1
|
Liu J, Tan F, Cao T, Yu R, Wang Y. Tunable aptamer-MXene sensing interface for label-free and real-time detection of toxic pollutants in water samples. Biosens Bioelectron 2025; 271:117096. [PMID: 39731820 DOI: 10.1016/j.bios.2024.117096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Stable and low-cost field-effect transistor (FET)-based biosensors are vital for the on-site detection of toxic pollutants in environmental monitoring applications. In this study, a tunable aptamer-MXene sensing interface was constructed to develop renewable FET biosensors. This was achieved through the reversible disulfide bond (-S-S-) reaction between the SH-Ti3C2Tx film and thiolated aptamer. Ti3C2Tx film was prepared using layer-by-layer assembly of Ti3C2Tx flakes and used as the conductance channel of this FET device. Then, dithiothreitol modification was carried out through the formation of Ti-S bonds. The reversible -S-S- bonds enabled the repeated regeneration of SH-Ti3C2Tx, which allowed deferent aptamers to be immobilized. Therefore, multiple targets could be detected with the same FET device, avoiding device-to-device variations. Three specific aptamers for microcystin-LR, β-lactam-resistant gene (β-ARG), and Hg2+ were adopted to demonstrate this characteristic. The prepared aptamer-MXene FET biosensor showed high sensitivity, repeatability and stability. Furthermore, a strong real-time response was observed upon exposure to the targets. This study demonstrated that constructing a tunable aptamer-MXene sensing interface is an efficient strategy for constructing cheap and renewable aptamer-MXene FET biosensors for the label-free and real-time detection of toxic pollutants.
Collapse
Affiliation(s)
- Jinghua Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Tianhao Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Runqiang Yu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Romagnoli A, Rexha J, Perta N, Di Cristofano S, Borgognoni N, Venturini G, Pignotti F, Raimondo D, Borsello T, Di Marino D. Peptidomimetics design and characterization: Bridging experimental and computer-based approaches. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:279-327. [PMID: 40122649 DOI: 10.1016/bs.pmbts.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Peptidomimetics, designed to mimic peptide biological activity with more drug-like properties, are increasingly pivotal in medicinal chemistry. They offer enhanced systemic delivery, cell penetration, target specificity, and protection against peptidases when compared to their native peptide counterparts. Already utilized in treating diverse diseases like neurodegenerative disorders, cancer and infectious diseases, their future in medicine seems bright, with many peptidomimetics in clinical trials or development stages. Peptidomimetics are well-suited for addressing disturbed protein-protein interactions (PPIs), which often underlie various pathologies. Structural biology and computational methods like molecular dynamics simulations facilitate rational design, whereas machine learning algorithms accelerate protein structure prediction, enabling efficient drug development. Experimental validation via various spectroscopic, biophysical, and biochemical assays confirms computational predictions and guides further optimization. Peptidomimetics, with their tailored constrained structures, represent a frontier in drug design focused on targeting PPIs. In this overview, we present a comprehensive landscape of peptidomimetics, encompassing perspectives on involvement in pathologies, chemical strategies, and methodologies for their characterization, spanning in silico, in vitro and in cell approaches. With increasing interest from pharmaceutical sectors, peptidomimetics hold promise for revolutionizing therapeutic approaches, marking a new era of precision drug discovery.
Collapse
Affiliation(s)
- Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy.
| | - Jesmina Rexha
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | - Nunzio Perta
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | | | - Noemi Borgognoni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | - Gloria Venturini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Francesco Pignotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Domenico Raimondo
- Department of Molecular Medicine, Spienza University of Rome, Rome, Italy; National Biodiversity Future Center (NBFC), Rome, Italy
| | - Tiziana Borsello
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| |
Collapse
|
3
|
Lozano-Chamizo L, Márquez C, Marciello M, Galdon JC, de la Fuente-Zapico E, Martinez-Mazón P, Gonzalez-Rumayor V, Filice M, Gamiz F. High enhancement of sensitivity and reproducibility in label-free SARS-CoV-2 detection with graphene field-effect transistor sensors through precise surface biofunctionalization control. Biosens Bioelectron 2024; 250:116040. [PMID: 38290380 DOI: 10.1016/j.bios.2024.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
The COVID-19 pandemic has taught us valuable lessons, especially the urgent need for a widespread, rapid and sensitive diagnostic tool. To this, the integration of bidimensional nanomaterials, particularly graphene, into point-of-care biomedical devices is a groundbreaking strategy able to potentially revolutionize the diagnostic landscape. Despite advancements in the fabrication of these biosensors, the relationship between their surface biofunctionalization and sensing performance remains unclear. Here, we demonstrate that the combination of careful sensor fabrication and its precise surface biofunctionalization is crucial for exalting the sensing performances of 2D biosensors. Specifically, we have biofunctionalized Graphene Field-Effect Transistor (GFET) sensors surface through different biochemical reactions to promote either random/heterogeneous or oriented/homogeneous immobilization of the Anti-SARS-CoV-2 spike protein antibody. Each strategy was thoroughly characterized by in-silico simulations, physicochemical and biochemical techniques and electrical characterization. Subsequently, both biosensors were tested in the label-free direct titration of SARS-CoV-2 virus in simulated clinical samples, avoiding sample preprocessing and within short timeframes. Remarkably, the oriented GFET biosensor exhibited significantly enhanced reproducibility and responsiveness, surpassing the detection sensitivity of conventional non-oriented GFET by more than twofold. This breakthrough not only involves direct implications for COVID-19 surveillance and next pandemic preparedness but also clarify an unexplored mechanistic dimension of biosensor research utilizing 2D-nanomaterials.
Collapse
Affiliation(s)
- Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040, Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, E-28029, Madrid, Spain; Atrys Health, E-28001, Madrid, Spain
| | - Carlos Márquez
- Nanoelectronics Research Group, Department of Electronics, CITIC-UGR (Research Center for Information and Communication Technologies), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012, Granada, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040, Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - José Carlos Galdon
- Nanoelectronics Research Group, Department of Electronics, CITIC-UGR (Research Center for Information and Communication Technologies), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012, Granada, Spain
| | - Elsa de la Fuente-Zapico
- Nanoelectronics Research Group, Department of Electronics, CITIC-UGR (Research Center for Information and Communication Technologies), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012, Granada, Spain
| | - Paula Martinez-Mazón
- Nanoelectronics Research Group, Department of Electronics, CITIC-UGR (Research Center for Information and Communication Technologies), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012, Granada, Spain
| | | | - Marco Filice
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040, Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| | - Francisco Gamiz
- Nanoelectronics Research Group, Department of Electronics, CITIC-UGR (Research Center for Information and Communication Technologies), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012, Granada, Spain.
| |
Collapse
|
4
|
Sengupta J, Hussain CM. Graphene transistor-based biosensors for rapid detection of SARS-CoV-2. Bioelectrochemistry 2024; 156:108623. [PMID: 38070365 DOI: 10.1016/j.bioelechem.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Field-effect transistor (FET) biosensors use FETs to detect changes in the amount of electrical charge caused by biomolecules like antigens and antibodies. COVID-19 can be detected by employing these biosensors by immobilising bio-receptor molecules that bind to the SARS-CoV-2 virus on the FET channel surface and subsequent monitoring of the changes in the current triggered by the virus. Graphene Field-effect Transistor (GFET)-based biosensors utilise graphene, a two-dimensional material with high electrical conductivity, as the sensing element. These biosensors can rapidly detect several biomolecules including the SARS-CoV-2 virus, which is responsible for COVID-19. GFETs are ideal for real-time infectious illness diagnosis due to their great sensitivity and specificity. These graphene transistor-based biosensors could revolutionise clinical diagnostics by generating fast, accurate data that could aid pandemic management. GFETs can also be integrated into point-of-care (POC) diagnostic equipment. Recent advances in GFET-type biosensors for SARS-CoV-2 detection are discussed here, along with their associated challenges and future scope.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, NJ, USA.
| |
Collapse
|
5
|
Li D, Sun C, Zhuang P, Mei X. Revolutionizing SARS-CoV-2 omicron variant detection: Towards faster and more reliable methods. Talanta 2024; 266:124937. [PMID: 37481886 DOI: 10.1016/j.talanta.2023.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The emergence of the highly contagious Omicron variant of SARS-CoV-2 has inflicted significant damage during the ongoing COVID-19 pandemic. This new variant's significant sequence changes and mutations in both proteins and RNA have rendered many existing rapid detection methods ineffective in identifying it accurately. As the world races to control the spread of the virus, researchers are urgently exploring new diagnostic strategies to specifically detect Omicron variants with high accuracy and sensitivity. In response to this challenge, we have compiled a comprehensive overview of the latest reported rapid detection techniques. These techniques include strategies for the simultaneous detection of multiple SARS-CoV-2 variants and methods for selectively distinguishing Omicron variants. By categorizing these diagnostic techniques based on their targets, which encompass protein antigens and nucleic acids, we aim to offer a comprehensive understanding of the utilization of various recognition elements in identifying these targets. We also highlight the advantages and limitations of each approach. Our work is crucial in providing a more nuanced understanding of the challenges and opportunities in detecting Omicron variants and emerging variants.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cai Sun
- AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang, China
| | - Pengfei Zhuang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xifan Mei
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
6
|
SeyedAlinaghi S, Afsahi AM, Mirzapour P, Afzalian A, Shahidi R, Dashti M, Ghasemzadeh A, Paranjkhoo P, Parsaei Z, Pashaei A, Mohammadi P, Najafi MS, Mahrokhi S, Matini P, Moradi A, Karimi A, Afroughi S, Mehraeen E, Dadras O. Comparison of Omicron and Delta Variants of SARS-CoV-2: A Systematic Review of Current Evidence. Infect Disord Drug Targets 2024; 24:e050324227686. [PMID: 38445691 DOI: 10.2174/0118715265279242240216114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) caused the outbreak of coronavirus disease 2019 (COVID-19) in late 2019 in Wuhan, China. In early 2020, the disease spread rapidly around the world. Since the pandemic, SARS-CoV-2 has evolved dramatically into a wide variety of variants endowed with devastating properties. As of March 6, 2022, five SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron strains have been identified. Due to the crucial importance of understanding the differences between the Omicron and Delta variants, this systematic review was conducted. METHODS This systematic review investigated new variants of Omicron SARS-CoV-2 based on current studies. Online databases were searched for English articles as of January 03, 2023. Selection of publications was a two-step process of title/abstract and full-text assessment against eligibility criteria. The relevant data from the included articles were systematically collected and organized in a designed table for analysis. To ensure the quality of the review, the PRISMA checklist and Newcastle- Ottawa Scale (NOS) of quality assessment were utilized. RESULTS The data extracted from 58 articles were analyzed, including 10003 pieces of evidence. Lower risk of hospitalization, ICU admission, and mortality after vaccination were reported in the Omicron variant compared to the Delta variant. Additionally, the Delta variant led to more severe clinical symptoms in comparison to the Omicron variant. CONCLUSION The Omicron variant of SARS-CoV-2 results in less severe disease outcomes as compared to Delta. Nevertheless, it remains crucial to maintain ongoing monitoring, implement containment measures, and adapt vaccination protocols to effectively address the evolving variants.
Collapse
Affiliation(s)
- SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Masoud Afsahi
- Department of Radiology, School of Medicine, University of California, San Diego (UCSD), California, USA
| | - Pegah Mirzapour
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Afzalian
- School of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Shahidi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Dashti
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Ghasemzadeh
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Paranjkhoo
- Turpanjian College of Health Sciences, American University of Armenia, Yerevan, 0019, Armenia
| | - Zahra Parsaei
- Health Information Technology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Pashaei
- School of Nursing, University of British Columbia, Vancouver, British Columbia, Canada
| | - Parsa Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadeq Najafi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Mahrokhi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Matini
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Moradi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaiman Afroughi
- Department of Biostatistics and Epidemiology, School of Health and Social Determinants of Health Research Center, Postal Code 7591875114, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Omid Dadras
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, 5007, Norway
| |
Collapse
|
7
|
Hao L, Li X, Liang H, Lei W, Yang W, Zhang B. Biosensors based on potent miniprotein binder for sensitive testing of SARS-CoV‑2 variants of concern. Mikrochim Acta 2023; 191:38. [PMID: 38110824 DOI: 10.1007/s00604-023-06113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
The miniprotein binder TRI2-2 was employed as an antibody alternative to build a single antibody-coupled TRI2-2 based gold nanoparticle-based lateral flow immunoassay (AT-GLFIA) biosensor. The biosensor provides high specificity and affinity binding between TRI2-2 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) spike antigen receptor binding domain (S-RBD). It also enables rapid testing of wild-type (WT), B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), P.1 (Gamma), and B.1.1.529 (Omicron) SARS-CoV-2 S-RBD and is at least ~ 16-fold more sensitive than conventional antibody pair-based GLFIA (AP-GLFIA). Besides, we developed a wireless micro-electrochemical assay (WMECA) biosensor based on the TRI2-2, which demonstrates an excellent VOCs testing capability at the pg mL-1 level. Overall, our results demonstrate that integrating miniprotein binders into conventional immunoassay systems is a promising design for improving the testing capabilities of such systems without hard-to-obtain antibody pair, complex reporter design, laborious signal amplification strategies, or specific instrumentation.
Collapse
Affiliation(s)
- Liangwen Hao
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xue Li
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Hongying Liang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wenjing Lei
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
8
|
Jiang S, Qian S, Zhu S, Lu J, Hu Y, Zhang C, Geng Y, Chen X, Guo Y, Chen Z, Pu J, Guo Z, Liu S. A Point-of-Care Testing Device Utilizing Graphene-Enhanced Fiber Optic SPR Sensor for Real-Time Detection of Infectious Pathogens. BIOSENSORS 2023; 13:1029. [PMID: 38131789 PMCID: PMC10741924 DOI: 10.3390/bios13121029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Timely detection of highly infectious pathogens is essential for preventing and controlling public health risks. However, most traditional testing instruments require multiple tedious steps and ultimately testing in hospitals and third-party laboratories. The sample transfer process significantly prolongs the time to obtain test results. To tackle this aspect, a portable fiber optic surface plasmon resonance (FO-SPR) device was developed for the real-time detection of infectious pathogens. The portable device innovatively integrated a compact FO-SPR sensing component, a signal acquisition and processing system, and an embedded power supply unit. A gold-plated fiber is used as the FO-SPR sensing probe. Compared with traditional SPR sensing systems, the device is smaller size, lighter weight, and higher convenience. To enhance the detection capacity of pathogens, a monolayer graphene was coated on the sensing region of the FO-SPR sensing probe. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was used to evaluate the performance of the portable device. The device can accurately detect the SARS-CoV-2 spike S1 protein in phosphate-buffered saline (PBS) and artificial saliva within just 20 min, and the device successfully detected cultured SARS-CoV-2 virus. Furthermore, the FO-SPR probe has long-term stability, remaining stable for up to 8 days. It could distinguish between the SARS-CoV-2 spike protein and the MERS-CoV spike protein. Hence, this FO-SPR device provides reliable, rapid, and portable access to test results. It provides a promising point-of-care testing (POCT) tool for on-site screening of infectious pathogens.
Collapse
Affiliation(s)
- Shiyu Jiang
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
- School of Electronic Engineering, Heilongjiang University, Harbin 150080, China
| | - Siyu Qian
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| | - Shunning Zhu
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| | - Jinxin Lu
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| | - Yunxin Hu
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
- School of Electronic Engineering, Heilongjiang University, Harbin 150080, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.Z.); (Z.C.); (J.P.); (Z.G.)
| | - Yikai Geng
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| | - Xuefeng Chen
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| | - Ying Guo
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| | - Zhaoliang Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.Z.); (Z.C.); (J.P.); (Z.G.)
| | - Jie Pu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.Z.); (Z.C.); (J.P.); (Z.G.)
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.Z.); (Z.C.); (J.P.); (Z.G.)
| | - Shengchun Liu
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| |
Collapse
|
9
|
Perta N, Torrieri Di Tullio L, Cugini E, Fattibene P, Rapanotti MC, Borromeo I, Forni C, Malaspina P, Cacciamani T, Di Marino D, Rossi L, De Luca A. Hydroxytyrosol Counteracts Triple Negative Breast Cancer Cell Dissemination via Its Copper Complexing Properties. BIOLOGY 2023; 12:1437. [PMID: 37998036 PMCID: PMC10669715 DOI: 10.3390/biology12111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Polyphenols have gained increasing attention for their therapeutic potential, particularly in conditions like cancer, due to their established antioxidant and anti-inflammatory properties. Recent research highlights their ability to bind to transition metals, such as copper. This is particularly noteworthy given the key role of copper both in the initiation and progression of cancer. Copper can modulate the activity of kinases required for the epithelial-mesenchymal transition (EMT), a process fundamental to tumor cell dissemination. We have previously demonstrated the copper-binding capacity of oleuropein, a secoiridoid found in Olea europaea. In the present study, we investigated the effect of hydroxytyrosol, the primary oleuropein metabolite, on the metastatic potential of three triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and SUM159). We found that hydroxytyrosol modulated the intracellular copper levels, influencing both the epithelial and mesenchymal markers, by downregulating copper-dependent AKT phosphorylation, a member of the EMT signaling cascade, through Western blot, RT-qPCR, and immunofluorescence. Indeed, by optical spectra, EPR, and in silico approaches, we found that hydroxytyrosol formed a complex with copper, acting as a chelating agent, thus regulating its homeostasis and affecting the copper-dependent signaling cascades. While our results bring to light the copper-chelating properties of hydroxytyrosol capable of countering tumor progression, they also provide further confirmation of the key role of copper in promoting the aggressiveness of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Nunzio Perta
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (N.P.); (T.C.); (D.D.M.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Laura Torrieri Di Tullio
- Istituto Superiore di Sanità, Core Facilities, Viale Regina Elena, 299, 00185 Rome, Italy; (L.T.D.T.); (P.F.)
- PhD School in Biochemistry, Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “Sapienza”, Viale Regina Elena, 332, 00185 Rome, Italy
| | - Elisa Cugini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford, 8, 00133 Rome, Italy; (E.C.); (M.C.R.)
| | - Paola Fattibene
- Istituto Superiore di Sanità, Core Facilities, Viale Regina Elena, 299, 00185 Rome, Italy; (L.T.D.T.); (P.F.)
| | - Maria Cristina Rapanotti
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford, 8, 00133 Rome, Italy; (E.C.); (M.C.R.)
| | - Ilaria Borromeo
- PhD School in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Cinzia Forni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.F.); (P.M.); (L.R.)
| | - Patrizia Malaspina
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.F.); (P.M.); (L.R.)
| | - Tiziana Cacciamani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (N.P.); (T.C.); (D.D.M.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (N.P.); (T.C.); (D.D.M.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.F.); (P.M.); (L.R.)
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.F.); (P.M.); (L.R.)
| |
Collapse
|
10
|
Kausar A, Ahmad I, Zhao T, Aldaghri O, Ibnaouf KH, Eisa MH. Graphene Nanocomposites as Innovative Materials for Energy Storage and Conversion-Design and Headways. Int J Mol Sci 2023; 24:11593. [PMID: 37511354 PMCID: PMC10380328 DOI: 10.3390/ijms241411593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This review mainly addresses applications of polymer/graphene nanocomposites in certain significant energy storage and conversion devices such as supercapacitors, Li-ion batteries, and fuel cells. Graphene has achieved an indispensable position among carbon nanomaterials owing to its inimitable structure and features. Graphene and its nanocomposites have been recognized for providing a high surface area, electron conductivity, capacitance, energy density, charge-discharge, cyclic stability, power conversion efficiency, and other advanced features in efficient energy devices. Furthermore, graphene-containing nanocomposites have superior microstructure, mechanical robustness, and heat constancy characteristics. Thus, this state-of-the-art article offers comprehensive coverage on designing, processing, and applying graphene-based nanoarchitectures in high-performance energy storage and conversion devices. Despite the essential features of graphene-derived nanocomposites, several challenges need to be overcome to attain advanced device performance.
Collapse
Affiliation(s)
- Ayesha Kausar
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Ishaq Ahmad
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Tingkai Zhao
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - Khalid H Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| |
Collapse
|
11
|
Papi M, De Spirito M, Palmieri V. Nanotechnology in the COVID-19 era: Carbon-based nanomaterials as a promising solution. CARBON 2023; 210:118058. [PMID: 37151958 PMCID: PMC10148660 DOI: 10.1016/j.carbon.2023.118058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has led to collaboration between nanotechnology scientists, industry stakeholders, and clinicians to develop solutions for diagnostics, prevention, and treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Nanomaterials, including carbon-based materials (CBM) such as graphene and carbon nanotubes, have been studied for their potential in viral research. CBM unique effects on microorganisms, immune interaction, and sensitivity in diagnostics have made them a promising subject of SARS-CoV-2 research. This review discusses the interaction of CBM with SARS-CoV-2 and their applicability, including CBM physical and chemical properties, the known interactions between CBM and viral components, and the proposed prevention, treatment, and diagnostics uses.
Collapse
Affiliation(s)
- Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| |
Collapse
|