1
|
Huang T, Fakurazi S, Cheah PS, Ling KH. The restoration of REST inhibits reactivity of Down syndrome iPSC-derived astrocytes. Front Mol Neurosci 2025; 18:1552819. [PMID: 40206188 PMCID: PMC11979110 DOI: 10.3389/fnmol.2025.1552819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Accumulating evidence indicates that the increased presence of astrocytes is fundamentally linked to the neurological dysfunctions observed in individuals with Down syndrome (DS). REST (RE1-silencing transcription factor), as a chromatin modifier, regulates 15,450 genes in humans. REST is a key regulatory element that governs astrocyte differentiation, development, and the maintenance of their physiological functions. The downregulation of REST may disrupt the homeostatic balance of astrocytes in DS. Methods This study aims to elucidate the role of REST in DS-astrocytes through comprehensive transcriptomic analysis and experimental validation. Results Transcriptomic analysis identified that REST-targeted differentially expressed genes (DEGs) in DS astrocytes are enriched in pathways associated with inflammatory response. Notably, our findings in astrocytes derived from DS human induced pluripotent stem cells (hiPSCs) show that the loss of nucleus REST leads to an upregulation of inflammatory mediators and markers indicative of the presence of reactive astrocytes. Lithium treatment, which restored nucleus REST in trisomic astrocytes, significantly suppressed the expression of these inflammatory mediators and reactive astrocyte markers. Discussion These findings suggest that REST is pivotal in modulating astrocyte functionality and reactivity in DS. The loss of REST in DS-astrocytes prompts the formation of reactive astrocytes, thereby compromising central nervous system homeostasis. Lithium treatment possesses the potential to rescue astrocyte reactivity in DS by restoring nucleus REST expression.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA BRAIN), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA BRAIN), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Gradisnik L, Velnar T. Astrocytes in the central nervous system and their functions in health and disease: A review. World J Clin Cases 2023; 11:3385-3394. [PMID: 37383914 PMCID: PMC10294192 DOI: 10.12998/wjcc.v11.i15.3385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/19/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Astrocytes are key cells in the central nervous system. They are involved in many important functions under physiological and pathological conditions. As part of neuroglia, they have been recognised as cellular elements in their own right. The name astrocyte was first proposed by Mihaly von Lenhossek in 1895 because of the finely branched processes and star-like appearance of these particular cells. As early as the late 19th and early 20th centuries, Ramon y Cajal and Camillo Golgi had noted that although astrocytes have stellate features, their morphology is extremely diverse. Modern research has confirmed the morphological diversity of astrocytes both in vitro and in vivo and their complex, specific, and important roles in the central nervous system. In this review, the functions of astrocytes and their roles are described.
Collapse
Affiliation(s)
- Lidija Gradisnik
- Institute of Biomedical Sciences, Medical Faculty Maribor, Maribor 2000, Slovenia
| | - Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- AMEU ECM Maribor, Maribor 2000, Slovenia
| |
Collapse
|
3
|
Rama Rao KV, Kielian T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. ACTA ACUST UNITED AC 2015; 6:245-263. [PMID: 26543505 DOI: 10.1111/cen3.12237] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective neuron loss in discrete brain regions is a hallmark of various neurodegenerative disorders, although the mechanisms responsible for this regional vulnerability of neurons remain largely unknown. Earlier studies attributed neuron dysfunction and eventual loss during neurodegenerative diseases as exclusively cell autonomous. Although cell-intrinsic factors are one critical aspect in dictating neuron death, recent evidence also supports the involvement of other central nervous system cell types in propagating non-cell autonomous neuronal injury during neurodegenerative diseases. One such example is astrocytes, which support neuronal and synaptic function, but can also contribute to neuroinflammatory processes through robust chemokine secretion. Indeed, aberrations in astrocyte function have been shown to negatively impact neuronal integrity in several neurological diseases. The present review focuses on neuroinflammatory paradigms influenced by neuron-astrocyte cross-talk in the context of select neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Ito T, Hoshiai K, Tanabe K, Nakamura A, Funamoto K, Aoyagi A, Chisaka H, Okamura K, Yaegashi N, Kimura Y. Maternal Undernutrition with Vaginal Inflammation Impairs the Neonatal Oligodendrogenesis in Mice. TOHOKU J EXP MED 2011; 223:215-22. [DOI: 10.1620/tjem.223.215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Takuya Ito
- Innovation of New Biomedical Engineering Center, Tohoku University
| | - Kaori Hoshiai
- Division of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine
| | - Kaori Tanabe
- International Advanced research and Education Organization, Tohoku University
| | - Ai Nakamura
- International Advanced research and Education Organization, Tohoku University
| | - Kiyoe Funamoto
- International Advanced research and Education Organization, Tohoku University
| | - Ayako Aoyagi
- International Advanced research and Education Organization, Tohoku University
| | - Hiroshi Chisaka
- Division of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine
| | | | - Nobuo Yaegashi
- Division of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine
| | - Yoshitaka Kimura
- International Advanced research and Education Organization, Tohoku University
| |
Collapse
|
5
|
Escartin C, Bonvento G. Targeted activation of astrocytes: a potential neuroprotective strategy. Mol Neurobiol 2008; 38:231-41. [PMID: 18931960 DOI: 10.1007/s12035-008-8043-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/26/2008] [Indexed: 01/07/2023]
Abstract
Astrocytes are involved in many key physiological processes in the brain, including glutamatergic transmission, energy metabolism, and blood flow control. They become reactive in response to pathological situations, a response that involves well-described morphological alterations and less characterized functional changes. The functional consequences of astrocyte reactivity seem to depend on the molecular pathway involved and may result in the enhancement of several neuroprotective and neurotrophic functions. We propose that a selective and controlled activation of astrocytes may switch these highly pleiotropic cells into therapeutic agents to promote neuron survival and recovery. This may represent a potent therapeutic strategy for many brain diseases in which neurons would benefit from an increased support from activated astrocytes.
Collapse
Affiliation(s)
- Carole Escartin
- CEA, IB2M, MIRCen, CNRS URA2210, 4, place du General Leclerc, 91401, Orsay, France.
| | | |
Collapse
|
6
|
Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol 2008; 86:186-215. [PMID: 18824211 DOI: 10.1016/j.pneurobio.2008.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/18/2008] [Accepted: 09/03/2008] [Indexed: 01/28/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is widely recognized as a potent survival factor for dopaminergic neurons of the nigrostriatal pathway that degenerate in Parkinson's disease (PD). In animal models of PD, GDNF delivery to the striatum or the substantia nigra protects dopaminergic neurons against subsequent toxin-induced injury and rescues previously damaged neurons, promoting recovery of the motor function. Thus, GDNF was proposed as a potential therapy to PD aimed at slowing down, halting or reversing neurodegeneration, an issue addressed in previous reviews. However, the use of GDNF as a therapeutic agent for PD is hampered by the difficulty in delivering it to the brain. Another potential strategy is to stimulate the endogenous expression of GDNF, but in order to do that we need to understand how GDNF expression is regulated. The aim of this review is to do a comprehensive analysis of the state of the art on the control of endogenous GDNF expression in the nervous system, focusing mainly on the nigrostriatal pathway. We address the control of GDNF expression during development, in the adult brain and after injury, and how damaged neurons signal glial cells to up-regulate GDNF. Pharmacological agents or natural molecules that increase GDNF expression and show neuroprotective activity in animal models of PD are reviewed. We also provide an integrated overview of the signalling pathways linking receptors for these molecules to the induction of GDNF gene, which might also become targets for neuroprotective therapies in PD.
Collapse
Affiliation(s)
- Ana Saavedra
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Carrer Casanova 143, 08036 Barcelona, Spain.
| | | | | |
Collapse
|
7
|
Bossers K, Meerhoff G, Balesar R, van Dongen JW, Kruse CG, Swaab DF, Verhaagen J. Analysis of gene expression in Parkinson's disease: possible involvement of neurotrophic support and axon guidance in dopaminergic cell death. Brain Pathol 2008; 19:91-107. [PMID: 18462474 DOI: 10.1111/j.1750-3639.2008.00171.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. We have studied alterations in gene expression in the substantia nigra, the caudate nucleus and putamen of four PD patients and four matched controls using custom designed Agilent microarrays. To gain insight into changes in gene expression during early stages of dopaminergic neurodegeneration, we selectively investigated the relatively spared parts of the PD substantia nigra, and correlated gene expression changes with alterations in neuronal density. We identified changes in the expression of 287 transcripts in the substantia nigra, 16 transcripts in the caudate nucleus and four transcripts in the putamen. For selected transcripts, transcriptional alterations were confirmed with qPCR on a larger set of seven PD cases and seven matched controls. We detected concerted changes in functionally connected groups of genes. In the PD substantia nigra, we observed strong evidence for a reduction in neurotrophic support and alterations in axon guidance cues. As the changes occur in relatively spared parts of the PD substantia nigra, they suggest novel disease mechanisms involving neurotrophic support and axon guidance in early stages of cellular stress events, ultimately leading to dopaminergic cell death in PD.
Collapse
Affiliation(s)
- Koen Bossers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
8
|
Daginakatte GC, Gadzinski A, Emnett RJ, Stark JL, Gonzales ER, Yan P, Lee JM, Cross AH, Gutmann DH. Expression profiling identifies a molecular signature of reactive astrocytes stimulated by cyclic AMP or proinflammatory cytokines. Exp Neurol 2007; 210:261-7. [PMID: 18054918 DOI: 10.1016/j.expneurol.2007.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 10/06/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
Specialized glia, termed reactive astrocytes, accompany numerous pathologic conditions affecting the central nervous system, including stroke, multiple sclerosis, and neoplasia. To better define this important cell type, we employed high-density microarray gene expression profiling using two in vitro models of reactive gliosis (stimulation with dbcAMP or IL-1beta/IFNgamma). We identified 44 differentially expressed transcripts common to both in vitro models and demonstrated that a subset of these genes are also differentially expressed in response to experimental autoimmune encephalomyelitis and focal cerebral ischemia in vivo. Moreover, this pattern of differential gene expression is not observed in hyperproliferating or neoplastic glia.
Collapse
Affiliation(s)
- Girish C Daginakatte
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hamby ME, Hewett JA, Hewett SJ. TGF-beta1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia 2006; 54:566-77. [PMID: 16921522 DOI: 10.1002/glia.20411] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Both transforming growth factor-beta1 (TGF-beta1) and nitric oxide synthase-2 (NOS-2) are upregulated under various neuropathological states. Evidence suggests that TGF-beta1 can either attenuate or augment NOS-2 expression, with the prevailing effect dependent on the experimental paradigm employed and the cell-type under study. The purpose of the present study was to determine the effect of TGF-beta1 on astrocytic NOS-2 expression. In purified astrocyte cultures, TGF-beta1 alone did not induce NOS-2 or NO production. However, NO production induced by lipopolysaccharide (LPS) plus IFNgamma was enhanced by TGF-beta1 in a concentration-dependent manner between 10 and 1,000 pg/mL. The presence of IFNgamma was not necessary for this effect to occur, as TGF-beta1 enhanced NO production induced by LPS in a similar fashion. In cultures stimulated with LPS plus IFNgamma, the enhancement of NO production by TGF-beta1 was associated with a corresponding increase in NOS-2 mRNA and protein expression. Interestingly, immunocytochemical assessment of NOS-2 protein expression demonstrated that TGF-beta1 augmented astrocytic NO production, specifically by increasing the pool of astrocytes capable of expressing NOS-2 induced by either LPS (approximately threefold) or LPS plus IFNgamma (approximately sevenfold). In a broader sense, our results suggest that TGF-beta1 recruits a latent population of astrocytes to respond to stimulation by pro-inflammatory mediators.
Collapse
Affiliation(s)
- Mary E Hamby
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
10
|
Kasahara K, Nakagawa T, Kubota T. Neuronal loss and expression of neurotrophic factors in a model of rat chronic compressive spinal cord injury. Spine (Phila Pa 1976) 2006; 31:2059-66. [PMID: 16915089 DOI: 10.1097/01.brs.0000231893.21964.f2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An experimental animal study about neuronal loss and the expression of neurotrophic factors in the chronic compressive spinal cords. OBJECTIVES To investigate neuronal loss and the expression of neurotrophic factors in the chronic compressive spinal cords of rats, and to evaluate effects of decompressive procedures for the neuronal loss. SUMMARY OF BACKGROUND DATA Chronic compression of spinal cords induces the loss of motor neurons in the anterior horn. However, the precise mechanism of this neuronal loss is not still understood completely. Furthermore, it is uncertain whether decompressive procedures prevent this neuronal loss or not. METHODS A thin expanding polymer sheet was implanted microsurgically underneath T7 laminae of rats. After 6, 9, 12, and 15 weeks, the thoracic spinal cord was harvested and examined histopathologically. The expression of neurotrophic factors, including NGF, BDNF, NT-3, GDNF, CNTF, and VEGF, was analyzed using semiquantitative RT-PCR, enzyme immunoassay, and immunohistochemistry. Decompressive surgery was performed through the removal of T7 laminae and the compression materials 6, 9, and 12 weeks after starting compression. Three weeks later, respectively, the neuronal loss in the anterior horn was estimated. RESULTS The spinal cords were progressively flattened by the expanding of the implanted polymer sheet, and the number of motor neurons in the anterior horn decreased, especially from 6 to 9 weeks after starting compression. Semiquantitative RT-PCR analysis showed that the expression of NGF and BDNF mRNAs was decreased significantly in the spinal cords of 12-week compression group compared with the 6-week compression group and that NGF mRNA expression was up-regulated significantly in the 6-week compression group relative to the 6-week control group. Any changes of expression of other neurotrophic factors were not significant. Since BDNF, not NGF, has been known to be one of the powerful survival factors for spinal motoneurons, we investigated the levels of BDNF protein in the compressive spinal cords using enzyme immunoassay and immunohistochemistry. We demonstrated the level of BDNF protein in the compressive spinal cords was increased 6 weeks after compression but declined after 12 weeks. The decompressive procedure in the 6 weeks after compression prevented neuronal loss, but the same procedure in the 9 or 12 weeks was ineffective. CONCLUSIONS From the point of view of neuronal loss, decompressive surgery at an earlier stage, when compensatory mechanisms including the up-regulation of BDNF might be still effective, could provide better therapeutic results against chronic mechanical compressive spinal cord lesions.
Collapse
Affiliation(s)
- Kazuma Kasahara
- Department of Neurosurgery, University of Fukui, Fukui, Japan
| | | | | |
Collapse
|
11
|
Nakagawa T, Kubota T, Ido K, Sakuma T, Matsuda K. Gene expression profiles of 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU)-resistant C6 rat glioma cells. J Neurooncol 2006; 79:271-9. [PMID: 16645721 DOI: 10.1007/s11060-006-9143-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 03/06/2006] [Indexed: 11/25/2022]
Abstract
Chemotherapy in itself is suspected to cause the development or selection of drug-resistant tumor cells, which have more aggressive phenotypes. The authors investigated the differential changes of gene expression in the 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU)-resistant subline of the C6 rat glioma (C6AR2), which was established from C6 rat glioma cells by exposure to ACNU in vitro. The resistance to ACNU of C6AR2 was confirmed by MTS assay. The increased expression of O6-methylguanine-DNA methyltransferase in C6AR2 cells was shown using RT-PCR. C6AR2 cells displayed a higher proliferative activity relative to C6 cells. Analysis with cDNA array showed that 19 genes were transcriptionally up-regulated and 16 genes down-regulated in C6AR2 cells compared to C6 cells. They belonged to various functional classes of genes beside the drug-resistant system. Among them, the down-regulation of several genes in C6AR2 cells, including c-kit, pleiotrophin, platelet-derived growth factor receptor-alpha, peripheral myelin protein-22 and NG2 chondroitin sulfate proteoglycan, which are expressed originally in developmental glial lineages, were verified using semi-quantitative RT-PCR. In addition, the gene expression of astroglial intermediate filament proteins, including GFAP, vimentin and nestin, were decreased in C6AR2 cells relative to C6 cells in semi-quantitative RT-PCR and immunocytochemistry. These findings may represent an undifferentiated state of ACNU-resistant glioma cells and a more aggressive phenotype in recurrent tumors following chemotherapy.
Collapse
Affiliation(s)
- Takao Nakagawa
- Faculty of Medical Sciences, Department of Neurosurgery, Univeristy of Fukui, 23-3 Shimoaizuki, Yoshida-gun, 910-1193 Fukui, Japan.
| | | | | | | | | |
Collapse
|