1
|
Aliyeva O, Belenichev IF, Bilai I, Duiun I, Makyeyeva L, Oksenych V, Kamyshnyi O. HSP 70 Modulators for the Correction of Cognitive, Mnemonic, and Behavioral Disorders After Prenatal Hypoxia. Biomedicines 2025; 13:982. [PMID: 40299680 PMCID: PMC12025304 DOI: 10.3390/biomedicines13040982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/01/2025] Open
Abstract
Background/Objectives: Prenatal hypoxia (PH) is a leading cause of nervous system disorders in early childhood and subsequently leads to a decline in the cognitive and mnemonic functions of the central nervous system (such as memory impairment, reduced learning ability, and information processing). It also increases anxiety and the risk of brain disorders in adulthood. Compensatory-adaptive mechanisms of the mother-placenta-fetus system, which enhance the fetus's CNS resilience, are known, including the activation of endogenous neuroprotection in response to hypoxic brain injury through the pharmacological modulation of HSP70. Methods: To evaluate the effect of HSP70 modulators-Cerebrocurin, Angiolin, Tamoxifen, Glutaredoxin, Thiotriazoline, and HSF-1 (heat shock factor 1 protein), as well as Mildronate and Mexidol-on the motor skills, exploratory behaviors, psycho-emotional activities, learning, and memories of offspring after PH. Experimental PH was induced by daily intraperitoneal injections of sodium nitrite solution into pregnant female rats from the 16th to the 21st day of pregnancy at a dose of 50 mg/kg. The newborns received intraperitoneal injections of Angiolin (50 mg/kg), Thiotriazoline (50 mg/kg), Mexidol (100 mg/kg), Cerebrocurin (150 µL/kg), L-arginine (200 mg/kg), Glutaredoxin (200 µg/kg), HSF-1 (50 mg/kg), or Mildronate (50 mg/kg) for 30 days. At 1 month, the rats were tested in the open field test, and at 2 months, they were trained and tested for working and spatial memory in the radial maze. Results: Modeling PH led to persistent impairments in exploratory activity, psycho-emotional behavior, and a decrease in the cognitive-mnestic functions of the CNS. It was found that Angiolin and Cerebrocurin had the most pronounced effects on the indicators of exploratory activity and psycho-emotional status in 1-month-old animals after PH. They also exhibited the most significant cognitive-enhancing and memory-supporting effects during the training and evaluation of skill retention in the maze in 2-month-old offspring after PH. Conclusions: for the first time, we obtained experimental data on the effects of HSP70 modulators on exploratory activity, psycho-emotional behavior, and cognitive-mnestic functions of the central nervous system in offspring following intrauterine hypoxia. Based on the results of this study, we identified the pharmacological agents Angiolin and Cerebrocurin as promising neuroprotective agents after perinatal hypoxia.
Collapse
Affiliation(s)
- Olena Aliyeva
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Igor F. Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Ivan Bilai
- Department of Clinical Pharmacy, Pharmacotherapy, Pharmacognosy and Pharmaceutical Chemistry, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Iryna Duiun
- Department of Clinical Pharmacy, Pharmacotherapy, Pharmacognosy and Pharmaceutical Chemistry, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Lyudmyla Makyeyeva
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | | | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
2
|
Dominguez ZM, Davies S, Pavlik NG, Newville JC, Hafer BR, Jose CP, Gross J, Almeida Mancero RN, Jantzie LL, Savage DD, Maxwell JR. Prenatal Alcohol Exposure and Transient Systemic Hypoxia-Ischemia Result in Subtle Alterations in Dendritic Complexity in Medial Frontal Cortical Neurons in Juvenile and Young Adult Rat Offspring in a Pilot Study. Cells 2024; 13:1983. [PMID: 39682731 PMCID: PMC11640287 DOI: 10.3390/cells13231983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Prenatal alcohol exposure (PAE) is associated with long-term neurodevelopmental deficits resulting in impaired executive functioning and motor control. Intriguingly, PAE has been linked with an increased risk of transient systemic hypoxia-ischemia (TSHI), which alone results in suboptimal fetal growth and neurodevelopmental consequences. Here, using two translationally relevant preclinical models, we investigated the short-term and lasting effects of PAE and TSHI on the morphology of the medial prefrontal cortex (mPFC), a region important in executive function, and tested whether PAE interacts with TSHI to produce a distinct pattern of injury relative to either condition alone. The four experimental groups included sham (saccharin water, no TSHI), PAE (5% alcohol, no TSHI), TSHI (saccharin water, TSHI), and PAE+TSHI (5% alcohol, TSHI). Brains were extracted for Golgi-Cox staining at Postnatal Day 35 (P35) or P100 and processed for 3D Sholl analysis. The analysis of the mPFC at P35 showed no significant differences in the number of branches or dendritic length overall, although the impact of TSHI compared to alcohol was significant for both. There were no significant differences in the number of Sholl intersections overall at P35, although a sex difference was noted in PAE offspring. At P100, analysis of filament dendritic length and branching number was also significantly impacted by TSHI compared to alcohol. Interestingly, sex was also a significant factor when assessing the impact of alcohol. PAE and TSHI both had an insignificantly increased number of Sholl intersections at P100 compared to the control. The observed changes to dendritic complexity at P100 demonstrate altered neuronal morphology in the mPFC that endure into adulthood. Given the importance of the mPFC in executive functioning, these pilot data provide insight into morphological changes that may contribute to the neurobehavioral deficits observed following exposure to PAE and TSHI and highlight the need for additional investigations into this area.
Collapse
Affiliation(s)
- Zarena M. Dominguez
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (Z.M.D.); (D.D.S.)
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA; (S.D.); (B.R.H.)
| | - Nathaniel G. Pavlik
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (Z.M.D.); (D.D.S.)
| | - Jessie C. Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA; (S.D.); (B.R.H.)
| | - Brooke R. Hafer
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA; (S.D.); (B.R.H.)
| | - Clement P. Jose
- School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA;
| | - Jessica Gross
- Clinical and Translational Science Center, University of New Mexico, Albuquerque, NM 87106, USA;
| | - Roberto N. Almeida Mancero
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA; (S.D.); (B.R.H.)
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Daniel D. Savage
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (Z.M.D.); (D.D.S.)
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA; (S.D.); (B.R.H.)
| | - Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (Z.M.D.); (D.D.S.)
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA; (S.D.); (B.R.H.)
| |
Collapse
|
3
|
Cromb D, Wilson S, Bonthrone AF, Chew A, Kelly C, Kumar M, Cawley P, Dimitrova R, Arichi T, Tournier JD, Pushparajah K, Simpson J, Rutherford M, Hajnal JV, Edwards AD, Nosarti C, O’Muircheartaigh J, Counsell SJ. Individualized cortical gyrification in neonates with congenital heart disease. Brain Commun 2024; 6:fcae356. [PMID: 39429246 PMCID: PMC11487749 DOI: 10.1093/braincomms/fcae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/08/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Congenital heart disease is associated with impaired early brain development and adverse neurodevelopmental outcomes. This study investigated how individualized measures of preoperative cortical gyrification index differ in 142 infants with congenital heart disease, using a normative modelling approach with reference data from 320 typically developing infants. Gyrification index Z-scores for the whole brain and six major cortical areas were generated using two different normative models: one accounting for post-menstrual age at scan, post-natal age at scan and sex, and another additionally accounting for supratentorial brain volume. These Z-scores were compared between congenital heart disease and control groups to test the hypothesis that cortical folding in infants with congenital heart disease deviates from the normal developmental trajectory. The relationships between whole-brain gyrification index Z-scores from the two normative models and both cerebral oxygen delivery and neurodevelopmental outcomes were also investigated. Global and regional brain gyrification was significantly reduced in neonates with congenital heart disease, but not when supratentorial brain volume was accounted for. This finding suggests that whilst cortical folding is reduced in congenital heart disease, it is primarily driven by a reduction in brain size. There was a significant positive correlation between cerebral oxygen delivery and whole-brain gyrification index Z-scores in congenital heart disease, but not when supratentorial brain volume was accounted for. Cerebral oxygen delivery is therefore likely to play a more important role in the biological processes underlying volumetric brain growth than cortical folding. No significant associations between whole-brain gyrification index Z-scores and motor/cognitive outcomes or autism traits were identified in the 70 infants with congenital heart disease who underwent neurodevelopmental assessment at 22-months. Our results suggest that chronic in utero and early post-natal hypoxia in congenital heart disease is associated with reductions in cortical folding that are proportional to reductions in supratentorial brain volume.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Siân Wilson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Manu Kumar
- GKT Medical School, King’s College London, London SE1 7EH, UK
| | - Paul Cawley
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, London SE1 7EH, UK
| | - J Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Kuberan Pushparajah
- Department of Cardiovascular Imaging, King’s College London, London SE1 7EH, UK
- Department of Fetal and Paediatric Cardiology, Evelina London Children’s Hospital, London SE1 7EH, UK
| | - John Simpson
- Department of Cardiovascular Imaging, King’s College London, London SE1 7EH, UK
- Department of Fetal and Paediatric Cardiology, Evelina London Children’s Hospital, London SE1 7EH, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, London SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
4
|
Dunn BR, Olguin SL, Davies S, Pavlik NG, Brigman JL, Hamilton D, Savage DD, Maxwell JR. Sex-specific alterations in cognitive control following moderate prenatal alcohol exposure and transient systemic hypoxia ischemia in the rat. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:640-652. [PMID: 38302722 PMCID: PMC11015983 DOI: 10.1111/acer.15276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) continues to be a worldwide problem. Affected offspring display impaired neurodevelopment, including difficulties with executive control. Although PAE has also been associated with decreased blood flow to fetuses, the relationship between PAE and altered blood flow is not well understood. METHODS We used preclinical models of PAE, transient systemic hypoxia ischemia (TSHI), and PAE + TSHI combined to assess the effects on neurodevelopmental outcomes using translationally relevant touchscreen operant platform testing. Twenty-eight Long-Evans (Blue Spruce, Strain HsdBlu:LE) dams were randomly assigned to one of four experimental groups: Saccharin Control (Sham), 5% Ethanol (PAE), TSHI, or 5% Ethanol and TSHI (PAE + TSHI). Dams consumed either saccharin or 5% ethanol during gestation. TSHI was induced on Embryonic Day 19 (E19) during an open laparotomy where the uterine arteries were transiently occluded for 1 h. Pups were born normally and, after weaning, were separated by sex. A total of 80 offspring, 40 males and 40 females, were tested on the 5-Choice Continuous Performance paradigm (5C-CPT). RESULTS Female offspring were significantly impacted by TSHI, but not PAE, with an increase in false alarms and a decrease in hit rates, omissions, accuracy, and correct choice latencies. In contrast, male offspring were mildly affected by PAE, but not TSHI, showing decreases in premature responses and increases in accuracy. No significant interactions between PAE and TSHI were detected on any measure. CONCLUSION Transient systemic hypoxia ischemia impaired performance on the 5C-CPT in females, leading to a bias toward stimulus responsivity regardless of stimulus type. In contrast, TSHI did not affect male offspring, and only slight effects of PAE were seen. Together, these data suggest that TSHI in females may cause alterations in cortical structures that override alterations caused by moderate PAE.
Collapse
Affiliation(s)
- Brooke R. Dunn
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sarah L. Olguin
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Nathaniel G. Pavlik
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jonathan L. Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Derek Hamilton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Daniel D. Savage
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
5
|
Franklin RJM, Bodini B, Goldman SA. Remyelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041371. [PMID: 38316552 PMCID: PMC10910446 DOI: 10.1101/cshperspect.a041371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GH, United Kingdom
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, INSERM, Paris 75013, France
- Saint-Antoine Hospital, APHP, Paris 75012, France
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA
- University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
6
|
Von Adamovich GMG, Bastos Torres JAG, Vianna FS, Barradas PC, Alves de Oliveira BF, Villela NR, De Rodrigues MCC, Montes GC. Evaluation of Pain Prevalence in Children Who Experienced Perinatal Hypoxia-Ischemia Events: Characteristics and Associations With Sociodemographic Factors. Cureus 2023; 15:e46359. [PMID: 37920623 PMCID: PMC10619469 DOI: 10.7759/cureus.46359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
INTRODUCTION Pain in children who suffer from hypoxia-ischemia (HI) events is still not widely studied. Hypoxia-ischemia is characterized by the momentary or permanent cessation of blood flow and, consequently, of oxygen supply, becoming the main cause of encephalopathy in children. Hyperalgesia was identified in animals undergoing prenatal hypoxia-ischemia by researchers from the Universidade do Estado do Rio de Janeiro (UERJ). Premature and asphyxiated newborns have been admitted to the neonatal intensive care unit (NICU) of Pedro Ernesto University Hospital (HUPE) in Brazil and are monitored by the Outpatient Follow-up of High-Risk Newborns Project (SARAR), but no pain assessment was performed. OBJECTIVE To assess pain in children born in high-risk situations, such as prematurity and perinatal asphyxia, with higher chances of perinatal HI, discharged from the NICU/HUPE, and followed by SARAR. METHODOLOGY The study was approved by the HUPE Research Ethics Committee. The epidemiological, descriptive, cross-sectional study started in 2021 and finished in 2023, with the application of the pain assessment tool or instrument adapted from the Lübeck Pain-Screening Questionnaire to the caregivers and with the collection of growth and development data. The population consisted of asphyxiated infants born with a gestational age greater than 35 weeks and submitted to the Therapeutic Hypothermia protocol and premature infants discharged from the NICU between two (gestational age 1 (GA1)) and 12 years old. For most of them, pain prevalence was assessed according to its frequency and intensity, as were sociodemographic variables of the child and mother, neural alterations, and the Children's Developmental Scale (DENVER II). The percentage differences between the evaluated factors and the presence of pain were performed using Fisher's exact test and medians using the non-parametric Wilcoxon rank-sum test, both appropriate for the small sample of children. Significance levels of 10% were considered for trends and 5% for statistically significant differences. RESULTS Of the 86 children included in our search, 26 (30%) were born with a gestational age greater than 35 weeks and diagnosed with perinatal asphyxia (hereinafter referred to as the asphyxiation group), and 60 (70%) were premature. Pain was reported by 22 (25%) children, of whom 54.4% reported moderate or severe pain. The head and abdomen were the most reported sites (36%). Differences were observed in the percentage distribution of pain between asphyxiates and premature infants (11% vs. 32%; p-value 0.061 on the Fisher test) and between females and males (34% vs. 17%; p-value 0.085 on the Fisher test). Black and Brown children had higher median pain scale values than White children (p-value < 0.027, Wilcoxon rank sum test). CONCLUSION There is a higher prevalence of pain in girls, in the head, in premature infants, and greater intensity among Black and Brown children. Therefore, knowing the pain profile can help improve their quality of life by offering treatments.
Collapse
Affiliation(s)
| | | | - Felipe S Vianna
- Internal Medicine, Faculty of Medicine, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, BRA
| | - Penha C Barradas
- Pharmacology and Psychobiology, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, BRA
| | - Beatriz F Alves de Oliveira
- Epidemiology and Public Health, Fiocruz Regional Office of Piauí, National School of Public Health, Oswaldo Cruz Foundation, Piauí, BRA
| | - Nivaldo R Villela
- Anesthesiology, Pain Medicine, Faculty of Medicine, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, BRA
| | | | - Guilherme C Montes
- Pharmacology and Psycobiology, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, BRA
| |
Collapse
|
7
|
Marques KL, Moreira ML, Thiele MC, Cunha-Rodrigues MC, Barradas PC. Depressive-like behavior and impaired synaptic plasticity in the prefrontal cortex as later consequences of prenatal hypoxic-ischemic insult in rats. Behav Brain Res 2023; 452:114571. [PMID: 37421988 DOI: 10.1016/j.bbr.2023.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Perinatal hypoxia-ischemia (HI) is a leading cause of morbidity and mortality among newborns. Infants with HI encephalopathy may experience lasting consequences, such as depression, in adulthood. In this study, we examined depressive-like behavior, neuronal population, and markers of monoaminergic and synaptic plasticity in the prefrontal cortex (PFC) of adolescent rats subjected to a prenatal HI model. Pregnant rats underwent a surgery in which uterine and ovarian blood flow was blocked for 45 min at E18 (HI procedure). Sham-operated subjects were also generated (SH procedure). Behavioral tests were conducted on male and female pups from P41 to P43, and animals were histologically processed or dissected for western blotting at P45. We found that the HI groups consumed less sucrose in the sucrose preference test and remained immobile for longer periods in the forced swim test. Additionally, we observed a significant reduction in neuronal density and PSD95 levels in the HI group, as well as a smaller number of synaptophysin-positive cells. Our results underscore the importance of this model in investigating the effects of HI-induced injuries, as it reproduces an increase in depressive-like behavior and suggests that the HI insult affects circuits involved in mood modulation.
Collapse
Affiliation(s)
- Kethely L Marques
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Milena L Moreira
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Maria C Thiele
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marta C Cunha-Rodrigues
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Penha C Barradas
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
de Almeida LS, Cunha-Rodrigues MC, Araujo PC, de Almeida OM, Barradas PC. Effects of prenatal hypoxia-ischemia on male rat periaqueductal gray matter: Hyperalgesia, astrogliosis and nitrergic system impairment. Neurochem Int 2023; 164:105500. [PMID: 36731728 DOI: 10.1016/j.neuint.2023.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Prenatal hypoxic-ischemic insult (HI) may lead to a variety of neurological consequences that may persist throughout adulthood. In the most severe cases, HI is known to increase pain sensitivity which profoundly impacts quality of life. Periaqueductal gray matter (PAG) is a relevant region of the descending pain pathway and its function may be modulated by a complex network that includes nitrergic neurons and glial response, among other factors. Astrocytes, central players in pain modulation, are known to respond to HI by inducing hyperplasia, hypertrophy and increasing the number of their processes and the staining of glial fibrillary acidic protein (GFAP). In this work we investigated the effects of prenatal HI on touch and pain sensitivity, besides the distribution of the neuronal isoform of Nitric Oxide Synthase (nNOS) and GFAP in the PAG of young and adult male rats. At 18 days of gestation, rats had their uterine arteries clamped for 45 min (HI group). SHAM-operated animals were also generated (SHAM group). At post-natal day 30 (P30) or 90 (P90), the offspring was submitted to the behavioral tests of Von Frey and formalin or histological processing to perform immunohistochemistry for nNOS and GFAP. Although there was no significant difference between the groups concerning touch sensitivity, we observed an increase in pain sensitivity in HI P30 and HI P90. The number of nNOS + cells was reduced in HI adult animals in dlPAG and vlPAG. GFAP immunostaining was increased in HI P90 in dlPAG and dmPAG. Our results demonstrated for the first time an increase in pain sensitivity as a consequence of prenatal HI in an animal model. It reinforces the relevance of this model to mimic the effects of prenatal HI, as hyperalgesia.
Collapse
Affiliation(s)
- L S de Almeida
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil
| | - M C Cunha-Rodrigues
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil
| | - P C Araujo
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil
| | - O M de Almeida
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil
| | - P C Barradas
- Universidade do Estado do Rio de Janeiro, Pharmacology and Psychobiology, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Robinson S, Winer JL, Kitase Y, Brigman JL, Jantzie LL. Neonatal administration of erythropoietin attenuates cognitive deficits in adult rats following placental insufficiency. J Neurosci Res 2022; 100:2112-2126. [PMID: 33611820 PMCID: PMC10097461 DOI: 10.1002/jnr.24815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 01/07/2023]
Abstract
Preterm birth is a principal cause of neurological disability later in life, including cognitive and behavioral deficits. Notably, cognitive impairment has greater impact on quality of life than physical disability. Survivors of preterm birth commonly have deficits of executive function. Difficulties with tasks and planning complexity correlate positively with increasing disability. To overcome these barriers for children born preterm, preclinical and clinical studies have emphasized the importance of neurorestoration. Erythropoietin (EPO) is a endogenous cytokine with multiple beneficial mechanisms of action following perinatal brain injury. While most preclinical investigations have focused on pathology and molecular mechanisms, translational studies of repair using clinically viable biobehavioral biomarkers are still lacking. Here, using an established model of encephalopathy of prematurity secondary to placental insufficiency, we tested the hypothesis that administration of EPO in the neonatal period would attenuate deficits in recognition memory and cognitive flexibility in adult rats of both sexes. We assessed cognition and executive function in two ways. First, using the classic test of novel object recognition and second, using a touchscreen platform. Touchscreen testing allows for rigorous testing of cognition and executive function in preclinical and clinical scenarios. Data show that adult rats exhibit deficits in recognition memory and cognitive flexibility following in utero placental insufficiency. Notably, neonatal treatment of EPO attenuates these deficits in adulthood and facilitates functional repair. Together, these data validate EPO neurorestoration using a clinically relevant outcome measure and support the concept that postnatal treatment following in utero injury can improve cognition and executive function through adulthood.
Collapse
Affiliation(s)
- Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jesse L Winer
- Division of Pediatric Neurosurgery, Oregon Health and Science University, Portland, OR, USA
| | - Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan L Brigman
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lauren L Jantzie
- Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
10
|
Muthukumar S, Mehrotra K, Fouda M, Hamimi S, Jantzie LL, Robinson S. Prenatal and postnatal insults differentially contribute to executive function and cognition: Utilizing touchscreen technology for perinatal brain injury research. Exp Neurol 2022; 354:114104. [PMID: 35525306 PMCID: PMC10085749 DOI: 10.1016/j.expneurol.2022.114104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/19/2022]
Abstract
The use of touchscreen technology to evaluate cognitive deficits in animal models has grown tremendously over the past 20 years. The touchscreen apparatus encompasses many advantages, namely a high level of standardization and translational capability. Improvements in technology in recent years have expanded the versatility of the touchscreen platform, as it is able to test distinct cognitive modalities including working memory, attention, discrimination, and association. Importantly, touchscreen technology has allowed researchers to explore deficits in multiple pillars of cognition in a wide variety of perinatal disorders with neurological sequelae across critical developmental windows. The touchscreen platform has been used to dissect deficits in antenatal CNS injury including fetal alcohol syndrome, prenatal opioid exposure, and chorioamnionitis, to peripartum insults such as term hypoxic-ischemic encephalopathy, to early postnatal insults including infantile traumatic brain injury. Most importantly, touchscreen technology offers the sensitivity necessary to detect subtle injury and treatment-induced changes in cognition and executive function beyond those offered by more rudimentary tests of rodent cognition. Understanding the pathophysiology of these disorders in rodents is paramount to addressing these deficits in human infants and dissecting the neural circuitry essential to perinatal brain injury pathophysiology and responsiveness to novel therapeutics. Touchscreen testing provides an effective, facile, sophisticated technique to accelerate the goal of improving cognitive and behavioral outcomes of children who suffer perinatal brain injury.
Collapse
Affiliation(s)
- Sankar Muthukumar
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karnika Mehrotra
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammed Fouda
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Hamimi
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren L Jantzie
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kennedy Krieger Institute, Baltimore, MD, USA
| | - Shenandoah Robinson
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Wang B, Zeng H, Liu J, Sun M. Effects of Prenatal Hypoxia on Nervous System Development and Related Diseases. Front Neurosci 2021; 15:755554. [PMID: 34759794 PMCID: PMC8573102 DOI: 10.3389/fnins.2021.755554] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
The fetal origins of adult disease (FOAD) hypothesis, which was proposed by David Barker in the United Kingdom in the late 1980s, posited that adult chronic diseases originated from various adverse stimuli in early fetal development. FOAD is associated with a wide range of adult chronic diseases, including cardiovascular disease, cancer, type 2 diabetes and neurological disorders such as schizophrenia, depression, anxiety, and autism. Intrauterine hypoxia/prenatal hypoxia is one of the most common complications of obstetrics and could lead to alterations in brain structure and function; therefore, it is strongly associated with neurological disorders such as cognitive impairment and anxiety. However, how fetal hypoxia results in neurological disorders remains unclear. According to the existing literature, we have summarized the causes of prenatal hypoxia, the effects of prenatal hypoxia on brain development and behavioral phenotypes, and the possible molecular mechanisms.
Collapse
Affiliation(s)
- Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingliu Liu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
da Conceição Pereira S, Manhães-de-Castro R, Visco DB, de Albuquerque GL, da Silva Calado CMS, da Silva Souza V, Toscano AE. Locomotion is impacted differently according to the perinatal brain injury model: Meta-analysis of preclinical studies with implications for cerebral palsy. J Neurosci Methods 2021; 360:109250. [PMID: 34116077 DOI: 10.1016/j.jneumeth.2021.109250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Different approaches to reproduce cerebral palsy (CP) in animals, contribute to the knowledge of the pathophysiological mechanism of this disease and provide a basis for the development of intervention strategies. Locomotion and coordination are the main cause of disability in CP, however, few studies highlight the quantitative differences of CP models, on locomotion parameters, considering the methodologies to cause brain lesions in the perinatal period. METHODS Studies with cerebral palsy animal models that assess locomotion parameters were systematically retrieved from Medline/PubMed, SCOPUS, LILACS, and Web of Science. Methodological evaluation of included studies and quantitative assessment of locomotion parameters were performed after eligibility screening. RESULTS CP models were induced by hypoxia-ischemia (HI), Prenatal ischemia (PI), lipopolysaccharide inflammation (LPS), intraventricular haemorrhage (IVH), anoxia (A), sensorimotor restriction (SR), and a combination of different models. Overall, 63 studies included in qualitative synthesis showed a moderate quality of evidence. 16 studies were included in the quantitative meta-analysis. Significant reduction was observed in models that combined LPS with HI related to distance traveled (SMD -7.24 95 % CI [-8.98, -5.51], Z = 1.18, p < 0.00001) and LPS with HI or anoxia with sensory-motor restriction (SMD -6.01, 95 % CI [-7.67, -4.35], Z = 7.11), or IVH (SMD -4.91, 95 % CI [-5.84, -3.98], Z = 10.31, p < 0.00001) related to motor coordination. CONCLUSION The combination of different approaches to reproduce CP in animals causes greater deficits in locomotion and motor coordination from the early stages of life to adulthood. These findings contribute to methodological refinement, reduction, and replacement in animal experimentation, favoring translational purposes.
Collapse
Affiliation(s)
- Sabrina da Conceição Pereira
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Postgraduate Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego Bulcão Visco
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Postgraduate Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Vanessa da Silva Souza
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana Elisa Toscano
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Postgraduate Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
13
|
Wang W, Tang J, Zhong M, Chen J, Li T, Dai Y. HIF-1 α may play a role in late pregnancy hypoxia-induced autism-like behaviors in offspring rats. Behav Brain Res 2021; 411:113373. [PMID: 34048873 DOI: 10.1016/j.bbr.2021.113373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can be caused by various factors. The present study aimed to determine whether prenatal hypoxia can lead to ASD and the role of hypoxia-inducible factor-1α (HIF-1α) in this process. We constructed a prenatal hypoxia model of pregnant rats by piping nitrogen and oxygen mixed gas, with an oxygen concentration of 10 ± 0.5 %, into the self-made hypoxia chamber. Rats were subjected to different extents of hypoxia treatments at different points during pregnancy. The results showed that hypoxia for 6 h on the 17th gestation day is most likely to lead to autistic behavior in offspring rats, including social deficits, repetitive behaviors, and impaired learning and memory. The mRNA expression level of TNF-α also increased in hypoxia-induced autism group and valproic acid (VPA) group. Western blotting analysis showed increased levels of hypoxia inducible factor 1 alpha (HIF-1α) and decreased levels of phosphatase and tensin homolog (PTEN) in the hypoxic-induced autism group. Meanwhile, N-methyl d-aspartate receptor subtype 2 (NR2A) and glutamate ionotropic receptor AMPA type subunit 2 (GluR2) were upregulated in the hypoxic-induced autism group. HIF-1α might play a role in hypoxia-caused autism-like behavior and its regulatory effect is likely to be achieved by regulating synaptic plasticity.
Collapse
Affiliation(s)
- Weiyu Wang
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jinghua Tang
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Min Zhong
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jie Chen
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Tingyu Li
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Ying Dai
- Department of Primary Child Health Care, Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
| |
Collapse
|
14
|
da Silva TFG, de Bem GF, da Costa CA, Santos IB, Soares RDA, Ognibene DT, Rito-Costa F, Cavalheira MA, da Conceição SP, Ferraz MR, Resende AC. Prenatal hypoxia predisposes vascular functional and structural changes associated with oxidative stress damage and depressive behavior in adult offspring male rats. Physiol Behav 2020; 230:113293. [PMID: 33338483 DOI: 10.1016/j.physbeh.2020.113293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/05/2023]
Abstract
Intrauterine hypoxia-ischemia (HI) provides a strong stimulus for a developmental origin of both the central nervous system and cardiovascular diseases. This study aimed to investigate vascular functional and structural changes, oxidative stress damage, and behavioral alterations in adult male offspring submitted to HI during pregnancy. The pregnant Wistar rats had a uterine artery clamped for 45 min on the 18th gestational day, submitting the offspring to hypoxic-ischemic conditions. The Sham group passed to the same surgical procedure as the HI rats, without occlusion of the maternal uterine artery, and the controls consisted of non-manipulated healthy animals. After weaning, the male pups were divided into three groups: control, sham, and HI, according to the maternal procedure. At postnatal day 90 (P90), the adult male offspring performed the open field and forced swim tests. In P119, the rats had their blood pressure checked and were euthanized. Prenatal HI induced a depressive behavior in adult male offspring associated with a reduced vasodilator response to acetylcholine in perfused mesenteric arterial bed, and reduced superoxide dismutase and glutathione peroxidase activities in the aorta compared to control and sham groups. Prenatal HI also increased the vasoconstrictor response to norepinephrine, the media thickness, collagen deposition, and the oxidative damage in the aorta from adult male offspring compared to control and sham groups. Our results suggest an association among prenatal HI and adult vascular structural and functional changes, oxidative stress damage, and depressive behavior.
Collapse
Affiliation(s)
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ricardo de Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fernanda Rito-Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Mariana Alencar Cavalheira
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Marcos Rochedo Ferraz
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Abstract
Perinatal hypoxia is still one of the greatest threats to the newborn child, even in developed countries. However, there is a lack of works which summarize up-to-date information about that huge topic. Our review covers a broader spectrum of recent results from studies on mechanisms leading to hypoxia-induced injury. It also resumes possible primary causes and observed behavioral outcomes of perinatal hypoxia. In this review, we recognize two types of hypoxia, according to the localization of its primary cause: environmental and placental. Later we analyze possible pathways of prenatal hypoxia-induced injury including gene expression changes, glutaminergic excitatory damage (and a role of NMDA receptors in it), oxidative stress with ROS and RNS production, inflammation and apoptosis. Moreover, we focus on the impact of these pathophysiological changes on the structure and development of the brain, especially on its regions: corpus striatum and hippocampus. These brain changes of the offspring lead to impairments in their postnatal growth and sensorimotor development, and in their motor functions, activity, emotionality and learning ability in adulthood. Later we compare various animal models used to investigate the impact of prenatal and postnatal injury (hypoxic, ischemic or combinatory) on living organisms, and show their advantages and limitations.
Collapse
Affiliation(s)
- M Piešová
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | |
Collapse
|
16
|
Truttmann AC, Ginet V, Puyal J. Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Front Cell Dev Biol 2020; 8:27. [PMID: 32133356 PMCID: PMC7039819 DOI: 10.3389/fcell.2020.00027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic–ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic–ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.
Collapse
Affiliation(s)
- Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Vanessa Ginet
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
17
|
Nalivaeva NN, Turner AJ, Zhuravin IA. Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration. Front Neurosci 2018; 12:825. [PMID: 30510498 PMCID: PMC6254649 DOI: 10.3389/fnins.2018.00825] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
This review focuses on the role of prenatal hypoxia in the development of brain functions in the postnatal period and subsequent increased risk of neurodegenerative disorders in later life. Accumulating evidence suggests that prenatal hypoxia in critical periods of brain formation results in significant changes in development of cognitive functions at various stages of postnatal life which correlate with morphological changes in brain structures involved in learning and memory. Prenatal hypoxia also leads to a decrease in brain adaptive potential and plasticity due to the disturbance in the process of formation of new contacts between cells and propagation of neuronal stimuli, especially in the cortex and hippocampus. On the other hand, prenatal hypoxia has a significant impact on expression and processing of a variety of genes involved in normal brain function and their epigenetic regulation. This results in changes in the patterns of mRNA and protein expression and their post-translational modifications, including protein misfolding and clearance. Among proteins affected by prenatal hypoxia are a key enzyme of the cholinergic system-acetylcholinesterase, and the amyloid precursor protein (APP), both of which have important roles in brain function. Disruption of their expression and metabolism caused by prenatal hypoxia can also result, apart from early cognitive dysfunctions, in development of neurodegeneration in later life. Another group of enzymes affected by prenatal hypoxia are peptidases involved in catabolism of neuropeptides, including amyloid-β peptide (Aβ). The decrease in the activity of neprilysin and other amyloid-degrading enzymes observed after prenatal hypoxia could result over the years in an Aβ clearance deficit and accumulation of its toxic species which cause neuronal cell death and development of neurodegeneration. Applying various approaches to restore expression of neuronal genes disrupted by prenatal hypoxia during postnatal development opens an avenue for therapeutic compensation of cognitive dysfunctions and prevention of Aβ accumulation in the aging brain and the model of prenatal hypoxia in rodents can be used as a reliable tool for assessment of their efficacy.
Collapse
Affiliation(s)
- Natalia N. Nalivaeva
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Anthony J. Turner
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Igor A. Zhuravin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Centre, Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| |
Collapse
|
18
|
Ueda Y, Bando Y, Misumi S, Ogawa S, Ishida A, Jung CG, Shimizu T, Hida H. Alterations of Both Dendrite Morphology and Weaker Electrical Responsiveness in the Cortex of Hip Area Occur Before Rearrangement of the Motor Map in Neonatal White Matter Injury Model. Front Neurol 2018; 9:443. [PMID: 29971036 PMCID: PMC6018077 DOI: 10.3389/fneur.2018.00443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-ischemia (H-I) in rats at postnatal day 3 causes disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex without apparent neuronal loss, and shows mild hindlimb dysfunction with imbalanced motor coordination. However, the mechanisms by which mild motor dysfunction is induced without loss of cortical neurons are currently unclear. To reveal the mechanisms underlying mild motor dysfunction in neonatal H-I model, electrical responsiveness and dendrite morphology in the sensorimotor cortex were investigated at 10 weeks of age. Responses to intracortical microstimulation (ICMS) revealed that the cortical motor map was significantly changed in this model. The cortical area related to hip joint movement was reduced, and the area related to trunk movement was increased. Sholl analysis in Golgi staining revealed that layer I–III neurons on the H-I side had more dendrite branches compared with the contralateral side. To investigate whether changes in the motor map and morphology appeared at earlier stages, ICMS and Sholl analysis were also performed at 5 weeks of age. The minimal ICMS current to evoke twitches of the hip area was higher on the H-I side, while the motor map was unchanged. Golgi staining revealed more dendrite branches in layer I–III neurons on the H-I side. These results revealed that alterations of both dendrite morphology and ICMS threshold of the hip area occurred before the rearrangement of the motor map in the neonatal H-I model. They also suggest that altered dendritic morphology and altered ICMS responsiveness may be related to mild motor dysfunction in this model.
Collapse
Affiliation(s)
- Yoshitomo Ueda
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Japan
| | - Sachiyo Misumi
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shino Ogawa
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimasa Ishida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Shimizu
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
19
|
Kawarai Y, Tanaka H, Kobayashi T, Shozu M. Progesterone as a Postnatal Prophylactic Agent for Encephalopathy Caused by Prenatal Hypoxic Ischemic Insult. Endocrinology 2018; 159:2264-2274. [PMID: 29648595 PMCID: PMC5946846 DOI: 10.1210/en.2018-00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
Brain damage caused by hypoxic ischemic insult during the perinatal period causes hypoxic ischemic encephalopathies (HIEs). Therapeutic hypothermia is indicated for HIE, but because the therapeutic burden is large for its limited therapeutic effectiveness, another strategy is needed. Progesterone (P4) plays a neuroprotective role through the actions of its metabolite, allopregnanolone (Allo), on P4 receptor, γ-aminobutyric acid type A receptors or both. We examined the therapeutic potential of P4 using a newborn rat model of HIE. Fetal rats were exposed to transient ischemic hypoxia by 30-minute bilateral uterine artery clamping on gestational day 18. After spontaneous birth, newborn pups were subcutaneously injected with P4 (0.10 or 0.01 mg), medroxyprogesterone acetate (MPA; 0.12 mg), or Allo (0.10 mg) through postnatal days (PDs) 1 to 9. Brain damage in the rats was assessed using the rotarod test at PD50. The HIE insult reduced the rats' ability in the rotarod task, which was completely reversed by P4 and Allo, but not by MPA. Histological examination revealed that the HIE insult decreased neuronal (the cortex and the hippocampal CA1 region) and oligodendroglial cell density (the corpus callosum) through PD0 to PD50. The axon fiber density and myelin sheath thickness in the corpus callosum were also reduced at PD50. The time-course study revealed that P4 restored oligodendroglial cells by PD5, which was followed by neuroprotective action of P4 that lasted long over the injection period. These results suggest that P4 protects the neonatal brain from HIE insult via restoration of oligodendroglial cells.
Collapse
Affiliation(s)
- Yoshimasa Kawarai
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hirokazu Tanaka
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Obstetrics and Gynecology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Tatsuya Kobayashi
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Makio Shozu
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Correspondence: Makio Shozu, MD, PhD, Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Japan, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan. E-mail:
| |
Collapse
|
20
|
Wixey JA, Reinebrant HE, Chand KK, Buller KM. Disruption to the 5-HT 7 Receptor Following Hypoxia-Ischemia in the Immature Rodent Brain. Neurochem Res 2018; 43:711-720. [PMID: 29357019 DOI: 10.1007/s11064-018-2473-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
It has become increasingly evident the serotonergic (5-hydroxytryptamine, 5-HT) system is an important central neuronal network disrupted following neonatal hypoxic-ischemic (HI) insults. Serotonin acts via a variety of receptor subtypes that are differentially associated with behavioural and cognitive mechanisms. The 5-HT7 receptor is purported to play a key role in epilepsy, anxiety, learning and memory and neuropsychiatric disorders. Furthermore, the 5-HT7 receptor is highly localized in brain regions damaged following neonatal HI insults. Utilising our well-established neonatal HI model in the postnatal day 3 (P3) rat pup we demonstrated a significant decrease in levels of the 5-HT7 protein in the frontal cortex, thalamus and brainstem one week after insult. We also observed a relative decrease in both the cytosolic and membrane fractions of 5-HT7. The 5-HT7 receptor was detected on neurons throughout the cortex and thalamus, and 5-HT cell bodies in the brainstem. However we found no evidence of 5-HT7 co-localisation on microglia or astrocytes. Moreover, minocycline treatment did not significantly prevent the HI-induced reductions in 5-HT7. In conclusion, neonatal HI injury caused significant disruption to 5-HT7 receptors in the forebrain and brainstem. Yet the use of minocycline to inhibit activated microglia, did not prevent the HI-induced changes in 5-HT7 expression.
Collapse
Affiliation(s)
- Julie A Wixey
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.
| | - Hanna E Reinebrant
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.,Mater Research Institute, The University of Queensland (MRI-UQ), Brisbane, Australia
| | - Kirat K Chand
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Kathryn M Buller
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| |
Collapse
|
21
|
Tsuji M, Coq JO, Ogawa Y, Yamamoto Y, Ohshima M. A Rat Model of Mild Intrauterine Hypoperfusion with Microcoil Stenosis. J Vis Exp 2018. [PMID: 29364276 DOI: 10.3791/56723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Intrauterine hypoperfusion/ischemia is one of the major causes of intrauterine/fetal growth restriction, preterm birth, and low birth weight. Most studies of this phenomenon have been performed in either models with severe intrauterine ischemia or models with gradient degree of intrauterine hypoperfusion. No study has been performed in a model on uniform mild intrauterine hypoperfusion (MIUH). Two models have been used for studies of MIUH: a model based on suture ligation of either side of the arterial arcade formed with the uterine and ovarian arteries, and a transient model based on clipping the bilateral ovarian arteries and aorta having patency. Those two rodent models of MIUH have some limitations, e.g., not all fetuses are subjected to MIUH, depending on their position in the uterine horn. In our MIUH model, all fetuses are subjected to a comparable level of intrauterine hypoperfusion. MIUH was achieved by mild stenosis of all four arteries feeding the uterus, i.e., the bilateral uterine and ovarian arteries. Arterial stenosis was induced by metal microcoils wrapped around the feeding arteries. Producing arterial stenosis with microcoils allowed us to control, optimize, and reproduce decreased blood flow with very little inter-animal variability and a low mortality rate, thus enabling accurate evaluation. When microcoils with an inner diameter of 0.24 mm were used, the blood flow in both the placenta and fetus was mildly decreased (approximately 30% from the pre-stenosis level in the placenta). The offspring of our MIUH model clearly demonstrates long-lasting alterations in neurological, neuroanatomical and behavioral test results.
Collapse
Affiliation(s)
- Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center;
| | | | - Yuko Ogawa
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center
| | - Yumi Yamamoto
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center
| | - Makiko Ohshima
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center
| |
Collapse
|
22
|
Jantzie LL, Scafidi J, Robinson S. Stem cells and cell-based therapies for cerebral palsy: a call for rigor. Pediatr Res 2018; 83:345-355. [PMID: 28922350 DOI: 10.1038/pr.2017.233] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Cell-based therapies hold significant promise for infants at risk for cerebral palsy (CP) from perinatal brain injury (PBI). PBI leading to CP results from multifaceted damage to neural cells. Complex developing neural networks are injured by neural cell damage plus unique perturbations in cell signaling. Given that cell-based therapies can simultaneously repair multiple injured neural components during critical neurodevelopmental windows, these interventions potentially offer efficacy for patients with CP. Currently, the use of cell-based interventions in infants at risk for CP is limited by critical gaps in knowledge. In this review, we will highlight key questions facing the field, including: Who are optimal candidates for treatment? What are the goals of therapeutic interventions? What are the best strategies for agent delivery, including timing, dosage, location, and type? And, how are short- and long-term efficacy reliably tracked? Challenges unique to treating PBI with cell-based therapies, and lessons learned from cell-based therapies in closely related neurological disorders in the mature central nervous system, will be reviewed. Our goal is to update pediatric specialists who may be counseling families about the current state of the field. Finally, we will evaluate how rigor can be increased in the field to ensure the safety and best interests of this vulnerable patient population.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Departments of Pediatrics and Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Joseph Scafidi
- Department of Neurology, Children's National Health System, Washington, DC
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
23
|
Neonatal erythropoietin mitigates impaired gait, social interaction and diffusion tensor imaging abnormalities in a rat model of prenatal brain injury. Exp Neurol 2017; 302:1-13. [PMID: 29288070 DOI: 10.1016/j.expneurol.2017.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/13/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
Children who are born preterm are at risk for encephalopathy of prematurity, a leading cause of cerebral palsy, cognitive delay and behavioral disorders. Current interventions are limited and none have been shown to reverse cognitive and behavioral impairments, a primary determinant of poor quality of life for these children. Moreover, the mechanisms of perinatal brain injury that result in functional deficits and imaging abnormalities in the mature brain are poorly defined, limiting the potential to target interventions to those who may benefit most. To determine whether impairments are reversible after a prenatal insult, we investigated a spectrum of functional deficits and diffusion tensor imaging (DTI) abnormalities in young adult animals. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) would induce multiple functional deficits concomitant with reduced microstructural white and gray matter integrity, and tested whether these abnormalities could be ameliorated using postnatal erythropoietin (EPO), an emerging neurorestorative intervention. On embryonic day 18 uterine arteries were transiently occluded for 60min via laparotomy. Shams underwent anesthesia and laparotomy for 60min. Pups were born and TSHI pups were randomized to receive EPO or vehicle via intraperitoneal injection on postnatal days 1 to 5. Gait, social interaction, olfaction and open field testing was performed from postnatal day 25-35 before brains underwent ex vivo DTI to measure fractional anisotropy, axial diffusivity and radial diffusivity. Prenatal TSHI injury causes hyperactivity, impaired gait and poor social interaction in young adult rats that mimic the spectrum of deficits observed in children born preterm. Collectively, these data show for the first time in a model of encephalopathy of prematurity that postnatal EPO treatment mitigates impairments in social interaction, in addition to gait deficits. EPO also normalizes TSHI-induced microstructural abnormalities in fractional anisotropy and radial diffusivity in multiple regions, consistent with improved structural integrity and recovery of myelination. Taken together, these results show behavioral and memory deficits from perinatal brain injury are reversible. Furthermore, resolution of DTI abnormalities may predict responsiveness to emerging interventions, and serve as a biomarker of CNS injury and recovery.
Collapse
|
24
|
Domowicz M, Wadlington NL, Henry JG, Diaz K, Munoz MJ, Schwartz NB. Glial cell responses in a murine multifactorial perinatal brain injury model. Brain Res 2017; 1681:52-63. [PMID: 29274879 DOI: 10.1016/j.brainres.2017.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/16/2017] [Accepted: 12/17/2017] [Indexed: 12/18/2022]
Abstract
The impact of traumatic brain injury during the perinatal period, which coincides with glial cell (astrocyte and oligodendrocyte) maturation was assessed to determine whether a second insult, e.g., increased inflammation due to remote bacterial exposure, exacerbates the initial injury's effects, possibly eliciting longer-term brain damage. Thus, a murine multifactorial injury model incorporating both mechanisms consisting of perinatal penetrating traumatic brain injury, with or without intraperitoneal injection of lipopolysaccharide (LPS), an analog of remote pathogen exposure has been developed. Four days after injury, gene expression changes for different cell markers were assessed using mRNA in situ hybridization (ISH) and qPCR. Astrocytic marker mRNA levels increased in the stab-alone and stab-plus-LPS treated animals indicating reactive gliosis. Activated microglial/macrophage marker levels, increased in the ipsilateral sides of stab and stab-plus LPS animals by P10, but the differences resolved by P15. Ectopic expression of glial precursor and neural stem cell markers within the cortical injury site was observed by ISH, suggesting that existing precursors and neural stem cells migrate into the injured areas to replace the cells lost in the injury process. Furthermore, single exposure to LPS concomitant with acute stab injury affected the oligodendrocyte population in both the injured and contralateral uninjured side, indicating that after compromise of the blood-brain barrier integrity, oligodendrocytes become even more susceptible to inflammatory injury. This multifactorial approach should lead to a better understanding of the pathogenic sequelae observed as a consequence of perinatal brain insult/injury, caused by combinations of trauma, intrauterine infection, hypoxia and/or ischemia in humans.
Collapse
Affiliation(s)
- Miriam Domowicz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
| | - Natasha L Wadlington
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Judith G Henry
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Kasandra Diaz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Miranda J Munoz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Nancy B Schwartz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA; Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Preclinical chorioamnionitis dysregulates CXCL1/CXCR2 signaling throughout the placental-fetal-brain axis. Exp Neurol 2017; 301:110-119. [PMID: 29117499 DOI: 10.1016/j.expneurol.2017.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
In the United States, perinatal brain injury (PBI) is a major cause of infant mortality and childhood disability. For a large proportion of infants with PBI, central nervous system (CNS) injury begins in utero with inflammation (chorioamnionitis/CHORIO) and/or hypoxia-ischemia. While studies show CHORIO contributes to preterm CNS injury and is also a common independent risk factor for brain injury in term infants, the molecular mechanisms mediating inflammation in the placental-fetal-brain axis that result in PBI remain a gap in knowledge. The chemokine (C-X-C motif) ligand 1 (CXCL1), and its cognate receptor, CXCR2, have been clinically implicated in CHORIO and in mature CNS injury, although their specific role in PBI pathophysiology is poorly defined. Given CXCL1/CXCR2 signaling is essential to neural cell development and neutrophil recruitment, a key pathological hallmark of CHORIO, we hypothesized CHORIO would upregulate CXCL1/CXCR2 expression in the placenta and fetal circulation, concomitant with increased CXCL1/CXCR2 signaling in the developing brain, immune cell activation, neutrophilia, and microstructural PBI. On embryonic day 18 (E18), a laparotomy was performed in pregnant Sprague Dawley rats to induce CHORIO. Specifically, uterine arteries were occluded for 60min to induce placental transient systemic hypoxia-ischemia (TSHI), followed by intra-amniotic injection of lipopolysaccharide (LPS). Pups were born at E22. Placentae, serum and brain were collected along an extended time course from E19 to postnatal day (P)15 and analyzed using multiplex electrochemiluminescence (MECI), Western blot, qPCR, flow cytometry (FC) and diffusion tensor imaging (DTI). Results demonstrate that compared to sham, CHORIO increases placental CXCL1 and CXCR2 mRNA levels, concomitant with increased CXCR2+ neutrophils. Interestingly, pup serum CXCL1 expression in CHORIO parallels this increase, with sustained elevation through P15. Analyses of CHORIO brains reveal similarly increased CXCL1/CXCR2 expression through P7, together with increased neutrophilia, microgliosis and peripheral macrophages. Similar to the placenta, cerebral neutrophilia was defined by increased CXCR2 surface expression and elevated myeloperoxidase expression (MPO), consistent with immune cell activation. Evaluation of microstructural brain injury at P15 with DTI reveals aberrant microstructural integrity in the callosal and capsular white matter, with reduced fractional anisotropy in superficial and deep layers of overlying cortex. In summary, using an established model of CHORIO that exhibits mature CNS deficits mimicking those of preterm survivors, we show CHORIO induces injury throughout the placental-fetal-brain axis with a CXCL1/CXCR2 inflammatory signature, neutrophilia, and microstructural abnormalities. These data are concomitant with abnormal cerebral CXCL1/CXCR2 expression, and support temporal aberrations in CXCL1/CXCR2 and neutrophil dynamics in the placental-fetal-brain axis following CHORIO. These investigations define novel targets for directed therapies for infants at high risk for PBI.
Collapse
|
26
|
Newville J, Jantzie LL, Cunningham LA. Embracing oligodendrocyte diversity in the context of perinatal injury. Neural Regen Res 2017; 12:1575-1585. [PMID: 29171412 PMCID: PMC5696828 DOI: 10.4103/1673-5374.217320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence is fueling a new appreciation of oligodendrocyte diversity that is overturning the traditional view that oligodendrocytes are a homogenous cell population. Oligodendrocytes of distinct origins, maturational stages, and regional locations may differ in their functional capacity or susceptibility to injury. One of the most unique qualities of the oligodendrocyte is its ability to produce myelin. Myelin abnormalities have been ascribed to a remarkable array of perinatal brain injuries, with concomitant oligodendrocyte dysregulation. Within this review, we discuss new insights into the diversity of the oligodendrocyte lineage and highlight their relevance in paradigms of perinatal brain injury. Future therapeutic development will be informed by comprehensive knowledge of oligodendrocyte pathophysiology that considers the particular facets of heterogeneity that this lineage exhibits.
Collapse
Affiliation(s)
- Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lauren L. Jantzie
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lee Anna Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
27
|
Meireles AL, Marques MR, Segabinazi E, Spindler C, Piazza FV, Salvalaggio GS, Augustin OA, Achaval M, Marcuzzo S. Association of environmental enrichment and locomotor stimulation in a rodent model of cerebral palsy: Insights of biological mechanisms. Brain Res Bull 2017; 128:58-67. [DOI: 10.1016/j.brainresbull.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/29/2016] [Accepted: 12/06/2016] [Indexed: 11/25/2022]
|
28
|
Sukhanova IA, Sebentsova EA, Levitskaya NG. The acute and delayed effects of perinatal hypoxic brain damage in children and in model experiments with rodents. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416040127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Steullet P, Cabungcal JH, Monin A, Dwir D, O'Donnell P, Cuenod M, Do KQ. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A "central hub" in schizophrenia pathophysiology? Schizophr Res 2016; 176:41-51. [PMID: 25000913 PMCID: PMC4282982 DOI: 10.1016/j.schres.2014.06.021] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 12/18/2022]
Abstract
Accumulating evidence points to altered GABAergic parvalbumin-expressing interneurons and impaired myelin/axonal integrity in schizophrenia. Both findings could be due to abnormal neurodevelopmental trajectories, affecting local neuronal networks and long-range synchrony and leading to cognitive deficits. In this review, we present data from animal models demonstrating that redox dysregulation, neuroinflammation and/or NMDAR hypofunction (as observed in patients) impairs the normal development of both parvalbumin interneurons and oligodendrocytes. These observations suggest that a dysregulation of the redox, neuroimmune, and glutamatergic systems due to genetic and early-life environmental risk factors could contribute to the anomalies of parvalbumin interneurons and white matter in schizophrenia, ultimately impacting cognition, social competence, and affective behavior via abnormal function of micro- and macrocircuits. Moreover, we propose that the redox, neuroimmune, and glutamatergic systems form a "central hub" where an imbalance within any of these "hub" systems leads to similar anomalies of parvalbumin interneurons and oligodendrocytes due to the tight and reciprocal interactions that exist among these systems. A combination of vulnerabilities for a dysregulation within more than one of these systems may be particularly deleterious. For these reasons, molecules, such as N-acetylcysteine, that possess antioxidant and anti-inflammatory properties and can also regulate glutamatergic transmission are promising tools for prevention in ultra-high risk patients or for early intervention therapy during the first stages of the disease.
Collapse
Affiliation(s)
- P Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - J H Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - A Monin
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - D Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - P O'Donnell
- Neuroscience Research Unit, Pfizer, Inc., 700 Main Street, Cambridge, MA 02139, USA
| | - M Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - K Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland.
| |
Collapse
|
30
|
Prenatal Systemic Hypoxia-Ischemia and Oligodendroglia Loss in Cerebellum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:333-345. [PMID: 27714697 DOI: 10.1007/978-3-319-40764-7_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypoxic-ischemic (HI) injury is an important cause of death and disabilities. Despite all improvements in neonatal care, the number of children who suffer some kind of injury during birth has remained stable in the last decade. A great number of studies have shown alterations in neural cells and many animal models have been proposed in the last 5 decades. Robinson et al. (2005) proposed an HI model in which the uterine arteries are temporarily clamped on the 18th gestation day. The findings were quite similar to the ones observed in postmortem studies. The white matter is clearly damaged, and a great amount of astrogliosis takes place both in the gray and white matters. Motor changes were also found but no data regarding the cerebellum, an important structure related to motor performance, was presented. Using this model, we have shown an increased level of iNOS at P0 and microgliosis and astrogliosis at P9, and astrogliosis at P23 (up to 4 weeks from the insult). NO is important in migration, maturation, and synaptic plasticity, but in exacerbated levels it may also contribute to cellular and tissue damage. We have also evaluated oligodendroglia development in the cerebellum. At P9 in HI animals, we found a decrease in the number of PDGFRα+ cells and an apparent delay in myelination, suggesting a failure in oligodendroglial progenitors migration/maturation and/or in the myelination process. These results point to an injury in cerebellar development that might help to explain the motor problems in HI.
Collapse
|
31
|
Jantzie LL, Winer JL, Maxwell JR, Chan LAS, Robinson S. Modeling Encephalopathy of Prematurity Using Prenatal Hypoxia-ischemia with Intra-amniotic Lipopolysaccharide in Rats. J Vis Exp 2015. [PMID: 26649874 DOI: 10.3791/53196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Encephalopathy of prematurity (EoP) is a term that encompasses the central nervous system (CNS) abnormalities associated with preterm birth. To best advance translational objectives and uncover new therapeutic strategies for brain injury associated with preterm birth, preclinical models of EoP must include similar mechanisms of prenatal global injury observed in humans and involve multiple components of the maternal-placental-fetal system. Ideally, models should produce a similar spectrum of functional deficits in the mature animal and recapitulate multiple aspects of the pathophysiology. To mimic human systemic placental perfusion defects, placental underperfusion and/or chorioamnionitis associated with pathogen-induced inflammation in early preterm birth, we developed a model of prenatal transient systemic hypoxia-ischemia (TSHI) combined with intra-amniotic lipopolysaccharide (LPS). In pregnant Sprague Dawley rats, TSHI via uterine artery occlusion on embryonic day 18 (E18) induces a graded placental underperfusion defect associated with increasing CNS damage in the fetus. When combined with intra-amniotic LPS injections, placental inflammation is increased and CNS damage is compounded with associated white matter, gait and imaging abnormalities. Prenatal TSHI and TSHI+LPS prenatal insults meet several of the criteria of an EoP model including recapitulating the intrauterine insult, causing loss of neurons, oligodendrocytes and axons, loss of subplate, and functional deficits in adult animals that mimic those observed in children born extremely preterm. Moreover, this model allows for the dissection of inflammation induced by divergent injury types.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico; Department of Neurosciences, University of New Mexico
| | - Jesse L Winer
- Department of Neurosurgery, Boston Children's Hospital
| | | | | | - Shenandoah Robinson
- Department of Neurosurgery, Boston Children's Hospital; Department of Neurology, Harvard Medical School;
| |
Collapse
|
32
|
Jantzie LL, Winer JL, Corbett CJ, Robinson S. Erythropoietin Modulates Cerebral and Serum Degradation Products from Excess Calpain Activation following Prenatal Hypoxia-Ischemia. Dev Neurosci 2015; 38:15-26. [PMID: 26551007 DOI: 10.1159/000441024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/10/2015] [Indexed: 01/20/2023] Open
Abstract
Preterm infants suffer central nervous system (CNS) injury from hypoxia-ischemia and inflammation - termed encephalopathy of prematurity. Mature CNS injury activates caspase and calpain proteases. Erythropoietin (EPO) limits apoptosis mediated by activated caspases, but its role in modulating calpain activation has not yet been investigated extensively following injury to the developing CNS. We hypothesized that excess calpain activation degrades developmentally regulated molecules essential for CNS circuit formation, myelination and axon integrity, including neuronal potassium-chloride co-transporter (KCC2), myelin basic protein (MBP) and phosphorylated neurofilament (pNF), respectively. Further, we predicted that post-injury EPO treatment could mitigate CNS calpain-mediated degradation. Using prenatal transient systemic hypoxia-ischemia (TSHI) in rats to mimic CNS injury from extreme preterm birth, and postnatal EPO treatment with a clinically relevant dosing regimen, we found sustained postnatal excess cortical calpain activation following prenatal TSHI, as shown by the cleavage of alpha II-spectrin (αII-spectrin) into 145-kDa αII-spectrin degradation products (αII-SDPs) and p35 into p25. Postnatal expression of the endogenous calpain inhibitor calpastatin was also reduced following prenatal TSHI. Calpain substrate expression following TSHI, including cortical KCC2, MBP and NF, was modulated by postnatal EPO treatment. Calpain activation was reflected in serum levels of αII-SDPs and KCC2 fragments, and notably, EPO treatment also modulated KCC2 fragment levels. Together, these data indicate that excess calpain activity contributes to the pathogenesis of encephalopathy of prematurity. Serum biomarkers of calpain activation may detect ongoing cerebral injury and responsiveness to EPO or similar neuroprotective strategies.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, Mass., USA
| | | | | | | |
Collapse
|
33
|
Ferraz MM, Sab IM, Silva MA, Santos DA, Ferraz MR. Prenatal Hypoxia Ischemia Increases Male Rat Sexual Behavior. J Sex Med 2015; 12:2013-21. [DOI: 10.1111/jsm.13006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Jantzie LL, Getsy PM, Denson JL, Firl DJ, Maxwell JR, Rogers DA, Wilson CG, Robinson S. Prenatal Hypoxia-Ischemia Induces Abnormalities in CA3 Microstructure, Potassium Chloride Co-Transporter 2 Expression and Inhibitory Tone. Front Cell Neurosci 2015; 9:347. [PMID: 26388734 PMCID: PMC4558523 DOI: 10.3389/fncel.2015.00347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/20/2015] [Indexed: 12/19/2022] Open
Abstract
Infants who suffer perinatal brain injury, including those with encephalopathy of prematurity, are prone to chronic neurological deficits, including epilepsy, cognitive impairment, and behavioral problems, such as anxiety, inattention, and poor social interaction. These deficits, especially in combination, pose the greatest hindrance to these children becoming independent adults. Cerebral function depends on adequate development of essential inhibitory neural circuits and the appropriate amount of excitation and inhibition at specific stages of maturation. Early neuronal synaptic responses to γ-amino butyric acid (GABA) are initially excitatory. During the early postnatal period, GABAAR responses switch to inhibitory with the upregulation of potassium-chloride co-transporter KCC2. With extrusion of chloride by KCC2, the Cl− reversal potential shifts and GABA and glycine responses become inhibitory. We hypothesized that prenatal hypoxic–ischemic brain injury chronically impairs the developmental upregulation of KCC2 that is essential for cerebral circuit formation. Following late gestation hypoxia–ischemia (HI), diffusion tensor imaging in juvenile rats shows poor microstructural integrity in the hippocampal CA3 subfield, with reduced fractional anisotropy and elevated radial diffusivity. The loss of microstructure correlates with early reduced KCC2 expression on NeuN-positive pyramidal neurons, and decreased monomeric and oligomeric KCC2 protein expression in the CA3 subfield. Together with decreased inhibitory post-synaptic currents during a critical window of development, we document for the first time that prenatal transient systemic HI in rats impairs hippocampal CA3 inhibitory tone. Failure of timely development of inhibitory tone likely contributes to a lower seizure threshold and impaired cognitive function in children who suffer perinatal brain injury.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico , Albuquerque, NM , USA ; Department of Neurosciences, University of New Mexico , Albuquerque, NM , USA ; Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA ; Department of Neurology, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Jesse L Denson
- Department of Pediatrics, University of New Mexico , Albuquerque, NM , USA ; Department of Neurosciences, University of New Mexico , Albuquerque, NM , USA
| | - Daniel J Firl
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA ; Department of Neurology, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA
| | - Jessie R Maxwell
- Department of Pediatrics, University of New Mexico , Albuquerque, NM , USA ; Department of Neurosciences, University of New Mexico , Albuquerque, NM , USA
| | - Danny A Rogers
- Department of Pediatrics, University of New Mexico , Albuquerque, NM , USA ; Department of Neurosciences, University of New Mexico , Albuquerque, NM , USA
| | - Christopher G Wilson
- Department of Pediatrics, Center for Perinatal Biology, Loma Linda University , Loma Linda, CA , USA
| | - Shenandoah Robinson
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA ; Department of Neurology, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA ; F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
35
|
Jantzie LL, Corbett CJ, Firl DJ, Robinson S. Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia. Cereb Cortex 2015; 25:2683-95. [PMID: 24722771 PMCID: PMC4537428 DOI: 10.1093/cercor/bhu066] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) in Sprague-Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Brain Injuries/drug therapy
- Brain Injuries/etiology
- Cell Death/drug effects
- Cerebral Cortex/drug effects
- Cerebral Cortex/growth & development
- Cerebral Cortex/pathology
- Disease Models, Animal
- Embryo, Mammalian
- Erythropoietin/therapeutic use
- Fetal Diseases/drug therapy
- Fetal Diseases/physiopathology
- Gene Expression Regulation, Developmental/drug effects
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/pathology
- In Vitro Techniques
- Motor Activity/drug effects
- Motor Activity/physiology
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, GABA-A/metabolism
- Symporters/metabolism
- K Cl- Cotransporters
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Neurosurgery, Kirby Center for Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher J Corbett
- Department of Neurosurgery, Kirby Center for Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel J Firl
- Department of Neurosurgery, Kirby Center for Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shenandoah Robinson
- Department of Neurosurgery, Kirby Center for Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
36
|
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, although this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granular neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet, remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this review, we will review the biology of remyelination, including the cells and signals involved; describe when remyelination occurs and when and why it fails and the consequences of its failure; and discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642 University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
37
|
Jantzie LL, Robinson S. Preclinical Models of Encephalopathy of Prematurity. Dev Neurosci 2015; 37:277-88. [PMID: 25722056 DOI: 10.1159/000371721] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
Encephalopathy of prematurity (EoP) encompasses the central nervous system (CNS) abnormalities associated with injury from preterm birth. Although rapid progress is being made, limited understanding exists of how cellular and molecular CNS injury from early birth manifests as the myriad of neurological deficits in children who are born preterm. More importantly, this lack of direct insight into the pathogenesis of these deficits hinders both our ability to diagnose those infants who are at risk in real time and could potentially benefit from treatment and our ability to develop more effective interventions. Current barriers to clarifying the pathophysiology, developmental trajectory, injury timing, and evolution include preclinical animal models that only partially recapitulate the molecular, cellular, histological, and functional abnormalities observed in the mature CNS following EoP. Inflammation from hypoxic-ischemic and/or infectious injury induced in utero in lower mammals, or actual prenatal delivery of more phylogenetically advanced mammals, are likely to be the most clinically relevant EOP models, facilitating translation to benefit infants. Injury timing, type, severity, and pathophysiology need to be optimized to address the specific hypothesis being tested. Functional assays of the mature animal following perinatal injury to mimic EoP should ideally test for the array of neurological deficits commonly observed in preterm infants, including gait, seizure threshold and cognitive and behavioral abnormalities. Here, we review the merits of various preclinical models, identify gaps in knowledge that warrant further study and consider challenges that animal researchers may face in embarking on these studies. While no one model system is perfect, insights relevant to the clinical problem can be gained with interpretation of experimental results within the context of inherent limitations of the chosen model system. Collectively, optimal use of multiple models will address a major challenge facing the field today - to identify the type and severity of CNS injury these vulnerable infants suffer in a safe and timely manner, such that emerging neurointerventions can be tailored to specifically address individual reparative needs.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico, Albuquerque, N. Mex., USA
| | | |
Collapse
|
38
|
Jantzie LL, Corbett CJ, Berglass J, Firl DJ, Flores J, Mannix R, Robinson S. Complex pattern of interaction between in utero hypoxia-ischemia and intra-amniotic inflammation disrupts brain development and motor function. J Neuroinflammation 2014; 11:131. [PMID: 25082427 PMCID: PMC4128546 DOI: 10.1186/1742-2094-11-131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/15/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Infants born preterm commonly suffer from a combination of hypoxia-ischemia (HI) and infectious perinatal inflammatory insults that lead to cerebral palsy, cognitive delay, behavioral issues and epilepsy. Using a novel rat model of combined late gestation HI and lipopolysaccharide (LPS)-induced inflammation, we tested our hypothesis that inflammation from HI and LPS differentially affects gliosis, white matter development and motor impairment during the first postnatal month. METHODS Pregnant rats underwent laparotomy on embryonic day 18 and transient systemic HI (TSHI) and/or intra-amniotic LPS injection. Shams received laparotomy and anesthesia only. Pups were born at term. Immunohistochemistry with stereological estimates was performed to assess regional glial loads, and western blots were performed for protein expression. Erythropoietin ligand and receptor levels were quantified using quantitative PCR. Digigait analysis detected gait deficits. Statistical analysis was performed with one-way analysis of variance and post-hoc Bonferonni correction. RESULTS Microglial and astroglial immunolabeling are elevated in TSHI + LPS fimbria at postnatal day 2 compared to sham (both P < 0.03). At postnatal day 15, myelin basic protein expression is reduced by 31% in TSHI + LPS pups compared to shams (P < 0.05). By postnatal day 28, white matter injury shifts from the acute injury pattern to a chronic injury pattern in TSHI pups only. Both myelin basic protein expression (P < 0.01) and the phosphoneurofilament/neurofilament ratio, a marker of axonal dysfunction, are reduced in postnatal day 28 TSHI pups (P < 0.001). Erythropoietin ligand to receptor ratios differ between brains exposed to TSHI and LPS. Gait analyses reveal that all groups (TSHI, LPS and TSHI + LPS) are ataxic with deficits in stride, paw placement, gait consistency and coordination (all P < 0.001). CONCLUSIONS Prenatal TSHI and TSHI + LPS lead to different patterns of injury with respect to myelination, axon integrity and gait deficits. Dual injury leads to acute alterations in glial response and cellular inflammation, while TSHI alone causes more prominent chronic white matter and axonal injury. Both injuries cause significant gait deficits. Further study will contribute to stratification of injury mechanisms in preterm infants, and guide the use of promising therapeutic interventions.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Axons/pathology
- Brain/embryology
- Brain/growth & development
- Brain/metabolism
- Calcium-Binding Proteins/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Erythropoietin/genetics
- Erythropoietin/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glial Fibrillary Acidic Protein/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/physiopathology
- Inflammation/chemically induced
- Inflammation/pathology
- Leukoencephalopathies/etiology
- Lipopolysaccharides/toxicity
- Microfilament Proteins/metabolism
- Myelin Basic Protein/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/metabolism
Collapse
Affiliation(s)
- Lauren L Jantzie
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Current address: Department of Pediatrics, UNM, Office of Pediatric Research, MSC10 5590, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Christopher J Corbett
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jacqueline Berglass
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel J Firl
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Julian Flores
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rebekah Mannix
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shenandoah Robinson
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
39
|
Jantzie LL, Getsy PM, Firl DJ, Wilson CG, Miller RH, Robinson S. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury. Mol Cell Neurosci 2014; 61:152-62. [PMID: 24983520 PMCID: PMC4134983 DOI: 10.1016/j.mcn.2014.06.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 04/17/2014] [Accepted: 06/09/2014] [Indexed: 11/22/2022] Open
Abstract
Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis.
Collapse
Affiliation(s)
- L L Jantzie
- Department of Neurology, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA
| | - P M Getsy
- Department of Pediatrics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - D J Firl
- Department of Neurology, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA
| | - C G Wilson
- Department of Pediatrics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - R H Miller
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - S Robinson
- Department of Neurology, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA.
| |
Collapse
|
40
|
Yu Y, Li L, Shao X, Tian F, Sun Q. Establishing a rat model of spastic cerebral palsy by targeted ethanol injection. Neural Regen Res 2013; 8:3255-62. [PMID: 25206647 PMCID: PMC4146179 DOI: 10.3969/j.issn.1673-5374.2013.34.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022] Open
Abstract
Spastic cerebral palsy is generally considered to result from cerebral cortical or pyramidal tract damage. Here, we precisely targeted the left pyramidal tract of 2-month-old Sprague-Dawley rats placed on a stereotaxic instrument under intraperitoneal anesthesia. Based on the rat brain stereotaxic map, a 1-mm hole was made 10 mm posterior to bregma and 0.8 mm left of sagittal suture. A microsyringe was inserted perpendicularly to the surface of the brain to a depth of 9.7 mm, and 15 μL of ethanol was slowly injected to establish a rat model of spastic cerebral palsy. After modeling, the rats appeared to have necrotic voids in the pyramidal tract and exhibited typical signs and symptoms of flexion spasms that lasted for a long period of time. These findings indicate that this is an effective and easy method of establishing a rat model of spastic cerebral palsy with good re-producibility. Ethanol as a chemical ablation agent specifically and thoroughly damages the pyramidal tract, and therefore, the animals display flexion spasms, which are a typical symptom of the disease.
Collapse
Affiliation(s)
- Yadong Yu
- Department of Hand Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Liang Li
- Department of Hand Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Xinzhong Shao
- Department of Hand Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Fangtao Tian
- Department of Hand Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Qinglu Sun
- Department of Hand Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
41
|
Jantzie LL, Miller RH, Robinson S. Erythropoietin signaling promotes oligodendrocyte development following prenatal systemic hypoxic-ischemic brain injury. Pediatr Res 2013; 74:658-67. [PMID: 24108187 PMCID: PMC3865073 DOI: 10.1038/pr.2013.155] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/10/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Brain injury from preterm birth causes white matter injury (WMI), and it leads to chronic neurological deficits including cerebral palsy, epilepsy, cognitive, and behavioral delay. Immature O4+ oligodendrocytes are particularly vulnerable to WMI. Understanding how the developing brain recovers after injury is essential to finding more effective therapeutic strategies. Erythropoietin (EPO) promotes neuronal recovery after injury; however, its role in enhancing oligodendroglial lineage recovery is unclear. Previously, we found that recombinant EPO (rEPO) treatment enhances myelin basic protein (MBP) expression and functional recovery in adult rats after prenatal transient systemic hypoxia-ischemia (TSHI). We hypothesized that after injury, rEPO would enhance oligodendroglial lineage cell genesis, survival, maturation, and myelination. METHODS In vitro assays were used to define how rEPO contributes to specific stages of oligodendrocyte development and recovery after TSHI. RESULTS After prenatal TSHI injury, rEPO promotes genesis of oligodendrocyte progenitors from oligodendrospheres, survival of oligodendrocyte precursor cells (OPCs) and O4+ immature oligodendrocytes, O4+ cell process extension, and MBP expression. rEPO did not alter OPC proliferation. CONCLUSION Together, these studies demonstrate that EPO signaling promotes critical stages of oligodendroglial lineage development and recovery after prenatal TSHI injury. EPO treatment may be beneficial to preterm and other infant patient populations with developmental brain injury hallmarked by WMI.
Collapse
Affiliation(s)
- Lauren L. Jantzie
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert H. Miller
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Shenandoah Robinson
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA,Corresponding Author: Shenandoah Robinson, MD Department of Neurological Surgery Boston Children's Hospital 300 Longwood Avenue Boston, MA 02215 Ph: 617-355-1485 Fax: 617-703-0906,
| |
Collapse
|
42
|
Illa M, Eixarch E, Batalle D, Arbat-Plana A, Muñoz-Moreno E, Figueras F, Gratacos E. Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction. PLoS One 2013; 8:e76453. [PMID: 24143189 PMCID: PMC3797044 DOI: 10.1371/journal.pone.0076453] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. METHODOLOGY At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. PRINCIPAL FINDINGS The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. CONCLUSIONS The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis.
Collapse
Affiliation(s)
- Miriam Illa
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic, Barcelona, Spain
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Elisenda Eixarch
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic, Barcelona, Spain
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Dafnis Batalle
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ariadna Arbat-Plana
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Emma Muñoz-Moreno
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Francesc Figueras
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic, Barcelona, Spain
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Eduard Gratacos
- Department of Maternal-Fetal Medicine, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Hospital Clinic, Barcelona, Spain
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
43
|
Jantzie LL, Talos DM, Jackson MC, Park HK, Graham DA, Lechpammer M, Folkerth RD, Volpe JJ, Jensen FE. Developmental expression of N-methyl-D-aspartate (NMDA) receptor subunits in human white and gray matter: potential mechanism of increased vulnerability in the immature brain. ACTA ACUST UNITED AC 2013; 25:482-95. [PMID: 24046081 DOI: 10.1093/cercor/bht246] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The pathophysiology of perinatal brain injury is multifactorial and involves hypoxia-ischemia (HI) and inflammation. N-methyl-d-aspartate receptors (NMDAR) are present on neurons and glia in immature rodents, and NMDAR antagonists are protective in HI models. To enhance clinical translation of rodent data, we examined protein expression of 6 NMDAR subunits in postmortem human brains without injury from 20 postconceptional weeks through adulthood and in cases of periventricular leukomalacia (PVL). We hypothesized that the developing brain is intrinsically vulnerable to excitotoxicity via maturation-specific NMDAR levels and subunit composition. In normal white matter, NR1 and NR2B levels were highest in the preterm period compared with adult. In gray matter, NR2A and NR3A expression were highest near term. NR2A was significantly elevated in PVL white matter, with reduced NR1 and NR3A in gray matter compared with uninjured controls. These data suggest increased NMDAR-mediated vulnerability during early brain development due to an overall upregulation of individual receptors subunits, in particular, the presence of highly calcium permeable NR2B-containing and magnesium-insensitive NR3A NMDARs. These data improve understanding of molecular diversity and heterogeneity of NMDAR subunit expression in human brain development and supports an intrinsic prenatal vulnerability to glutamate-mediated injury; validating NMDAR subunit-specific targeted therapies for PVL.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA
| | - Delia M Talos
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA Current address: Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele C Jackson
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA
| | - Hyun-Kyung Park
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA
| | - Dionne A Graham
- Harvard Medical School, Boston, MA 02115, USA Clinical Research Center
| | - Mirna Lechpammer
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA Department of Pathology (Neuropathology), Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebecca D Folkerth
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA Department of Pathology (Neuropathology), Boston Children's Hospital, Boston, MA 02115, USA
| | - Joseph J Volpe
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA
| | - Frances E Jensen
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA Harvard Medical School, Boston, MA 02115, USA Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA Current address: Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Sab IM, Ferraz MMD, Amaral TAS, Resende AC, Ferraz MR, Matsuura C, Brunini TMC, Mendes-Ribeiro AC. Prenatal hypoxia, habituation memory and oxidative stress. Pharmacol Biochem Behav 2013; 107:24-8. [PMID: 23584097 DOI: 10.1016/j.pbb.2013.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 03/27/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
Abstract
Hypoxia-ischemia (HI) is characterized by a reduced supply of oxygen during pregnancy, which leads to both central nervous system and peripheral injuries in the foetus, resulting in impairment in its development. The purpose of this study was to investigate behavioural changes and systemic oxidative stress in adult animals that have been affected by HI during pregnancy. HI was induced by the occlusion of the maternal uterine artery with aneurysm clamps for a period of 45 min on the 18th gestational day. Animals from the sham group were submitted to same surgical procedure as the HI animals, without occlusion of the maternal uterine artery. The control group consisted of non-manipulated healthy animals. At postnatal day 90, the pups were submitted to behavioural tests followed by blood collection. HI adult animals presented an increase in anxiety behaviour and a lack of habituation compared to both sham and control groups. Oxidative damage, assessed by protein and lipid oxidation in serum, did not differ between HI and sham-operated animals. However, HI animals presented reduced activity of the glutathione peroxidase enzyme and increased formation of nitrite, indicating alterations in the systemic antioxidant repair system. Our results suggest an association among HI, systemic oxidative stress and behavioural alterations.
Collapse
Affiliation(s)
- I M Sab
- Laboratory of Membrane Transport, Department of Pharmacology and Psychobiology, State University of Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chew LJ, Fusar-Poli P, Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 2013; 35:102-29. [PMID: 23446060 PMCID: PMC4531048 DOI: 10.1159/000346157] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/07/2012] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a chronic and debilitating mental illness characterized by a broad range of abnormal behaviors, including delusions and hallucinations, impaired cognitive function, as well as mood disturbances and social withdrawal. Due to the heterogeneous nature of the disease, the causes of schizophrenia are very complex; its etiology is believed to involve multiple brain regions and the connections between them, and includes alterations in both gray and white matter regions. The onset of symptoms varies with age and severity, and there is some debate over a degenerative or developmental etiology. Longitudinal magnetic resonance imaging studies have detected progressive gray matter loss in the first years of disease, suggesting neurodegeneration; but there is also increasing recognition of a temporal association between clinical complications at birth and disease onset that supports a neurodevelopmental origin. Presently, neuronal abnormalities in schizophrenia are better understood than alterations in myelin-producing cells of the brain, the oligodendrocytes, which are the predominant constituents of white matter structures. Proper white matter development and its structural integrity critically impacts brain connectivity, which affects sensorimotor coordination and cognitive ability. Evidence of defective white matter growth and compromised white matter integrity has been found in individuals at high risk of psychosis, and decreased numbers of mature oligodendrocytes are detected in schizophrenia patients. Inflammatory markers, including proinflammatory cytokines and chemokines, are also associated with psychosis. A relationship between risk of psychosis, white matter defects and prenatal inflammation is being established. Animal models of perinatal brain injury are successful in producing white matter damage in the brain, typified by hypomyelination and/or dysmyelination, impaired motor coordination and prepulse inhibition of the acoustic startle reflex, recapitulating structural and functional characteristics observed in schizophrenia. In addition, elevated expression of inflammation-related genes in brain tissue and increased production of cytokines by blood cells from patients with schizophrenia indicate immunological dysfunction and abnormal inflammatory responses, which are also important underlying features in experimental models. Microglia, resident immune defenders of the central nervous system, play important roles in the development and protection of neural cells, but can contribute to injury under pathological conditions. This article discusses oligodendroglial changes in schizophrenia and focuses on microglial activity in the context of the disease, in neonatal brain injury and in various experimental models of white matter damage. These include disorders associated with premature birth, and animal models of perinatal bacterial and viral infection, oxygen deprivation (hypoxia) and excess (hyperoxia), and elevated systemic proinflammatory cytokine levels. We briefly review the effects of treatment with antipsychotic and anti-inflammatory agents in models of perinatal brain injury, and comment on the therapeutic potential of these strategies. By understanding the neurobiological basis of oligodendroglial abnormalities in schizophrenia, it is hoped that patients will benefit from the availability of targeted and more efficacious treatment options.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | |
Collapse
|
46
|
Savignon T, Costa E, Tenorio F, Manhães AC, Barradas PC. Prenatal hypoxic-ischemic insult changes the distribution and number of NADPH-diaphorase cells in the cerebellum. PLoS One 2012; 7:e35786. [PMID: 22540005 PMCID: PMC3335161 DOI: 10.1371/journal.pone.0035786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/22/2012] [Indexed: 12/03/2022] Open
Abstract
Astrogliosis, oligodendroglial death and motor deficits have been observed in the offspring of female rats that had their uterine arteries clamped at the 18th gestational day. Since nitric oxide has important roles in several inflammatory and developmental events, here we evaluated NADPH-diaphorase (NADPH-d) distribution in the cerebellum of rats submitted to this hypoxia-ischemia (HI) model. At postnatal (P) day 9, Purkinje cells of SHAM and non-manipulated (NM) animals showed NADPH-d+ labeling both in the cell body and dendritic arborization in folia 1 to 8, while HI animals presented a weaker labeling in both cellular structures. NADPH-d+ labeling in the molecular (ML), and in both the external and internal granular layer, was unaffected by HI at this age. At P23, labeling in Purkinje cells was absent in all three groups. Ectopic NADPH-d+ cells in the ML of folia 1 to 4 and folium 10 were present exclusively in HI animals. This labeling pattern was maintained up to P90 in folium 10. In the cerebellar white matter (WM), at P9 and P23, microglial (ED1+) NADPH-d+ cells, were observed in all groups. At P23, only HI animals presented NADPH-d labeling in the cell body and processes of reactive astrocytes (GFAP+). At P9 and P23, the number of NADPH-d+ cells in the WM was higher in HI animals than in SHAM and NM ones. At P45 and at P90 no NADPH-d+ cells were observed in the WM of the three groups. Our results indicate that HI insults lead to long-lasting alterations in nitric oxide synthase expression in the cerebellum. Such alterations in cerebellar differentiation might explain, at least in part, the motor deficits that are commonly observed in this model.
Collapse
Affiliation(s)
- Tiago Savignon
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Everton Costa
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Tenorio
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C. Barradas
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
47
|
Impact of prenatal ischemia on behavior, cognitive abilities and neuroanatomy in adult rats with white matter damage. Behav Brain Res 2012; 232:233-44. [PMID: 22521835 DOI: 10.1016/j.bbr.2012.03.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 02/07/2023]
Abstract
Early brain damage, such as white matter damage (WMD), resulting from perinatal hypoxia-ischemia in preterm and low birth weight infants represents a high risk factor for mortality and chronic disabilities, including sensory, motor, behavioral and cognitive disorders. In previous studies, we developed a model of WMD based on prenatal ischemia (PI), induced by unilateral ligation of uterine artery at E17 in pregnant rats. We have shown that PI reproduced some of the main deficits observed in preterm infants, such as white and gray matter damage, myelination deficits, locomotor, sensorimotor, and short-term memory impairments, as well as related musculoskeletal and neuroanatomical histopathologies [1-3]. Here, we determined the deleterious impact of PI on several behavioral and cognitive abilities in adult rats, as well as on the neuroanatomical substratum in various related brain areas. Adult PI rats exhibited spontaneous exploratory and motor hyperactivity, deficits in information encoding, and deficits in short- and long-term object memory tasks, but no impairments in spatial learning or working memory in watermaze tasks. These results were in accordance with white matter injury and damage in the medial and lateral entorhinal cortices, as detected by axonal degeneration, astrogliosis and neuronal density. Although there was astrogliosis and axonal degeneration in the fornix, hippocampus and cingulate cortex, neuronal density in the hippocampus and cingulate cortex was not affected by PI. Levels of spontaneous hyperactivity, deficits in object memory tasks, neuronal density in the medial and lateral entorhinal cortices, and astrogliosis in the fornix correlated with birth weight in PI rats. Thus, this rodent model of WMD based on PI appears to recapitulate the main neurobehavioral and neuroanatomical human deficits often observed in preterm children with a perinatal history of ischemia.
Collapse
|
48
|
Koltz MT, Tosun C, Kurland DB, Coksaygan T, Castellani RJ, Ivanova S, Gerzanich V, Simard JM. Tandem insults of prenatal ischemia plus postnatal raised intrathoracic pressure in a novel rat model of encephalopathy of prematurity. J Neurosurg Pediatr 2011; 8:628-39. [PMID: 22132923 PMCID: PMC3465975 DOI: 10.3171/2011.9.peds11174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Encephalopathy of prematurity (EP) is common in preterm, low birth weight infants who require postnatal mechanical ventilation. The worst types of EP are the hemorrhagic forms, including choroid plexus, germinal matrix, periventricular, and intraventricular hemorrhages. Survivors exhibit life-long cognitive, behavioral, and motor abnormalities. Available preclinical models do not fully recapitulate the salient features of hemorrhagic EP encountered in humans. In this study, the authors evaluated a novel model using rats that featured tandem insults of transient prenatal intrauterine ischemia (IUI) plus transient postnatal raised intrathoracic pressure (RIP). METHODS Timed-pregnant Wistar rats were anesthetized and underwent laparotomy on embryonic Day 19. Intrauterine ischemia was induced by clamping the uterine and ovarian vasculature for 20 minutes. Natural birth occurred on embryonic Day 22. Six hours after birth, the pups were subjected to an episode of RIP, induced by injecting glycerol (50%, 13 μl/g intraperitoneally). Control groups included naive, sham surgery, and IUI alone. Pathological, histological, and behavioral analyses were performed on pups up to postnatal Day 52. RESULTS Compared with controls, pups subjected to IUI+RIP exhibited significant increases in postnatal mortality and hemorrhages in the choroid plexus, germinal matrix, and periventricular tissues as well as intraventricularly. On postnatal Days 35-52, they exhibited significant abnormalities involving complex vestibulomotor function and rapid spatial learning. On postnatal Day 52, the brain and body mass were significantly reduced. CONCLUSIONS Tandem insults of IUI plus postnatal RIP recapitulate many features of the hemorrhagic forms of EP found in humans, suggesting that these insults in combination may play important roles in pathogenesis.
Collapse
Affiliation(s)
- Michael T. Koltz
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - David B. Kurland
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Turhan Coksaygan
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rudolph J. Castellani
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
Delcour M, Olivier P, Chambon C, Pansiot J, Russier M, Liberge M, Xin D, Gestreau C, Alescio-Lautier B, Gressens P, Verney C, Barbe MF, Baud O, Coq JO. Neuroanatomical, sensorimotor and cognitive deficits in adult rats with white matter injury following prenatal ischemia. Brain Pathol 2011; 22:1-16. [PMID: 21615591 DOI: 10.1111/j.1750-3639.2011.00504.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Perinatal brain injury including white matter damage (WMD) is highly related to sensory, motor or cognitive impairments in humans born prematurely. Our aim was to examine the neuroanatomical, functional and behavioral changes in adult rats that experienced prenatal ischemia (PI), thereby inducing WMD. PI was induced by unilateral uterine artery ligation at E17 in pregnant rats. We assessed performances in gait, cognitive abilities and topographical organization of maps, and neuronal and glial density in primary motor and somatosensory cortices, the hippocampus and prefrontal cortex, as well as axonal degeneration and astrogliosis in white matter tracts. We found WMD in corpus callosum and brainstem, and associated with the hippocampus and somatosensory cortex, but not the motor cortex after PI. PI rats exhibited mild locomotor impairments associated with minor signs of spasticity. Motor map organization and neuronal density were normal in PI rats, contrasting with major somatosensory map disorganization, reduced neuronal density, and a marked reduction of inhibitory interneurons. PI rats exhibited spontaneous hyperactivity in open-field test and short-term memory deficits associated with abnormal neuronal density in related brain areas. Thus, this model reproduces in adult PI rats the main deficits observed in infants with a perinatal history of hypoxia-ischemia and WMD.
Collapse
Affiliation(s)
- Maxime Delcour
- UMR 6149 Neurobiologie Intégrative et Adaptative, CNRS-Aix-Marseille Université, Marseille
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Impaired neurological development in premature infants frequently arises from periventricular white matter injury (PWMI), a condition associated with myelination abnormalities. Recently, exposure to hyperoxia was reported to disrupt myelin formation in neonatal rats. To identify the causes of hyperoxia-induced PWMI, we characterized cellular changes in the white matter (WM) using neonatal wild-type 2-3-cyclic nucleotide 3-phosphodiesterase-enhanced green fluorescent protein (EGFP) and glial fibrillary acidic protein (GFAP)-EGFP transgenic mice exposed to 48 h of 80% oxygen from postnatal day 6 (P6) to P8. Myelin basic protein expression and CC1(+) oligodendroglia decreased after hyperoxia at P8, but returned to control levels during recovery between P12 and P15. At P8, hyperoxia caused apoptosis of NG2(+)O4(-) progenitor cells and reduced NG2(+) cell proliferation. This was followed by restoration of the NG2(+) cell population and increased oligodendrogenesis in the WM after recovery. Despite apparent cellular recovery, diffusion tensor imaging revealed WM deficiencies at P30 and P60. Hyperoxia did not affect survival or proliferation of astrocytes in vivo, but modified GFAP and glutamate-aspartate transporter expression. The rate of [(3)H]-d-aspartic acid uptake in WM tissue was also decreased at P8 and P12. Furthermore, cultured astrocytes exposed to hyperoxia showed a reduced capacity to protect oligodendrocyte progenitor cells against the toxic effects of exogenous glutamate. This effect was prevented by 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide treatment. Our analysis reveals a role for altered glutamate homeostasis in hyperoxia-induced WM damage. Understanding the cellular dynamics and underlying mechanisms involved in hyperoxia-induced PWMI will allow for future targeted therapeutic intervention.
Collapse
|