeting photothermal nanosystem offers a promising approach for conquering persistent intracellular infections without drug resistance risks. STATEMENT OF SIGNIFICANCE: Intracellular bacterial infections lead to treatment failures and relapses because intracellular bacteria could cluster within phagocytes, especially macrophages, evading the host immune system and resisting antibiotics. Herein, we have developed an intelligent cell membrane-based nanosystem MM@DAu NPs, which is designed to precisely eliminate intracellular bacteria through a controllable cascade-targeting photothermal antibacterial approach. MM@DAu NPs combine D-alanine-functionalized gold nanoparticles with a macrophage cell membrane coating. Upon administration, MM@DAu NPs harness the homologous targeting ability of macrophage membrane to infiltrate bacteria-infected macrophages. Upon internalization, exposed DAu NPs from MM@DAu NPs selectively bind to intracellular bacteria through the bacteria-targeting agent, enabling precise clearance of intracellular bacteria through local hyperthermia. This integrated cell membrane-based cascade-targeting photothermal nanosystem offers a promising avenue for conquering persistent intracellular infections without drug resistance risks.
Collapse
Affiliation(s)
- Jingdi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Haiqin Tang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lizhong Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jieyu Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
25
|
Tang C, Pan Y, Wei Z, Liu L, Xu J, Han W, Cai Y. Side-chain engineering of organic photothermal agents for boosting further red-shifted absorption and higher photothermal therapeutic effect. Colloids Surf B Biointerfaces 2024; 233:113611. [PMID: 37924748 DOI: 10.1016/j.colsurfb.2023.113611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
Although organic photothermal agents (PTAs) have been extensively studied in preclinical cancer photothermal therapy (PTT), the internal mechanism, particularly the impact of side chains on photothermal performance, remains inadequately investigated. Herein, we conducted a systematic comparison of the photothermal properties between two organic molecules, namely O-IDTBR with four n-octyl chains and EH-IDTBR with four 2-ethylhexyl chains. With the same conjugated main structure, both O-IDTBR and EH-IDTBR exhibited nearly identical absorption properties (with a peak at 629 nm) in their molecular states. Interestingly, after the formation of nanoparticles (NPs), O-IDTBR NPs with linear alkyl chains exhibit a further red-shifted absorption onset (peak at 711 nm) compared to EH-IDTBR NPs (peak at 662 nm) with branched alkyl chains. Additionally, the photothermal conversion efficiency of O-IDTBR NPs was calculated of 33.7%, which is higher than that of EH-IDTBR NPs (27.7%). This can be attributed to the fact that linear alkyl chains of O-IDTBR NPs promote more intramolecular motions at the aggregated state by extending intermolecular distance and distorting molecular conformation. Therefore, the nonradiative thermal deactivation-induced photothermal property can be further enhanced. Through both in vitro and in vivo experiments, O-IDTBR NPs exhibit effective PTT effect and excellent biocompatibility. This study not only introduces a novel PTA but also opens new avenues for exploring organic optical nano-agents through side-chain engineering to adjust intramolecular motions at the aggregated state.
Collapse
Affiliation(s)
- Chuanchao Tang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zheng Wei
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jiajie Xu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, People's Republic of China.
| | - Wei Han
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
26
|
Yu Z, Wang H, Ying B, Mei X, Zeng D, Liu S, Qu W, Pan X, Pu S, Li R, Qin Y. Mild photothermal therapy assist in promoting bone repair: Related mechanism and materials. Mater Today Bio 2023; 23:100834. [PMID: 38024841 PMCID: PMC10643361 DOI: 10.1016/j.mtbio.2023.100834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Achieving precision treatment in bone tissue engineering (BTE) remains a challenge. Photothermal therapy (PTT), as a form of precision therapy, has been extensively investigated for its safety and efficacy. It has demonstrated significant potential in the treatment of orthopedic diseases such as bone tumors, postoperative infections and osteoarthritis. However, the high temperatures associated with PTT can lead to certain limitations and drawbacks. In recent years, researchers have explored the use of biomaterials for mild photothermal therapy (MPT), which offers a promising approach for addressing these limitations. This review provides a comprehensive overview of the mechanisms underlying MPT and presents a compilation of photothermal agents and their utilization strategies for bone tissue repair. Additionally, the paper discusses the future prospects of MPT-assisted bone tissue regeneration, aiming to provide insights and recommendations for optimizing material design in this field.
Collapse
Affiliation(s)
- Zehao Yu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Hao Wang
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Boda Ying
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiaohan Mei
- National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Dapeng Zeng
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Shibo Liu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Wenrui Qu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiangjun Pan
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Si Pu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Ruiyan Li
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Yanguo Qin
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| |
Collapse
|
27
|
Zhang J, Yang Y, Li K, Li J. Application of graphene oxide in tumor targeting and tumor therapy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2551-2576. [PMID: 37768314 DOI: 10.1080/09205063.2023.2265171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Graphene oxide (GO), as a kind of two-dimensional sp2 carbon nanomaterials, has attracted great attention in many fields in the past decade. Due to its unique physical and chemical properties, GO is showing great promise in the field of biomedicine. For GO, all the atoms on its surface are exposed to the surface with ultra-high specific surface area, and a variety of groups on the surface, such as carboxyl, hydroxyl and epoxy groups, can effectively bind/load various biomolecules. Due to the availability of these groups, GO also possesses excellent hydrophilicity and biocompatibility for the modification of the desired biocompatible molecules or polymers on the surface of GO. The nano-network structure and hydrophobicity of GO enable it to load a large number of hydrophobic drugs containing benzene rings and it has been widely used as a multi-functional nano-carrier for chemotherapeutic drug or gene delivery. This review article will give an in-depth overview of the synthesis methods of GO, the advantages and disadvantages of GO used in nano-drug delivery system, the research progress of GO as a stimulus-responsive nano-drug carrier, and the application of these intelligent systems in cancer treatment.
Collapse
Affiliation(s)
- Jia Zhang
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Yibo Yang
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Kun Li
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Jian Li
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| |
Collapse
|
28
|
Chen M, Shen Y, Pu Y, Zhou B, Bing J, Ge M, Zhu Y, Gao S, Wu W, Zhou M, Shi J. Biomimetic inducer enabled dual ferroptosis of tumor and M2-type macrophages for enhanced tumor immunotherapy. Biomaterials 2023; 303:122386. [PMID: 37977008 DOI: 10.1016/j.biomaterials.2023.122386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment which promotes the formation of the immunosuppressive tumor microenvironment (ITME) through multiple mechanisms, severely counteracting the therapeutic efficacy of immunotherapy. In this study, a novel biomimetic ferroptosis inducer (D@FMN-M) capable of ITME regulation for enhanced cancer ferroptosis immunotherapy is reported. Upon tumor accumulation of D@FMN-M, the intratumoral mild acidity triggers the biodegradation of Fe-enriched nanocarriers and the concurrent co-releases of dihydroartemisinin (DHA) and Fe3+. The released Fe3+ is reduced to Fe2+ by consuming intratumoral glutathione (GSH), which promotes abundant free radical generation via triggering Fenton and Fe2+-DHA reactions, thus inducing ferroptosis of both cancer cells and M2-type TAMs. Resultantly, the anticancer immune response is strongly activated by the massive tumor-associated antigens released by ferroptositic cancer cells. Also importantly, the ferroptosis-sensitive M2-type TAMs will be either damaged or gradually domesticated to ferroptosis-resistant M1 TAMs under the ferroptosis stress, favoring the normalization of ITME and finally amplifying cancer ferroptosis immunotherapeutic efficacy. This work provides a novel strategy for ferroptosis immunotherapy of solid tumors featuring TAMs infiltration and immunosuppression by inducing dual ferroptosis of tumor cells and M2-type TAMs.
Collapse
Affiliation(s)
- Mingqi Chen
- Endoscopy Center, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Yucui Shen
- Endoscopy Center, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Yinying Pu
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, PR China
| | - Bangguo Zhou
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Jinhong Bing
- Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Min Ge
- Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yaxuan Zhu
- Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Shuang Gao
- Endoscopy Center, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Wencheng Wu
- Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| | - Min Zhou
- Endoscopy Center, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China.
| | - Jianlin Shi
- Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| |
Collapse
|
29
|
Fu L, Qi C, Sun T, Huang K, Lin J, Huang P. Glucose oxidase-instructed biomineralization of calcium-based biomaterials for biomedical applications. EXPLORATION (BEIJING, CHINA) 2023; 3:20210110. [PMID: 38264686 PMCID: PMC10742215 DOI: 10.1002/exp.20210110] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/22/2023] [Indexed: 01/25/2024]
Abstract
In recent years, glucose oxidase (GOx) has aroused great research interest in the treatment of diseases related to abnormal glucose metabolisms like cancer and diabetes. However, as a kind of endogenous oxido-reductase, GOx suffers from poor stability and system toxicity in vivo. In order to overcome this bottleneck, GOx is encapsulated in calcium-based biomaterials (CaXs) such as calcium phosphate (CaP) and calcium carbonate (CaCO3) by using it as a biotemplate to simulate the natural biomineralization process. The biomineralized GOx holds improved stability and reduced side effects, due to the excellent bioactivity, biocompatibitliy, and biodegradability of CaXs. In this review, the state-of-the-art studies on GOx-mineralized CaXs are introduced with an emphasis on their application in various biomedical fields including disease diagnosis, cancer treatment, and diabetes management. The current challenges and future perspectives of GOx-mineralized CaXs are discussed, which is expected to promote further studies on these smart GOx-mineralized CaXs biomaterials for practical applications.
Collapse
Affiliation(s)
- Lian‐Hua Fu
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Laboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhenChina
| | - Chao Qi
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Laboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhenChina
| | - Tuanwei Sun
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Laboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhenChina
| | - Kai Huang
- Department of Materials Science and EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Jing Lin
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Laboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhenChina
| | - Peng Huang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Laboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhenChina
| |
Collapse
|
30
|
Wang Q, Xia G, Li J, Yuan L, Yu S, Li D, Yang N, Fan Z, Li J. Multifunctional Nanoplatform for NIR-II Imaging-Guided Synergistic Oncotherapy. Int J Mol Sci 2023; 24:16949. [PMID: 38069279 PMCID: PMC10707236 DOI: 10.3390/ijms242316949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Tumors are a major public health issue of concern to humans, seriously threatening the safety of people's lives and property. With the increasing demand for early and accurate diagnosis and efficient treatment of tumors, noninvasive optical imaging (including fluorescence imaging and photoacoustic imaging) and tumor synergistic therapies (phototherapy synergistic with chemotherapy, phototherapy synergistic with immunotherapy, etc.) have received increasing attention. In particular, light in the near-infrared second region (NIR-II) has triggered great research interest due to its penetration depth, minimal tissue autofluorescence, and reduced tissue absorption and scattering. Nanomaterials with many advantages, such as high brightness, great photostability, tunable photophysical properties, and excellent biosafety offer unlimited possibilities and are being investigated for NIR-II tumor imaging-guided synergistic oncotherapy. In recent years, many researchers have tried various approaches to investigate nanomaterials, including gold nanomaterials, two-dimensional materials, metal sulfide oxides, polymers, carbon nanomaterials, NIR-II dyes, and other nanomaterials for tumor diagnostic and therapeutic integrated nanoplatform construction. In this paper, the application of multifunctional nanomaterials in tumor NIR-II imaging and collaborative therapy in the past three years is briefly reviewed, and the current research status is summarized and prospected, with a view to contributing to future tumor therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhongxiong Fan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Q.W.); (G.X.); (J.L.); (L.Y.); (S.Y.); (D.L.); (N.Y.)
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Q.W.); (G.X.); (J.L.); (L.Y.); (S.Y.); (D.L.); (N.Y.)
| |
Collapse
|
31
|
Fu L, Lin CT, Karimi-Maleh H, Chen F, Zhao S. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing. BIOSENSORS 2023; 13:977. [PMID: 37998152 PMCID: PMC10669140 DOI: 10.3390/bios13110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
This review summarizes recent advances in leveraging localized surface plasmon resonance (LSPR) nanotechnology for sensitive cancer biomarker detection. LSPR arising from noble metal nanoparticles under light excitation enables the enhancement of various optical techniques, including surface-enhanced Raman spectroscopy (SERS), dark-field microscopy (DFM), photothermal imaging, and photoacoustic imaging. Nanoparticle engineering strategies are discussed to optimize LSPR for maximum signal amplification. SERS utilizes electromagnetic enhancement from plasmonic nanostructures to boost inherently weak Raman signals, enabling single-molecule sensitivity for detecting proteins, nucleic acids, and exosomes. DFM visualizes LSPR nanoparticles based on scattered light color, allowing for the ultrasensitive detection of cancer cells, microRNAs, and proteins. Photothermal imaging employs LSPR nanoparticles as contrast agents that convert light to heat, producing thermal images that highlight cancerous tissues. Photoacoustic imaging detects ultrasonic waves generated by LSPR nanoparticle photothermal expansion for deep-tissue imaging. The multiplexing capabilities of LSPR techniques and integration with microfluidics and point-of-care devices are reviewed. Remaining challenges, such as toxicity, standardization, and clinical sample analysis, are examined. Overall, LSPR nanotechnology shows tremendous potential for advancing cancer screening, diagnosis, and treatment monitoring through the integration of nanoparticle engineering, optical techniques, and microscale device platforms.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Wenzhou 325015, China;
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Engineering, Lebanese American University, Byblos 13-5053, Lebanon
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| |
Collapse
|
32
|
He R, Yang P, Liu A, Zhang Y, Chen Y, Chang C, Lu B. Cascade strategy for glucose oxidase-based synergistic cancer therapy using nanomaterials. J Mater Chem B 2023; 11:9798-9839. [PMID: 37842806 DOI: 10.1039/d3tb01325a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nanomaterial-based cancer therapy faces significant limitations due to the complex nature of the tumor microenvironment (TME). Starvation therapy is an emerging therapeutic approach that targets tumor cell metabolism using glucose oxidase (GOx). Importantly, it can provide a material or environmental foundation for other diverse therapeutic methods by manipulating the properties of the TME, such as acidity, hydrogen peroxide (H2O2) levels, and hypoxia degree. In recent years, this cascade strategy has been extensively applied in nanoplatforms for ongoing synergetic therapy and still holds undeniable potential. However, only a few review articles comprehensively elucidate the rational designs of nanoplatforms for synergetic therapeutic regimens revolving around the conception of the cascade strategy. Therefore, this review focuses on innovative cascade strategies for GOx-based synergetic therapy from representative paradigms to state-of-the-art reports to provide an instructive, comprehensive, and insightful reference for readers. Thereafter, we discuss the remaining challenges and offer a critical perspective on the further advancement of GOx-facilitated cancer treatment toward clinical translation.
Collapse
Affiliation(s)
- Ruixuan He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Peida Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Aoxue Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yueli Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yuqi Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Cong Chang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
33
|
Chen Z, Sun Y, Wang J, Zhou X, Kong X, Meng J, Zhang X. Dual-Responsive Triple-Synergistic Fe-MOF for Tumor Theranostics. ACS NANO 2023; 17:9003-9013. [PMID: 37116070 DOI: 10.1021/acsnano.2c10310] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The intelligent responsive drug delivery system has great application potential in cancer precision therapy. Although many antitumor methods have been developed based on drug delivery systems, most of them yet suffer from poor antitumor efficiency. In this project, a near-infrared and pH dual-response multimodal collaborative platform for diagnosis and treatment (PCN-DOX@PDA) was constructed. We used PCN-600 as a vehicle loaded with antineoplastic drugs and polydopamine (PDA). Under 633 nm laser irradiation, the ligand tetrakis(4-carboxyphenyl)porphyrin (TCPP) in PCN-600 can generate singlet oxygen (1O2) and kill tumor cells. PDA is used as photothermal agent of PTT. PCN-DOX@PDA achieves the intelligent release of antitumor drugs by responding to the weak acidity of the tumor microenvironment and thermal stimulation generated by NIR irradiation. In addition, since the central ion of PCN is Fe3+, PCN-DOX@PDA realizes the diagnosis and treatment of tumors through magnetic resonance imaging-mediated tumor chemotherapy and photothermal and photodynamic synergistic therapy. This triple synergistic strategy showed excellent biocompatibility and antitumor ability in in vivo experiments on a 4T1 tumor-bearing mouse model, indicating that PCN-DOX@PDA has a good development prospect in the field of precision cancer therapy and diversified biomedical applications.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yaoji Sun
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiawei Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiangjian Kong
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
34
|
Xu M, Zhang C, He S, Xu C, Wei X, Pu K. Activatable Immunoprotease Nanorestimulator for Second Near-Infrared Photothermal Immunotherapy of Cancer. ACS NANO 2023; 17:8183-8194. [PMID: 37122103 DOI: 10.1021/acsnano.2c12066] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Photothermal immunotherapy is a combinational cancer therapy modality, wherein the photothermal process can noninvasively ablate cancer and efficiently trigger cancer immunogenic cell death to ignite antitumor immunity. However, cancer cells can resist the cytotoxic lymphocyte-mediated antitumor effect via expressing serine protease inhibitory proteins (serpins) to deactivate proteolytic immunoproteases. Herein, we report a smart polymer nanoagonist (SPND) with second near-infrared (NIR-II) phototherapeutic ablation and tumor-specific immunoprotease granzyme B (GrB) restimulation for cancer photothermal immunotherapy. SPND has a semiconducting polymer backbone grafted with a small-molecule inhibitor of serpinB9 (Sb9i) via a glutathione (GSH)-cleavable linker. Once in the tumor, Sb9i can be specifically liberated from SPND to inhibit serpinB9, restimulating the activity of GrB to enhance cancer immunotherapy. Moreover, SPND induces photothermal therapy for direct tumor ablation and immunogenic cancer cell death (ICD) under NIR-II photoirradiation. Therefore, such a smart nanoagonist represents a way toward combination photothermal immunotherapy (PTI).
Collapse
Affiliation(s)
- Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Shasha He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
35
|
Feng T, Chen X, Zhao S, Cao M, Feng L, Shi S, Wang H, Liu T, Yuan Y, Wang N. Protocol for optical detection of iodide ions in aqueous environments using a zirconium(IV)-enhanced strategy. STAR Protoc 2023; 4:102238. [PMID: 37083322 PMCID: PMC10148225 DOI: 10.1016/j.xpro.2023.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Detection of radioactive iodide ions (I-) is important for protecting human beings from the hazards of radioactive pollution. Herein, we present a protocol for detecting I- using a zirconium(IV)-enhanced strategy. We describe steps for optimizing the I- detection approach, establishing standard curves, and finally applying the approach. The use of zirconium(IV) greatly improves the detection performance and endows this approach with an ultralow detection limit of 0.176 nM together with wide applicability in various aqueous environments. For complete details on the use and execution of this protocol, please refer to Feng et al. (2022).1.
Collapse
Affiliation(s)
- Tiantian Feng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Xuran Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Shilei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Meng Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Se Shi
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China.
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China.
| |
Collapse
|
36
|
Seo H, Jeon L, Kwon J, Lee H. High-Precision Synthesis of RNA-Loaded Lipid Nanoparticles for Biomedical Applications. Adv Healthc Mater 2023; 12:e2203033. [PMID: 36737864 DOI: 10.1002/adhm.202203033] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The recent development of RNA-based therapeutics in delivering nucleic acids for gene editing and regulating protein translation has led to the effective treatment of various diseases including cancer, inflammatory and genetic disorder, as well as infectious diseases. Among these, lipid nanoparticles (LNP) have emerged as a promising platform for RNA delivery and have shed light by resolving the inherent instability issues of naked RNA and thereby enhancing the therapeutic potency. These LNP consisting of ionizable lipid, helper lipid, cholesterol, and poly(ethylene glycol)-anchored lipid can stably enclose RNA and help them release into the cells' cytosol. Herein, the significant progress made in LNP research starting from the LNP constituents, formulation, and their diverse applications is summarized first. Moreover, the microfluidic methodologies which allow precise assembly of these newly developed constituents to achieve LNP with controllable composition and size, high encapsulation efficiency as well as scalable production are highlighted. Furthermore, a short discussion on current challenges as well as an outlook will be given on emerging approaches to resolving these issues.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Leekang Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Jaeyeong Kwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| |
Collapse
|
37
|
Liu X, Zhang H, Yan B, Yeung KWK, Liao Y, Ouyang L, Liu X. On-Off Phagocytosis and Switchable Macrophage Activation Stimulated with NIR for Infected Percutaneous Tissue Repair of Polypyrrole-Coated Sulfonated PEEK. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205048. [PMID: 36515274 PMCID: PMC9929275 DOI: 10.1002/advs.202205048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Intelligent control of the immune response is essential for obtaining percutaneous implants with good sterilization and tissue repair abilities. In this study, polypyrrole (Ppy) nanoparticles enveloping a 3D frame of sulfonated polyether ether ketone (SP) surface are constructed, which enhance the surface modulus and hardness of the sulfonated layer by forming a cooperative structure of simulated reinforced concrete and exhibit a superior photothermal effect. Ppy-coated SP could quickly accumulate heat on the surface by responding to 808 nm near-infrared (NIR) light, thereby killing bacteria, and destroying biofilms. Under NIR stimulation, the phagocytosis and M1 activation of macrophages cultured on Ppy-coated SP are enhanced by activating complement 3 and its receptor, CD11b. Phagocytosis and M1 activation are impaired along with abolishment of NIR stimulation in the Ppy-coated SP group, which is favorable for tissue repair. Ppy-coated SP promotes Collagen-I, vascular endothelial growth factor, connective tissue growth factor, and α-actin (Acta2) expression by inducing M2 polarization owing to its higher surface modulus. Overall, Ppy-coated SP with enhanced mechanical properties could be a good candidate for clinical percutaneous implants through on-off phagocytosis and switchable macrophage activation stimulated with NIR.
Collapse
Affiliation(s)
- Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024China
| | - Bangcheng Yan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Kelvin W. K. Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaGuangdong Engineering Technology Research Center for Orthopaedic Trauma RepairDepartment of Orthopaedics and TraumatologyThe University of Hong Kong Shenzhen HospitalShenzhen518053China
| | - Yun Liao
- Department of PharmacyTongren HospitalShanghai Jiao Tong University School of MedicineShanghai200336China
| | - Liping Ouyang
- Department of PharmacyTongren HospitalShanghai Jiao Tong University School of MedicineShanghai200336China
- Hongqiao International Institute of MedicineShanghai Jiao Tong University School of MedicineShanghai200336China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024China
| |
Collapse
|
38
|
Zhang L, Oudeng G, Wen F, Liao G. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res 2022; 26:61. [PMID: 36348441 PMCID: PMC9641873 DOI: 10.1186/s40824-022-00308-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/16/2022] [Indexed: 11/10/2022] Open
Abstract
Near-infrared-II (NIR-II, 1000–1700 nm) light-triggered photothermal therapy (PTT) has been regarded as a promising candidate for cancer treatment, but PTT alone often fails to achieve satisfactory curative outcomes. Hollow nanoplatforms prove to be attractive in the biomedical field owing to the merits including good biocompatibility, intrinsic physical-chemical nature and unique hollow structures, etc. On one hand, hollow nanoplatforms themselves can be NIR-II photothermal agents (PTAs), the cavities of which are able to carry diverse therapeutic units to realize multi-modal therapies. On the other hand, NIR-II PTAs are capable of decorating on the surface to combine with the functions of components encapsulated inside the hollow nanoplatforms for synergistic cancer treatment. Notably, PTAs generally can serve as good photoacoustic imaging (PAI) contrast agents (CAs), which means such kind of hollow nanoplatforms are also expected to be multifunctional all-in-one nanotheranostics. In this review, the recent advances of NIR-II hollow nanoplatforms for single-modal PTT, dual-modal PTT/photodynamic therapy (PDT), PTT/chemotherapy, PTT/catalytic therapy and PTT/gas therapy as well as multi-modal PTT/chemodynamic therapy (CDT)/chemotherapy, PTT/chemo/gene therapy and PTT/PDT/CDT/starvation therapy (ST)/immunotherapy are summarized for the first time. Before these, the typical synthetic strategies for hollow structures are presented, and lastly, potential challenges and perspectives related to these novel paradigms for future research and clinical translation are discussed.
Collapse
|
39
|
Wang M, Chang M, Zheng P, Sun Q, Wang G, Lin J, Li C. A Noble AuPtAg-GOx Nanozyme for Synergistic Tumor Immunotherapy Induced by Starvation Therapy-Augmented Mild Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202332. [PMID: 36156451 PMCID: PMC9631081 DOI: 10.1002/advs.202202332] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/14/2022] [Indexed: 06/16/2023]
Abstract
Notwithstanding immune checkpoint blocking (ICB) therapy has made eminent clinical breakthroughs, overcoming immunologically "cold" tumors remains challenging. Here, a cascade potentiated nanomodulator AuPtAg-GOx is engineered for boosting immune responsiveness. Upon 1064 nm laser irradiation, AuPtAg-mediated mild photothermal therapy (PTT) activates cytotoxic T lymphocytes and reverses the immunogenic "cold" tumor microenvironment. Further, to amplify the thermal sensitivity of tumor cells, glucose oxidase (GOx) is introduced to suppress the production of heat shock proteins, thereby promoting mild photothermal therapy. Complementarily, AuPtAg nanozymes with catalase-like activity can ameliorate tumor hypoxia, significantly improving the GOx activity. As a result, the combination of AuPtAg-GOx with self-augmented photothermal ability and PD-L1 antibody can further escalate the antitumor efficacy. The AuPtAg-GOx-based synergistic starvation therapy, mild PTT, and immunotherapy cascade enhancement therapy strategy can be a favorable tool to effectively kill cancer cells.
Collapse
Affiliation(s)
- Man Wang
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Mengyu Chang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Pan Zheng
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Guangqiang Wang
- Department of Respiratory MedicineQilu HospitalShandong UniversityQingdao266071P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| |
Collapse
|
40
|
Wu W, Pu Y, Zhou B, Shen Y, Gao S, Zhou M, Shi J. Photoactivatable Immunostimulatory Nanomedicine for Immunometabolic Cancer Therapy. J Am Chem Soc 2022; 144:19038-19050. [PMID: 36215038 DOI: 10.1021/jacs.2c07872] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
A rationally designed immunostimulant (CC@SiO2-PLG) with a photoactivatable immunotherapeutic function for synergetic tumor therapy is reported. This CC@SiO2-PLG nanoplatform comprises catalase and a photosensitizer (Ce6) co-encapsulated in a silica capsule, to which an immunostimulant is conjugated through a reactive oxygen species-cleavable linker. After accumulating in tumor tissue, CC@SiO2-PLG generates O2 to relieve tumor hypoxia and promotes the production of singlet oxygen (1O2) upon laser irradiation, resulting in not only tumor destruction but also the release of tumor-associated antigens (TAAs). Simultaneously, the linker breakage by the photoproduced 1O2 leads to the remote-controlled release of conjugated indoleamine 2,3-dioxygenase (IDO) inhibitor from CC@SiO2-PLG and consequent immunosuppressive tumor microenvironment reversion. The released TAAs in conjunction with the inhibition of the IDO-mediated tryptophan/kynurenine metabolic pathway induced a boosted antitumor immune response to the CC@SiO2-PLG-mediated phototherapy. Therefore, the growth of primary/distant tumors and lung metastases in a mouse xenograft model was greatly inhibited, which was not achievable by phototherapy alone.
Collapse
Affiliation(s)
- Wencheng Wu
- The State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Shanghai Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Yinying Pu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Bangguo Zhou
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, P. R. China
| | - Yucui Shen
- Digestive Endoscopy Center, Shanghai Fourth People's Hospital to Tongji University, Shanghai 200081, P. R. China
| | - Shuang Gao
- Digestive Endoscopy Center, Shanghai Fourth People's Hospital to Tongji University, Shanghai 200081, P. R. China
| | - Min Zhou
- Digestive Endoscopy Center, Shanghai Fourth People's Hospital to Tongji University, Shanghai 200081, P. R. China
| | - Jianlin Shi
- The State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Shanghai Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
41
|
Xu Y, Liu SY, Zeng L, Ma H, Zhang Y, Yang H, Liu Y, Fang S, Zhao J, Xu Y, Ashby CR, He Y, Dai Z, Pan Y. An Enzyme-Engineered Nonporous Copper(I) Coordination Polymer Nanoplatform for Cuproptosis-Based Synergistic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204733. [PMID: 36054475 DOI: 10.1002/adma.202204733] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Cuproptosis, a newly identified form of regulated cell death that is copper-dependent, offers great opportunities for exploring the use of copper-based nanomaterials inducing cuproptosis for cancer treatment. Here, a glucose oxidase (GOx)-engineered nonporous copper(I) 1,2,4-triazolate ([Cu(tz)]) coordination polymer (CP) nanoplatform, denoted as GOx@[Cu(tz)], for starvation-augmented cuproptosis and photodynamic synergistic therapy is developed. Importantly, the catalytic activity of GOx is shielded in the nonporous scaffold but can be "turned on" for efficient glucose depletion only upon glutathione (GSH) stimulation in cancer cells, thereby proceeding cancer starvation therapy. The depletion of glucose and GSH sensitizes cancer cells to the GOx@[Cu(tz)]-mediated cuproptosis, producing aggregation of lipoylated mitochondrial proteins, the target of copper-induced toxicity. The increased intracellular hydrogen peroxide (H2 O2 ) levels, due to the oxidation of glucose, activates the type I photodynamic therapy (PDT) efficacy of GOx@[Cu(tz)]. The in vivo experimental results indicate that GOx@[Cu(tz)] produces negligible systemic toxicity and inhibits tumor growth by 92.4% in athymic mice bearing 5637 bladder tumors. This is thought to be the first report of a cupreous nanomaterial capable of inducing cuproptosis and cuproptosis-based synergistic therapy in bladder cancer, which should invigorate studies pursuing rational design of efficacious cancer therapy strategies based on cuproptosis.
Collapse
Affiliation(s)
- Yuzhi Xu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Yang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hansu Ma
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huihui Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuchen Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shuo Fang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jing Zhao
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yunsheng Xu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zong Dai
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
42
|
Dual-phase injectable thermosensitive hydrogel incorporating Fe3O4@PDA with pH and NIR triggered drug release for synergistic tumor therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
43
|
Wang F, Zhu J, Wang Y, Li J. Recent Advances in Engineering Nanomedicines for Second Near-Infrared Photothermal-Combinational Immunotherapy. NANOMATERIALS 2022; 12:nano12101656. [PMID: 35630880 PMCID: PMC9144442 DOI: 10.3390/nano12101656] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022]
Abstract
Immunotherapy has emerged as one of the major strategies for cancer treatment. Unlike conventional therapeutic methods, immunotherapy can treat both primary and distant metastatic tumors through triggering systematic antitumor immune responses and can even prevent tumor recurrence after causing the formation of immune memory. However, immunotherapy still has the issues of low patient response rates and severe immune-related adverse events in clinical practices. In this regard, the combination of nanomedicine-mediated therapy with immunotherapy can modulate a tumor immunosuppressive microenvironment and thus amplify antitumor immunity. In particular, second near-infrared (NIR-II) photothermal therapy (PTT), which utilizes light conversions to generate heat for killing cancer cells, has shown unique advantages in combining with immunotherapy. In this review, the recent progress of engineering nanomedicines for NIR-II PTT combinational immunotherapy is summarized. The role of nanomedicine-mediated NIR-II PTT in inducing immunogenic cell death and reprogramming the tumor immunosuppressive microenvironment for facilitating immunotherapy are highlighted. The development of NIR-II-absorbing organic and inorganic nonmetal and inorganic metal nanomedicines for the NIR-II PTT combinational immunotherapy of cancer is also introduced in detail. Lastly, the current challenges and future perspectives of these nanomedicines for combinational immunotherapy are proposed.
Collapse
Affiliation(s)
- Fengshuo Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| | - Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China;
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Correspondence: (Y.W.); (J.L.)
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
- Correspondence: (Y.W.); (J.L.)
| |
Collapse
|