1
|
Huang S, Nunez J, Toresco DL, Wen C, Slotabec L, Wang H, Zhang H, Rouhi N, Adenawoola MI, Li J. Alterations in the inflammatory homeostasis of aging-related cardiac dysfunction and Alzheimer's diseases. FASEB J 2025; 39:e70303. [PMID: 39758048 PMCID: PMC12168275 DOI: 10.1096/fj.202402725rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) is well known among the elderly and has a profound impact on both patients and their families. Increasing research indicates that AD is a systemic disease, with a strong connection to cardiovascular disease. They share common genetic factors, such as mutations in the presenilin (PS1 and PS2) and the apolipoprotein E (APOE) genes. Cardiovascular conditions can lead to reduced cerebral blood flow and increased oxidative stress. These factors contribute to the accumulation of Aβ plaques and the formation of abnormal tau protein tangles, which are both key pathological features of AD. Additionally, Aβ deposits and abnormal protein responses have been observed in cardiomyocytes as well as in peripheral tissues. The toxic Aβ deposition intensifies damage to the microvascular structure associated with blood-brain barrier disruption and the initiation of neuroinflammation, which may accelerate the onset of neurocognitive deficits and cardiovascular dysfunction. Thus, we discuss the main mechanisms linking AD and cardiac dysfunction to enhance our understanding of these conditions. Ultimately, insights into the brain-heart axis may help us develop effective treatment strategies in the future.
Collapse
Affiliation(s)
- Shuli Huang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jeremiah Nunez
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| | - Dai Lan Toresco
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| | - Changhong Wen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Haibei Zhang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michael I. Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
2
|
Enns CA, Zhang RH, Jue S, Zhang AS. Hepcidin expression is associated with increased γ-secretase-mediated cleavage of neogenin in the liver. J Biol Chem 2024; 300:107927. [PMID: 39454953 PMCID: PMC11599459 DOI: 10.1016/j.jbc.2024.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Neogenin (NEO1) is a ubiquitously expressed transmembrane protein. It interacts with hemojuvelin (HJV). Both NEO1 and HJV play pivotal roles in iron homeostasis by inducing hepcidin expression in the liver. Our previous studies demonstrated that this process depends on Neo1-Hjv interaction and showed that the Hjv-mediated hepcidin expression is correlated with the accumulation of a truncated and membrane-associated form of Neo1. In this study, we tested whether hepcidin expression is induced by increased γ-secretase-mediated cleavage of Neo1 in the liver. We found that Neo1 underwent cleavage of its ectodomain and intracellular domains by α- and γ-secretases, respectively, in hepatoma cells. Our in vitro studies suggest that γ-secretase is responsible for cleavage and release of the cytoplasmic domain of Neo1 in the Hjv-Neo1 complex. This process was enhanced by the inhibition of α-secretase proteolysis and by co-expression with the Neo1-binding partner, Alk3. Further in vivo studies indicated that Neo1 induction of hepcidin expression required γ-secretase cleavage. Interestingly, neither predicted form of γ-secretase-cleaved Neo1 was able to induce hepcidin when separately expressed in hepatocyte-specific Neo1 KO mice. These results imply that the function of Neo1 requires a de novo γ-secretase proteolysis. Additional studies revealed that in addition to the Hjv-binding domains, the function of Neo1 also required its C-terminal intracellular domain and the N-terminal immunoglobulin-like domains that are involved in Neo1 binding to Alk3. Together, our data support the idea that Neo1 induction of hepcidin is initiated as a full-length form and requires a de novo γ-secretase cleavage of Neo1's cytoplasmic domain.
Collapse
Affiliation(s)
- Caroline A Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Richard H Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Shall Jue
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - An-Sheng Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
3
|
Perdok A, Van Acker ZP, Vrancx C, Sannerud R, Vorsters I, Verrengia A, Callaerts-Végh Z, Creemers E, Gutiérrez Fernández S, D'hauw B, Serneels L, Wierda K, Chávez-Gutiérrez L, Annaert W. Altered expression of Presenilin2 impacts endolysosomal homeostasis and synapse function in Alzheimer's disease-relevant brain circuits. Nat Commun 2024; 15:10412. [PMID: 39613768 PMCID: PMC11607342 DOI: 10.1038/s41467-024-54777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Rare mutations in the gene encoding presenilin2 (PSEN2) are known to cause familial Alzheimer's disease (FAD). Here, we explored how altered PSEN2 expression impacts on the amyloidosis, endolysosomal abnormalities, and synaptic dysfunction observed in female APP knock-in mice. We demonstrate that PSEN2 knockout (KO) as well as the FAD-associated N141IKI mutant accelerate AD-related pathologies in female mice. Both models showed significant deficits in working memory that linked to elevated PSEN2 expression in the hippocampal CA3 region. The mossy fiber circuit of APPxPSEN2KO and APPxFADPSEN2 mice had smaller pre-synaptic compartments, distinct changes in synaptic vesicle populations and significantly impaired long term potentiation compared to APPKI mice. At the cellular level, altered PSEN2 expression resulted in endolysosomal defects and lowered surface expression of synaptic proteins. As PSEN2/γ-secretase is restricted to late endosomes/lysosomes, we propose PSEN2 impacts endolysosomal homeostasis, affecting synaptic signaling in AD-relevant vulnerable brain circuits; which could explain how mutant PSEN2 accelerates AD pathogenesis.
Collapse
Affiliation(s)
- Anika Perdok
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Assunta Verrengia
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Zsuzsanna Callaerts-Végh
- mINT Animal Behavior Facility, Faculty of Psychology, KU Leuven, Tiensestraat 102, Leuven, Belgium
| | - Eline Creemers
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Sara Gutiérrez Fernández
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
- Laboratory of Proteolytic Mechanisms mediating Neurodegeneration, Leuven, Belgium
| | - Britt D'hauw
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Lutgarde Serneels
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
- Mouse Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Keimpe Wierda
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Lucía Chávez-Gutiérrez
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
- Laboratory of Proteolytic Mechanisms mediating Neurodegeneration, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium.
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium.
| |
Collapse
|
4
|
Yang Y, Bagyinszky E, An SSA. Presenilin-1 (PSEN1) Mutations: Clinical Phenotypes beyond Alzheimer's Disease. Int J Mol Sci 2023; 24:8417. [PMID: 37176125 PMCID: PMC10179041 DOI: 10.3390/ijms24098417] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Presenilin 1 (PSEN1) is a part of the gamma secretase complex with several interacting substrates, including amyloid precursor protein (APP), Notch, adhesion proteins and beta catenin. PSEN1 has been extensively studied in neurodegeneration, and more than 300 PSEN1 mutations have been discovered to date. In addition to the classical early onset Alzheimer's disease (EOAD) phenotypes, PSEN1 mutations were discovered in several atypical AD or non-AD phenotypes, such as frontotemporal dementia (FTD), Parkinson's disease (PD), dementia with Lewy bodies (DLB) or spastic paraparesis (SP). For example, Leu113Pro, Leu226Phe, Met233Leu and an Arg352 duplication were discovered in patients with FTD, while Pro436Gln, Arg278Gln and Pro284Leu mutations were also reported in patients with motor dysfunctions. Interestingly, PSEN1 mutations may also impact non-neurodegenerative phenotypes, including PSEN1 Pro242fs, which could cause acne inversa, while Asp333Gly was reported in a family with dilated cardiomyopathy. The phenotypic diversity suggests that PSEN1 may be responsible for atypical disease phenotypes or types of disease other than AD. Taken together, neurodegenerative diseases such as AD, PD, DLB and FTD may share several common hallmarks (cognitive and motor impairment, associated with abnormal protein aggregates). These findings suggested that PSEN1 may interact with risk modifiers, which may result in alternative disease phenotypes such as DLB or FTD phenotypes, or through less-dominant amyloid pathways. Next-generation sequencing and/or biomarker analysis may be essential in clearly differentiating the possible disease phenotypes and pathways associated with non-AD phenotypes.
Collapse
Affiliation(s)
- Youngsoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
5
|
Acquasaliente L, De Filippis V. The Role of Proteolysis in Amyloidosis. Int J Mol Sci 2022; 24:ijms24010699. [PMID: 36614141 PMCID: PMC9820691 DOI: 10.3390/ijms24010699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Amyloidoses are a group of diseases associated with deposits of amyloid fibrils in different tissues. So far, 36 different types of amyloidosis are known, each due to the misfolding and accumulation of a specific protein. Amyloid deposits can be found in several organs, including the heart, brain, kidneys, and spleen, and can affect single or multiple organs. Generally, amyloid-forming proteins become prone to aggregate due to genetic mutations, acquired environmental factors, excessive concentration, or post-translational modifications. Interestingly, amyloid aggregates are often composed of proteolytic fragments, derived from the degradation of precursor proteins by yet unidentified proteases, which display higher amyloidogenic tendency compared to precursor proteins, thus representing an important mechanism in the onset of amyloid-based diseases. In the present review, we summarize the current knowledge on the proteolytic susceptibility of three of the main human amyloidogenic proteins, i.e., transthyretin, β-amyloid precursor protein, and α-synuclein, in the onset of amyloidosis. We also highlight the role that proteolytic enzymes can play in the crosstalk between intestinal inflammation and amyloid-based diseases.
Collapse
Affiliation(s)
- Laura Acquasaliente
- Correspondence: (L.A.); (V.D.F.); Tel.: +39-0498275703 (L.A.); +39-0498275698 (V.D.F.)
| | - Vincenzo De Filippis
- Correspondence: (L.A.); (V.D.F.); Tel.: +39-0498275703 (L.A.); +39-0498275698 (V.D.F.)
| |
Collapse
|
6
|
Hur JY. γ-Secretase in Alzheimer's disease. Exp Mol Med 2022; 54:433-446. [PMID: 35396575 PMCID: PMC9076685 DOI: 10.1038/s12276-022-00754-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is caused by synaptic and neuronal loss in the brain. One of the characteristic hallmarks of AD is senile plaques containing amyloid β-peptide (Aβ). Aβ is produced from amyloid precursor protein (APP) by sequential proteolytic cleavages by β-secretase and γ-secretase, and the polymerization of Aβ into amyloid plaques is thought to be a key pathogenic event in AD. Since γ-secretase mediates the final cleavage that liberates Aβ, γ-secretase has been widely studied as a potential drug target for the treatment of AD. γ-Secretase is a transmembrane protein complex containing presenilin, nicastrin, Aph-1, and Pen-2, which are sufficient for γ-secretase activity. γ-Secretase cleaves >140 substrates, including APP and Notch. Previously, γ-secretase inhibitors (GSIs) were shown to cause side effects in clinical trials due to the inhibition of Notch signaling. Therefore, more specific regulation or modulation of γ-secretase is needed. In recent years, γ-secretase modulators (GSMs) have been developed. To modulate γ-secretase and to understand its complex biology, finding the binding sites of GSIs and GSMs on γ-secretase as well as identifying transiently binding γ-secretase modulatory proteins have been of great interest. In this review, decades of findings on γ-secretase in AD are discussed.
Collapse
Affiliation(s)
- Ji-Yeun Hur
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
7
|
Behl T, Kaur D, Sehgal A, Singh S, Makeen HA, Albratty M, Abdellatif AAH, Dachani SR, Bungau S. Exploring the potential role of rab5 protein in endo-lysosomal impairment in Alzheimer's disease. Biomed Pharmacother 2022; 148:112773. [PMID: 35245734 DOI: 10.1016/j.biopha.2022.112773] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022] Open
Abstract
Growing evidence suggests that neuronal dysfunction in the endo-lysosomal and autophagic processes contributes to the onset and progression of neurodegenerative diseases such as Alzheimer's disease (AD). Since they are the primary cellular systems involved in the production and clearance of aggregated amyloid plaques, endo-lysosomal or autophagic equilibrium must be maintained throughout life. As a result, variations in the autophagic and endo-lysosomal torrent, as a measure of degenerative function in these sections or pathways, may have a direct impact on disease-related processes, such as Aß clearance from the brain and interneuronal deposition of Aß and tau aggregates, thus disrupting synaptic plasticity. The discovery of several chromosomal factors for Alzheimer's disease that are clinically linked to regulation of the endocytic pathway, including protein aggregation and removal, supports the theory that the endo-lysosomal/autophagic torrent is more susceptible to impairment, especially as people age, thus catalysing the onset of disease. Although the role of endo-lysosomal/autophagic dysfunction in neurodegeneration has progressed in recent years, the field remains underdeveloped. Because of its possible therapeutic implications in Alzheimer's disease, further study is needed to explain the possibilities for effective autophagy regulation.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Dapinder Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy, Department, College of Pharmacy, Jazan University, P.O. Box-114, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Sudharshan Reddy Dachani
- Department of Pharmacy Practice & Pharmacology, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| |
Collapse
|
8
|
Enns CA, Jue S, Zhang AS. Hepatocyte neogenin is required for hemojuvelin-mediated hepcidin expression and iron homeostasis in mice. Blood 2021; 138:486-499. [PMID: 33824974 PMCID: PMC8370464 DOI: 10.1182/blood.2020009485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Neogenin (NEO1) is a ubiquitously expressed multifunctional transmembrane protein. It interacts with hemojuvelin (HJV), a BMP coreceptor that plays a pivotal role in hepatic hepcidin expression. Earlier studies suggest that the function of HJV relies on its interaction with NEO1. However, the role of NEO1 in iron homeostasis remains controversial because of the lack of an appropriate animal model. Here, we generated a hepatocyte-specific Neo1 knockout (Neo1fl/fl;Alb-Cre+) mouse model that circumvented the developmental and lethality issues of the global Neo1 mutant. Results show that ablation of hepatocyte Neo1 decreased hepcidin expression and caused iron overload. This iron overload did not result from altered iron utilization by erythropoiesis. Replacement studies revealed that expression of the Neo1L1046E mutant that does not interact with Hjv, was unable to correct the decreased hepcidin expression and high serum iron in Neo1fl/fl;Alb-Cre+ mice. In Hjv-/- mice, expression of HjvA183R mutant that has reduced interaction with Neo1, also displayed a blunted induction of hepcidin expression. These observations indicate that Neo1-Hjv interaction is essential for hepcidin expression. Further analyses suggest that the Hjv binding triggered the cleavage of the Neo1 cytoplasmic domain by a protease, which resulted in accumulation of truncated Neo1 on the plasma membrane. Additional studies did not support that Neo1 functions by inhibiting Hjv shedding as previously proposed. Together, our data favor a model in which Neo1 interaction with Hjv leads to accumulation of cleaved Neo1 on the plasma membrane, where Neo1 acts as a scaffold to induce the Bmp signaling and hepcidin expression.
Collapse
Affiliation(s)
- Caroline A Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Shall Jue
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - An-Sheng Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
9
|
Wouters R, Michiels C, Sannerud R, Kleizen B, Dillen K, Vermeire W, Ayala AE, Demedts D, Schekman R, Annaert W. Assembly of γ-secretase occurs through stable dimers after exit from the endoplasmic reticulum. J Cell Biol 2021; 220:212501. [PMID: 34292306 PMCID: PMC8302450 DOI: 10.1083/jcb.201911104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/29/2020] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
γ-Secretase affects many physiological processes through targeting >100 substrates; malfunctioning links γ-secretase to cancer and Alzheimer’s disease. The spatiotemporal regulation of its stoichiometric assembly remains unresolved. Fractionation, biochemical assays, and imaging support prior formation of stable dimers in the ER, which, after ER exit, assemble into full complexes. In vitro ER budding shows that none of the subunits is required for the exit of others. However, knockout of any subunit leads to the accumulation of incomplete subcomplexes in COPII vesicles. Mutating a DPE motif in presenilin 1 (PSEN1) abrogates ER exit of PSEN1 and PEN-2 but not nicastrin. We explain this by the preferential sorting of PSEN1 and nicastrin through Sec24A and Sec24C/D, respectively, arguing against full assembly before ER exit. Thus, dimeric subcomplexes aided by Sec24 paralog selectivity support a stepwise assembly of γ-secretase, controlling final levels in post-Golgi compartments.
Collapse
Affiliation(s)
- Rosanne Wouters
- Laboratory for Membrane Trafficking, Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Christine Michiels
- Laboratory for Membrane Trafficking, Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Bertrand Kleizen
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Katleen Dillen
- Laboratory for Membrane Trafficking, Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Wendy Vermeire
- Laboratory for Membrane Trafficking, Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Abril Escamilla Ayala
- Vlaams Instituut voor Biotechnologie BioImaging Core, Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research, Leuven, Belgium
| | - David Demedts
- Laboratory for Membrane Trafficking, Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA
| | - Wim Annaert
- Laboratory for Membrane Trafficking, Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Substrate recruitment by γ-secretase. Semin Cell Dev Biol 2020; 105:54-63. [DOI: 10.1016/j.semcdb.2020.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022]
|
11
|
Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Semin Cell Dev Biol 2020; 105:12-26. [DOI: 10.1016/j.semcdb.2020.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/25/2023]
|
12
|
Wang S, Wang L, Qin X, Turdi S, Sun D, Culver B, Reiter RJ, Wang X, Zhou H, Ren J. ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy. Signal Transduct Target Ther 2020; 5:119. [PMID: 32703954 PMCID: PMC7378833 DOI: 10.1038/s41392-020-0171-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
Ample clinical evidence suggests a high incidence of cardiovascular events in Alzheimer's disease (AD), although neither precise etiology nor effective treatment is available. This study was designed to evaluate cardiac function in AD patients and APP/PS1 mutant mice, along with circulating levels of melatonin, mitochondrial aldehyde dehydrogenase (ALDH2) and autophagy. AD patients and APP/PS1 mice displayed cognitive and myocardial deficits, low levels of circulating melatonin, ALDH2 activity, and autophagy, ultrastructural, geometric (cardiac atrophy and interstitial fibrosis) and functional (reduced fractional shortening and cardiomyocyte contraction) anomalies, mitochondrial injury, cytosolic mtDNA buildup, apoptosis, and suppressed autophagy and mitophagy. APP/PS1 mutation downregulated cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) levels and TBK1 phosphorylation, while promoting Aβ accumulation. Treatment with melatonin overtly ameliorated unfavorable APP/PS1-induced changes in cardiac geometry and function, apoptosis, mitochondrial integrity, cytosolic mtDNA accumulation (using both immunocytochemistry and qPCR), mitophagy, and cGAS-STING-TBK1 signaling, although these benefits were absent in APP/PS1/ALDH2-/- mice. In vitro evidence indicated that melatonin attenuated APP/PS1-induced suppression of mitophagy and cardiomyocyte function, and the effect was negated by the nonselective melatonin receptor blocker luzindole, inhibitors or RNA interference of cGAS, STING, TBK1, and autophagy. Our data collectively established a correlation among cardiac dysfunction, low levels of melatonin, ALDH2 activity, and autophagy in AD patients, with compelling support in APP/PS1 mice, in which melatonin rescued myopathic changes by promoting cGAS-STING-TBK1 signaling and mitophagy via an ALDH2-dependent mechanism.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xing Qin
- Department of Cardiology, Xijing Hospital, The Air Force Military Medical University, Xi'an, 710032, China
| | - Subat Turdi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Air Force Military Medical University, Xi'an, 710032, China
| | - Bruce Culver
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China.
| | - Hao Zhou
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China.
| |
Collapse
|
13
|
Güner G, Lichtenthaler SF. The substrate repertoire of γ-secretase/presenilin. Semin Cell Dev Biol 2020; 105:27-42. [PMID: 32616437 DOI: 10.1016/j.semcdb.2020.05.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/09/2022]
Abstract
The intramembrane protease γ-secretase is a hetero-tetrameric protein complex with presenilin as the catalytic subunit and cleaves its membrane protein substrates within their single transmembrane domains. γ-Secretase is well known for its role in Notch signalling and in Alzheimer's disease, where it catalyzes the formation of the pathogenic amyloid β (Aβ) peptide. However, in the 21 years since its discovery many more substrates and substrate candidates of γ-secretase were identified. Although the physiological relevance of the cleavage of many substrates remains to be studied in more detail, the substrates demonstrate a broad role for γ-secretase in embryonic development, adult tissue homeostasis, signal transduction and protein degradation. Consequently, chronic γ-secretase inhibition may cause significant side effects due to inhibition of cleavage of multiple substrates. This review provides a list of 149 γ-secretase substrates identified to date and highlights by which expeirmental approach substrate cleavage was validated. Additionally, the review lists the cleavage sites where they are known and discusses the functional implications of γ-secretase cleavage with a focus on substrates identified in the recent past, such as CHL1, TREM2 and TNFR1. A comparative analysis demonstrates that γ-secretase substrates mostly have a long extracellular domain and require ectodomain shedding before γ-secretase cleavage, but that γ-secretase is also able to cleave naturally short substrates, such as the B cell maturation antigen. Taken together, the list of substrates provides a resource that may help in the future development of drugs inhibiting or modulating γ-secretase activity in a substrate-specific manner.
Collapse
Affiliation(s)
- Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
14
|
Chávez-Gutiérrez L, Szaruga M. Mechanisms of neurodegeneration - Insights from familial Alzheimer's disease. Semin Cell Dev Biol 2020; 105:75-85. [PMID: 32418657 DOI: 10.1016/j.semcdb.2020.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
The rising prevalence of Alzheimer's disease (AD), together with the lack of effective treatments, portray it as one of the major health challenges of our times. Untangling AD implies advancing the knowledge of the biology that gets disrupted during the disease while deciphering the molecular and cellular mechanisms leading to AD-related neurodegeneration. In fact, a solid mechanistic understanding of the disease processes stands as an essential prerequisite for the development of safe and effective treatments. Genetics has provided invaluable clues to the genesis of the disease by revealing deterministic genes - Presenilins (PSENs) and the Amyloid Precursor Protein (APP) - that, when affected, lead in an autosomal dominant manner to early-onset, familial AD (FAD). PSEN is the catalytic subunit of the membrane-embedded γ-secretase complexes, which act as proteolytic switches regulating key cell signalling cascades. Importantly, these intramembrane proteases are responsible for the production of Amyloid β (Aβ) peptides from APP. The convergence of pathogenic mutations on one functional pathway, the amyloidogenic cleavage of APP, strongly supports the significance of this process in AD pathogenesis. Here, we review and discuss the state-of-the-art knowledge of the molecular mechanisms underlying FAD, their implications for the sporadic form of the disease and for the development of safe AD therapeutics.
Collapse
Affiliation(s)
- Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium.
| | - Maria Szaruga
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Cai T, Tomita T. Structure-activity relationship of presenilin in γ-secretase-mediated intramembrane cleavage. Semin Cell Dev Biol 2020; 105:102-109. [PMID: 32171519 DOI: 10.1016/j.semcdb.2020.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023]
Abstract
Genetic research on familial cases of Alzheimer disease have identified presenilin (PS) as an important membrane protein in the pathomechanism of this disease. PS is the catalytic subunit of γ-secretase, which is responsible for the generation of amyloid-β peptide deposited in the brains of Alzheimer disease patients. γ-Secretase is an atypical protease composed of four membrane proteins (i.e., presenilin, nicastrin, anterior pharynx defective-1 (Aph-1), and presenilin enhancer-2 (Pen-2)) and mediates intramembrane proteolysis. Numerous investigations have been conducted toward understanding the structural features of γ-secretase components as well as the cleavage mechanism of γ-secretase. In this review, we summarize our current understanding of the structure and activity relationship of the γ-secretase complex.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
16
|
Ahmad SS, Khan S, Kamal MA, Wasi U. The Structure and Function of α, β and γ-Secretase as Therapeutic Target Enzymes in the Development of Alzheimer’s Disease: A Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:657-667. [DOI: 10.2174/1871527318666191011145941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/20/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
:Alzheimer's disease is a progressive neurodegenerative disorder that affects the central nervous system. There are several factors that cause AD, like, intracellular hyperphosphorylated Tau tangles, collection of extracellular Amyloid-β42 and generation of reactive oxygen species due to mitochondrial dysfunction. This review analyses the most active target of AD and both types of AD-like early-onset AD and late-onset AD. BACE1 is a β-secretase involved in the cleavage of amyloid precursor protein and the pathogenesis of Alzheimer's disease. The presenilin proteins play a critical role in the pathogenesis of Alzheimer malady by intervening the intramembranous cleavage of amyloid precursor protein and the generation of amyloid β. The two homologous proteins PS1 and PS2 speak to the reactant subunits of particular γ-secretase edifices that intercede an assortment of cellular processes. Natural products are common molecular platforms in drug development in AD. Many natural products are being tested in various animal model systems for their role as a potential therapeutic target in AD. Presently, there are a few theories clarifying the early mechanisms of AD pathogenesis. Recently, research advancements in the field of nanotechnology, which utilize macromolecular strategies to make drugs in nanoscale measurements, offer nanotechnology-based diagnostic tools and drug carriers which are highly sensitive for effective drug targeting in the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Syed S. Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Shahzad Khan
- Wuhan University, School of Medicine, Wuhan, Hubei, China
| | - Mohammad A. Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Umam Wasi
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
| |
Collapse
|
17
|
Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer's disease: impact of genetic risk factors. Mol Neurodegener 2019; 14:20. [PMID: 31159836 PMCID: PMC6547588 DOI: 10.1186/s13024-019-0323-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence supports that cellular dysregulations in the degradative routes contribute to the initiation and progression of neurodegenerative diseases, including Alzheimer's disease. Autophagy and endolysosomal homeostasis need to be maintained throughout life as they are major cellular mechanisms involved in both the production of toxic amyloid peptides and the clearance of misfolded or aggregated proteins. As such, alterations in endolysosomal and autophagic flux, as a measure of degradation activity in these routes or compartments, may directly impact as well on disease-related mechanisms such as amyloid-β clearance through the blood-brain-barrier and the interneuronal spreading of amyloid-β and/or Tau seeds, affecting synaptic function, plasticity and metabolism. The emerging of several genetic risk factors for late-onset Alzheimer's disease that are functionally related to endocytic transport regulation, including cholesterol metabolism and clearance, supports the notion that in particular the autophagy/lysosomal flux might become more vulnerable during ageing thereby contributing to disease onset. In this review we discuss our current knowledge of the risk genes APOE4, BIN1, CD2AP, PICALM, PLD3 and TREM2 and their impact on endolysosomal (dys)regulations in the light of late-onset Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Zoë P. Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
18
|
Habets RA, de Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, Narlawar R, Demeyer S, Dooley J, Liston A, Taghon T, Cools J, de Strooper B. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med 2019; 11:11/494/eaau6246. [DOI: 10.1126/scitranslmed.aau6246] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Given the high frequency of activating NOTCH1 mutations in T cell acute lymphoblastic leukemia (T-ALL), inhibition of the γ-secretase complex remains an attractive target to prevent ligand-independent release of the cytoplasmic tail and oncogenic NOTCH1 signaling. However, four different γ-secretase complexes exist, and available inhibitors block all complexes equally. As a result, these cause severe “on-target” gastrointestinal tract, skin, and thymus toxicity, limiting their therapeutic application. Here, we demonstrate that genetic deletion or pharmacologic inhibition of the presenilin-1 (PSEN1) subclass of γ-secretase complexes is highly effective in decreasing leukemia while avoiding dose-limiting toxicities. Clinically, T-ALL samples were found to selectively express only PSEN1-containing γ-secretase complexes. The conditional knockout of Psen1 in developing T cells attenuated the development of a mutant NOTCH1-driven leukemia in mice in vivo but did not abrogate normal T cell development. Treatment of T-ALL cell lines with the selective PSEN1 inhibitor MRK-560 effectively decreased mutant NOTCH1 processing and led to cell cycle arrest. These observations were extended to T-ALL patient-derived xenografts in vivo, demonstrating that MRK-560 treatment decreases leukemia burden and increased overall survival without any associated gut toxicity. Therefore, PSEN1-selective compounds provide a potential therapeutic strategy for safe and effective targeting of T-ALL and possibly also for other diseases in which NOTCH signaling plays a role.
Collapse
|
19
|
The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:697-712. [PMID: 30639513 DOI: 10.1016/j.bbamem.2018.11.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive accumulation of misfolded proteins, which form senile plaques and neurofibrillary tangles, and the release of inflammatory mediators by innate immune responses. β-Amyloid peptide (Aβ) is derived from sequential processing of the amyloid precursor protein (APP) by membrane-bound proteases, namely the β-secretase, BACE1, and γ-secretase. Membrane trafficking plays a key role in the regulation of APP processing as both APP and the processing secretases traffic along distinct pathways. Genome wide sequencing studies have identified several AD susceptibility genes which regulate membrane trafficking events. To understand the pathogenesis of AD it is critical that the cell biology of APP and Aβ production in neurons is well defined. This review discusses recent advances in unravelling the membrane trafficking events associated with the production of Aβ, and how AD susceptible alleles may perturb the sorting and transport of APP and BACE1. Mechanisms whereby inflammation may influence APP processing are also considered.
Collapse
|
20
|
Steiner H, Fukumori A, Tagami S, Okochi M. Making the final cut: pathogenic amyloid-β peptide generation by γ-secretase. Cell Stress 2018; 2:292-310. [PMID: 31225454 PMCID: PMC6551803 DOI: 10.15698/cst2018.11.162] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer´s disease (AD) is a devastating neurodegenerative disease of the elderly population. Genetic evidence strongly suggests that aberrant generation and/or clearance of the neurotoxic amyloid-β peptide (Aβ) is triggering the disease. Aβ is generated from the amyloid precursor protein (APP) by the sequential cleavages of β- and γ-secretase. The latter cleavage by γ-secretase, a unique and fascinating four-component protease complex, occurs in the APP transmembrane domain thereby releasing Aβ species of 37-43 amino acids in length including the longer, highly pathogenic peptides Aβ42 and Aβ43. The lack of a precise understanding of Aβ generation as well as of the functions of other γ-secretase substrates has been one factor underlying the disappointing failure of γ-secretase inhibitors in clinical trials, but on the other side also been a major driving force for structural and in depth mechanistic studies on this key AD drug target in the past few years. Here we review recent breakthroughs in our understanding of how the γ-secretase complex recognizes substrates, of how it binds and processes β-secretase cleaved APP into different Aβ species, as well as the progress made on a question of outstanding interest, namely how clinical AD mutations in the catalytic subunit presenilin and the γ-secretase cleavage region of APP lead to relative increases of Aβ42/43. Finally, we discuss how the knowledge emerging from these studies could be used to therapeutically target this enzyme in a safe way.
Collapse
Affiliation(s)
- Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Akio Fukumori
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu & Department of Mental Health Promotion, Osaka University Graduate School of Medicine, Toyonaka, Japan
| | - Shinji Tagami
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayasu Okochi
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
21
|
Murray CE, Gami-Patel P, Gkanatsiou E, Brinkmalm G, Portelius E, Wirths O, Heywood W, Blennow K, Ghiso J, Holton JL, Mills K, Zetterberg H, Revesz T, Lashley T. The presubiculum is preserved from neurodegenerative changes in Alzheimer's disease. Acta Neuropathol Commun 2018; 6:62. [PMID: 30029687 PMCID: PMC6053705 DOI: 10.1186/s40478-018-0563-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
In the majority of affected brain regions the pathological hallmarks of Alzheimer’s disease (AD) are β-amyloid (Aβ) deposits in the form of diffuse and neuritic plaques, tau pathology in the form of neurofibrillary tangles, neuropil threads and plaque-associated abnormal neurites in combination with an inflammatory response. However, the anatomical area of the presubiculum, is characterised by the presence of a single large evenly distributed ‘lake-like’ Aβ deposit with minimal tau deposition or accumulation of inflammatory markers. Post-mortem brain samples from sporadic AD (SAD) and familial AD (FAD) and two hereditary cerebral amyloid diseases, familial British dementia (FBD) and familial Danish dementia (FDD) were used to compare the morphology of the extracellular proteins deposited in the presubiculum compared to the entorhinal cortex. The level of tau pathology and the extent of microglial activation were quantitated in the two brain regions in SAD and FAD. Frozen tissue was used to investigate the Aβ species and proteomic differences between the two regions. Consistent with our previous investigations of FBD and FDD cases we were able to establish that the ‘lake-like’ pre-amyloid deposits of the presubiculum were not a unique feature of AD but they also found two non-Aβ amyloidosis. Comparing the presubiculum to the entorhinal cortex the number of neurofibrillary tangles and tau load were significantly reduced; there was a reduction in microglial activation; there were differences in the Aβ profiles and the investigation of the whole proteome showed significant changes in different protein pathways. In summary, understanding why the presubiculum has a different morphological appearance, biochemical and proteomic makeup compared to surrounding brain regions severely affected by neurodegeneration could lead us to understanding protective mechanisms in neurodegenerative diseases.
Collapse
|
22
|
Medoro A, Bartollino S, Mignogna D, Passarella D, Porcile C, Pagano A, Florio T, Nizzari M, Guerra G, Di Marco R, Intrieri M, Raimo G, Russo C. Complexity and Selectivity of γ-Secretase Cleavage on Multiple Substrates: Consequences in Alzheimer's Disease and Cancer. J Alzheimers Dis 2018; 61:1-15. [PMID: 29103038 DOI: 10.3233/jad-170628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The processing of the amyloid-β protein precursor (AβPP) by β- and γ-secretases is a pivotal event in the genesis of Alzheimer's disease (AD). Besides familial mutations on the AβPP gene, or upon its overexpression, familial forms of AD are often caused by mutations or deletions in presenilin 1 (PSEN1) and 2 (PSEN2) genes: the catalytic components of the proteolytic enzyme γ-secretase (GS). The "amyloid hypothesis", modified over time, states that the aberrant processing of AβPP by GS induces the formation of specific neurotoxic soluble amyloid-β (Aβ) peptides which, in turn, cause neurodegeneration. This theory, however, has recently evidenced significant limitations and, in particular, the following issues are debated: 1) the concept and significance of presenilin's "gain of function" versus "loss of function"; and 2) the presence of several and various GS substrates, which interact with AβPP and may influence Aβ formation. The latter consideration is suggestive: despite the increasing number of GS substrates so far identified, their reciprocal interaction with AβPP itself, even in the AD field, is significantly unexplored. On the other hand, GS is also an important pharmacological target in the cancer field; inhibitors or GS activity are investigated in clinical trials for treating different tumors. Furthermore, the function of AβPP and PSENs in brain development and in neuronal migration is well known. In this review, we focused on a specific subset of GS substrates that directly interact with AβPP and are involved in its proteolysis and signaling, by evaluating their role in neurodegeneration and in cell motility or proliferation, as a possible connection between AD and cancer.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genoa and Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genoa, Italy
| | - Tullio Florio
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Gennaro Raimo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
23
|
Acx H, Serneels L, Radaelli E, Muyldermans S, Vincke C, Pepermans E, Müller U, Chávez-Gutiérrez L, De Strooper B. Inactivation of γ-secretases leads to accumulation of substrates and non-Alzheimer neurodegeneration. EMBO Mol Med 2018; 9:1088-1099. [PMID: 28588032 PMCID: PMC5538297 DOI: 10.15252/emmm.201707561] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
γ-Secretases are a family of intramembrane cleaving aspartyl proteases and important drug targets in Alzheimer's disease. Here, we generated mice deficient for all γ-secretases in the pyramidal neurons of the postnatal forebrain by deleting the three anterior pharynx defective 1 (Aph1) subunits (Aph1abc cKO Cre+). The mice show progressive cortical atrophy, neuronal loss, and gliosis. Interestingly, this is associated with more than 10-fold accumulation of membrane-bound fragments of App, Aplp1, Nrg1, and Dcc, while other known substrates of γ-secretase such as Aplp2, Lrp1, and Sdc3 accumulate to lesser extents. Despite numerous reports linking neurodegeneration to accumulation of membrane-bound App fragments, deletion of App expression in the combined Aph1 knockout does not rescue this phenotype. Importantly, knockout of only Aph1a- or Aph1bc-secretases causes limited and differential accumulation of substrates. This was not associated with neurodegeneration. Further development of selective Aph1-γ-secretase inhibitors should be considered for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hermien Acx
- VIB Center for Brain and Disease Research, Leuven, Belgium.,KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, Leuven, Belgium
| | - Lutgarde Serneels
- VIB Center for Brain and Disease Research, Leuven, Belgium.,KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, Leuven, Belgium
| | - Enrico Radaelli
- VIB Center for Brain and Disease Research, Leuven, Belgium.,KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, Leuven, Belgium
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cécile Vincke
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elise Pepermans
- VIB Center for Brain and Disease Research, Leuven, Belgium.,KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, Leuven, Belgium
| | - Ulrike Müller
- Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Heidelberg, Germany
| | - Lucía Chávez-Gutiérrez
- VIB Center for Brain and Disease Research, Leuven, Belgium .,KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, Leuven, Belgium .,KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, Leuven, Belgium.,UCL Dementia Research Institute (DRI-UK), London, UK
| |
Collapse
|
24
|
Siegel G, Gerber H, Koch P, Bruestle O, Fraering PC, Rajendran L. The Alzheimer's Disease γ-Secretase Generates Higher 42:40 Ratios for β-Amyloid Than for p3 Peptides. Cell Rep 2018; 19:1967-1976. [PMID: 28591569 DOI: 10.1016/j.celrep.2017.05.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/12/2017] [Accepted: 05/09/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease is characterized by intracerebral deposition of β-amyloid (Aβ). While Aβ40 is the most abundant form, neurotoxicity is mainly mediated by Aβ42. Sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases gives rise to full-length Aβ (Aβ1-x) and N-terminally truncated Aβ' (Aβ11-x) whereas cleavage by α- and γ-secretases leads to the shorter p3 peptides (Aβ17-x). We uncovered significantly higher ratios of 42- versus 40-ending variants for Aβ and Aβ' than for p3 secreted by mouse neurons and human induced pluripotent stem cell (iPSC)-derived neurons or produced in a cell-free γ-secretase assay with recombinant APP-CTFs. The 42:40 ratio was highest for Aβ', followed by Aβ and then p3. Mass spectrometry analysis of APP intracellular domains revealed differential processing of APP-C83, APP-C89, and APP-C99 by γ-secretase already at the ε-cleavage stage. This mechanistic insight could aid in developing substrate-targeted modulators of APP-C99 processing to specifically lower the Aβ42:Aβ40 ratio without compromising γ-secretase function.
Collapse
Affiliation(s)
- Gabriele Siegel
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren Campus, 8952 Schlieren, Switzerland.
| | - Hermeto Gerber
- Foundation Eclosion, 1228 Plan-les-Ouates & Campus Biotech Innovation Park, 1202 Geneva, Switzerland; Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland; Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty, 53127 Bonn, Germany; LIFE & BRAIN GmbH, 53127 Bonn, Germany
| | - Oliver Bruestle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty, 53127 Bonn, Germany; LIFE & BRAIN GmbH, 53127 Bonn, Germany
| | - Patrick C Fraering
- Foundation Eclosion, 1228 Plan-les-Ouates & Campus Biotech Innovation Park, 1202 Geneva, Switzerland; Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren Campus, 8952 Schlieren, Switzerland.
| |
Collapse
|
25
|
Kumar D, Ganeshpurkar A, Kumar D, Modi G, Gupta SK, Singh SK. Secretase inhibitors for the treatment of Alzheimer's disease: Long road ahead. Eur J Med Chem 2018; 148:436-452. [DOI: 10.1016/j.ejmech.2018.02.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/30/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
|
26
|
Simutis FJ, Sanderson TP, Pilcher GD, Graziano MJ. Nonclinical Safety Assessment of the γ-Secretase Inhibitor Avagacestat. Toxicol Sci 2018. [DOI: 10.1093/toxsci/kfy048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Frank J Simutis
- Drug Safety Evaluation, Bristol-Myers Squibb Research and Development, New Brunswick, New Jersey 08903
| | - Thomas P Sanderson
- Drug Safety Evaluation, Bristol-Myers Squibb Research and Development, New Brunswick, New Jersey 08903
| | - Gary D Pilcher
- Drug Safety Evaluation, Bristol-Myers Squibb Research and Development, New Brunswick, New Jersey 08903
| | - Michael J Graziano
- Drug Safety Evaluation, Bristol-Myers Squibb Research and Development, New Brunswick, New Jersey 08903
| |
Collapse
|
27
|
Voytyuk I, De Strooper B, Chávez-Gutiérrez L. Modulation of γ- and β-Secretases as Early Prevention Against Alzheimer's Disease. Biol Psychiatry 2018; 83:320-327. [PMID: 28918941 DOI: 10.1016/j.biopsych.2017.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 01/18/2023]
Abstract
The genetic evidence implicating amyloid-β in the initial stage of Alzheimer's disease is unequivocal. However, the long biochemical and cellular prodromal phases of the disease suggest that dementia is the result of a series of molecular and cellular cascades whose nature and connections remain unknown. Therefore, it is unlikely that treatments directed at amyloid-β will have major clinical effects in the later stages of the disease. We discuss the two major candidate therapeutic targets to lower amyloid-β in a preventive mode, i.e., γ- and β-secretase; the rationale behind these two targets; and the current state of the field.
Collapse
Affiliation(s)
- Iryna Voytyuk
- KU Leuven Department for Neurosciences, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Bart De Strooper
- KU Leuven Department for Neurosciences, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; UK Dementia Research Institute, University College, London, United Kingdom.
| | - Lucía Chávez-Gutiérrez
- KU Leuven Department for Neurosciences, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
28
|
Yang G, Yu K, Kubicek J, Labahn J. Expression, purification, and preliminary characterization of human presenilin-2. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Deletion of the γ-secretase subunits Aph1B/C impairs memory and worsens the deficits of knock-in mice modeling the Alzheimer-like familial Danish dementia. Oncotarget 2017; 7:11923-44. [PMID: 26942869 PMCID: PMC4914259 DOI: 10.18632/oncotarget.7389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 12/26/2022] Open
Abstract
Mutations in BRI2/ITM2b genes cause Familial British and Danish Dementias (FBD and FDD), which are pathogenically similar to Familial Alzheimer Disease (FAD). BRI2 inhibits processing of Amyloid precursor protein (APP), a protein involved in FAD pathogenesis. Accumulation of a carboxyl-terminal APP metabolite -ß-CTF- causes memory deficits in a knock-in mouse model of FDD, called FDDKI.We have investigated further the pathogenic function of ß-CTF studying the effect of Aph1B/C deletion on FDDKI mice. This strategy is based on the evidence that deletion of Aph1B/C proteins, which are components of the γ-secretase that cleaves ß-CTF, results in stabilization of ß-CTF and a reduction of Aβ. We found that both the FDD mutation and the Aph1B/C deficiency mildly interfered with spatial long term memory, spatial working/short-term memory and long-term contextual fear memory. In addition, the Aph1BC deficiency induced deficits in long-term cued fear memory. Moreover, the two mutations have additive adverse effects as they compromise the accuracy of spatial long-term memory and induce spatial memory retention deficits in young mice. Overall, the data are consistent with a role for β-CTF in the genesis of memory deficits.
Collapse
|
30
|
Regulated intramembrane proteolysis: emergent role in cell signalling pathways. Biochem Soc Trans 2017; 45:1185-1202. [PMID: 29079648 DOI: 10.1042/bst20170002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
Receptor signalling events including those initiated following activation of cytokine and growth factor receptors and the well-characterised death receptors (tumour necrosis factor receptor, type 1, FasR and TRAIL-R1/2) are initiated at the cell surface through the recruitment and formation of intracellular multiprotein signalling complexes that activate divergent signalling pathways. Over the past decade, research studies reveal that many of these receptor-initiated signalling events involve the sequential proteolysis of specific receptors by membrane-bound proteases and the γ-secretase protease complexes. Proteolysis enables the liberation of soluble receptor ectodomains and the generation of intracellular receptor cytoplasmic domain fragments. The combined and sequential enzymatic activity has been defined as regulated intramembrane proteolysis and is now a fundamental signal transduction process involved in the termination or propagation of receptor signalling events. In this review, we discuss emerging evidence for a role of the γ-secretase protease complexes and regulated intramembrane proteolysis in cell- and immune-signalling pathways.
Collapse
|
31
|
Karelina T, Demin O, Nicholas T, Lu Y, Duvvuri S, Barton HA. A Translational Systems Pharmacology Model for Aβ Kinetics in Mouse, Monkey, and Human. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:666-675. [PMID: 28571112 PMCID: PMC5658289 DOI: 10.1002/psp4.12211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/13/2017] [Accepted: 05/18/2017] [Indexed: 01/06/2023]
Abstract
A mechanistic model of amyloid beta production, degradation, and distribution was constructed for mouse, monkey, and human, calibrated and externally verified across multiple datasets. Simulations of single‐dose avagacestat treatment demonstrate that the Aβ42 brain inhibition may exceed that in cerebrospinal fluid (CSF). The dose that achieves 50% CSF Aβ40 inhibition for humans (both healthy and with Alzheimer's disease (AD)) is about 1 mpk, one order of magnitude lower than for mouse (10 mpk), mainly because of differences in pharmacokinetics. The predicted maximal percent of brain Aβ42 inhibition after single‐dose avagacestat is higher for AD subjects (about 60%) than for healthy individuals (about 45%). The probability of achieving a normal physiological level for Aβ42 in brain (1 nM) during multiple avagacestat dosing can be increased by using a dosing regimen that achieves higher exposure. The proposed model allows prediction of brain pharmacodynamics for different species given differing dosing regimens.
Collapse
Affiliation(s)
- T Karelina
- Institute for Systems Biology, Moscow, Russia
| | - O Demin
- Institute for Systems Biology, Moscow, Russia
| | | | | | | | | |
Collapse
|
32
|
Dysregulation of intracellular trafficking and endosomal sorting in Alzheimer's disease: controversies and unanswered questions. Biochem J 2017; 473:1977-93. [PMID: 27407168 DOI: 10.1042/bcj20160147] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid plaques in the brain consisting of an aggregated form of amyloid β-peptide (Aβ) derived from sequential amyloidogenic processing of the amyloid precursor protein (APP) by membrane-bound proteases β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase. The initial processing of APP by BACE1 is re-gulated by intracellular sorting events of the enzyme, which is a prime target for therapeutic intervention. GWAS (genome-wide sequencing studies) have identified several AD-susceptibility genes that are associated with the regulation of membrane trafficking, and substantial evidence now indicates that AD is likely to arise from defective membrane trafficking in either or both of the secretory and endocytic pathways. Considerable progress has been made in defining the intracellular trafficking pathways of BACE1 and APP and the sorting signals of these membrane proteins that define their itineraries. In this review we highlight recent advances in understanding the regulation of the intracellular sorting of BACE1 and APP, discuss how dysregulation of these trafficking events may lead to enhanced generation of the neurotoxic Aβ products in AD and highlight the unresolved questions in the field.
Collapse
|
33
|
Development of an optimized synthetic Notch receptor as an in vivo cell-cell contact sensor. Proc Natl Acad Sci U S A 2017; 114:5467-5472. [PMID: 28490499 DOI: 10.1073/pnas.1703205114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Detection and manipulation of direct cell-cell contact in complex tissues is a fundamental and challenging problem in many biological studies. Here, we report an optimized Notch-based synthetic receptor (synNQ) useful to study direct cell-cell interactions in Drosophila With the synNQ system, cells expressing a synthetic receptor, which contains Notch activation machinery and a downstream transcriptional activator, QF, are activated by a synthetic GFP ligand expressed by contacting neighbor cells. To avoid cis-inhibition, mutually exclusive expression of the synthetic ligand and receptor is achieved using the "flippase-out" system. Expression of the synthetic GFP ligand is controlled by the Gal4/UAS system for easy and broad applications. Using synNQ, we successfully visualized cell-cell interactions within and between most fly tissues, revealing previously undocumented cell-cell contacts. Importantly, in addition to detection of cells in contact with one another, synNQ allows for genetic manipulation in all cells in contact with a targeted cell population, which we demonstrate in the context of cell competition in developing wing disks. Altogether, the synNQ genetic system will enable a broad range of studies of cell contact in developmental biology.
Collapse
|
34
|
Pink A, Dafou D, Desai N, Holmes O, Hobbs C, Smith C, Mortimer P, Simpson M, Trembath R, Barker J. Hidradenitis suppurativa: haploinsufficiency of gamma-secretase components does not affect gamma-secretase enzyme activityin vitro. Br J Dermatol 2016; 175:632-5. [DOI: 10.1111/bjd.14621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A.E. Pink
- Division of Genetics and Molecular Medicine; King's College London School of Medicine; King's College London; London U.K
| | - D. Dafou
- Division of Genetics and Molecular Medicine; King's College London School of Medicine; King's College London; London U.K
| | - N. Desai
- St John's Institute of Dermatology; Guy's & St Thomas’ NHS Foundation Trust; London U.K
| | - O. Holmes
- Ann Romney Center for Neurologic Diseases; Brigham and Women's Hospital; Boston MA 02115 U.S.A
| | - C. Hobbs
- The Wolffson Centre for Age Related Diseases; King's College London; London U.K
| | - C.H. Smith
- Division of Genetics and Molecular Medicine; King's College London School of Medicine; King's College London; London U.K
- St John's Institute of Dermatology; Guy's & St Thomas’ NHS Foundation Trust; London U.K
| | - P. Mortimer
- Division of Clinical Science; St George's University of London; London U.K
| | - M.A Simpson
- Division of Genetics and Molecular Medicine; King's College London School of Medicine; King's College London; London U.K
| | - R.C. Trembath
- Division of Genetics and Molecular Medicine; King's College London School of Medicine; King's College London; London U.K
- Queen Mary University of London; Bart's and The London School of Medicine and Dentistry; London U.K
| | - J.N. Barker
- Division of Genetics and Molecular Medicine; King's College London School of Medicine; King's College London; London U.K
| |
Collapse
|
35
|
Meckler X, Checler F. Presenilin 1 and Presenilin 2 Target γ-Secretase Complexes to Distinct Cellular Compartments. J Biol Chem 2016; 291:12821-12837. [PMID: 27059953 DOI: 10.1074/jbc.m115.708297] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 11/06/2022] Open
Abstract
γ-Secretase complexes achieve the production of amyloid peptides playing a key role in Alzheimer disease. These proteases have many substrates involved in important physiological functions. They are composed of two constant subunits, nicastrin and PEN2, and two variable ones, presenilin (PS1 or PS2) and APH1 (APH1aL, APH1aS, or APH1b). Whether the composition of a given γ-secretase complex determines a specific cellular targeting remains unsolved. Here we combined a bidirectional inducible promoter and 2A peptide technology to generate constructs for the temporary, stoichiometric co-expression of six different combinations of the four γ-secretase subunits including EGFP-tagged nicastrin. These plasmids allow for the formation of functional γ-secretase complexes displaying specific activities and maturations. We show that PS1-containing γ-secretase complexes were targeted to the plasma membrane, whereas PS2-containing ones were addressed to the trans-Golgi network, to recycling endosomes, and, depending on the APH1-variant, to late endocytic compartments. Overall, these novel constructs unravel a presenilin-dependent subcellular targeting of γ-secretase complexes. These tools should prove useful to determine whether the cellular distribution of γ-secretase complexes contributes to substrate selectivity and to delineate regulations of their trafficking.
Collapse
Affiliation(s)
- Xavier Meckler
- From the Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR7275, Laboratoire d'Excellence Distalz, Sophia-Antipolis, 06560 Valbonne, France
| | - Frédéric Checler
- From the Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR7275, Laboratoire d'Excellence Distalz, Sophia-Antipolis, 06560 Valbonne, France.
| |
Collapse
|
36
|
P. Hurst T, Coleman-Vaughan C, Patwal I, V. McCarthy J. Regulated intramembrane proteolysis, innate immunity and therapeutic targets in Alzheimer’s disease. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.2.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
37
|
Chen AC, Kim S, Shepardson N, Patel S, Hong S, Selkoe DJ. Physical and functional interaction between the α- and γ-secretases: A new model of regulated intramembrane proteolysis. J Cell Biol 2015; 211:1157-76. [PMID: 26694839 PMCID: PMC4687875 DOI: 10.1083/jcb.201502001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022] Open
Abstract
Many single-transmembrane proteins are sequentially cleaved by ectodomain-shedding α-secretases and the γ-secretase complex, a process called regulated intramembrane proteolysis (RIP). These cleavages are thought to be spatially and temporally separate. In contrast, we provide evidence for a hitherto unrecognized multiprotease complex containing both α- and γ-secretase. ADAM10 (A10), the principal neuronal α-secretase, interacted and cofractionated with γ-secretase endogenously in cells and mouse brain. A10 immunoprecipitation yielded γ-secretase proteolytic activity and vice versa. In agreement, superresolution microscopy showed that portions of A10 and γ-secretase colocalize. Moreover, multiple γ-secretase inhibitors significantly increased α-secretase processing (r = -0.86) and decreased β-secretase processing of β-amyloid precursor protein. Select members of the tetraspanin web were important both in the association between A10 and γ-secretase and the γ → α feedback mechanism. Portions of endogenous BACE1 coimmunoprecipitated with γ-secretase but not A10, suggesting that β- and α-secretases can form distinct complexes with γ-secretase. Thus, cells possess large multiprotease complexes capable of sequentially and efficiently processing transmembrane substrates through a spatially coordinated RIP mechanism.
Collapse
Affiliation(s)
- Allen C Chen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Sumin Kim
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Nina Shepardson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Sarvagna Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Soyon Hong
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
38
|
MacLeod R, Hillert EK, Cameron RT, Baillie GS. The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer's disease. Future Sci OA 2015; 1:FSO11. [PMID: 28031886 PMCID: PMC5137966 DOI: 10.4155/fso.15.9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly and its prevalence is set to increase rapidly in coming decades. However, there are as yet no available drugs that can halt or even stabilize disease progression. One of the main pathological features of AD is the presence in the brain of senile plaques mainly composed of aggregated β amyloid (Aβ), a derivative of the longer amyloid precursor protein (APP). The amyloid hypothesis proposes that the accumulation of Aβ within neural tissue is the initial event that triggers the disease. Here we review research efforts that have attempted to inhibit the generation of the Aβ peptide through modulation of the activity of the proteolytic secretases that act on APP and discuss whether this is a viable therapeutic strategy for treating AD.
Collapse
Affiliation(s)
- Ruth MacLeod
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ellin-Kristina Hillert
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ryan T Cameron
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - George S Baillie
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
39
|
Cai Y, An SSA, Kim S. Mutations in presenilin 2 and its implications in Alzheimer's disease and other dementia-associated disorders. Clin Interv Aging 2015; 10:1163-72. [PMID: 26203236 PMCID: PMC4507455 DOI: 10.2147/cia.s85808] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Mutations in the genes encoding presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein have been identified as the main genetic causes of familial AD. To date, more than 200 mutations have been described worldwide in PSEN1, which is highly homologous with PSEN2, while mutations in PSEN2 have been rarely reported. We performed a systematic review of studies describing the mutations identified in PSEN2. Most PSEN2 mutations were detected in European and in African populations. Only two were found in Korean populations. Interestingly, PSEN2 mutations appeared not only in AD patients but also in patients with other disorders, including frontotemporal dementia, dementia with Lewy bodies, breast cancer, dilated cardiomyopathy, and Parkinson's disease with dementia. Here, we have summarized the PSEN2 mutations and the potential implications of these mutations in dementia-associated disorders.
Collapse
Affiliation(s)
- Yan Cai
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
| |
Collapse
|
40
|
Loss of Presenilin 2 Function Is Associated with Defective LPS-Mediated Innate Immune Responsiveness. Mol Neurobiol 2015; 53:3428-3438. [PMID: 26081153 DOI: 10.1007/s12035-015-9285-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
The importance of presenilin-dependent γ-secretase protease activities in the development, neurogenesis, and immune system is highlighted by the diversity of its substrates and characterization of Psen1- and Psen2-deficient transgenic animals. Functional differences between presenilin 1 (PS1) and presenilin 2 (PS2) are incompletely understood. In this study, we have identified a Psen2-specific function, not shared by Psen1 in Toll-like receptor signaling. We show that immortalized fibroblasts and bone marrow-derived macrophages from Psen2- but not Psen1-deficient mice display reduced responsiveness to lipopolysaccharide (LPS) with decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activity and diminished pro-inflammatory cytokine production. In whole animal in vivo responses, Psen2-deficient animals have abnormal systemic production of LPS-stimulated pro-inflammatory cytokines. Mechanistically, we demonstrate that Psen2 deficiency is paralleled by reduced transcription of tlr4 mRNA and loss of LPS-induced tlr4 mRNA transcription regulation. These observations illustrate a novel PS2-dependent means of modulating LPS-mediated immune responses and identify a functional distinction between PS1 and PS2 in innate immunity.
Collapse
|
41
|
De Strooper B, Chávez Gutiérrez L. Learning by Failing: Ideas and Concepts to Tackle γ-Secretases in Alzheimer's Disease and Beyond. Annu Rev Pharmacol Toxicol 2015; 55:419-37. [DOI: 10.1146/annurev-pharmtox-010814-124309] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bart De Strooper
- VIB Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, BE-3000 Leuven, Belgium
- Center for Human Genetics, Laboratory for the Research of Neurodegenerative Diseases, KU Leuven, BE-3000 Leuven, Belgium; ,
| | - Lucía Chávez Gutiérrez
- VIB Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, BE-3000 Leuven, Belgium
- Center for Human Genetics, Laboratory for the Research of Neurodegenerative Diseases, KU Leuven, BE-3000 Leuven, Belgium; ,
| |
Collapse
|
42
|
Zhang X, Li Y, Xu H, Zhang YW. The γ-secretase complex: from structure to function. Front Cell Neurosci 2014; 8:427. [PMID: 25565961 PMCID: PMC4263104 DOI: 10.3389/fncel.2014.00427] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022] Open
Abstract
One of the most critical pathological features of Alzheimer’s disease (AD) is the accumulation of β-amyloid (Aβ) peptides that form extracellular senile plaques in the brain. Aβ is derived from β-amyloid precursor protein (APP) through sequential cleavage by β- and γ-secretases. γ-secretase is a high molecular weight complex minimally composed of four components: presenilins (PS), nicastrin, anterior pharynx defective 1 (APH-1), and presenilin enhancer 2 (PEN-2). In addition to APP, γ-secretase also cleaves many other type I transmembrane (TM) protein substrates. As a crucial enzyme for Aβ production, γ-secretase is an appealing therapeutic target for AD. Here, we summarize current knowledge on the structure and function of γ-secretase, as well as recent progress in developing γ-secretase targeting drugs for AD treatment.
Collapse
Affiliation(s)
- Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, FJ, China
| | - Yanfang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, FJ, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, FJ, China ; Degenerative Disease Research Program, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, FJ, China
| |
Collapse
|
43
|
Jurisch-Yaksi N, Annaert W. Protein quality control by Rer1p in the early secretory pathway: from mechanism to implication in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2013; 5:61. [PMID: 24314151 PMCID: PMC3978424 DOI: 10.1186/alzrt227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
γ-Secretase-mediated production of amyloid β from the amyloid precursor protein is recognized as a central player in the neuropathogenesis of Alzheimer’s disease (AD). One of the most peculiar features of this enzymatic activity is the fact that it targets transmembrane domains of mostly type I integral membrane proteins and thus manages to proteolyse peptide bonds within the hydrophobic lipid bilayers. In addition, γ-secretase does not exert its activity solely towards amyloid precursor protein, but to an increasing number of membrane proteins, including Notch, cadherins, syndecans, and so on. Because of the requirement of intramembrane proteolysis for a plethora of signaling pathways and cellular processes during embryonic development and organ physiology, this enzyme has drawn a lot of attention in the past 20 years. γ-Secretase is a multimeric transmembrane complex consisting of the catalytic presenilin, nicastrin, presenilin enhancer 2 (PEN2) and anterior-pharynx defective-1 (APH1) subunits. Proper assembly into functional complexes requires quality control mechanisms associated with the early biosynthetic compartments and allows mature complexes to transit to distal compartments where its activity is required. We previously identified Retrieval to ER protein 1 (Rer1p) as the first negative regulator of the stepwise assembly of γ-secretase during endoplasmic reticulum-to-Golgi transport. We review here the state of the art on how Rer1p regulates complex assembly, particularly γ-secretase, and evaluate the therapeutic potential of such regulatory processes in the context of AD.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- VIB Center for the Biology of Disease, Gasthuisberg, O&N4, POB 6023000, Leuven, Belgium ; Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Wim Annaert
- VIB Center for the Biology of Disease, Gasthuisberg, O&N4, POB 6023000, Leuven, Belgium ; Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
44
|
Jurisch-Yaksi N, Sannerud R, Annaert W. A fast growing spectrum of biological functions of γ-secretase in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2815-27. [PMID: 24099003 DOI: 10.1016/j.bbamem.2013.04.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 12/17/2022]
Abstract
γ-secretase, which assembles as a tetrameric complex, is an aspartyl protease that proteolytically cleaves substrate proteins within their membrane-spanning domain; a process also known as regulated intramembrane proteolysis (RIP). RIP regulates signaling pathways by abrogating or releasing signaling molecules. Since the discovery, already >15 years ago, of its catalytic component, presenilin, and even much earlier with the identification of amyloid precursor protein as its first substrate, γ-secretase has been commonly associated with Alzheimer's disease. However, starting with Notch and thereafter a continuously increasing number of novel substrates, γ-secretase is becoming linked to an equally broader range of biological processes. This review presents an updated overview of the current knowledge on the diverse molecular mechanisms and signaling pathways controlled by γ-secretase, with a focus on organ development, homeostasis and dysfunction. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Laboratory for Membrane Trafficking, VIB-Center for the Biology of Disease & Department for Human Genetics (KU Leuven), Leuven, Belgium
| | | | | |
Collapse
|
45
|
Peltonen HM, Haapasalo A, Hiltunen M, Kataja V, Kosma VM, Mannermaa A. Γ-secretase components as predictors of breast cancer outcome. PLoS One 2013; 8:e79249. [PMID: 24223915 PMCID: PMC3815159 DOI: 10.1371/journal.pone.0079249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022] Open
Abstract
γ-secretase is a large ubiquitously expressed protease complex composed of four core subunits: presenilin, Aph1, PEN-2, and nicastrin. The function of γ-secretase in the cells is to proteolytically cleave various proteins within their transmembrane domains. Presenilin and Aph1 occur as alternative variants belonging to mutually exclusive γ-secretase complexes and providing the complexes with heterogeneous biochemical and physiological properties. γ-secretase is proposed to have a role in the development and progression of cancer and γ-secretase inhibitors are intensively studied for their probable anti-tumor effects in various types of cancer models. Here, we for the first time determined mRNA expression levels of presenilin-1, presenilin-2, Aph1a, Aph1b, PEN-2, and nicastrin in a set of breast cancer tissue samples (N = 55) by quantitative real-time PCR in order to clarify the clinical significance of the expression of different γ-secretase complex components in breast cancer. We found a high positive correlation between the subunit expression levels implying a common regulation of transcription. Our univariate Kaplan-Meier survival analyses established low expression level of γ-secretase complex as a risk factor for breast cancer specific mortality. The tumors expressing low levels of γ-secretase complex were characterized by high histopathological tumor grade, low or no expression of estrogen and progesterone receptors and consequently high probability to fall into the class of triple negative breast cancer tumors. These results may provide novel tools to further categorize breast cancer tumors, especially the highly aggressive and poorly treatable breast cancer type of triple negative cases, and suggest a significant role for γ-secretase in breast cancer.
Collapse
Affiliation(s)
- Hanna M. Peltonen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
- * E-mail:
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine – Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland, Kuopio, Finland
| | - Vesa Kataja
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
46
|
Thathiah A, Horré K, Snellinx A, Vandewyer E, Huang Y, Ciesielska M, De Kloe G, Munck S, De Strooper B. β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer's disease. Nat Med 2012. [PMID: 23202293 DOI: 10.1038/nm.3023] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
β-arrestins are associated with numerous aspects of G protein-coupled receptor (GPCR) signaling and regulation and accordingly influence diverse physiological and pathophysiological processes. Here we report that β-arrestin 2 expression is elevated in two independent cohorts of individuals with Alzheimer's disease. Overexpression of β-arrestin 2 leads to an increase in amyloid-β (Aβ) peptide generation, whereas genetic silencing of Arrb2 (encoding β-arrestin 2) reduces generation of Aβ in cell cultures and in Arrb2(-/-) mice. Moreover, in a transgenic mouse model of Alzheimer's disease, genetic deletion of Arrb2 leads to a reduction in the production of Aβ(40) and Aβ(42). Two GPCRs implicated previously in Alzheimer's disease (GPR3 and the β(2)-adrenergic receptor) mediate their effects on Aβ generation through interaction with β-arrestin 2. β-arrestin 2 physically associates with the Aph-1a subunit of the γ-secretase complex and redistributes the complex toward detergent-resistant membranes, increasing the catalytic activity of the complex. Collectively, these studies identify β-arrestin 2 as a new therapeutic target for reducing amyloid pathology and GPCR dysfunction in Alzheimer's disease.
Collapse
Affiliation(s)
- Amantha Thathiah
- Vlaams Instituut voor Biotechnologie Center for the Biology of Disease, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chávez-Gutiérrez L, Bammens L, Benilova I, Vandersteen A, Benurwar M, Borgers M, Lismont S, Zhou L, Van Cleynenbreugel S, Esselmann H, Wiltfang J, Serneels L, Karran E, Gijsen H, Schymkowitz J, Rousseau F, Broersen K, De Strooper B. The mechanism of γ-Secretase dysfunction in familial Alzheimer disease. EMBO J 2012; 31:2261-74. [PMID: 22505025 PMCID: PMC3364747 DOI: 10.1038/emboj.2012.79] [Citation(s) in RCA: 413] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 02/28/2012] [Indexed: 12/11/2022] Open
Abstract
Mutations in presenilin (PSEN) and amyloid precursor protein (APP) cause dominant early-onset Alzheimer's disease (AD), but the mechanism involved is debated. Here, such mutations are shown to alter γ-secretase activity, leading to changes in Aβ peptide cleavage patterns. The mechanisms by which mutations in the presenilins (PSEN) or the amyloid precursor protein (APP) genes cause familial Alzheimer disease (FAD) are controversial. FAD mutations increase the release of amyloid β (Aβ)42 relative to Aβ40 by an unknown, possibly gain-of-toxic-function, mechanism. However, many PSEN mutations paradoxically impair γ-secretase and ‘loss-of-function' mechanisms have also been postulated. Here, we use kinetic studies to demonstrate that FAD mutations affect Aβ generation via three different mechanisms, resulting in qualitative changes in the Aβ profiles, which are not limited to Aβ42. Loss of ɛ-cleavage function is not generally observed among FAD mutants. On the other hand, γ-secretase inhibitors used in the clinic appear to block the initial ɛ-cleavage step, but unexpectedly affect more selectively Notch than APP processing, while modulators act as activators of the carboxypeptidase-like (γ) activity. Overall, we provide a coherent explanation for the effect of different FAD mutations, demonstrating the importance of qualitative rather than quantitative changes in the Aβ products, and suggest fundamental improvements for current drug development efforts.
Collapse
|
48
|
Vidal R, Sammeta N, Garringer HJ, Sambamurti K, Miravalle L, Lamb BT, Ghetti B. The Psen1-L166P-knock-in mutation leads to amyloid deposition in human wild-type amyloid precursor protein YAC transgenic mice. FASEB J 2012; 26:2899-910. [PMID: 22459153 DOI: 10.1096/fj.12-205542] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Genetically engineered mice have been generated to model cerebral β-amyloidosis, one of the hallmarks of Alzheimer disease (AD) pathology, based on the overexpression of a mutated cDNA of the amyloid-β precursor protein (AβPP) or by knock-in of the murine Aβpp gene alone or with presenilin1 mutations. Here we describe the generation and initial characterization of a new mouse line based on the presence of 2 copies of the human genomic region encoding the wild-type AβPP and the L166P presenilin 1 mutation. At ∼6 mo of age, double-mutant mice develop amyloid pathology, with signs of neuritic dystrophy, intracellular Aβ accumulation, and glial inflammation, an increase in AβPP C-terminal fragments, and an 8 times increase in Aβ42 levels with a 40% decrease in Aβ40 levels, leading to a significant increase (14 times) of Aβ42/Aβ40 ratios, with minimal effects on presenilin or the Notch1 pathway in the brain. We conclude that in mice, neither mutations in AβPP nor overexpression of an AβPP isoform are a prerequisite for Aβ pathology. This model will allow the study of AD pathogenesis and testing of therapeutic strategies in a more relevant environment without experimental artifacts due to the overexpression of a single-mutant AβPP isoform using exogenous promoters.
Collapse
Affiliation(s)
- Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Rajendran L, Annaert W. Membrane Trafficking Pathways in Alzheimer's Disease. Traffic 2012; 13:759-70. [DOI: 10.1111/j.1600-0854.2012.01332.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration; Division of Psychiatry Research; University of Zurich; August-Forel Str. 1; Zurich; 8008; Switzerland
| | - Wim Annaert
- Laboratory for Membrane Trafficking; Center for Human Genetics (KULeuven) & VIB-Center for the Biology of Disease; Gasthuisberg O&N4, Herestraat 49; Leuven; B-3000; Belgium
| |
Collapse
|
50
|
D'Onofrio G, Panza F, Frisardi V, Solfrizzi V, Imbimbo BP, Paroni G, Cascavilla L, Seripa D, Pilotto A. Advances in the identification of γ-secretase inhibitors for the treatment of Alzheimer's disease. Expert Opin Drug Discov 2011; 7:19-37. [DOI: 10.1517/17460441.2012.645534] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|